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Assessing the quality of the excess chemical potential flux
scheme for degenerate semiconductor device simulation

Dilara Abdel, Patricio Farrell, Jürgen Fuhrmann

Abstract

The van Roosbroeck system models current flows in (non-)degenerate semiconductor de-
vices. Focusing on the stationary model, we compare the excess chemical potential discretization
scheme, a flux approximation which is based on a modification of the drift term in the current den-
sities, with another state-of-the-art Scharfetter-Gummel scheme, namely the diffusion-enhanced
scheme. Physically, the diffusion-enhanced scheme can be interpreted as a flux approximation
which modifies the thermal voltage. As a reference solution we consider an implicitly defined in-
tegral flux, using Blakemore statistics. The integral flux refers to the exact solution of a local two
point boundary value problem for the continuous current density and can be interpreted as a gen-
eralized Scharfetter-Gummel scheme. All numerical discretization schemes can be used within
a Voronoi finite volume method to simulate charge transport in (non-)degenerate semiconductor
devices. The investigation includes the analysis of Taylor expansions, a derivation of error esti-
mates and a visualization of errors in local flux approximations to extend previous discussions.
Additionally, drift-diffusion simulations of a p-i-n device are performed.

1 Introduction

The standard drift-diffusion model for semi-classical charge transport of free electrons and holes due
to a self-consistent electric field in a semiconductor device is the van Roosbroeck system. We con-
sider Voronoi finite volume schemes for the discretization of the semiconductor device equations. We
are interested in the numerically more challenging degenerate case and pay particular attention to
the choice of flux approximations. One of the most classical numerical flux scheme is arguably the
Scharfetter-Gummel scheme [14], which yields a numerical stable and thermodynamically consis-
tent numerical flux, but cannot be used for general charge carrier statistics. A generalization of the
Scharfetter-Gummel scheme is available [5], but computationally expensive. Hence, several thermo-
dynamically consistent numerical flux schemes, which modify this generalization to lower the com-
putational costs, are proposed in the literature [6–8, 13]. We focus on the excess chemical potential
scheme [16] which appears to be used in parts of the device simulation community. However, unfortu-
nately, there seem to be no direct comparisons of this scheme with other recent modified Scharfetter-
Gummel schemes. This paper aims to fill this gap by comparing it to the diffusion enhanced scheme
[2], where the integral flux by Eymard et al. is used as a reference flux. It supplements previously made
temperature-dependent observations [11].
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2 Van Roosbroeck model

The stationary variant of the van Roosbroeck system is given by

−∇ · (εs∇ψ) = q
(

(p−NA)− (n−ND)
)
, (1a)

∇ · jn = qR(n, p), (1b)

∇ · jp = −qR(n, p), (1c)

where q denotes the elementary charge, εs the dielectric permittivity, NA and ND describe the den-
sity of singly ionized acceptor and donor atoms, and R the recombination. The set of unknowns is
expressed by the electrostatic potential ψ and the quasi Fermi potentials for electrons ϕn and holes
ϕp. The current densities in the continuity equations (1b) and (1c) are given by

jn = −qµnn∇ϕn, jp = −qµpp∇ϕp, (2)

where the electron and hole densities n and p are defined by

n = NcF(ηn), ηn =
q(ψ − ϕn)− Ec

kBT
, (3a)

p = NvF(ηp), ηp =
q(ϕp − ψ) + Ev

kBT
. (3b)

The strictly monotonously increasing statistics function F will be discussed later. The conduction and
valence band density of states are given byNc andNv, the mobilities by µn and µp and the Boltzmann
constant by kB . The conduction and valence band-edge energies are denoted by Ec and Ev and T
refers to the temperature. With help of the generalized Einstein relation it is possible to model the
diffusion coefficients Dn and Dp via the the nonlinear diffusion enhancement

g(ξ) = ξ(F−1)′(ξ) (4)

by (introducing the thermal voltage UT = kBT/q)

Dn = µnUTg

(
n

Nc

)
, Dp = µpUTg

(
p

Nv

)
.

