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Abstract. The vectorial four-wave mixing response of an individual
strongly confined exciton–biexciton system with fine-structure splitting in
a GaAs/AlGaAs quantum dot is measured by dual-polarization heterodyne
spectral interferometry. The results are compared with theoretical predictions
based on the optical Bloch equations. The system is described by a four-
level scheme, which is a model system of the nonlinear excitonic response
in low-dimensional semiconductors. We measure its coherence properties
and determine the underlying dephasing mechanisms. An impact of the
inhomogeneous broadening by spectral wandering on the coherent response
is investigated. We further discuss the different four-wave mixing pathways,
polarization selection rules, the time-resolved polarization state, the vectorial
response in two-dimensional four-wave mixing and ensemble properties.
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1. Introduction

An individual exciton in a strongly confined quantum dot (QD) is a model system for quantum
optics, demonstrating single-photon emission [1], two-photon indistinguishability [2], coherent
control [3, 4], entanglement [5], optical dressing [6–8] and slow light [9]. Excitons are also
candidates for ultrafast information processing schemes in solids [10], requiring accurate
measurement, manipulation and modeling of their coherent response. The coherent response
of excitons can be optically inferred via nonlinear techniques [11–13]. In particular, four-
wave mixing (FWM) and spectral hole burning spectroscopy are efficient approaches to extract
coherence of excitonic ensembles in bulk semiconductors and quantum well structures. Single-
channel heterodyne detection of the FWM enabled probing coherence of excitons in QD
ensembles [14]. Combining multichannel optical heterodyning with spectral interferometry
(HSI) enabled the observation of FWM [15] and two-dimensional FWM (2DFWM) [16] from
individual excitons. Up to now, these measurements were restricted to either cavity-enhanced
responses [17–19] or individual excitons with a high optical dipole moment µ [15, 16, 20–23],
since the FWM amplitude scales with the fourth power of µ. Such localized excitons gain their
large dipole moment by a weak confinement, providing a large coherence volume. However, the
weak confinement energy of the order of 10 meV is comparable with their Coulomb-correlation
energies, such that the related localized biexcitons are quite different from a product state of the
excitons. Furthermore, the nearby continuum states allow for biexciton-mediated inter-exciton
coupling [22]. Their physics is therefore more complex than that of an exciton–biexciton four-
level system (4LS).

In this work, we measure the coherent nonlinear response of an exciton–biexciton system
in an individual strongly confined QD. Owing to their well-defined level structure, excitons
in this model system are better suited for quantum information processing applications than
weakly confined excitons. Conversely, measuring on individual strongly confined QDs is
more challenging due to their smaller transition dipole moment µ. The excitation intensity
needed to reach a given third-order coherence scales as µ6, and constitutes a background
for the measurement of the nonlinear emission. Moreover, their dephasing is typically not
radiatively limited, as they exhibit inhomogeneous broadening due to spectral wandering, and
hence their time-integrated coherent emission is reduced. To enable the present measurements,
we employed a detector of higher saturation, readout rate and quantum efficiency (Princeton
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Instruments PIXIS:100BR), and increased the transmission in the detection path by optimized
anti-reflection coatings. The paper is organized as follows. In section 2 the investigated sample
and the experimental method are described. In section 3 the experimental results are given,
containing the response of an individual exciton, starting with the photoluminescence (PL)
in section 3.1. The delay time, real time and spectral dynamics of the FWM are investigated
to infer the underlying exciton’s dephasing mechanisms in section 3.2.1. The polarization
state dynamics of an exciton with fine-structure splitting (FSS) is retrieved in section 3.2.2.
Next, we provide textbook examples of the vectorial coherent response in a 4LS with FSS.
In section 3.2.3 we measure and simulate its response in 2DFWM spectroscopy. Then, in
section 3.2.4, by controlling the arrival sequence and polarization of the driving fields and
resolving the polarization of the emitted fields [24], we select different FWM creation pathways
involving different second-order stages, such as density grating (DG), two-photon coherence
(TPC) [25, 26] or Raman coherence (RC) [27, 28]. These findings show quantitative agreement
with the predictions of the optical Bloch equations in a 4LS, confirming the textbook behavior.
In section 3.3 a characterization of the coherent response in a small ensemble of QDs employing
FWM hyperspectral imaging and 2DFWM is reported.

