
Preface ( CSSA) 
Since the beginning of the 2000s, there has been an increasing number of studies 
and standards proposed for generating large scale symbolic representations of 
knowledge (known as Knowledge Graphs (KGs)) out of heterogeneous resources 
such as text, images, etc. Moreover, there have been many advances in symbolic 
reasoning, as well as their applications to various fields. Recently, sub-symbolic 
methods have gained momentum. These methods aim at generating distributed 
representations from several resources such as text or symbolic representations 
(Graph Neural Networks, KG embeddings, etc.). These sub-symbolic methods for 
symbolic representations mainly focus on the task of KG completion. However, 
they have also recently been used for various tasks, e.g., in Natural Language 
Processing (NLP). The future perspective for these methods would be a 
combination of these approaches, leading to a form of neurosymbolic reasoning. 
Advances in the real world applications related to these methods will also serve 
as a stepping stone in the proving their practicality. 

Overview (KGRL) 
 
Knowledge Graphs are becoming the standard for storing, retrieving, and 
querying structured data. In academia and industry, they are increasingly used to 
provide background knowledge. Over the last years, several research 
contributions were made which show that machine learning, especially 
representation learning, can be successfully applied to knowledge graphs 
enabling inductive inference about facts with unknown truth values. 
Brief Introduction 
 
Several of these approaches encode the graph structure that can be used for tasks 
such as link prediction, node classification, entity resolution, recommendation, 
dialogue systems, and many more. Although proposed graph representations can 
capture the complex relational patterns over multiple hops, they are still 
insufficient to solve more complex tasks such as relational reasoning .For this kind 
of tasks, we envision a need for representations with more expressive power, 
which could include representation in non-Euclidean space. This starts by 
capturing e.g., type constrained, transitive or hierarchical relations in an 
embedding up to learning expressive knowledge representations languages like 
first-order logic rules. 
 
Furthermore, most approaches for learning representations for knowledge 
graphs focus on transductive settings, i.e., all entities and relations need to be 



seen during training, not allowing predictions for unseen elements. For evolving 
graphs, approaches are required that generalize to unseen entities and relations. 
One avenue of research to address inductiveness is to employ multimodal 
approaches that compensate for missing modalities, and recently meta-learning 
approaches have successfully been applied 
 
Lately, the generalization of deep neural network models to non-Euclidean 
domains such as graphs and manifolds is explored They study the fundamental 
aspects that influence the underlying geometry of structured data for building 
graph representations Recent advances in graph representation learning led to 
novel approaches such as convolutional neural networks for graphs attention-
based graph networketc. Most graphs here are either undirected or directed with 
both discrete and continuous node and edge attributes representing types of 
spatial or spectral data. 
 
In this workshop, we want to see novel representation learning methods, 
approaches that can be applied to inductive learning and to (logical) reasoning 
and works that shed insights into the expressive power, interpretability, and 
generalization of graph representation learning methods. 
Also, we want to bring together researchers from different disciplines but united 
by their adoption of earlier mentioned techniques from machine learning.  
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Abstract. We propose a novel framework named ViOCE that integrates
ontology-based background knowledge in the form of n-ball concept em-
beddings into a neural network based vision architecture. The approach
consists of two components - converting symbolic knowledge of an on-
tology into continuous space by learning n-ball embeddings that capture
properties of subsumption and disjointness, and guiding the training and
inference of a vision model using the learnt embeddings. We evaluate
ViOCE using the task of few-shot image classification, where it demon-
strates superior performance on two standard benchmarks.
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1 Introduction

Ontologies can capture consistent, generalised and structured knowledge that
can be used with reasoning tools [23] that ensure knowledge consistency to-
gether with the ability to infer new knowledge [1]. Sometimes knowledge graphs
are also called as ontologies [30], but we identify clear differences. Knowledge
graphs tend to be more loosely defined, whereas ontologies have a well-defined
semantics that distinguish concepts from the given knowledge specification and
other relationships (e.g., hasPart) between concepts bound by logical axioms.
Sometimes a knowledge graph can be seen as a specific instantiation of a whole
or part of an ontology representing only object-level information [15], whereas
ontologies include both concept-level information and objects or terms. More-
over with powerful reasoning tools, ontologies facilitate the discovery of implicit
knowledge from explicitly define knowledge. This study sheds light on the use of
ontologies in a machine learning context. We use the Web Ontology Language
(OWL) [18] in constructing our ontologies in this study. In order to assess the
impact of knowledge integration to a visual recognition task, we chose few-shot
image classification [2] to be the main task in this study. Few-shot learning in
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Fig. 1. The proposed approach classifies images by projecting them towards concept n-
balls defined in high-dimensional space according to ontology-based background knowl-
edge. (a) shows a snapshot of a few predictions for three miniImageNet[27] classes
‘miniature poodle’, ‘hotdog’ and ‘street sign’ made by a model trained using the ViOCE
framework during few-shot image classification. The dimensionality of the n-balls is re-
duced to 2 for visualisation purposes. A correct prediction is an image projected to be
inside of the n-ball of its ground truth label. Additionally, the surrounding n-balls to
the ground truth n-balls, defined according to the background knowledge, gives us an
unique opportunity to measure the ‘certainty’ of the model in classifying each image.
For example, not all ‘miniature poodle’ images lie inside the ground truth n-ball but
an image lying inside ‘dog’ can be identified as semantically meaningful. (b) is a visu-
alisation of the same set of n-balls in (a) reduced to a 3-dimensional space in order to
provide a clearer idea on the nature of n-ball shape and placing.

an image classification context focuses on effectively learning the visual features
of a class with very few examples.

The proposed ViOCE framework, we adopt a technique to embed ontology-
based knowledge as n-balls inspired by the work done by Kulmanov et al. [14].
This embedding can represent specialisations (e.g., Dog SubclassOf Animal) us-
ing the property of one n-ball enclosing another and partonomies (e.g., Dog has-
Part Tail) using translations of n-ball positions. In this study, we directly utilise
two loss design components of [14] to capture subsumption and disjointness ax-
ioms, while extending their approach with more regularisation components in
order to embed large hierarchies in a favourable manner for a downstream vi-
sion task. Additionally, we propose the use of the inferred class hierarchy of the
input ontology and introduce a technique to evaluate the quality of the learnt
embeddings during the embedding learning process. The learnt n-ball embed-
dings can be seen as definitions of space for each concept in consideration that
preserves the inferred class hierarchy entailed by the ontology. Next, we intro-
duce a method to use a vision model [5; 12] to map input images to the space
defined by the concept embeddings, informing the vision task with the knowl-
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edge captured from the ontology. Figure 1 shows a snapshot of a few predictions
for some miniImageNet[27] classes ‘miniature poodle’, ‘hotdog’ and ‘street sign’
made by a model trained using the ViOCE framework. We find that our approach
facilitates better transparency on the behaviour of both knowledge embeddings
and visual feature learning.

Overall, we extend [14] to capture knowledge from an ontology in the form
of n-ball embeddings and show that they are favourable for the downstream
vision task of few-shot image classification. This is also coupled with a technique
to measure the quality of the learnt embeddings with respect to the knowledge
entailed by the ontology. Next, we propose a technique to utilise the n-balls to
guide a vision model during its training and inference stages performing few-shot
image classification.

2 Related Work

An area that inspires the investigation of background knowledge integration in
vision is the existing work done in knowledge-based vision systems [13; 25]. In
[13], an interesting categorisation of knowledge that can be used as background
knowledge is proposed, namely, permanent theoretical knowledge, circumstantial
knowledge, subjective experimental knowledge and data knowledge. Although
how these categories are formed is debatable, the importance of looking into
different forms of knowledge that can be used as background knowledge is iden-
tified. The choice of knowledge form can be very much based on the considered
vision application, as pointed out in [25], where the authors curate a number
of vision tasks along with the forms of knowledge used to inform the learning
process. Out of these, the use of scene graphs, probabilistic ontologies and first-
order logic rules grab the attention as promising paths to explore. Investigations
into the use of background knowledge in the form of first-Order Logic (FOL) is
prominently seen in several studies [10]. As shown in [10], adaptation of logical
knowledge as constraints during the learning process has generated promising
results, that reinforces the attempts to use ontologies as background knowledge.
The area of neuro-symbolic approaches also provides insights into the use of
logical knowledge during the training of artificial neural networks [22].

In terms of combining other sources of knowledge [16] with computer vision,
this study is motivated by work such as [5; 12] and [29], where image features
are mapped to a vector space defined by language embeddings. This is identified
as informing the image model with more knowledge that do not exist merely
in the image features. In the case of [5], the knowledge from an unstructured
text corpus is captured in the form of word embeddings to be integrated to the
vision architecture. These approaches were mostly evaluated on zero-shot image
classification, making use of the distance between points in the vector space
defined. These findings motivate the proposed approach in this study, since they
allow to extend standard vision models to incorporate language information. In
terms of evaluation however, it can be argued that few-shot image classification
[20] is a better candidate to measure how additional knowledge could help grasp
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new concepts faster. In terms of few-shot learning [4; 11], our study is motivated
by metric learning methods [28; 20] due of their ability to extend standard vision
architectures [6]. These approaches exploits image feature similarities [24] when
learning and predicting a vision task.

3 n-Balls and EL Embeddings

The mathematical concept of ball refers to the volume space bounded by a
sphere and is also called a solid sphere. An n-ball usually refers to a ball in an n-
dimensional Euclidean space. The EL embeddings study [14] attempts to encode
logical axioms by positioning n-balls. We explain how it works for encoding
subsumption and disjointness as they are the most relevant to our work. Each
concept P is embedded as an n-ball with its centre denoted by cP ∈ Rn and
the radius by rP ∈ R. The basic idea is to move one ball inside the other for
subsumption and to push two balls to stay away for disjointness. The following
loss is minimized to encode O |= P v Q:

lPvQ(cP , cQ, rP , rQ)

= max(0, ‖cP − cQ‖2 + rP − rQ − γ)

+
∣∣‖cP ‖2 − 1

∣∣+
∣∣‖cQ‖2 − 1

∣∣, (1)

where ‖ · ‖2 denotes the l2 norm and γ ∈ R is a user-set hyperparameter. It
enforces the inequality ‖cP − cQ‖2 ≤ rQ − rP + γ, meanwhile regulates the ball
centers to be close to a unit sphere. Through controlling the sign of γ, the user
can adjust whether to push the P ball completely inside the Q ball. In a similar
fashion, the loss for encoding O |= P uQ v ⊥ is given as

lPuQv⊥(cP , cQ, rP , rQ)

= max(0,−‖cP − cQ‖2 + rP + rQ + γ)

+
∣∣‖cP ‖2 − 1

∣∣+
∣∣‖cQ‖2 − 1

∣∣. (2)

It enforces the inequality ‖cP − cQ‖2 ≥ rQ + rP + γ. According to the setting
of γ, the user can decide how far the two balls are pushed away.

4 Proposed Method: ViOCE

We study how to effectively integrate ontology-based background knowledge to
improve few-shot image classification. More specifically, this paper is focused on
using additional hierarchical knowledge about the different classes to help image
classification, achieving reduced data dependency of vision model architectures
that are based on deep neural networks.

Adopting few-shot image classification as our benchmark [9], we train a neural
vision model using a set of background images BI = {(Ii, yi)}mi=1 (base set)
from K classes with yi ∈ CB = {c1, c2, . . . cK} and a set of few-shot images
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FI = {(Ii, yi)}si=1 (novel set) from w classes with yi ∈ CF = {c̃1, c̃2, . . . , c̃w},
where CB ∩ CF = ∅, and Ii denotes the raw image vectors containing pixel
values. The few-shot success is usually assessed by how accurate a model can
select a correct class from the candidate class set CF for a new image from the
few-shot classes. This is often referred to as the w-way s-shot few-shot image
classification. We construct an ontology O by using the class label information
CB and CF , and also WordNet. It provides information on relationships that can
exist among the class labels, containing knowledge regarding to “SubClassOf”
and “DisjointClasses”. These define the subsumption and disjointness axioms in
the ontology.

