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Abstract. The magneto-optical gradient effect decorates the boundaries of in-
plane domains even at perpendicular incidence of light in an optical polarization
microscope. For its explanation, the classical magneto-optical diffraction theory
was previously used to derive the effect from the same gyrotropic interaction as
the Kerr effect. In order to explain the symmetry of the experimentally observed
contrast on bulk ferromagnetic crystals, planar as well as perpendicular subsur-
face gradients in the magnetization had to be assumed. This was particularly
needed when the surface magnetizations in neighboring domains pointed head-
on and a gradient contrast appeared also in conditions of vanishing gyrotropic
interaction at the surface. The gradient contrast in such conditions should not
appear in very thin films where perpendicular magnetization gradients are not
enforced by reduction of magnetostatic energy. Here we present the first exper-
imental confirmation of this expectation, thus closing an experimental gap in
verifying the predictions of the diffraction theory.
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1. Introduction to the gradient effect: discovery and phenomenology

After the introduction of image processing to magneto-optical Kerr microscopy in the mid-
1980s of the last century [1, 2], the method has rapidly evolved into a powerful domain imaging
technique, allowing us to visualize the surface domains of almost all kinds of magnetic materials
at a maximum lateral resolution of roughly 300 nm. For a review of the possibilities of digitally
enhanced Kerr microscopy, we refer to the monograph Magnetic Domains [3], in which most
presented domain patterns have been imaged by this technique. The imaging capability also
comprises the surface magnetization (Néel-cap) of vortex domain walls in low-anisotropy bulk
materials, even if the wall width is below resolution like in the case of bulk iron. (A vortex wall
is observed in bulk material and is related to the asymmetric Bloch wall in thick films. It is
characterized by a Bloch-like magnetization rotation in the volume and a Néel-like rotation
at the surface [3].) A diffraction-broadened image is then obtained [4], which nevertheless
reveals details of the wall, such as internal Bloch lines (indirectly seen at the surface by
characteristic surface kinks [5]) or wall segments of opposite surface rotation sense. There is
just one micromagnetic object that can be hardly detected by magneto-optical means: at the
transition region between two Néel caps of opposite rotation sense, cross or circular vortices
with in-plane magnetization rotation are formed for topological reasons. In the center of a
vortex a magnetization swirl [3] is located, which is magnetized perpendicular to the surface
with a diameter of roughly 10 nm in the case of iron.

The attempt to image magnetization swirls by Kerr microscopy was the starting point of
systematic magneto-optical domain wall studies that we (RS together with A Hubert) performed
about 20 years ago on iron-silicon sheets with well-oriented (100)- and (110)-surfaces. To
possibly see the swirls in wall transitions, perpendicular incidence of light has to be chosen.
As the Kerr rotation is proportional to the sample magnetization component parallel to the
propagation direction of the reflected light beam, all in-plane magnetized structures should not
lead to a Kerr contrast under this condition. This applies to the Néel caps of the domain walls and
to the surface domains, whereas a polar Kerr effect is to be expected at the locations of the swirls
with their out-of-plane magnetization. At that time, we could not identify swirl contrast—swirls
have been imaged later by magnetic force [6] and spin-polarized tunneling microscopy [7].

What we found instead [8, 9] was an unexpected contrast at all types of 180◦ and 90◦

domain walls present in the investigated samples, which could not be explained by any of
the known magneto-optical effects. The contrast appeared in the Kerr microscope when the
analyzer was nearly crossed relative to the polarizer and when a phase-shifter (rotatable λ/10-
compensator), placed right in front of the analyser in the reflected light path, was ‘opened’ by
some degrees. At certain orientation angles, the walls then showed up in a homogeneous black
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Figure 1. Symmetry of the magneto-optical domain boundary contrast due to
the gradient effect for in-plane magnetization, perpendicular illumination and
horizontal polarization for three domain geometries: (a, b) 180◦ walls, (c, d)
head-on boundaries that represent V-lines of an underlying flux-closure structure
in bulk material and (e, f) head-on walls in thin films. For each pair of images,
the contrast before and after a sample rotation by 90◦ is shown. Cases (a–d) have
been found experimentally [8], whereas cases (e, f) have not been verified so far
(after [10]).