With this relation, we can rewrite the electric fluxes (2) into a drift-diffusion form

jn = −qµnn∇ψ + qDn∇n, jp = −qµpp∇ψ − qDp∇p. (5)

In general, inorganic semiconductor devices can be modeled by choosing the Fermi-Dirac integral of
order one-half [15] for the statistics functionF . Non-degenerate semiconductors are modeled with the
Boltzmann approximationF(η) = exp(η). In this case, the diffusion enhancement (4) is equal to one.
In this work, we focus on degenerate semiconductors, i.e. nonlinear diffusive problems. To compare
our flux approximations, we choose the Blakemore statistics [3] function F(η) = (exp(−η) + γ)−1

with γ = 0.27 for which an expensive but accurate numerical flux is known [12]. The different statistics
with the corresponding diffusion enhancements are depicted in Figure 1. For brevity, we consider only
the current density for electrons from now on and will partially omit the index n.
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The excess chemical potential scheme for semiconductor device simulation 3

Figure 1: Left: Semi-logarithmic plot of different statistics functions F for −5 ≤ η ≤ 5. Right: Cor-
responding logarithmic plot of the diffusion enhancement g in (4). This function can be seen as a
measure of how far away we are from the Boltzmann regime.

3 Scharfetter-Gummel type fluxes

The open, bounded domain Ω, on which the model (1) is defined, is partitioned intoN control volumes
ωK such that Ω =

⋃N
K=1ωK , where each ωK is associated with a collocation point xK ∈ ωK . We

are interested in a numerical flux j along the edge connecting the collocation points of two neighboring
control volumes ωK and ωL which is assumed to be aligned with the normal direction with respect
to the interface ωK ∩ ωL. In the following, a subindex K corresponds to an evaluation of a physical
quantity at node xK and a subindex L to an evaluation at node xL, respectively. Integrating (1b)
over ωK , using the Gauss divergence theorem and one point quadrature rules yields the discrete
counterpart

∑
ωL∈N (ωK)

|∂ωK ∩ ∂ωL|jn;KL = q|ωK |R(nK , pK),

where N (ωK) denotes the set of all control volumes neighboring ωK . The nonlinear flux function
jn;KL = jn;KL(ηK , ηL, ψK , ψL) approximates the projected flux j · νKL locally along the edge
∂ωK∩∂ωL, where νKL is the corresponding normal vector along ∂ωK∩∂ωL. For details concerning
the finite volume method see [6].

Furthermore, one property which holds on a continuous level to avoid unphysical state dissipation is
the preservation of thermodynamic equilibrium [6]. Mathematically, this means that vanishing fluxes
shall imply constant quasi Fermi potentials. A numerical flux j = jKL is now said to be thermody-
namically consistent, if it satisfies an analogous discrete relation, i.e.

j = 0 implies δηKL = δψKL,

where δηKL = ηL − ηK and δψKL = (ψL − ψK)/UT . Thermodynamic consistency is also impor-
tant, when coupling the van Roosbroeck system to heat transport models [7]. We discuss now different
thermodynamically consistent numerical fluxes that may be used within a Voronoi finite volume frame-
work.
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3.1 Generalized Scharfetter-Gummel scheme

Under the assumption that the flux jn and the electric field −∇ψ are constant along each face of a
Voronoi cell, the flux can be projected onto the shared edge between two neighboring control volumes.
Then, an integral equation can be derived [5], which shall be satisfied by the unknown local numerical
flux j

ηL∫
ηK

(
j/j0
F(η)

+ δψKL

)−1
dη = 1, j0 = qµnNc

UT
hKL

, (6)

where η is defined in (3). The integration limits are given by ηK = ηn (ψK , ϕK) and ηL = ηn (ψL, ϕL)
and hKL denotes the Euclidean distance between two neighboring nodes xK and xL. The exis-
tence of a solution to (6) was proven [10], even though the integral equation is in general not ex-
plicitly solvable. We refer to the solution of (6) as generalized Scharfetter-Gummel flux. Note that for
non-degenerate semiconductor devices the generalized scheme reduces to the classical Scharfetter-
Gummel scheme [14]

jsg = B (δψKL) eηL −B (−δψKL) eηK , (7)

for a non-dimensionalized edge current jsg = j/j0 withB as the Bernoulli function which is defined by
B(x) := x/(ex−1),B(0) = 1. Additionally, it was shown in [12] that for degenerate semiconductors
based on Blakemore statistics the integral equation (6) can be reduced to a fixed point equation,
namely

jg=B (δψKL + γjg) eηL −B
(
−
[
δψKL + γjg

])
eηK . (8)