We propose ViOCE as a framework to improve few-shot image classification
by integrating information provided by O, BI and FI. It is composed of two
main components: (1) to embed classes in CB and CF as n-balls based on the
constructed O, (2) to embed images in the same Euclidean space as the n-balls
with a suitable arrangement, and to infer the class for a query image based on
its image embedding and the n-ball embeddings of the candidate classes. Figure
2 shows the general framework flow with an overview of all processes and data
inputs.

4.1 Concept n-Ball Embeddings

We build upon the EL embedding technique [14] to learn a set of n-balls for all

concepts Õ in the ontology O, which is referred to as a concept embedding. We
extract subsumption and disjointness axioms to define the class hierarchy of the
ontology O. It has been noticed that the entailed transitive relations such as
if Poodle SubclassOf Dog and Dog SubclassOf Animal, then Poodle SubclassOf
Animal are usually not well reflected by the learned n-balls. To overcome this, we
use the inferred class hierarchy (ICH). Assuming all the concepts are satisfiable
with O, the ICH is computed according to Equation 3. ICH contains all possible
subsumption relations according to the definition of O.

ICH(O) = {P v Q|P 6= Q,P,Q ∈ Õ,O |= P v Q}. (3)

If simply to follow Eqs. (1) and (2), the radius of the learned n-ball for a leaf
concept, which corresponds to an image class in CB or CF , can end up being very
small, in order to fit into the balls of its ancestor concepts. Since in the image
embedding learning, we will map each image as a data point inside the n-ball
corresponding to its ground truth class, an overly small radius can affect the
learning accuracy. To tackle this, we introduce a regularisation term in Eq. (5)
to prevent radius shrinkage. Also, the embedding quality can deteriorate as the
class hierarchy of the input ontology becomes larger. To improve the embedding
quality, we introduce an extra hyperparameter in Eq. (4) to explore potentially
more expressive design spaces, which is supported by an additional parameter



M . Jayathilaka et al.

Fig. 2. The overview of the proposed ViOCE framework. If a suitable ontology for the
task does not exist, the approach starts from constructing an ontology for the image
labels capturing relationships between them based on an external knowledge resource
(in our case WordNet). Subsequently the approach follows the two main components
of the framework - A) Concept embedding learning process that starts with computing
the inferred class hierarchy (ICH) of the input ontology and then generates n-ball
embeddings for all the concepts found in the ontology. B) Visual model (DCNN+MLP)
training where, first the background images are used to train a base model which gets
fine-tuned (only MLP) using the few-shot images to produce the final model. During
both base learning and few-shot learning processes, the concept embeddings guide the
learning process by setting the objective of the model to project the image feature
points inside the correct n-ball representing the ground truth label of an input image.

tuning process. Finally, we minimise the following loss function:

lc
(
{cP }P∈Õ, {rP }P∈Õ

)
(4)

=
∑

ICH(O)|=PvQ

max(0, ‖cP − cQ‖2 + rP − rQ − γ)

+
∑

O|=CuDv⊥

max(0,−‖cP − cQ‖2 + rP + rQ + γ)

+
∑
P∈Õ

max(0, ψ
√
Nh − L(P )− rP ) (5)

+
∑
P∈Õ

N(P )
∣∣‖cP ‖2 − φ∣∣ (6)
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Here, Nh denotes the total level number contained by the class hierarchy, and
L(P ) denotes the level of the concept P in the hierarchy, e.g.,, the top-most
concept has level 1. N(P ) denotes the number of times the concept P appears
in the extracted axioms. Both ψ, φ > 0 are hyperparameters. Eq. (5) restrict the
radius of the concept P ’s n-ball to be no less than ψ

√
Nh − L(P ). The top-level

concepts are allowed to have larger n-balls than the bottom ones.

4.2 Hyperparameter Tuning of n-ball Embeddings

Three parameter tuning scores are proposed by examining whether ‖cP −cQ‖ ≤
rQ − rP holds for a ground truth subsumption ICH(O) |= P v Q. All the
ground truth subsumptions are considered as positive instances. If the inequality
holds, it is considered as a positive prediction. The classical F1 score, which is
the harmonic mean of the precision and recall, is used to assess the prediction
accuracy of these subsumptions. We calculate two versions of F1 score, one is

referred to as F
(all)
1 based on all the subsumptions extracted from ICH(O).

The other only considers the subsumptions involving the leaf concepts, which
correspond to all the classes in CB and CF , as well as their direct parent classes.

This score is referred to as F
(leaf)
1 . The third parameter tuning score SD examines

the disjointness between the leaf concepts. Enumerating all the pairs of leaf
concepts, SD is equal to the number of pairs for which the condition ‖cP−cQ‖ ≥
rP + rQ holds. A higher SD indicates less overlapping between the n-balls of the
leaf concepts. We need SD to be greater that a threshold value of T .

A good concept embedding result should have high F
(all)
1 , F

(leaf)
1 and SD

scores. We compute these scores as a mandatory step at the end of each embed-
ding learning process. The hyperparameters governing the scores are γ, φ and ψ.
We use grid search to find the best combination of these parameters that would

result in the best F
(all)
1 , F

(leaf)
1 and SD scores.

4.3 Image Embedding Learning

Our vision model is composed of a base DCNN architecture coupled with a
multi-layer perceptron (MLP). The DCNN computes the visual features for an
image by taking its raw pixel representation vector as the input: fi = φD(Ii,θD)
where fi ∈ Rd. The MLP is responsible for mapping the visual features fi to
the n-dimensional Euclidean space where the n-ball concept embeddings sit:
hi = φM(fi,θM) where hi ∈ Rn. We use θD and θM to denote the neural
network parameters to be trained for the DCNN and MLP, respectively. The
idea is to identify visual features of an image (using a DCNN) so that they can
be mapped (by an MLP) as a data point inside the n-ball of its ground truth
class. For example, an image containing the visual features of a “poodle” should
be mapped inside the n-ball of the “poodle” concept learnt from the ontology.

To achieve this, the following a pairwise ranking loss is used to optimise the
network parameters:

lI(θD,θM) =
∑m

i=1

[
max (0, ‖cP − hi‖2 − µrP ) +

∑
Q∈C(−)

i
max(0, νrQ − ‖cQ − hi‖2)

]
, (7)
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where µ, ν > 0 are hyperparameters. The set C
(−)
i contains the negative classes

defined for each image Ii of the positive class with its embedding computed by
hi = φM(φD(Ii,θD),θM). When setting µ = ν = 1, the loss enforces ‖cP − hi‖2 ≤
rP , pushing the embedded image point to stay inside the n-ball of the correct
concept class P , while ‖cQ − hi‖2 ≥ rQ, to stay outside the n-ball of the incor-
rect concept class Q. The hyperparameters µ and ν are placed to control the
intensity of this effect, e.g.,, µ < 1 requiring to lie closer to the center which
makes the task harder.

A specification crucial to learning performance is the selection of negatives

concepts in C
(−)
i . Following the notion of “hard negatives” in [19], we select

“hard negatives” for each positive concepts based on similarity. For example,
the “poodle” concept is more similar to “golden retriever” in contrast to the
“street sign”, therefore it is more challenging to distinguish between “poodle”
and “golden retriever”. So we choose as the hard negatives the more similar con-
cepts to a positive concept. Specifically, we evaluate similarities between concepts
by Euclidean distances between the centre vectors of their corresponding n-balls,
and perform k-means clustering based on these. After clustering the centre vec-
tors of the leaf concepts (image classes), for each image class, all the other image
classes from the same cluster as it are treated as the “hard negatives” and are

included to C
(−)
i . In practice, we first train the DCNN and MLP from scratch by

minimising Eq. (7) using the background images BI. This is called base learning
(BL). Then, we fine tune the MLP by using the few-shot images FI by minimis-
ing the same loss, but keep the weights of DCNN fixed. This called the few-shot
learning (FSL).

We test the vision model using the testing images of FI (FIte) after the
fine-tuning of MLP in the FSL stage. During inference, a prediction is made
by finding the n-ball which an image feature projection lies in. Let U = ‖cP −
h‖ − rP , where h is an output feature for a query image from the vision model
and cP and rP are the centre and radius of a selected n-ball of P respectively.
If U ≤ 0, we find that h lies inside the n-ball of P . Hence the classification of
h will be class P . In case some h does not lie inside any of the n-balls of the
w classes in the few-shot task, we choose the closest lying n-ball centre ci out
of the classes to h, where argminci(i=1,2,..,w)

(
‖ci − h‖

)
, as the prediction. The

proportion of the correct predictions out of all images in FIte is recorded as the
accuracy of the vision model in this study.

5 Experiment Setting

MiniImageNet dataset consists of 60,000 images of 100 classes from ImageNet
where each class carries 600 example images [27]. Following the same splitting
as in [8], 80 and 20 classes were allocated for training and testing respectively.
TieredImageNet dataset is larger in size than miniImageNet, containing 608
classes from ImageNet [21]. Its classes are acquired based on 34 higher-level
categories. We use a training set consisting of 26 higher-level categories with 448
classes, and testing set of 8 higher-level categories with 160 classes.
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We construct two new ontologies based on the image labels of the datasets for
each few-shot image classification benchmark. All selected datasets are subsets of
ImageNet [3], where WordNet [17] synsets are used to annotate all images. This
offered the opportunity to use the information from WordNet to formulate more
knowledge about the image labels. We chose the hypernym tree of WordNet
to be the source of the class hierarchy in this study, where given a label, the
corresponding synset name together with all other synsets above it until the root
(entity.n.01 ) was extracted. All these concepts were included in the ontology1.
The dimensionality of the concept embeddings was chosen to be 300. During all
experiments, ResNet50 [7] architecture was chosen to be the base network and
the MLP was composed of 5 layers with sizes of 2048, 1024, 512, 512 and 300.

6 Results

6.1 Few-shot image classification results

ViOCE is evaluated by comparing with the performance of several existing ap-
proaches according to [26] under the same configuration. We conduct experi-
ments for w = {5, 20} and s = {1, 5}. Table 1 reports the 5-way 1-shot and
5-shot performance comparisons. It can be seen that ViOCE surpasses the the
performance of all other approaches in every 5-way tasks with both datasets,
while achieving >90% accuracy in miniImageNet 5-shot task.

Table 1. 5-way 1-shot and 5-shot accuracy comparison with existing approaches using
miniImageNet and tieredImageNet benchmarks. All accuracies are reported with 95%
confidence intervals.

miniImageNet 5-way tieredImageNet 5-way
Model

1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

MAML (Finn et al.) 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
Matching Networks (Vinyals et al.) 43.56 ± 0.84 55.31 ± 0.73 - -
IMP (Allen et al.) 49.20 ± 0.70 64.7 ± 0.70 - -
Prototypical Networks (Snell et al.) 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
Relational Networks (Sung et al.) 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78
AdaResNet (Munkhdalai et al.) 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM (Oreshkin et al.) 58.50 ± 0.30 76.70 ± 0.30 - -
Shot-Free (Ravichandran et al.) 59.04 ± n/a 77.64 ± n/a 63.52 ± n/a 82.59 ± n/a
MetaOptNet (Lee et al.) 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
Fine-tuning (Dhillon et al.) 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48
LEO-trainval (Rusu et al.) 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
Embedding-distill (Tian et al.) 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
ViOCE 65.71 ± 0.13 93.65 ± 0.07 73.4 ± 0.13 88.95 ± 0.09

1 The used ontologies can be accessed via https://github.com/miranthajayatilake/

ViOCE-Ontologies

https://github.com/miranthajayatilake/ViOCE-Ontologies
https://github.com/miranthajayatilake/ViOCE-Ontologies
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The study further extends the evaluation with the miniImageNet dataset to
the task of 20-way 1-shot and 5-shot classification. In this case, considering all the
20 few-shot classes offers a bigger challenge to the model, having to distinguish
between more classes with a few examples. Table 2 presents the result comparison
on this task. ViOCE surpasses the performance of existing approaches in both
1-shot and 5-shot tasks with comfortable margins.