2. Sample and experimental methods

The investigated GaAs QD sample was fabricated by hierarchical self-assembly [29, 30], and
has a layer sequence shown in figure 1(a). The sample growth starts with an undoped [001]
GaAs substrate onto which a GaAs buffer layer and self-assembled InAs QDs are grown, which
are then partially covered with GaAs and removed by in situ etching, providing a GaAs surface
with voids. Next, an Al0.45Ga0.55As barrier layer is grown with a thickness of 5 or 7 nm, partially
retaining the voids of about 3 nm depth and tens of nanometers width. The subsequent growth of
a thin GaAs layer is filling the voids and leaving a thin wetting layer. The resulting QD structure
is finally overgrown with an Al0.35Ga0.65As barrier, followed by an Al0.45Ga0.55As barrier and
a 10 nm GaAs cap layer. The structure was anti-reflection coated with a 98 nm thick layer of
hafnium dioxide, reducing its reflectivity to the 0.1% range over the spectral range 1.65–1.7 eV.

The FWM is retrieved by the HSI technique [16] and its dual-polarization extension
DHSI [24]. We use two trains of laser pulses E1 and E2 with a repetition rate of τ−1

r = 76 MHz.
We up-shift their frequencies by acousto-optic modulators driven at �1/(2π)= 79 MHz and
�2/(2π)= 80.77 MHz. This introduces the phase shifts ei�1nτr and ei�2nτr for the nth pulse in E1

and E2, respectively. The induced degenerate FWM signal R−1,2
∝ E∗1E

2
2 (also see equation (A.8)

in the appendix) is retrieved using the time invariance in the repetitive experiment by selecting
the field with the phase shift ei(2�2−�1)nτr from light reflected from the sample. This is realized by
measuring the spectrally resolved interference J (2�2 −�1, ω) between a frequency unshifted
reference field and the reflection from the sample detected at the frequency of the FWM
heterodyne beat 2�2 −�1. The delay between the pulse arrival times at the samples is denoted
by τ , which is positive for E1 arriving before E2, as depicted in figure 5(a). The amplitude
and phase of the FWM field are obtained via spectral interferometry [31, 32]. More details
of the experimental methodology and the corresponding notation are given in [16, 22, 24].
We indicate the polarization states of E1 and E2 and detection by a triplet (�, 	, +), where
the individual symbols are lines along the direction of linear polarization (horizontal is along
the [11̄0] crystal axis of the sample) and circles 	 (�) for right-handed (left-handed) circular
polarization, respectively. Dual polarization detection is indicated by +.
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Figure 1. (a) Layer sequence of the investigated sample. (b), (c) Confocal
polarization-resolved PL of QD A at T = 14 K. (b) Excitation power P0 =

150 nW detected in − polarization. Insets: excitation power 100P0 in − (black)
and | (red) polarization, showing the spectral regions of the biexcitonic (XB,
YB—left) and excitonic (GX, GY—right) transitions. (c) Excitation power 20P0,
detected in (−) polarization. The emission from positive (negative) trion X+ (X−)

at 1693.5 meV (1692 meV) is observed [30]. The data on the right of the dashed
line are multiplied by 15.

All presented FWM data are taken in the χ (3) regime, with a fifth-order contribution of less
than 10%, as determined by the power dependence. Single QD spectroscopy was performed
on a sample with 7 nm bottom barrier with a low density (106 cm−2) of QDs. Specifically,
we present results obtained on two spectrally similar QDs A and B showing different FSS of
1A = 61µeV and 1B = 27µeV, respectively, which are typical of these samples [33]. The
statistical properties of the QDs were studied on a sample with a 5 nm bottom barrier layer and
a high density (109 cm−2) of QDs. The excitation pulses are of 230 fs duration unless specified
otherwise. The experiments were performed at a temperature T = 14 K. Throughout the paper
we give frequency values in energy units by multiplying with h̄.

3. Results

3.1. Photoluminescence of single quantum dots (QDs)

The investigated QDs are strongly oblate, i.e. they are significantly larger in the in-plane
direction than in the growth direction (001), resulting in a large quantization energy difference
between heavy- and light-hole states, with the heavy hole in the (001) direction (z) forming the
lowest hole states, with two spin–orbit projections Jz = ±3/2. Together with the lowest electron
states of spin projection Sz = ±1/2, they form two bright exciton states Sz + Jz = ±1 and
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Figure 2. Time series of PL spectra from a single QD, detected in (−)
polarization. (a) High-density sample with a 5 nm barrier and (b) low-density
sample with a 7 nm barrier. Excitation powers were 4.5µW in (a) and 1.5µW in
(b). Linear scale from white (zero) to black (maximum), as shown by the vertical
bar. Integration time of 1 s per spectrum.

two dark exciton states Sz + Jz = ±2. The two bright exciton states are mixed by non-circular
confinement and the zincblende crystal structure, creating two linearly polarized eigenstates
(GX and GY), spectrally separated by the FSS. Its value, 1, can reach up to a few hundreds
ofµeV.