or white color, which could be quantified by integrating line-scans across the digitized wall
images. The contrast is independent of the rotation sense of the wall magnetization (which can
be sensed by the Kerr effect at oblique incidence), and it does not depend on the wall width
as could be proven by measurements on a variety of materials [9]. Therefore, it is better called
‘boundary’ contrast rather than wall contrast. Figures 1(a) and (b) schematically demonstrate
the contrast symmetry for the case of regular 180◦ walls. Neighboring domain walls appear in
alternating black and white, and the boundary contrast is inverted when the sample is rotated
by 90◦. It can also be inverted by rotating the compensator through its extinction position
(different from the Kerr contrast, which usually is generated and inverted by the opening
and rotation, respectively, of the analyzer alone). This indicates a phase shift of the magneto-
optical amplitude of the boundary contrast of roughly 90◦ relative to the phase of the Kerr
amplitude. Interestingly, also V-lines (figure 1(c) and (d)) obey the same contrast symmetry.
V-lines are the surface intersections of internal domain walls that are arranged in the shape
of the letter V (see figure 1, inset). Around a V-line the m-vectors of the surface domains
are head- or foot-on, but underneath the surface the magnetization flow points away from
(or toward) the surface. In this way, the magnetic flux of the surface domains is distributed
in a stray-field-free manner—a stray-field-free magnetization field (div m ≈ 0) is naturally
enforced in low-anisotropy materials, including iron [3].

A closer inspection of the contrast symmetry reveals that the boundary contrast is primarily
determined by the magnetization jump from one domain to the other, i.e. by the magnetiza-
tion gradient across the wall, and not by the properties of the actual wall. In analogy to the
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Figure 2. Symmetry of the gradient contrast at neighboring 180◦ domain walls,
derived from the dielectric law (1). The sample is rotated by 90◦ from (a) to (c).
The positive and negative Dy components are aligned along the analyzer axis,
but at opposite directions (d). Parallel to Dy are the magneto-optically reflected
Ey-components. Due to their phase shift relative to the ordinary reflected Ex ,
a black/white microscopic contrast is created by matching the phase of one of
the two Ey vectors with that of Ex by means of the compensator. The domain
boundary effect at 90◦ walls and V-lines can be derived in the same way.

magneto-optical Voigt effect—a birefringence effect that depends quadratically on the mag-
netization vector and that shows a similar symmetry6—also the domain boundary effect
can be interpreted as a birefringence effect. It depends linearly on certain components of
the gradient of the magnetization vector m and may therefore be interpreted as ‘gradient
effect’. In [8, 12], a dielectric tensor was suggested to phenomenologically describe the high
symmetry of the observed boundary contrasts. The y-component of the displacement vector D,
which represents the magneto-optical amplitude of the gradient effect at perpendicular incidence
and polarization along the x-axis, is written as

Dy = P (∂mx/∂x − ∂m y/∂y) Ex , (1)

where x and y are the coordinates along the E- and B-vectors of the incident light wave,
respectively, and P is a material constant that scales with that of the Kerr effect. A graphical
representation of this law is presented in figure 2 for the case of two neighboring 180◦ domain
walls. Relation (1) describes all 180◦, 90◦ and V-line boundaries found on bulk material.

2. Physical explanation of the gradient effect

Although the symmetry of the domain boundary observations in [8] could be well reproduced
by the empirical dielectric law (1), the question of the physical origin of the effect remained
open. Originally, it was thought that a derivation of the gradient effect from the gyrotropic

6 The Voigt or Cotton–Mouton effect is well known for domain decoration in transmission experiments. In
connection with our wall studies, we have discovered this effect in reflection [8] (an analogous reflection effect
was very recently also seen in x-ray spectroscopy [11]). The Voigt effect cannot explain the domain boundary
contrast [8], although both effects occur under the same experimental conditions and follow the same rotational
symmetry.