Table 2. 20-way 1-shot and 5-shot accuracy comparison with existing approaches using
miniImageNet dataset.

miniImageNet 20-way
Model

1-shot (%) 5-shot (%)

MAML (Finn et al.) 16.49 19.29
Meta LSTM (Ravi et al.) 16.70 22.69
Matching Networks (Vinyals et al.) 17.31 26.06
Meta SGD (Li et al.) 17.56 28.92
Deep Comparison Network (Zhang et al.) 32.07 47.31
TIM-GD (Boudiaf et al.) 39.30 59.50
ViOCE 48.02 84.13

Another interesting observation during the BL stage of ViOCE was the be-
haviour of the training and testing accuracies of the vision model. With miniIm-
ageNet for example, the model was trained with 500 images per class across 80
classes, which is comparable to a standard image classification task. The training
and testing accuracies were 85.32% and 95.36% respectively. The higher testing
accuracy demonstrates the better generalisation ability of the learnt model. We
argue that this effect is due to not forcing the image features to a fixed point
as done in a standard training setting. The n-ball embeddings define a volume
of space for each class providing more flexibility for the arrangement of image
feature points.

7 Conclusion

We show that the introduction of ontology-based background knowledge to a
visual model can improve its performance in the task of few-shot image classifi-
cation. The proposed ViOCE framework is capable of utilising the n-ball concept
embeddings in an effective way to inform the training and inference procedures
of a vision model, and producing superior performance on two benchmarks. In
future, we plan to extend this study to evaluate the semantically meaningful
errors in classification and utilise multi-relational knowledge when learning con-
cept embeddings.
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Abstract. Word representations derived by neural language models have been
shown to effectively carry useful semantic information to improve the final results
of various Natural Language Processing tasks. The information provided by these
representations encodes the subtle distinction that might occur between different
meanings of the same word. However, these representations do not include the
input text’s information, as the context, and a semantic knowledge base network.
This integration of context and semantic network is helpful in NLP tasks, specifi-
cally in the lexical ambiguity problem. In this paper, we first analyzed the defects
of current state-of-the-art representations learning approaches, and second, we
present a word representation learning method, named ContextBERT, that is aware
of the semantic knowledge base network and the context. ContextBERT is a novel
approach to producing sense embeddings for the lexical meanings within a lexical
knowledge base, using pre-trained BERT model The novel difference in our repre-
sentation is the integration of the knowledge base information and the input text.
Our representations enable a simple 1-Nearest-Neighbour algorithm to perform
state-of-the-art models in the English Word Sense Disambiguation task.

Keywords: Sense Embedding · Representation Learning · Word Sense Disam-
biguation · Pre-trained Language Models · Semantic Networks.

1 Introduction

Text disambiguation is one of many problems in Natural Language Processing (NLP)
tasks. In this task, we have an input text including a word with multiple possible
meanings based on a semantic knowledge base network, and the question is which
one of those multiple meanings is the best meaning match for the word in the text,
based on its context [17,32]. The context here refers to the input document text. The
text disambiguation task is mostly referred to as Word Sense Disambiguation (WSD)
task in NLP. Knowledge bases are different in nature [2]; for example, WordNet is a
lexical graph database of semantic relations (e.g., synonyms, hyponyms, and meronyms)
between words. Synonyms are grouped into synsets with short definitions and usage
examples. WordNet can thus be seen as a combination and extension of a dictionary and
thesaurus [3]. Wikipedia is a hyperlink-based graph between encyclopedia entries1.

1 Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).



2 Mozhgan Saeidi

The text ambiguity task is easy for humans by considering the context. The context
enables us to identify the correct meaning of the ambiguous words. In computational
methods, we try to enhance the algorithms to mimic this approach. These methods often
represent their output by linking each word occurrence to an explicit representation of the
chosen sense [37]. Two approaches to tackle this problem are the machine learning-based
approach and the knowledge-based approach. In the machine learning-based approach,
systems are trained to perform the task [32]. The knowledge-based approach requires
external lexical resources such as Wikipedia, WordNet [13], a dictionary, or a thesaurus.
The machine learning-based approaches mainly focus on achieving maximal precision or
recall and have their drawbacks of run-time and space requirement at the time of classifier
training [4]. So, knowledge-based disambiguation methods still have advantages to study.
Among different knowledge-based methods, coherence-based has been more effective in
explaining it. In the coherence-based approach, one important factor is the coherence of
the whole text after disambiguation, while in other approaches, this factor might change
to considering the coherence of each sentence or paragraph.

There are different factors that play important roles in solving the WSD problem, in-
cluding word representation. Word representations have been shown to play an important
role in different Natural Language Processing (NLP) tasks, especially in disambiguation
tasks. There are many different approaches to generate word representation embeddings.
Recently, embeddings based on pre-trained deep language models have attracted much
interest. These models have proved to be superior to classical embeddings for several
NLP tasks, including Word Sense Disambiguation (WSD). Some of most used models
in this category are including ELMO [22], BERT [5], and XLNET [38]. these models
encode several pieces of linguistic information in their word representations. These
representations differ from static neural word embeddings [21] in that they are depen-
dent on the surrounding context of the word [29].This difference makes these vector
representations especially interesting for disambiguation, where effective contextual
representations can be highly beneficial for resolving lexical ambiguity. In addition, these
representations enabled sense-annotated corpora to be exploited more efficiently [10].

In this study, next section, we overview different current approaches for text em-
bedding with focusing on the contextualized word representation. We analyzed the
effectiveness of these methods on different types of words. We show the pros and cons of
these state-of-the-art models in word representation learning on parts of speeches are. In
our representation, we enhanced this detected defectiveness to improve representations.
Our novel contribution provides a new representation of words using the context of the
input text and the context of the knowledge base and uses the nearest neighbor heuristic
algorithm to disambiguate ambiguous words. We finally compare the performance of
our proposed approach with our representations with the most current methods in the
disambiguation task.

2 Related Work

The Word Sense Disambiguation is one core problem in NLP, which addresses the
ambiguity of words in a given context. In this task, we have access to two main sources
of information to disambiguate the ambiguous words. One source is a semantic network,
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and the other is sense-annotated corpora. Semantic networks encode a more general
knowledge that is not tied to a specific task, and the information enclosed therein is
usually employed for WSD by knowledge-based approaches. Instead, sense annotated
corpora are tailored to the WSD task and are typically used as training sets for supervised
systems. Therefore, we divide the WSD approaches into two categories of knowledge-
based and supervised approaches [17].

2.1 Knowledge-Based Approaches

In the knowledge-based methods, the semantic network structure of the knowledge base is
used, e.g., Wikipedia [7], WordNet [13], BabelNet [19], to find the correct meaning based
on its context for each input word [16]. These approaches employ algorithms on graphs
to address the word ambiguity in texts [1]. Disambiguation based on Wikipedia has been
demonstrated to be comparable in terms of coverage to domain-specific ontology [36]
since it has broad coverage, with documents about entities in a variety of domains [31].
The most widely used lexical knowledge base is WordNet, although it is restricted
to the English lexicon, limiting its usefulness to other vocabularies. BabelNet solves
this challenge by combining lexical and semantic information from various sources in
numerous languages, allowing knowledge-based approaches to scale across all languages
it supports. Despite their potential to scale across languages, knowledge-based techniques
on English fall short of supervised systems in terms of accuracy.

2.2 Supervised Approaches

The supervised approaches surpass the knowledge-based ones in all English data sets.
These approaches use neural architectures, or SVM models, while still suffering from
the need of creating large manually-curated corpora, which reduces their usability to
scale over unseen words [20]. Automatic data augmentation approaches [33] developed
methods to cover more words, senses, and languages.

In recent years, the contextual representation learning approaches have improved the
performance of WSD models, where they have been employed for the creation of sense
embeddings. Most NLP tasks now use semantic representations derived from language
models. There are static word embeddings and contextual embeddings. This section
covers aspects of the word and contextual embeddings that are especially important to
our work.

Static Word Embeddings Word embeddings are distributional semantic representations
usually with one of two goals: predict context words given a target word (Skip-Gram),
or the inverse (CBOW) [12]. In both, the target word is at the center, and the context
is considered as a fixed-length window that slides over tokenized text. These models
produce dense word representations. One limit for word embeddings, as mentioned
before, is meaning conflict around word types. This limitation affects the capability of
these word embeddings for the ones that are sensitive to their context [28].
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Contextual Word Embeddings The problem mentioned as a limitation for the static
word embeddings is solved in this type of embeddings. The critical difference is that
the contextual embeddings are sensitive to the context. It allows the same word types to
have different representations according to their context. The first work in contextual
embeddings is ELMO [22], which is followed by BERT [5], as the state-of-the-art model.
The critical feature of BERT, which makes it different, is the quality of its representa-
tions [30]. Its results are task-specific fine-tuning of pre-trained neural language models.
The recent representations which we analyze their effectiveness are based on these two
models [24,23].

In our representation, we use different resources to build the vectors. In this section,
we provide information on these resources.

2.3 Wikipedia

is the largest electronic encyclopedia freely available on the Web. Wikipedia organized
its information via articles called Wikipedia pages. Disambiguation based on Wikipedia
has been demonstrated to be comparable in terms of coverage to domain-specific on-
tology [36] since it has broad coverage with documents about entities in a variety of
domains [11]. Moreover, Wikipedia has unique advantages over the majority of other
knowledge bases, which include [40]:

– The text in Wikipedia is primarily factual and available in a variety of languages.
– Articles in Wikipedia can be directly linked to the entities they describe in other

knowledge bases.
– Mentions of entities in Wikipedia articles often provide a link to the relevant

Wikipedia pages, thus providing labeled examples of entity mentions and asso-
ciated anchor texts in various contexts, which could be used for supervised learning
in WSD with Wikipedia as the knowledge base.

2.4 BabelNet

is a multilingual semantic network, which comprises information coming from heteroge-
neous resources, such as WordNet, and Wikipedia [19]. It is organized into synsets, i.e.,
sets of synonyms that express a single concept, which, in their turn, are connected to
each other by different types of relationships. One of Babelnet’s features which is useful
for our representation is hypernym-hyponym relations. In this relation, each concept is
connected to other concepts via hypernym relation (for generalization) and via hyponym
relation (for specification). Semantically-related relation is the other feature that we
use that expresses a general notation of relatedness between concepts. The last feature
of Babelent used in this work is mapping to Wikipedia, which maps its concepts to
Wikipedia pages.

2.5 WordNet

is the most widely used lexical knowledge repository for English. It can be seen as
a graph, with nodes representing concepts (synsets) and edges representing semantic
relationships between them. Each synset has a set of synonyms, such as the lemmas
spring, fountain, and natural spring in the synset, A natural flow of groundwater.



2. RELATED WORK 5

2.6 SemCor

is the typical manually-curated corpus for WSD, with about 220K words tagged with
25K distinct WordNet meanings, resulting in annotated contexts for around 15% of
WordNet synsets.

2.7 BERT

is a Transformer-based language model for learning contextual representations of words
in a text. The contextualized representation of BERT is the key factor that has changed
the performance in many NLP tasks, such as text ambiguity. In our representations, we
use BERT-base-cased to generate the vectors of each sense [5].