The implicit equation in (8) can be solved within a few Newton steps, but the efficiency of this flux is
highly dependent on the choice of initial value. Hence, computationally less expensive flux discretiza-
tion schemes are needed as an alternative. Still, we will use this scheme as a reference flux for the
case of degenerated semiconductors, modeled by Blakemore statistics.

3.2 Diffusion enhanced scheme

Recently, another modified Scharfetter-Gummel discretization scheme was introduced [2]. There, a
logarithmic average for the nonlinear diffusion enhancement g in (4) is considered,

gKL =
ηL − ηK

logF(ηL)− logF(ηK)
, (9)

resulting in the local flux approximation

jd = gKL

[
B

(
δψKL
gKL

)
F (ηL)−B

(
−δψKL
gKL

)
F (ηK)

]
. (10)

We stress that, in case of a denominator in (9) near zero, i.e. ηK ≈ ηL, regularization strategies need
to be developed to handle the removable singularity.

3.3 “Sedan” scheme

The earliest reference we could find for the excess chemical potential scheme is the source code of
the SEDAN III simulator [16], therefore in the following, we will likewise refer to this scheme as the
Sedan scheme. There are benchmarks computed by the device simulator SEDAN III itself available in

DOI 10.20347/WIAS.PREPRINT.2787 Berlin 2020



The excess chemical potential scheme for semiconductor device simulation 5

literature, but to the best of our knowledge there are barely any comparisons of this flux discretization
scheme with other schemes known. A numerical analysis focused comparison of this flux approxima-
tion is given in [4]. The scheme is motivated by rearranging the drift part in (5) to include the excess
chemical potential, µex = logF(η)− η, yielding

js = B (QKL)F(ηL)−B (−QKL)F(ηK) (11)

with

QKL = δψKL + µexL − µexK = δψKL − (ηL − ηK) + log
F(ηL)

F(ηK)
. (12)

4 Comparison of flux discretizations

This paper aims to extend a previous discussion [7] by examining similar aspects for the excess chem-
ical potential flux approximation introduced in Section 3.3.

4.1 Taylor expansions

Taylor expansions of the following form dependent on δψKL and δηKL

jk = −F(η̄KL)δψKL + F(η̄KL)δηKL

+ α1δψ
2
KLδηKL + α2δψKLδη

2
KL + α3δη

3
KL, k ∈ {g, s, d},

(13)

can be derived for the flux approximations introduced in Section 3, when expanding in η̄KL = (ηL +
ηK)/2, see [1] and [7]. For the prefactors αj , j ∈ {1, 2, 3}, we have

αj = αj

(
F(η̄KL),F ′(η̄KL),F ′′(η̄KL),F ′′′(η̄KL)

)
.

The absolute error in these prefactorsαj between the Taylor expansions of the generalized Scharfetter-
Gummel scheme and the two modified ones is depicted in Figure 2.
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Figure 2: Errors between the third-order prefactors of Taylor series expansion of the exact Scharfetter-
Gummel scheme (6) and the two modified schemes for η̄KL ∈ [−5, 5].

For large negative arguments of the function F the Boltzmann and the Blakemore statistics nearly co-
incide, corresponding to the non-degenerate case. Hence, the modified Scharfetter-Gummel schemes
converge towards the classical scheme (7) and we observe nearly vanishing errors in Figure 2. For
large positive arguments we observe that the errors in the prefactors corresponding to the diffusion
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enhanced scheme increase with the exponents of δηKL, whereas the error corresponding to the ex-
cess chemical potential scheme nearly vanishes. Due to this observation it gives rise to think that
in case of no electrical field the excess chemical potential flux performs better than the diffusion en-
hanced scheme. However, neither the diffusion enhanced nor the excess chemical potential scheme
is third-order accurate. To measure the quality of the fluxes in a different manner, second-order error
estimates for the local flux errors are considered next.