New Journal of Physics 12 (2010) 053006 (http://www.njp.org/)

http://www.njp.org/


5

interaction of the Kerr or Faraday effect (D ∝ m × E) was not sufficient. Consider the three
cases of figures 1(a)–(c): for a given horizontal polarization direction of light, a non-vanishing
cross-product would indeed exist for all the three cases. The incident light, which is polarized
along the x-axis, thus generates in each domain an oscillating gyrotropic polarization normal
to the sample surface, the amplitude of which depends on the magnetization direction of the
illuminated domain. The active magnetization component varies between zero (if m is along
the x-axis) and 1 (if m is along the y-axis). In the neighboring domain, a similar oscillation
is generated that is out of phase to the first one by 180◦ since the m y-component, which
causes the gyrotropic interaction, changes sign (i.e. has a gradient across the boundary). The
pairs of out-of-phase oscillating electric dipoles produce a quadrupolar field with a component
perpendicular to the domain boundary and proportional to the gradient of m y . In the experiment,
the component of this transverse field parallel to the analyzer axis (y-axis) can be detected.
This detectable Ey-component is obviously proportional to the component ∂m y/∂y of the
magnetization gradient and may be expressed as

E1(x,y)
y (y, 0) ∼ −B(∂m y/∂y) E0

x , (2)

with some constant B. Although this measured component includes only the second term in
(1), the boundary contrast of the three cases in figures 1(a)–(c) and the rotational symmetry
between figures 1(a) and (b) (compare figure 2) can be explained with the term (2) alone, on the
basis of gyrotropic interaction. This fact was recognized soon after the discovery of the gradient
effect, and the boundary contrast of the mentioned cases was derived [13] by formal diffraction
analysis under the assumption of only in-plane gradients.

This concept, however, does not work for the V-line orientation in figure 1(d): here the
gyrotropic interaction between the horizontally oriented E-vector of the light and the in-
plane domain magnetization m vanishes identically—the cross-product (m × E) is zero, thus, it
cannot give rise to any contrast even by diffraction. (A significant contribution to the observed
integrated intensity of the gradient lines, emerging from the rotating wall magnetization itself,
can be excluded [9].) In order to include also the contrast symmetry of the V-lines in the initial
phenomenological description [8], the first term (∂mx/∂x) in (1) had to be added empirically.
But what is the origin of this term?

The interpretation of this (necessary) term requires consideration of polar gradients
(∂mz/∂z), as was discovered in successive articles on the diffraction analysis [14]–[16]. The
crucial point is the micromagnetics of a V-line: around a V-line the m-vectors are arranged
in a stray-field-free pattern (div m ≈ 0). As there is an in-plane contribution to the divergence
∂mx/∂x , it must be compensated by an almost equal but opposite ∂mz/∂z to fulfill the condition
div m ≈ 0. Even if the mz-component is zero at the surface (all attempts to observe such a
perpendicular component at V-lines have failed so far), it must rise below the surface and
give rise to a non-uniform polar Kerr effect according to its limited but significant information
depth of about 20 nm in metals [17]. In fact, by considering both, diffraction due to planar and
perpendicular gradients in the analysis [15], it was possible to derive the empirically observed
symmetry of the gradient effect including the critical case of figure 1(d) if the condition
div m = 0 is valid.