2.8 SBERT

is a modification of the pre-trained BERT network that uses siamese and triplet network
structures to derive semantically meaningful sentence embeddings that can be compared
using cosine-similarity. We use this sentence representation when generating the vector
representations of sense sentences, both in the input text and in the knowledge base text.

2.9 Graph Convolutional Network

Graph Convolutional Networks (GCN) is a very powerful multilayer neural network
architecture for machine learning on graphs [8]. GCN operates directly on a graph and
induces embedding vectors of nodes based on the properties of their neighborhoods. In
fact, they are so powerful that even a randomly initiated 2−layer GCN can produce useful
feature representations of nodes in networks2. Formally, consider a graph G = (V,E),
where V (|V | = n) and E are sets of nodes and edges, respectively. Every node is
assumed to be connected to itself, i.e., (v, v) ∈ E for any v which the reason for this
assumption is mentioned at the end of this paragraph. Let X ∈ Rn×m be a matrix
containing all n nodes with their features, where m is the dimension of the feature
vectors, each row xv ∈ Rm is the feature vector for v. We introduce an adjacency
matrix A of G and its degree matrix D, where Dii =

∑
j Aij . Because of self-loops, the

diagonal elements of A are all 1. We now have a graph, its adjacency matrix A, and a
set of input feature X . After applying the propagation rule f(X,A) = AX and X = I ,
the representation of each node (each row) is now a sum of its neighbor’s features. In
other words, the graph convolutional layer represents each node as an aggregate of its
neighborhood. The reason for considering the self-loops in the graph is the aggregated
representation of a node to include its own features.

For a one-layer GCN, the new k-dimensional node feature matrix L(1) ∈ Rn×k is
computed as:

L(1) = ρ(ÂXW0) (1)

2 The notation we used for GCN in this paper are the same as notations in [39]
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where Â is D−0.5AD−0.5, the normalized symmetric adjacency matrix and W0 ∈ Rm×k

is the weight matrix. The ρ is the activation function (RELU); ρ(x) = max(0, x). GCN
can capture information only about immediate neighbors with one layer of convolution.
When multiple GCN layers are stacked, information about larger neighborhoods are
integrated;

L(j+1) = ρ(ÂLjWj) (2)

which j is the layer number and L0 = X . In other words, the size of the second
dimension of the weight matrix determines the number of features at the next layer.
The feature representations can be normalized by node degree by transforming the
adjacency matrix A by multiplying it with the inverse degree matrix D. First we used
the simple propagation rule f(X,A) = D−1AX , while then improved it. The improved
version is inspired by a recent work [8] that proposes a fast approximate spectral graph
convolutions using a spectral propagation rule f(X,A) = σ(D−0.5ÂD−0.5XW ). They
showed this property is very useful, that connected nodes tend to be similar (e.g. have
the same label).

3 Methodology

This section presents our novel embedding approach of creating sense representations
of BabelNet senses. Our representation learning is created by combining semantic and
textual information from the first paragraph of each sense’s Wikipedia page and the
input document paragraph, which includes the ambiguous word. our approach uses the
representation power of neural language models, i.e., BERT and SBERT. We divide our
approach into the following steps:

3.1 Context Retrieval

In this step, we collect suitable contextual information from Wikipedia for each given
concept in the semantic network. Similar to [34], we exploit the mapping between
synsets and Wikipedia pages available in BabelNet, as well as its taxonomic structure,
to collect textual information that is relevant to a target synset s. For each synset s, we
collect all the connected concepts to s through hyponym and hypernym connections of
the BabelNet knowledge base. We show this set of related synsets to s by Rs which is:

Rs = {s
′
|(s, s

′
) ∈ E}

Similar to [34], we use E as the set includes all hyponyms and hypernyms connections.
In this work, for each page ps, we consider the first opening paragraph of the page and
compute its lexical vector by summing the SBERT vector representation of the sentences
in this first paragraph. These lexical representations are later used for the similarity score
finding between ps and ps′ , for each s

′ ∈ Rs by using the weighted overlap measure
from [25], which is defined as follows:

WO(p1, p2) = (
∑
w∈O

1

rp1
w + rp2

w
)(

|O|∑
i=1

1

2i
)−1
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where O is the set of overlapping dimensions of p1 and p2 and rpi
w is the rank of

the word w in the lexical vector of pi. We preferred the weighted overlap over the more
common cosine similarity as it has proven to perform better when comparing sparse
vector representations [25]. Similar to [34], Once we have scored all the (ps, ps′) pairs,
we create partitions of Rs, each comprising all the senses s′ connected to s with the
same relation r, where r can be one among: hypernymy, and hyponymy. We then retain
from each partition only the top-k scored senses according to WO(ps, ps′i), which we
set k = 15 in our experiments.

3.2 Word Embedding

In the second step, we use BERT for the representation of the given concepts from the
input text. For each ambiguous word–which we call this word by mention– of the input,
we extract the BERT representation of the mention. Using the BabelNet relations of
hyponymy and hypernymy, we extract all synsets of mention from BabelNet (set E). For
each one of these senses, use the link structure of BabelNet and Wikipedia; we collect
all the Wikipedia pages for each sense. We use BERT representation for the second time
to generate vector representation for senses. In the settings, each word is represented as
a 300-dimensional vector, as the BERT dimension.

3.3 Sense Embedding

In this step, we build the final representation of each concept. From the previous step,
we took the representation of mention, R(m), and the representation of each one of its
senses. We show the representations of each k sense of m by R(si) which i varies from
1 to k, based on their similarity scores. Our unique representations combine the mention
representation with sense representation, averaging the vector representations of R(m)
and R(si). If mention m has k senses, our model generates k different representations
of R(m, s1), R(m, s2), ..., R(m, sk). Since the dimension representation of R(m) and
each R(si) is 300, these averaged representation dimensions are 300. Next novelty in our
representations is ranking the k senses of each mention based on their relevancy degree
to the context. To this aim, we average the representations of the first step. In the first step,
we took the representation of the input text paragraph, which contains the ambiguous
mention, show it by R(PD) which stands for representation of the Paragraph of the
input Document. In the first step, we also took the representation of the first paragraph of
the Wikipedia page, which represents it by R(PW ), which stands for representation of
the first Paragraph of the Wikipedia page. Finally, we average these two representations
as R(PD,PW ). In the R(PD,PW ), the context is constant for each sense since the
input text as the context is constant for each possible sense of the ambiguous words. The
dimension of this averaged representation is also equal to the word representation, so it
makes it possible to calculate their cosine similarities. To rank the senses most related to
the context, we use the cosine similarity as follows:

Sim(m, si) = Cosine(R(m, si), R(PD,PW )) , for i=1 , ... , k

This ranking provides the most similar sense to the context for each mention. This
novelty makes this representation more effective than the previous contextualized-based
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embeddings, especially in the task of sense disambiguation. At the end of these three
steps, each sense is associated with a vector that encodes both the contextual information
and knowledge base semantic information from the extracted context of Wikipedia and
its gloss.

We consider each mention of the document as one node of the graph, and a newly
added node (redirect link) will connect with its nearest neighbor by using cosine sim-
ilarity, which makes the edges of the graph. The cosine similarity between two nodes
on the edges makes the weight matrix. The number of nodes in the text graph |V | is the
number of mentions. For each sense s, we use an integrated representation of its mention
m with its own representation, i.e,. R(m, s). We set the feature matrix X as extracted
representation of BERT as input to GCN. The dimension of the feature matrix here is
300, as it is the averaged representation length of two BERT embeddings, one for the
mention and the other for the sense.

As mentioned, formally, the weights of edge between node i and node j defines as:

Wij = cosine sim(R(i), R(j)) =
R(i).R(j)

||R(i)||||R(j)||
(3)

which R(i) is our representation of node i.
After building the graph, we feed it into a simple 2−layers GCN as [8], the second

layer node (mention,sense) embeddings are fed into a softmax classifier:

Z = softmax(ÂRELU(ÂXW0)W1) (4)

where
Â = D−0.5AD−0.5

and

softmax(xi) =
1

Z
exp(xi)

with S =
∑

i exp(xi). The loss function is the one defined in [39] as:

L = −
∑
d∈Y

F∑
f=1

Ydf lnZdf (5)

where YD is the set of mention indices that have labels and F is the dimension of
the output feature. Y is the label indicator matrix. Similar to [39], the weight param-
eters W0 and W1 can be trained via gradient descent. The ÂXW0 contains the first
layer (mention,sense) and embeddings, and ÂRELU(ÂXW0)W1 contains the second
layer (mention,sense) and embeddings. This two-layer GCN performs message passing
between nodes to two steps away, maximum. Therefore, the two-layer GCN allows the
exchange of information between pairs of nodes. This GCN model on our experimental
datasets shows better performance than a one-layer model and models with more than
two layers. This shows the validity of our model, based on similar results in other recent
works [8,9].
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4 Experimental Setup

We present the settings of our evaluation of our representation in the English WSD task.
This setup includes the benchmark, our representation setup for disambiguation task and
state-of-the-art WSD models as our comparison systems.

Evaluation Benchmark We use the English WSD test set framework which is
constructed by five standard evaluation benchmark datasets3. It is included of Senseval-
2 [6], Senseval-3 [35], SemEval-07 [26], SemEval-13 [18], SemEval-15 [15] along with
ALL, i.e., the concatenation of all the test sets [27].

Experiment Setup In our experiments, we use BERT pre-trained cased model.
Similar to [34], among all the configurations reported by Devlin et al. (2019), we used
the sum of the last four hidden layers as contextual embeddings of the words since
they showed it has better performance. In order to be able to compare our system with
supervised models, we build a supervised version of our representations. This version
combines the gloss and contextual information with the sense-annotated contexts in
SemCor [14], a corpus of 40K sentences where words have been manually annotated
with a WordNet meaning. We leveraged SemCor for building a representation of each
sense therein. To this end, we followed [22], given a mention-sense pair (m, s), we
collected all the sentences c1, ..., cn where m appears tagged with s. Then, we fed all
the retrieved sentences into BERT and extracted the embeddings BERT(c1,m), ... ,
BERT(cn,m). The final embedding of s was built by the average of its context and
sense gloss vectors and its representation coming from SemCor, i.e., the average of
BERT(c1,m), ... , BERT(cn,m). We note that when a sense did not appear in SemCor,
and we built its embedding by replacing the SemCor part of the vector with its sense
gloss representation.

WSD Model For WSD modeling, we employed a 1-nearest neighbor approach– as
previous methods in the literature– to test our representations on the WSD task. For
each target word m in the test set, we computed its contextual embedding by means of
BERT and compared it against the embeddings of our representation associated with the
senses of m. Hence, we took as a prediction for the target word the sense corresponding
to its nearest neighbor. We note that the embeddings produced by our representations
are created by averaging two BERT representations, i.e., context and sense gloss (see
Section 3.3), hence we repeated the BERT embedding of the target instance to match the
number of dimensions.

Comparison Systems We compared our representation against the best recent
performing systems evaluated on the English WSD task. LMMS is one of these systems
which generates sense embedding with full coverage of Wordnet. It uses pre-trained
ELMO and BERT models, as well as the relations in a lexical knowledge base to create
contextual embeddings [10]. SensEmBERT is the next system that relies on different
resources for building sense vectors. These resources include Wikipedia, BabelNet,
NASARI lexical vectors, and BERT. It computes context-aware representations of
BabelNet senses by combining the semantic and textual information derived from
multilingual resources. This model uses the BabelNet mapping between WordNet senses
and Wikipedia pages which drops the need for sense-annotated corpora [34]. The next

3 http://lcl.uniroma1.it/wsdeval/
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Table 1: F-Measure performance of WSD evaluation framework on the test sets of the
unified dataset.