When neglecting third-order terms, the following error bounds between the modified and the general-
ized flux dependent on the diffusion enhancement can be derived [1, 7]

|js − j| ≤
1

2

F(η̄KL)

g(η̄KL)

(
|δψKLδηKL|+ δη2KL

)
, (14)

|jd − j| ≤
1

2

F(η̄KL)

g(η̄KL)
|δψKLδηKL|. (15)

The error bounds indicate a better performance of the diffusion enhanced scheme for large values of
the diffusion enhancement g, i.e. for statistics strongly deviating from the Boltzmann regime.

4.2 Error between local flux approximations
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Figure 3: Logarithmic absolute errors between the Taylor expansions of the generalized Scharfetter-
Gummel and the diffusion enhanced scheme (left) and the excess chemical potential scheme (right)
for two fixed averages η̄KL = 1.5 and η̄KL = 5.

We study the logarithmic error between the modified flux schemes and the generalized scheme for two
fixed averages η̄KL. The errors for the simulation of a degenerate semiconductor can be seen in Figure
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3. The black dashed lines correspond to thermodynamic consistency, as well as pure drift currents,
i.e. ηK = ηL. In both cases, the modified schemes agree exactly with the generalized scheme.

Since F(η̄KL)/g(η̄KL) = F ′(η̄KL), the derivative of the statistics function appears in the error esti-
mates (14) and (15). The derivative of the Blakemore statistics decreases for large positive arguments.
Hence, we observe in Figure 3 that increasing the average η̄KL results in a comparatively smaller error.
Both, the error estimates (14), (15) and Figure 3 indicate a larger area, where the diffusion enhanced
and the generalized scheme agree well for small values of δηKL and large values of the potential
difference δψKL. Further, the red dashed line in Figure 3 indicates agreement of the excess chemical
potential scheme and the exact solution of (6) for a purely diffusive flux j, i.e. a vanishing electrical
field δψKL = 0. This can be proven analytically, see [1]. In this specific case, the excess chemical
potential scheme is the best possible flux approximation.

5 Numerical example

Finally, we study the impact of the different flux discretization schemes on the simulation of degen-
erate semiconductor devices for a 6µm long GaAs p-i-n diode with a width of 0.5µm and a depth
of 1.0 · 10−4cm. On each 2µm long layer we choose N = 3 · 2nref−1 uniform nodes. The open
source Julia-based solver ChargeTransportInSolids, based on VoronoiFVM [9] was
used which allows to use automatic differentiation. The stationary van Roosbroeck system (1) with
zero recombination supplemented with Dirichlet-Neumann boundary conditions is considered. The re-
sulting current voltage curves for a refinement level nref = 3 and the L∞ errors in the computed total
currents based on the different flux approximations for the first nine refinement level are depicted in
Figure 4. It can be observed that eventually the errors in the computed total currents based on the
flux schemes converge with orderO(h2). Furthermore, it suggests that on coarse meshes, which are
hard to avoid for expensive 3D simulations, the excess chemical potential flux performs better than the
diffusion enhanced scheme.
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Figure 4: Left: The I-V curves computed with the different schemes for fixed mesh refinement. The
reference solution was computed using the generalized Scharfetter-Gummel scheme on refinement
level 10. Right: Convergence studies for the absolute errors of the total currents.
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6 Conclusion

Our goal was to assess the quality of the Sedan flux (11) which has received surprisingly little attention
in the literature. To this end, we compared it to another modified Scharfetter-Gummel scheme (10) by
studying its error with respect to the more accurate but expensive integral flux (6). For this, we analyzed
Taylor expansions of the flux discretization schemes, the errors in the local flux approximations and
simulated a p-i-n benchmark. Further applications of this scheme will be part of future research.
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