This can be verified by extending our previous analysis: polar magnetization components
cause a gyrotropic interaction for any wall orientation, so that the y-component of the electric
field can be written as

E1(z)
y ∼ −

1
2 B(∂mz/∂z) E0

x . (3)
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The proportionality of the two constants in (2) and (3) follows from the symmetry of the
magneto-optic interaction considered in the diffraction theory [16]. In bulk low-anisotropy
materials, the flux-closing condition div m ≈ 0 implies

∂mx/∂x + ∂m y/∂y + ∂mz/∂z = 0, (4)

so that in this case, (3) may be replaced by

E1(z)
y ∼

1
2 B(∂mx/∂x + ∂m y/∂y) E0

x . (5)

The full detectable y-component then is the sum of (2) and (5):

E1(x,y,z)
y ∼

1
2 B(∂mx/∂x − ∂m y/∂y) E0

x , (6)

which is consistent with the empirically found law (1). So under the condition div m ≈ 0,
the gradient contrast can indeed be described by (1). A more systematic analysis of domain
diffraction phenomena, including the gradient effect, was presented in a later article [10] that has
completed a series of papers [17]–[20] dealing with magneto-optical interference and diffraction
effects in magnetic multilayers. The pioneering paper [17] of this series, in which the concept
of magneto-optical depth sensitivity was introduced, also contains a descriptive explanation of
the subsurface gradient contribution based on the depth sensitivity function.

The results of the diffraction analysis can be summarized in several essential points. The
gradient effect can, like the Kerr effect, be derived from gyrotropic interaction, but its symmetry
is strongly affected by the micromagnetic conditions in the underlying domain structure.
To explain the high symmetry of the effect, which was found experimentally and which is
phenomenologically described by the dielectric law (1), two different contributions to the
magneto-optical amplitude have to be considered: an effect of diffraction due to planar gradients
and an additional effect due to perpendicular subsurface gradients. These two effects are highly
correlated under the condition div m = 0, i.e. for charge-free boundary configurations. In these
cases, the diffraction analysis can even explain the gradient contrast of domain geometries in
which a gyrotropic interaction is absent in the surface layer (like in the head-on domains in bulk
material shown in figure 1(d)). For such domain boundaries, the polar subsurface magnetization
gradient provides the additional gyrotropy required for the combined gradient effect. The
symmetry of the gradient effect of charge-free configurations can be phenomenologically
described by the dielectric law (1), which explicitly contains only in-plane magnetization
gradients, while the perpendicular gradients that may be present in order to fulfill the condition
div m = 0 are taken into account implicitly in this condition.

The situation is different and simpler in thin films magnetized strictly in-plane, without
the interfering contributions of perpendicular magnetization. In accordance with the above
derivation of (2), a boundary between domains magnetized head-on as in figures 1(e) and
(f) should give a strong gradient contrast when their magnetizations are perpendicular to
the polarizer axis (maximum gyrotropic interaction, figure 1(e)), but no domain boundary
contrast when both domain magnetizations are parallel to the polarizer axis (figure 1(f)). Such
strict head-on configurations are not easily realized because they are connected with high
magnetostatic energy. Equation (2) implies that the empirical relation (1) should be replaced
by the simpler relation

Dy ∼ −(∂m y/∂y) Ex , (7)
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NiFe (20 nm)

IrMn (7 nm)

(b)

M

0

(a)

Figure 3. (a) Magnetic structure of the bimodal exchange-bias film used for the
magneto-optical studies. The exchange bias field Heb changes sign in a stripe
arrangement. This causes head-on domains in the NiFe film (b). The stripe width
(domain width) was 20 µm in our sample.

describing qualitatively the magneto-optical effect of strictly in-plane magnetization gradients
(including the head-on configurations with magnetostatic charges). The recent qualitative
discussion [21] of this simpler situation contains physically analogous conclusions.