Model Senseval-2 Senseval-3 Semeval-7 Semeval-13 Semeval-15 All
BERT 77.1±0.3 73.2±0.4 66.1±0.3 71.5±0.2 74.4±0.3 73.8±0.3
LMMS 76.1±0.6 75.5±0.2 68.2±0.4 75.2±0.3 77.1±0.4 75.3±0.2

SensEmBERT 72.4±0.1 69.8±0.2 60.1±0.4 78.8±0.1 75.1±0.2 72.6±0.3
ARES 78.2±0.3 77.2±0.1 71.1±0.2 77.2±0.2 83.1±0.2 77.8±0.1

our model 79.6±0.2 78.5±0.2 74.6±0.3 79.3±0.6 82.9±0.4 78.9±0.1

comparison system is ARES, a semi-supervised approach to produce sense embeddings
for all the word senses in a language vocabulary. ARES compensates for the lack of
manually annotated examples for a large portion of words’ meanings. ARES is the most
recent contextualized word embedding system, to our knowledge. In our comparisons,
we also considered BERT as a comparison system since it is at the core of all the
considered methods. BERT also has shown good performance in most NLP tasks by
using pre-trained neural networks.

5 Results

The results of our evaluations on the WSD task are represented in this section. We show
the effectiveness of our representation by comparing it with the existing state-of-the-
art models on the standard WSD benchmarks. In Table 1 we report the results of our
representation and compare it against the results obtained from other state-of-the-art
approaches on all the nominal instances of the test sets in the framework of [27]. All
performances are reported in terms of F1-measure, i.e., the harmonic mean of precision
and recall. As we can see, our model achieves the best results on the datasets when
compared to other precious contextualized approaches. It indicates that our representation
is competitive with these previous models. These results show the novel idea in the
nature of creating this new representation has improved the lexical ambiguity. It is a
good indicator of the dependency of the WSD task to the representation that is aware of
the context and the information extracted from the reference knowledge base.

Analysis by Part-of-Speech One other possible way to analyze the errors that arise in
WSD with each embedding approach is to measure the frequency of mis-disambiguation
in different parts of speech. The considered parts of speech are nouns, verbs, adjectives,
and adverbs, as are the covered types in the datasets. The F-measure performance of the
1-NN WSD of each embedding on All dataset is shown in Table 3 which is categorized
by parts of speech. As it shows, the type in which its disambiguation has been correct
more than other types is adverbs. At the same time, verbs are the ones that are difficult
to disambiguate because they have the lowest mis-disambiguation frequency across all
language models. In each one of the models, disambiguating the nouns is more accurate
than verbs, when the embedding model is BERT. The coverage of verb senses can
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Table 2: The Number of instances and ambiguity level of the concatenation of all five
WSD datasets [27].

Nouns Verbs Adj. Adv All
#Entities 4300 1652 955 346 7253

Ambiguity 4.8 10.4 3.8 3.1 5.8

explain this disambiguation performance difference between verbs and the other three
parts of speech in WordNet, significantly less than the coverage of noun senses. To be
more specific with our quantitative POS analysis, we tried to find the type of words in
all datasets with more errors when disambiguating with different representations. We
evaluate the effectiveness of our representation on parts of speeches, in comparison with
the recent methods. The parts of speech that we have in the dataset are nouns, verbs,
adjectives, and adverbs. Table 2 shows the number of instances in each category. In our
second evaluation, we examined the effect of our representation against previous ones on
each word category. Table 3 represents the F-Measure performance of the 1-NN WSD of
each one of the contextualized word embeddings which we considered on All datasets
split by parts of speech.

Table 3: F-Measure performance of the 1-NN WSD of each embedding on the standard
WSD dataset split by parts of speech. The dataset in this experiment is a concatenation
of all five datasets, which is split by Part-of-Speech tags.

Model Nouns Verbs Adjectives Adverbs
BERT 76.2±0.2 62.9±0.5 79.7±0.2 85.5±0.5
LMMS 78.2±0.6 64.1±0.3 81.3±0.1 82.9±0.3

SensEmBERT 77.8±0.3 63.4±0.5 80.1±0.4 86.4±0.2
ARES 78.7±0.1 67.3±0.2 82.6±0.3 87.1±0.4

our model 79.6±0.2 69.6±0.1 85.2±0.1 89.3±0.5

6 Conclusion

In this paper, we consider the problem of text ambiguity and one of its important
factors, the word representation. We evaluate the pros and cons of current state-of-
the-art approaches for word embedding, and applied them in parts of speeches on the
standard datasets. By observing the opportunities to improve a word embedding model,
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we present a novel approach for creating word embeddings. In our model, we consider
the knowledge base and the context of the input document text, when generating the
representation. We showed that this context-rich representation is beneficial for lexical
ambiguity in English. The results of experiments in the WSD task show the efficiency
of our representations compared to other state-of-the-art methods, despite relying only
on English data. We further tested our embeddings on the split data into four parts
of speeches. As the results of our second experiment show, the effectiveness of the
contextualized embeddings in WSD on verbs is not as good as on nous. This defect is
because of the lack of instances in the dataset in each word category. As future work,
one point to improve our representations in the text ambiguity task is by training the
model with data including more verbs than the current one.
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Abstract. Knowledge Graphs (KGs) have become the backbone of var-
ious machine learning based applications over the past decade. However,
the KGs are often incomplete and inconsistent. Several representation
learning based approaches have been introduced to complete the miss-
ing information in KGs. Besides, Neural Language Models (NLMs) have
gained huge momentum in NLP applications. However, exploiting the
contextual NLMs to tackle the Knowledge Graph Completion (KGC)
task is still an open research problem. In this paper, a GPT-2 based
KGC model is proposed and is evaluated on two benchmark datasets.
The initial results obtained from the fine-tuning of the GPT-2 model
for triple classification strengthens the importance of usage of NLMs for
KGC. Also, the impact of contextual language models for KGC has been
discussed.
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1 Introduction

Knowledge Graphs (KGs) such as DBpedia, YAGO, Freebase, etc. have emerged
as the backbone of various applications in Natural Language Processing (NLP)
such as entity linking [9], question answering [2], etc. KGs are multi-relational
directed graphs with nodes as real world entities and relationships between them
are represented on the edges. The facts are represented as a triple < h, r, t >,
where h and t are the head and tail entities respectively and r represents the
relation between them. However, these KGs are often incomplete. Knowledge
Graph Completion (KGC) is the task of predicting the missing links between
entities, mining missing relations, and discovering new facts. Recent years have
witnessed extensive research on KGC with a focus on representation learning.
Most of these models use structural information i.e., the triple information such
as TransE [3], ConvE [5] whereas a few others include textual entity descriptions
such as TEKE [22], DKRL [25], etc. However, the models considering the textual
information leverage only static word embedding approaches, such as word2vec,
GloVe etc. to generate the latent representation of the textual entity descrip-
tions. Consequently, the semantic information encoded in the contextual entity
embeddings are not exploited for KGC.
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On the other hand, pre-trained contextualized Neural Language Models (NLMs)
such as BERT [11], GPT-2 [20], have gained huge momentum in applications of
NLP. These models are trained on huge amount of free text resulting in encod-
ing of the semantic information leading to better linguistic representation of the
words. GPT-2 is one of the distinguished models which has achieved state-of-
the-art results for various language understanding based tasks. It operates on a
transformer decoder architecture with attention masks to predict next word of
a sequence.

However, a combination of contextualized NLMs for the task of KGC is an
open research problem. KG-BERT [29] is one of the pioneers in this research in
which the BERT model is fine-tuned on KG data and has been used for link
prediction and triple classification as sub-tasks of KGC. The results presented
in [29] depict that the information contained in pre-trained NLMs play an im-
portant role in the predicting the missing links in a KG. Inspired by KG-BERT,
a novel GPT-2 based KGC model is explored in this work for the triple classifi-
cation sub-task. The triples in a KG are considered as sentences and the triple
classification is considered as a sequence classification problem. Furthermore, an
analysis of the contextualised NLMs for KGC is also provided.

The rest of the paper is organised as follows. To begin with, a review of the
related work is provided in Section 2 followed by the preliminaries in Section 3.
Section 4 accommodates the outline of the proposed approach followed by ex-
perimental results in Section 5. Finally, an outlook of future work is provided in
Section 6.

2 Related Work

This section presents the state-of-the-art (SOTA) models for KG embeddings
with a focus on the models considering the textual descriptions.

A large variety of KG embedding approaches has been explored for the task
of link prediction, such as translational models like TransE [3] and its variants,
semantic matching models like DistMult [28], neural network based models like
ConvE [5], graph structure based like GAKE [6], and literal (e.g., text, image,
number, etc.) based like DKRL [25], Jointly(ALSTM) [27], MKBE [17], etc.

In a translational model such as TransE [3], given a triple (eh, r, et) in a KG
G, the relation r is considered as a translation operation between the head and
tail entities on a low dimensional vector space defined by eh + r ≈ et, where
eh, r, et are the embeddings of the head, relation and the tail entity respectively.

Another set of algorithms improve KG embeddings by taking into account
different kinds of literals such as numeric, text or image literals and a detailed
analysis of the methods is provided in [7]. DKRL [25] extends TransE [3] by
incorporating the textual entity descriptions in the model. The textual entity
descriptions are encoded using a continuous bag-of-words approach as well as a
deep convolutional neural network based approach. Jointly(ALSTM) is another
entity description based embedding model which extends the DKRL model with
a gate strategy and uses attentive LSTM to encode the textual entity descrip-
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tions. KG-BERT [29] is a contextual NLM based model which is fine tuned on
BERT and have been used in downstream tasks.

However, the contextual NLMs are not considered to encode the triples or
the entity descriptions in all the models except KG-BERT. Therefore, this study
proposes a novel model in which the KG is fine-tuned with GPT-2 for KGC.

3 Preliminaries

A detailed explanation of pre-trained NLMs and KGC is provided in this section.

3.1 Language Models

A LM learns the probability of word occurrences based on a text corpus which
is used for various machine learning based NLP applications such as Machine
Translation [12], Speech Recognition [30], etc. It is the task of assigning prob-
ability to each sequence of words or a probability for the likelihood of a given
word based on a sequence of words. [8]. LMs can be broadly divided into

– Statistical Language Models (SLMs) are n-gram based approaches that
assign probabilities to a sequence s of n words, and is given by

P (s) = P (w1w2...wn) = P (w1)P (w2|w1)...P (wn|w1w2...w(n−1)), (1)

where wi denotes i−th word in the sequence s. The probability of a word
sequence is the product of the conditional probability of the next word given
the previous words or the context [10]. The SLMs fail to assign probabilities
to the n-grams that do not appear in the training corpus which is tackled us-
ing the smoothing techniques. However, the curse of dimensionality refrains
the SLMs models to be trained on huge corpora.

– Neural Language Models (NLMs), on the other hand, are neural net-
work based LMs that learn the distributed representation of words into a
continuous low-dimensional vector space. The semantically similar words
appear closer to each other in the embedding space. The contextual infor-
mation is captured on all the different levels in the text corpus, such as,
sentences, sub-word, character, as well as the entire corpus.