The lowest energy two-exciton state occupies the two available electron and hole spin
states, forming a spin-singlet state, which is called a biexciton B. By Coulomb and exchange
interactions, it carries an energy renormalization, typically in the meV range.

Hence, the lowest excitonic and biexcitonic transitions in such QDs can be represented as a
4LS comprising the ground state G, the two linearly polarized fine-structure split exciton states
X and Y, and the biexciton state B, as shown in the inset of figure 3(b).

The excitonic transition energies in such a 4LS in a QD can be measured using non-
resonantly excited PL. We discuss here the PL of QD A in the low-density sample under
non-resonant excitation by a CW laser at a wavelength λ= 532 nm. At low excitation power
(see figure 1(b)), the (−) polarized emission is dominated by a single line around 1697 meV
attributed to the exciton transition GX. With increasing excitation power (see figure 1(c))
multiple additional emission lines are observed, which are attributed to charged excitons (below
the GX energy) and charged and neutral excited state excitons some 20 meV above the GX
energy, respectively. From the exciton energy we estimate [30] a confinement energy of about
200 meV. Upon a further increase of the excitation power (see insets in figure 1(b)) we identify at
approximately 1691.4 meV the bound biexciton transitions XB and YB, by their complementary
FSS XB–YB with respect to GX–GY. The biexciton binding energy is around 5.6 meV, which
is confirmed by FWM in sections 3.2.2 and 3.3.

The trion formation, observed in figure 1(c), is due to the charging of the QDs by random
capture of the non-resonantly excited electrons and holes [30]. At low excitation intensities,
the capture rate is lower than the tunneling rate through the barrier to the GaAs substrate of the
capping layer, and no charges build up in the QD. With increasing excitation intensities, random
charging with electrons or hole occurs, with a preference for holes due to their longer tunneling
times, and the time-averaged probability of the QD being in the neutral state reduces. We have
assessed the temporal stability of the QD and its environment by measuring time sequences of
PL spectra, as shown in figure 2. The majority of the QDs investigated on the sample with a 5 nm
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Figure 3. Spectrally resolved FWM from QD B in (−,−,−) polarization
configuration. (a) Spectral interferogram J (2�2 −�1, ω) at τ = 0 (orange line)
and at τ = 0.4 ps (black trace). (b) Amplitude (black and gray fill-up) and phase
(brown) of R̃−1,2

− −−
(ω, 0.4 ps). Green trace corresponds to the excitation spectrum.

In the inset the considered four-level scheme of an exciton–biexciton system is
shown.

barrier showed substantial intensity and spectral fluctuations (within a range of a meV), as well
as long-lived charging. Such features were found to virtually disappear for an excitation power
below 1µW. Conversely, the QD emission from the sample with a 7 nm barrier was stable,
as presented in figure 2(b). For resonant excitation as used in the FWM measurements, the
rate with which non-resonant carriers are created (e.g. by two-photon absorption or interband
excitation of residual dopants) is low. The QDs are thus typically neutral. A minority of QDs
showed a blinking in the seconds to minutes scale, possibly due to nearby defect states. These
were excluded from further studies. The FWM experiments presented here were done on QDs
which were stable during the timescale of the experiments.

3.2. Four-wave mixing of single QDs

To investigate the coherent response of a single QD, we apply FWM spectroscopy. To excite
only one of the fine-structure states (X), we use a (−,−,−) polarization configuration. The
excitation pulses, with a spectrum given by the green line in figure 3(b), provide a total fluence
on the sample surface of 18µJ cm−2. We chose |E2|

2
= 2|E1|

2, maximizing the FWM in third
order for a given total fluence. The fluence is about an order of magnitude higher than that used
for weakly confined QDs [22, 34].

An example of a measured spectral interferogram J (2�2 −�1, ω, τ ) is given in figure 3(a).
For τ = 0 ps, wide fringes are observed, created by the quasi-instantaneous FWM of the GaAs
continuum of the substrate (see also figure 13(d)). The fringe width is given by the time delay
between E2 and the reference pulse of 2.00 ± 0.05 ps. For τ = 0.4 ps, the excitation pulse overlap
is negligible and thus non-resonant FWM is suppressed. The remaining FWM is dominated by
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the long-lived excitonic coherence. The features at 1697.2 and 1691.7 meV are due to the GX
and XB transitions, respectively, consistent with the PL results shown in figure 1(b).

The FWM response R̃−1,2
− −−

(ω, τ) is retrieved in amplitude and phase from the
interferogram by spectral interferometry, using the prior knowledge that the reference field is
arriving earlier in time than the FWM field. The resulting response is given in figure 3(b). The
amplitude shows peaks at the GX and XB transitions, as well as π -shifts of the FWM phase
across the resonances. Furthermore, a mutual phase difference between GX and XB of about π
is measured, as expected from an exciton–biexciton pair [22, 23].