3. Supportive experiment for diffraction theory

So far, there has been no experimental evidence for this prediction, which would support the
adequacy of the diffraction theory. At the time when the contrast symmetry of figures 1(e) and
(f) was predicted [10], straight domain boundaries surrounded by strictly head-on magnetized
domains were actually not known in magnetic films. If head-on domains are enforced in thin
films (e.g. by a gradient magnetic field or by magnetoelastic effects), they are separated by
metastable domain boundaries that are zigzag folded to reduce magnetic charges [3, 22]. In
the neighborhood of a zigzag wall, the magnetization tends to be oriented along the wall
to further lower the charge density (see figures 3.83 and 5.61 in [3]). Furthermore, for an
experimental proof of the gradient effect, at least three head-on walls should be arranged in close
neighborhood to unambiguously see the alternating boundary contrast. Such configurations can
hardly be produced in standard films due to the metastable character of these walls. Continuous
longitudinal recording media would offer this geometry, but here again the bit transitions are
zigzag folded for the mentioned reason and, in addition, the media are usually too rough to
allow reasonable magneto-optical microscopy.

In ion-irradiated exchange-bias film systems [23], however, it is possible to generate the
required domain and wall configuration. The sample basically consists of an exchange-coupled
IrMn (antiferromagnet) and NiFe (ferromagnet) bilayer film. An exchange anisotropy direction
is defined by the application of a magnetic field during film deposition. Subsequent local ion
irradiation of the stack in the presence of an inverted magnetic field locally inverts the direction
of the exchange anisotropy [23, 24]. A stripe pattern with antiparallel exchange bias Heb and
the desired head-on domains in the NiFe film can be generated thereby as illustrated in figure 3.
The domains are separated by straight domain walls. Owing to the NiFe film thickness of 20 nm,
these are most likely of Néel character with an in-plane rotation of magnetization. Although the
NiFe film, in which the domains and walls are imaged, is covered by the IrMn and a protection
layer, its magneto-optical contrast is still sufficiently strong for domain imaging.
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Unprocessed image

(a) (b) (c)

(d) (e) (f)

Sample rotation by 90°:

40 µm

Figure 4. Magneto-optical microscopy on the IrMn/NiFe stripe structure.
(a) The unprocessed contrast, in which the implanted and non-implanted areas
with opposite exchange bias are revealed by different colors. (b)–(f) Difference
images with the saturated state as a reference image. They show pure magneto-
optical contrast, obtained at oblique illumination in the longitudinal Kerr effect
(the plane of incidence is indicated by double lines) and at perpendicular
illumination (marked by circles) under conditions of the gradient effect. Note that
in the case of the longitudinal Kerr effect the plane of incidence coincides with
the sensitivity direction. The polarization direction is horizontal in all images.

On this film system, we could indeed verify the predicted contrast symmetry as shown
in figure 4. Here, a combination of images, obtained in the longitudinal Kerr effect at oblique
incidence of light and under conditions of the gradient effect, i.e. perpendicular incidence, is
presented. The polarization direction of the illuminating light is horizontal in all images. Head-
on domains, which are magnetized transversely to the polarization axis, show an alternating
black and white gradient contrast for neighboring domain walls (figure 4(c)) if imaged at
perpendicular illumination. This domain boundary contrast is—as expected for the gradient
effect [8]—independent of the true wall magnetization that is revealed by longitudinal Kerr
microscopy in figure 4(b) (figures 4(b) and (c) are images of the same configuration). Together
with the gyrotropic interaction, the gradient contrast disappears after rotating the sample by 90◦

(figure 4(f)). A residual double contrast is then left at each wall; it is caused by the superposition
of Voigt contrast and local gradient contrast due to the wall rotation [9]. The wall magnetization
of the state in figure 4(f) is shown in figure 4(e) together with the domain contrast in figure 4(d).
The images in figures 4(c) and (f) prove the prediction illustrated in figures 1(e) and (f).
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4. Conclusion

In conclusion, we can indeed verify that the contrast symmetry of the magneto-optical gradient
effect in magnetic films follows the prediction [10] for diffraction on in-plane magnetization
gradients. Our observation thus closes an experimental gap and adds further support to the
adequacy of the diffraction theory of the gradient effect. It can (like the Kerr effect) be
fully explained by gyrotropic interaction, and the phenomenological additions to the dielectric
law [8, 12] seem not to be necessarily considered as new intrinsic contributions.
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