The NLMs such as Word2Vec [13], BERT [11], GPT [19] etc. are beneficial
for several NLP downstream tasks, such as question answering [23], sentiment
analysis [26], etc. As mentioned in [18], these models can be further sub-divided
into (i) Non-contextual and (ii) Contextual Embeddings. The Non-contextual
word embeddings such as Word2Vec, GloVe, etc., are static in nature and are
context independent. Although, the latent representations of the words capture
the semantic meanings but they do not dynamically change according to the
context the words appear in. However, Contextual embeddings such as BERT,
GPT, etc., encode semantics of the words differently based on different contexts.
All the language models are trained on huge unlabelled text corpora resulting in
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increased number of model parameters. Therefore, the pre-trained models help
in learning universal language representations of the words. It promotes better
initialization of the model to have a better generalization performance on the
downstream tasks. Pre-training of the NLMs also helps in avoiding overfitting of
the model for small corpora [18]. Also, it improves the reuseability of the model
as it prevents the training of the model from scratch. However, fine tuning of
pre-trained contextual NLMs is often required to adapt the model to the specific
data for the down-stream task. It bridges the gap between the data on which a
particular NLM is trained on and the target data distribution.

3.2 Knowledge Graph Completion

The goal of KGC is the task of predicting missing instances or links to deal with
the incompleteness and sparsity in KGs. As explained in [4] KGC methods can
be broadly divided into the following classes:

– Rule Based Models that use rules or statistical features such as NELL [15],
KGRL [24], etc., to infer new knowledge in KGs.

– Representation Learning Based Models such as TransE [3], ConvE [5],
etc., that learn the latent representation of the entities and relations into
a low-dimensional continuous vector space, in which semantically similar
entities are placed closer to each other. These representations are then used
for the KGC tasks of link prediction and triple classification.

In link prediction task, the head or tail entity in a triple < h, r, ? > or
<?, r, t > is predicted by defining a mapping function ψ : E×R×E → R, where
E and R are the set of entities and relations in the KG. A score is assigned to
each triple, where the higher the score of the triple indicates the more likely to
be true. The triple classification task involves the training of binary classifier
whether a given triple is false (0) or true (1).

4 Language Models for Knowledge Graph Completion

This section comprises of an analysis of NLMs on KGs followed by a detailed
description of the GPT-2 based KGC task. The basic idea of the approach lies
in the fact that the contextual NLMs trained on huge corpora also capture rela-
tional information present in the training data [16]. Consequently, NLM models
can be exploited further to predict the missing links in a KG. However, the
impact of the pre-trained contextual NLMs for KGC is still an open research.

BERT for KGC One of the pioneers in this domain is the KG-BERT [29]
model in which the pre-trained BERT model is fine-tuned on KGs for KGC.
Each triple < h, r, t > is considered as a sentence and is provided as an input
sentence of the BERT model for fine-tuning. For the entities, KG-BERT has
been trained with either the entity names or their textual entity descriptions.
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The first token of every input sequence is always [CLS], whereas the separator
token [SEP ] separates the head entity, relation and the tail entity. Therefore,
each input sequence for the BERT model is given by
([CLS] head entity/description [SEP] relation [SEP] tail entity/description [SEP]).
A sigmoid scoring function is introduced on the top of the final layer for the triple
classification which is a 2-dimensional vector ∈ [0, 1].

GPT-2 for KGC Inspired by KG-BERT, GPT-2 [20] is exploited in this work
for KGC. GPT-2 is a large transformer-based language model trained on 8 mil-
lion web pages with 1.5 billion parameters. The model predicts the next word
based on all the previous words in the text corpus. An attention mechanism is
used to selectively focus on the segments of the input text. The architecture
comprises of a 12-layer decoder-only transformer, using 12 masked self-attention
heads, with 64 dimensional states each. The Adam optimization is used and the
learning rate was increased linearly from zero to a maximum of 2.5× 10−4. The
model was able to outperform the previous NLMs on language tasks like question
answering, reading comprehension, summarization, translation, etc. However,
the basic difference between BERT and GPT-2 is that BERT uses transformer
encoder blocks whereas GPT-2 uses transformer decoder blocks.

Similar to KG-BERT, GPT-2 is also fine tuned with KG triples where each
triple is considered as an input sequence. In this model, two variants have been
used to model the input sequence for the fine-tuning task. Given a triple Albert
Einstein, bornIn, Germany, the input sequence is modelled as

– Albert Einstein bornIn Germany [EOS],
– [BOS] Albert Einstein [EOS] bornIn [EOS] Germany [EOS],

where [BOS] and [EOS] are the beginning of sequence and end of sequence
respectively. Both entity names and descriptions are considered for the head and
tail entity. The input sequences are fed into the GPT-2 model architecture which
is a transformer decoder based on the original implementation [20]. It consists
of stacked decoder blocks of the transformer architecture and the context vector
is initialised with zero for the first word embedding. The masked self-attention
is used to extract information from the prior words in the sentence as well as
the context word. The word vectors in the first layer of GPT-2 follows byte pair
encoding i.e., tokens are parts of words. Furthermore, it compresses the tokenized
words list into a set of vocabulary items by considering the most common word
components. The GPT-2 sequence classification module is leveraged to determine
the plausibility of the triples. Since, GPT-2 outputs one token at a time, the
classifier is built on the last token. A 2-dimensional vector ∈ [0, 1] sigmoid scoring
function is introduced for triple classification.

5 Experiments

This section comprises of an analysis of the initial results obtained on deploying
GPT-2 model on the triple classification task for KGC. The model has been
evaluated on two benchmark datasets WN11 and FB13.
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Table 1. Dataset Statistics

Dataset #Ent. #Rel. #Train #Val. #Test

WN11 38,696 11 112,581 2,609 10,544
FB13 75,043 13 316,232 5,908 23,733

Table 2. Results of Language Models on Triple Classification (accuracy in %)

Model Types Models WN11 FB13

KG embeddings
with Textual

TEKE 86.1 84.2

Contextual
LMs

KG-BERT (labels) 93.5 79.2
KG-BERT (description) - 90.4
Ours with GPT2 (labels) 83 73

Ours with GPT2 (description) 85 89

Datasets The two benchmark datasets WN11 and FB13 are subsets of WordNet
and Freebase KGs respectively and are introduced in [21]. WordNet [14] is a large
lexical KG of English comprising of nouns, verbs, adjectives and adverbs. They
are grouped into sets of cognitive synonyms known as synsets. Each synset ex-
presses a distinct concept. They are interlinked by means of conceptual-semantic
and lexical relations. Freebase [1] is a large collaborative KG consisting of struc-
tured data captured from various sources including individual, user-submitted
wiki contributions. The statistics of the KGs used to fine-tuning with GPT-2
followed by triple classification is provided in Table 1.

Experimental Setup The pre-trained GPT-2 base model with 12 decoder
layers, 768 hidden layers, 12 attention heads and 117M parameters is used for
fine-tuning. The set of hyperparameters chosen are as follows: batch sizes =
{256, 128, 32, 8, 1}, epochs = {5, 3}, and learning rate = {2e− 5, 5e− 5}. The
experiments with GPT-2 have been performed on an Ubuntu 16.04.5 LTS system
with 503GB RAM and Tesla V100S GPU.

Results The results depicted in Table 2 represent some initial results on the
triple classification task using the pre-trained GPT-2 model on KGs. Since all
the triples in the training set are true, a negative sampling method is used to
generate synthetic negative triples for the training of the classifier. The negative
triples are generated for this task, by replacing the head and the tail entities
with arbitrary entities based on a local closed world assumption. In this work,
filtered settings is used, i.e., if by chance true triples are generated using negative
sampling methods, then they are removed. Therefore, the set of triples in the
train, test, and validation sets are disjoint.

TEKE [22] and KG-BERT are considered as baseline models as they consider
NLMs to model the KGs for KGC. TEKE exploits structural information of the
KGs using an embedding layer, a BiLSTM layer followed by mutual attention
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Table 3. Results with the pre-trained GPT2 model for Triple Classification with dif-
ferent parameter settings

Dataset Feature Model details Precision Recall F1-score

WN11 Labels batch=128, epoch=10, lr=2e-5 0.76 0.76 0.76
batch=32, epoch=3, lr=5e-5 0.74 0.74 0.74
batch=1, epoch=3, lr=5e -5 0.83 0.83 0.83

Description batch=8, epoch=5, lr=2e - 5 0.79 0.79 0.79
batch=1, epoch=3, lr=5e -5 0.85 0.85 0.85

FB13 Labels batch=32, epoch=10, lr=2e -5 0.69 0.64 0.61
batch=256, epoch=5, lr=2e -5 0.68 0.68 0.68

Description batch=1, epoch=3, lr=5e-5 0.90 0.89 0.89

layer. The results of the baselines are taken from the KG-BERT paper [29]
except for KG-BERT (labels) variant for FB13. The experiment for this variant
is performed with the same settings as mentioned in [29]. It is observed from
the results that with GPT-2, the model achieves comparable results with the
previous models. Also, the results are better for GPT-2 with descriptions variant,
this is because the textual entity descriptions have more contextual information
resulting in generation of better representation of triples. The same behaviour
has been observed for KG-BERT. Since the NLMs are trained on large corpora,
the model parameters contain huge amount of linguistic knowledge which helps in
overcoming the data sparsity problem in KGs. Furthermore, the main advantage
of contextual NLM based KGC methods that they do not consider the structural
information of the entities in a KG. Hence it is independent of any underlying
structure in a KG. Furthermore, these models are also applicable to the less
popular entities in KGs with lesser number of triples compared to the others.
The task of triple classification in KGC with GPT-2 is similar to the sequence
classification task in text and the self attention mask helps in identifying the
important words in the sequences. The variants with labels i.e., the entity names
for both KG-BERT and the proposed GPT-2 based model work better for WN11
as compared to FB13. This is because WordNet is a linguistic KG and the NLMs
are able to capture more information on the entity names as compared to FB13.

Table 3 depicts the precision, recall, and F1 score of the model with different
hyper-parameter settings. It is observed that the best results are obtained with
batch=1, epoch=3, and lr=5e-5. The changing of epochs does not have much
variation in the model whereas batch size has. The lower the batch size, the
better the performance of the model.

6 Conclusion and Future Work

This work presents an analysis of the effect of exploiting NLMs for KGC. A novel
GPT-2 based KGC model has also been proposed. The initial results from the
triple classification sub-task shows that the semantic information stored in the
NLMs can provide vital information for the KGC task. In future, further hyper-
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parameter tuning will improve model performance and additional experiments
on link prediction sub-tasks will be conducted.
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Abstract. Word vector representations play a fundamental role in many
NLP applications. Exploiting human-curated knowledge was proven to
improve the quality of word embeddings and their performance on many
downstream tasks. Retrofitting is a simple and popular technique for
refining distributional word embeddings based on relations coming from a
semantic lexicon. Inspired by this technique, we present two methods for
incorporating knowledge into contextualized embeddings. We evaluate
these methods with BERT embeddings on three biomedical datasets for
relation extraction and one movie review dataset for sentiment analysis.
We demonstrate that the retrofitted vectors do not substantially impact
the performance for these tasks, and conduct a qualitative analysis to
provide further insights on this negative result.

Keywords: Contextualized embeddings · BERT · Knowledge integra-
tion · Retrofitting · Qualitative analysis

1 Introduction

The introduction of word embeddings was a breakthrough in NLP. Early ap-
proaches based on the distributional hypothesis — words that appear in the
same context tend to be semantically similar — such as word2vec [11] provided
a fixed embedding for each word. Recently, contextualized embedding systems
like BERT [3] allow the generation of context-dependent word representations,
which substantially improve the performance on many downstream NLP tasks.

Although such systems can be trained on data specific to the domain of
interest, it is not yet clear how we can encode factual knowledge or impose
constraints in the embeddings. Knowledge bases typically provide this type of

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



information, hence it is reasonable to exploit them in order to obtain more
accurate and explainable embeddings.

Retrofitting [4] is a popular technique that modifies any set of pretrained
distributional word embeddings to account for relational information encoded
by a semantic lexicon. This is done as a post-processing step using an iterative
update method called belief propagation [1] on a graph of relations obtained
from the lexicon to update the word vectors. This method was proven to improve
performance on various intrinsic and extrinsic evaluation tasks [2, 5, 9, 12, 13].

In this paper, we aim to extend retrofitting to operate with contextualized
word embeddings. More specifically, we propose two different methods that, as
in the original retrofitting approach, make use of similarity relations between
words in order to move the respective embeddings closer to each other in the
latent space. The first method combines the embedding of a given test sentence
with the embeddings of sentences involving similar words in the training set,
while the second method replaces a word in the test sentence by all possible
similar words and combines the resulting embeddings. We evaluate the proposed
methods with BERT embeddings on three biomedical datasets for a relation
extraction task and one movie review dataset for sentiment analysis, and com-
pare them with an oracle topline and two baselines (weighted majority vote and
class posterior averaging). We show that both methods do not substantially im-
pact the performance for this task, and conduct a qualitative analysis to provide
further insights on this negative result.

The paper is organised as follows. We discuss related work in Section 2,
and present the proposed methods in Section 3. We describe the experimental
evaluation setup in Section 4, and we analyze the obtained results in Section 5.
We provide conclusions and discuss future work in Section 6.

2 Related Work

There have been several attempts to improve the quality of word embeddings by
incorporating knowledge into the process. Two main categories of methods can
be distinguished, which we refer to as joint or post-hoc.

Joint methods integrate knowledge by retraining the embedding model from
scratch using a modified training objective. For example, [10] proposed to re-
place the classical bag-of-words contexts in the word2vec Skip Gram model by
dependency-based contexts, and showed that the resulting embeddings better
reflect the syntactic similarities between words. In another approach, [19] modi-
fied a BiLSTM recurrent neural network to take into account information coming
from the WordNet and NELL knowledge bases. To this end, they employed an
attention mechanism that computes the relevance of candidate concepts from
the knowledge base to the current input, and a second component that decides
whether to exploit this information or not, and they reported improvements on
both entity and event extraction tasks. In the same fashion, KnowBERT [15]
incorporates WordNet and part of Wikipedia into BERT, showing the ability
of the model to recall facts from the databases, improving downstream relation



extraction, entity typing and word sense disambiguation tasks at the same time.
Nonetheless, joint methods come with the downside that they are model-specific,
and often time-consuming since they require retraining the system afresh.

Post-hoc methods surpass these limitations, since knowledge is inserted in the
word embeddings after training, regardless of the model used to obtain them.
The most popular technique among these is retrofitting [4]. This is a graph-based
approach that, given a semantic lexicon, i.e., a knowledge graph whose nodes
represent words and edges represent relations between them, tries to reposition
the word embeddings in such a way that they become closer (under some dis-
tance metric) to neighborhood embeddings in the graph. Initially, [4] considered
a single type of relation between words, namely ‘similarity’. Later approaches
have extended retrofitting to account for ‘dissimilarity’ relations [9, 12, 13] and
ordering (ranking) between the relations [6].

By default, all of the above retrofitting methods can only be applied to distri-
butional word embeddings, i.e., a single representation vector per word. When we
shift to contextualized embeddings, each word in the vocabulary can have a dif-
ferent representation in each sentence. An attempt to retrofit contextualized em-
beddings coming from ELMo is presented in the Paraphrase-aware Retrofitting
(PAR) [16] method. More specifically, PAR learns an orthogonal transformation
matrix that pulls closer the embeddings of words in paraphrased contexts, and
separates those in unrelated contexts. However, this approach is limited to pairs
of paraphrased contexts and cannot benefit from different sources of linguistic
information. To our knowledge, there is no existing method for contextualized
embeddings that takes full advantage of the benefits of retrofitting.

3 Proposed Contextualized Embedding Refinement
Methods

As in the conventional retrofitting approaches discussed in Section 2, we assume
a vocabulary of words V = {w1, . . . , wn} and an ontology Ω of semantic relations
between words in V. We can then represent Ω in the form of an undirected graph
(V, E), where nodes correspond to words in V and edges (wi, wj) ∈ E ⊆ V ×V to
semantic relations between nodes. Now, suppose that we have a contextualized
word representation modelM, along with a training corpus Dtrain on which it is
fine-tuned and a test corpus Dtest on which it is evaluated for a particular task.

3.1 Method A

The first proposed embedding refinement method, which we refer to as Method
A, combines the contextualized embedding of a given word in the test set with the
contextualized embeddings of all occurrences of all similar words in the training
set. Let q̄i ∈ Rd be the contextualized embedding of word wi ∈ V coming from
M for a given test instance3. Let us further denote by Ji the set of words wj

3 For simplicity, q̄i does not have a superscript for the test sentence as we only process
one test sentence at a time.



which are adjacent to wi according to Ω, and by Kj the set of training instances
where wj occurs. Then we define q̂jk ∈ Rd to be the contextualized embedding
computed for all occurrences of wj in Dtrain, as index by k ∈ Kj . The index sets
Ji and Kj vary dynamically for every word.

The goal is to learn a new embedding qi that it is close to q̄i and to adjacent
nodes in Ω under the L2 norm by minimizing

L(qi) = ‖qi − q̄i‖2 +
∑
j∈Ji

∑
k∈Kj

bijk‖qi − q̂jk‖2 (1)

The weights bijk must naturally depend on the number of neighbours |Ji| of
wi, and on the number of occurrences |Kj | of each neighbor wj in Dtrain. In the
following we define them as bijk = cij×djk = 1

|Ji|α ·
1
|Kj |β , α, β ∈ [0,∞) where cij

controls the contribution of each neighbour and djk controls the contribution of
each of its occurrences. For example, α = β = 0 results in equal weights bijk = 1
for all occurrences, while α = β = 1 results in weights bijk that sum up to 1.

Equating to zero the derivative of L with respect to qi and expressing the∑
k bijkq̂jk in terms of the mean µq̂j of all q̂jk results in the following update

rule:

qi =
q̄i +

∑
j

∑
k bijkq̂jk

1 +
∑
j

∑
k bijk

=
q̄i + |Ji|−α

∑
j |Kj |1−βµq̂j

1 + |Ji|−α
∑
j K

1−β
j

. (2)

The retrofitting operation therefore takes the form of a weighted average of
the original embedding and the embeddings of all occurrences of all similar words
in the training set.

3.2 Method B

The second proposed method, which we refer to as Method B, does not involve
Dtrain at all. Instead, everything happens at test time. Again, we utilise M to
obtain the embedding q̄i of word wi for a specific sentence in Dtest. In addition,
we derive one embedding q̂j for every word wj which is adjacent to wi according
to Ω. To do so, we create a new sentence by replacing wi with wj in the test
sentence, and repeat for every adjacent node of wi in Ω. The objective is once
more to learn a new vector qi that is close to both q̄i and all q̂j under the L2

norm by minimizing

L(qi) = ‖qi − q̄i‖2 +
∑
j∈Ji

bij‖qi − q̂j‖2 (3)

Similarly to the above, we define the weights as bij = 1
|Ji|α , α ∈ [0,∞).

Equating to zero the derivative of L with respect to qi and expressing the∑
j bij q̂j in terms of the mean µq̂j of all q̂j results in the following update rule:

qi =
q̄i +

∑
j bij q̂j

1 +
∑
j bij

=
q̄i + |Ji|1−αµq̂j

1 + |Ji|1−α
. (4)



Again, the retrofitting operation takes the form of a weighted average of the
original embedding and the embeddings of all neighbouring words.

The main difference between the two methods lies in the way we exploit the
information coming from the knowledge graph. Method A typically results in a
large number of neighbouring vectors q̂ik that contain noise, since the context
around the corresponding words differs from that of the test sentence in general.
In contrast, Method B generates fewer neighbouring vectors q̂j that share exactly
the same context as the test sentence being processed.

4 Experimental Setup

In this section, we first provide information with respect to the data, the semantic
lexicons and the contextual word embedding model we used to evaluate the
proposed retrofitting methods. Then, we describe the experimental evaluation
and we suggest three alternative strategies for comparison.

4.1 Data

We consider two tasks: relation extraction from biomedical data4 and sentiment
analysis of movie reviews. Two semantic verb lexicons are introduced in [2],
referred to as annotated and expanded clusters. The former contains 192
verbs that appear frequently in a corpus of 2,230 biomedical journal articles,
while the latter is an extended version of 1,149 verbs. Both lexicon come with
three levels of granularity, i.e., verbs are grouped into 16, 34 and 50 classes5, and
are used for relation extraction.

ChemProt is a manually annotated corpus of relations between drugs/
chemical compounds and genes/proteins mentions found in PubMed abstracts.
The relations are categorized into ten classes from which only five are used dur-
ing evaluation. The task is to predict whether a pair of such entities is related
or not, and if so, output the type of relation.

The DDI corpus aims in the development of systems that can automatically
detect drug entities and drug-to-drug interactions in biomedical text. The cor-
pus itself consists of texts from the DrugBank database and abstracts from the
MedLine database. Annotations were provided by domain experts that classified
drug-drug interactions into four DDI types.

i2b2 2010 corpus promotes the study of extraction/classification/relations
of medical problems, tests, and treatments. The data consist of discharge sum-
maries collected from Partners Healthcare, Beth Israel Deaconess Medical Cen-
ter, and the University of Pittsburgh Medical Center, where relations of medical
problems-treatments were grouped into eight classes.

4 The biomedical datasets are included in the Biomedical Language Understanding
Evaluation (BLUE) benchmark, as well as the preprocessing codes for creating the
training, development and test sets.

5 We refer to each different version of the verb lexicons simply by adding the number
of the verb classes next to its name, e.g., annotated-34.



For the sentiment analysis task, we use the exact same semantic lexicons as
in [4], namely, FrameNet, PPDB and two variants of WordNet which we
refer to as WordNetsyn and WordNetall (see more details in [4]). The size of
these lexicons is relatively large, since they are general and contain knowledge
about words which do not convey any sentiment, e.g., pronouns, prepositions,
etc.. In order to focus on relevant words for the task, in conjunction with the
semantic lexicons we utilize the Bing Liu Sentiment Lexicon [7], a domain-
independent list of 6,786 adjectives that is manually created and that categorizes
words as either positive or negative according to their sentiment.

SST-2 (Stanford Sentiment Treebank) [17] is a collection of 11,855 sentences
from movie reviews including human annotations of their sentiment. The goal is
to classify a given sentence as either positive or negative. Since the test labels are
not publicly available, we split the training set such that 13% of the sentences
are used for testing and the remaining are used for training. The resulting test
set has 462 positive and 438 negative reviews, while the training set has 3,148
positive and 2,872 negative reviews. Finally, we use the development set provided
by the authors.

4.2 BERT Architecture and Retrofitting

There are different locations within the architecture of BERT, where retrofit-
ting transformations can be applied. In general, the model consists of 12 Trans-
former blocks [18] followed by a pooling layer, i.e., a fully connected layer with
a dropout layer and a tanh activation. Each block contains a sequence of trans-
formations that is divided into layers. The output layer of each block consists of
a linear transformation, followed by dropout and layer normalisation. For both
approaches we experimented with four retrofitting different settings: before or
after layer normalisation at Transformer block 11 or 12.

The motivation behind these choices is related to the complex architecture of
the model. We hypothesize that the impact of any change into the embeddings
would be more noticeable as we get closer to the output space, rather than in
earlier layers of the model. Thus, we started experimenting at the pooling layer,
which is the closest to the output space, but the results were not promising.
Consequently, we moved one step back at the output layer of the last Transformer
block, and further back to the same place of the preceding Transformer block.

In the retrofitting equations (1) or (3), we initially considered as q̄i the em-
bedding corresponding to the word token in the test sentence, but preliminary
experiments showed that this did not have an impact on the final performance.
To verify this, we replaced the embeddings of these individual words with random
numbers, or even zeroes. Both cases did not affect the performance, indicating
that the output classifier is not very much dependent on single word embeddings.
Instead, we focus on the [CLS] token embedding which is a weighted linear aver-
age of all word embeddings in the test sentence, it is closer to the output space,
and has a bigger impact on the final result. All q̂ij in (1) correspond to the acti-
vations of the word token in training sentences, whereas all q̂j in (3) correspond
to the activations of the [CLS] token in modified test sentences.



4.3 Technical Details

For the relation extraction task we chose BlueBERT [14] a specific variant of
BERT that is further pre-trained on PubMed abstracts and clinical notes from
MIMIC-III database, while for sentiment analysis we experimented with the
classical BERT. In particular, for both tasks we selected the BERT-Base release
of the model, which makes use of the exact same configurations, (e.g., vocabulary,
length) as in the original BERT, and we further fine-tuned it on the downstream
task for each dataset. We treat both tasks as a sentence classification problem.
For relation extraction the named entities are anonymized with pre-defined tags
(e.g., @GENE, @CHEMICAL for ChemProt) as in [8]. Then, we feed an input sentence
into BERT which makes use of the [CLS] token of that sentence to perform
the classification. In particular, the [CLS] representation is forwarded into the
output layer of the last Transformer block, that produces an estimation for each
class.

4.4 Grid Search Optimization

In order to find a good set of values for the retrofitting hyperparameters α, β,
we performed a grid search using the development sets. For the first approach,
we used both annotated and expanded clusters and we searched for α, β ∈ [0, 2]
with a step of 0.2. We do not proceed on testing Method A for SST-2, as it
turns out to be inferior to Method B. For the second approach, we use all four
lexicons for sentiment analysis in conjunction with Bing Liu’s sentiment lexicon
(explained in Section in 4.1), while for relation extraction we only used the 34
and 50 classes of the annotated clusters6. Once again, we performed a grid search
on the development sets where we searched for α ∈ [0, 2] with a step of 0.2.

4.5 Alternative Classification Strategies

In order to assess the ability of our method to leverage the information in the
lexicons, we augmented all datasets by adding all modified sentences that occur
by replacing the underlying word with a neighbouring one, and compared with
the following alternative strategies:

Topline: Always selecting the true class of a test sentence as the final predic-
tion, if it was predicted by at least one of the original or the modified sentences.

Weighted majority vote (WMJ): Picking the predicted class with the
most occurrences as the final prediction out of the original and the modified
test sentences. Here, we assigned a weight of 1 to the original and a weight
of 1
|S|δ , δ ∈ [0, 1] to each modified sentence, where |S| is the total number of

sentences for the current test input. We experimentally noticed that choices of
δ outside [0, 1] did not affect the final prediction.

Average probabilities (AVGP): Averaging the probabilities of the pre-
dicted classes for both the original and the modified test sentences, and taking
the class with the maximum probability as the final prediction.

6 This is due to the extensive amount of neighbouring verbs on the annotated-16 and
the expanded clusters, which significantly increases the computational cost.



5 Results and Qualitative Study

In this section we present the results obtained from the grid search, and conduct
additional experiments that give more insight on the reasons why the proposed
methods yield a similar performance to the baseline model.

5.1 Grid Search Experimental Results

After finding the best performing set of hyperparameters amongst all combi-
nations of lexicons, Transformer blocks, and positions that were tested on the
development set, we evaluated the corresponding model on the test set. We
report the performance for each dataset in terms of micro F1-score for relation
extraction, and accuracy for sentiment analysis7. The results for both retrofitting
approaches are displayed in Table 1. At first sight, both approaches seem to have
no significant impact compared to the baseline performance. More specifically,
Method A results in a decrease of performance on all datasets, while Method
B slightly improves it for ChemProt and SST-2. Furthermore, we notice that in
many cases the alternative strategies we propose work better than our retrofitting
approaches. This suggests that i) the use of the lexicons is meaningful, but ii)
we have not yet found the correct way of exploiting this knowledge. It is also
worth highlighting the abrupt decrease in test performance on the i2b2-2010 for
the AVGP method. We assume this is due to the model outputting different
probabilities for each of the modified sentences. To confirm this, we compared
with the score obtained from WMV for every δ ∈ [0, 1] with a step of 0.1, and we
observed that for low values of the weight the performance is significantly worse.
This indicates that the original sentence is more important than the modified
ones, implying in turn that we should assign a higher weight on it. However, in
AVGP the averaging equally favours each class, and thus performs poorly.

5.2 Euclidean Distance Ranking of Retrofitted Vectors

In order to understand in greater depth how our proposed methods change the
embeddings in space, let us focus on a single test case8 where the proportion of
disagreements between the baseline model and the test case model is statistically
significant (based on McNemar’s test). This points out that both models behave
differently, but on average they result in similar performance. To further analyse
how Method A affects the embeddings in the latent space, we randomly select
5, 000 (out of 18, 014) test sentences where we apply our method, and we compute
the corresponding activation of the [CLS] token before and after retrofitting.
Next, we compute the Euclidian distance between every retrofitted vector and
every [CLS] vector before retrofitting. This results in a 5000×5000 matrix, where

7 This is the standard choice of metrics for these tasks and datasets [14, 17].
8 This corresponds to Method A on ChemProt, using the expanded-16 clusters, and

retrofitting after layer normalisation at Transformer block 12, with α = 0.4 and
β = 1.4 (second row of Table 1).



Table 1: Performance results across all datasets and proposed strategies as well
as some retrofitting approaches for static word embeddings. Baseline corresponds
to BERT base model finetuned on each dataset for the specific task. Method A,
B denote the proposed retrofitting approaches. Topline, AVGP and WMV were
discussed in Section 4.5, where for the last we select the weight (δ) based on the
best performance on the validation set.

Corpus Model Lexicon

Baseline –
Method A expanded-16
Method B annotated-50

ChemProt Topline annotated-50
AVGP annotated-50
WMV (δ = 1.0) annotated-50
Chiu et al. [2] expanded-34

Baseline –
Method A expanded-34

DDI Method B annotated-34
Topline annotated-34
AVGP annotated-34
WMV (δ = 0.1) annotated-34

Baseline –
Method A expanded-16

i2b2-2010 Method B annotated-34
Topline annotated-34
AVGP annotated-34
WMV (δ = 1.0) annotated-34

Baseline –
Method B WordNetsyn

SST-2 Topline WordNetsyn
AVGP WordNetsyn
WMV (δ = 1.0) WordNetsyn
Faruqui et al. [4] WordNetsyn

Dev miF1/Acc Test miF1/Acc

74.47 72.61
74.86 72.56
74.59 72.63
75.54 73.67
72.92 72.07
74.47 72.61

– 71.00

71.34 80.11
79.35 78.78
72.33 79.43
73.04 80.97
71.97 79.40
72.02 79.60

71.34 72.69
72.92 72.52
71.83 72.63
73.71 74.18
60.79 58.50
71.34 72.69

91.86 92.00
92.09 92.11
94.95 94.55
90.37 90.11
91.86 92.00

– 82.40

each row contains the distances of one retrofitted vector to all original vectors
(before retrofitting). We then rank from 0− 5000 each retrofitted embedding by
sorting each row in the matrix in ascending order. By doing so, we can check how
far our method is moving the embeddings in the latent space. The distribution
of the resulting rankings across all vectors is summarized in the histogram in
Figure 1. From this plot, we can observe that a large proportion of vectors has a
relatively low ranking (around [0, 80]), but there is also a considerable amount of
vectors with high ranking (around [950, 1000]), suggesting that potentially the
vectors do not move as far as they should, or sometimes they move too far. This
is an indication that there is a lot of variation in the neighbouring embeddings,
and therefore not all words in the lexicons are relevant for the task at hand. The
following experiment will check if restricting the lexicons to the domain has any
impact when retrofitting.



Fig. 1: Histogram of the ranking across [CLS] token retrofitted vectors for all
5000 ChemProt test sentences where Method A is applied.

5.3 Neighbouring Word Filtering

Bing Liu’s list of adjectives allow us to focus on appropriate words in the semantic
lexicons for the task of sentiment analysis. The next question we want to answer
is which neighbouring words are relevant for the underlying word, and which
are not. It is evident that not all neighbouring words for a given word in the
lexicons are actual synonyms in the context of movie reviews. Replacing single
words in the input sentence in Method B, forces the same context between the
original and the modified sentence. Consequently, we restrict the lexicons to the
domain by selecting neighbours that are “good” replacements instead of using
the whole list. This is done by inspecting the predictions of BERT for every
original and modified sentence on the augmented development set for a given
lexicon (see Section 4.5). Then, we can distinguish between the following cases:
(A) the original sentence was wrongly classified but the modified sentence was
correctly classified (good case), (B) the original and the modified sentence were
correctly/wrongly classified (neutral case), and (C) the original sentence was
correctly classified but the modified sentence was wrongly classified (bad case).

Next, we compute the counts that correspond to good, neutral and bad cases
for every pair of original-neighbouring word. These will show on average if a
neighbour is a good replacement or not for a given word. Then, using the Mc-
Nemar’s statistical test, we create three reduced versions, one for each semantic
lexicon, by selecting a neighbour for a given word with a 10%, 50% and 90%
confidence level9. The higher the confidence level the more certain we are about
replacing a word by another one, but the smaller the lexicon becomes (and vice
versa). Finally, we repeat the grid search optimisation (see Section 4.4) and
present in Table 2 the results for the best settings.

9 We use the confidence level percentage as a subscript to denote the reduced lexicon,
e.g., FrameNet90%.



Table 2: Results for the best performing lexicons derived from our neighbouring
word selection for Method B and the proposed alternative strategies. Baseline
corresponds to BERT base model, fine-tuned on SST-2 for sentiment analysis.

Lexicon Model

– Baseline

Method B
FrameNet10% Topline

AVGP
WMV (δ = 0)

Method B
WordNetsyn10%

Topline
AVGP
WMV (δ = 0)

Dev Acc Test Acc

91.86 92.00

92.09 92.00
92.09 92.11
92.09 92.00
92.09 92.00

92.09 92.00
92.66 92.00
92.09 91.89
92.09 92.00

Overall, there is some gain in performance compared to the baseline on the
development set which is expected. For example, Method B reaches Topline
performance for FrameNet10%, which suggests that retrofitting in the sense of
averaging embeddings can be meaningful. Moreover, we can see that the Topline
performance is almost identical to that of the baseline model on the test data.
This is due to the limited size of the reduced lexicons10. Ideally, if the dataset
were bigger, we would have selected lexicons with higher confidence level that
would also be large enough to improve over the baseline, i.e., the Topline score
would significantly outperform the baseline.

6 Conclusion and Future Work

In this paper, we proposed two approaches that extend the original retrofitting
technique to operate with contextualized embedding systems. More precisely,
we incorporated external knowledge coming from semantic lexicons into BERT
contextualized representations. After conducting a large-scale series of experi-
ments on three biomedical datasets for relation extraction, and one movie review
dataset for sentiment analysis, we observe that both approaches do not substan-
tially affect the performance on these downstream tasks. Our test results show
that the lexicons can be a useful source of information to further improve the
results. However, the current experimental setting did not make it viable. This is
demonstrated in our qualitative study, where we show that when we improve the
quality of the semantic lexicons by selecting only relevant neighbours for a given
word, the resulting lexicons are not sufficiently large to be able to generalize
at test time. In the future, we plan to experiment with more fine-grained tasks
where we are certain about the knowledge source, and where we would not need
to heavily depend on word statistics to apply the proposed method.

10 For example FrameNet originally consists of 1700 words and 90140 relations, while
its largest reduced version, FrameNet10%, has only 1 word and 5 relations.
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