From the measured FWM amplitudes AGX and AXB (spectrally integrated over GX and XB,
respectively) we retrieve the dipole moment ratio α = µGX/µXB between the two transitions, as
detailed in equation (A.21). Note that the measured linewidths of both transitions are equal
within error (the experimental error is approximated by the spectral resolution of around
15µeV), and are dominated by inhomogeneous broadening, as shown in section 3.2.1. The
linewidth is therefore not affecting the analysis of α, different from the weakly confined
exciton–biexciton systems measured in [23] which showed less inhomogeneous broadening.
The retrieved value of α = 1.03 is close to the strong-confinement limit of 1, in which B is a
product state of two X. This is in contrast to previously studied weakly confined QDs for which
this ratio was typically several times bigger [22, 23].

3.2.1. Dephasing. The dephasing of the two-level transitions can be separated into two parts.
The homogeneous part, with a correlation time much shorter than the coherence time, is
described by an exponential coherence decay with a decay rate of γ and decay time T2 = 1/γ
resulting in a Lorentzian lineshape with a full-width at half-maximum (FWHM) of 2γ . The
inhomogeneous part, which has a correlation time much longer than the coherence time, is
described by a Gaussian distribution with standard deviation σ , related to the inhomogeneous
dephasing time T ∗

2 = 1/σ . The combination of both leads to a Voigt lineshape in the spectral
domain, and a real-time dynamics of FWM described for τ > 0 by

R−1,2(t, τ )∝ θ(t) exp (−iω0(t − τ)− γ (t + τ)) exp
(
−σ 2(t − τ)2/2

)
, (1)

where E2 arrives at t = 0, and ω0 denotes its center frequency. The measured temporal transients
|R−1,2(t, τ )|2 of GX are given in figure 4(a). The data have been corrected for the amplitude
response rS(t) of the setup due to the finite spectrometer resolution (see figure 8(a)), yielding
a diagram shown in figure 4(a). A shift of the signal maximum in real time according to the
delay time τ is observed, in agreement with equation (1), showing the echo formation. Note
that the photon echo is developing from a single transition exhibiting spectral wandering over
the measurement time of the FWM experiment in the 1–1000 s range [20]. The observed FWHM
of the echo amplitude is 43 ± 5 ps, which in the model equation (1) is given by

√
8 ln 2/σ , from

which we deduce σ = 36 ± 4µeV ≡ σB. This inhomogeneous broadening is larger than the GX
homogeneous broadening γ of around 8µeV (see figure 4(d)). Using the above parameters and
equation (1) the temporal transients for different delays were simulated as given in figure 4(b).
The photon echo formation has been recorded with a more dynamic range for a third QD
C as shown in figure 4(c). The temporal FWHM of the echo amplitude is here 48 ± 2 ps,
corresponding to σ = 32 ± 1µeV ≡ σC, similar to σB. The spectral wandering, generating the
inhomogeneous broadening, is attributed to fluctuating charge carriers in the vicinity of the
QDs, shifting the exciton energy by the quantum-confined Stark effect. Even though the FWM
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Figure 4. FWM dynamics of QD B in (−,−,−) polarization configuration.
(a) Time-resolved FWM power |R−1,2

− −−(t, τ )|
2 of the GX transition, spectrally

filtered around GX with a Gaussian of 0.62 meV width (FWHM), yielding the
temporal resolution of 3 ps, as given by a horizontal bar in (c). Logarithmic
gray scale as indicated. The dashed line shows t = τ . (b) Prediction for (a)
using equation (1) with (γ, σB)= (8, 36) µeV. (c) |R−1,2

− −−(t, 20 ps)|2 measured
on QD C with σC = 32 ± 1µeV, retrieved from the Gaussian fit shown by a
blue solid line. (d) |R̄−1,2

− −−
(ωGX, τ )|

2 (black circles) and prediction (red, dot-
dashed line) using equation (2). |R̄−1,2

− −−
(ωXB, τ )|

2 is shown by green squares.
The exponential decay with γXB = 56 ± 8 ps is marked with a green dashed line.
The noise level is shown with open circles. Both data were corrected for the
spectrometer response rS(t).

excitation is resonant, the GaAs of the cap layer and the substrate is excited in its continuum,
enabling free carrier dynamics and the observed spectral diffusion.

The spectrally and delay-resolved FWM of an inhomogeneously broadened two-level
system can be modeled as [35]

|R̃−1,2(ω, τ)| ∝ θ(τ ) exp

(
−2γ τ −

(ω0 −ω)2 − γ 2

2σ 2

) ∣∣∣∣erfc

(
γ + i(ω0 −ω)

√
2σ

−
στ
√

2

)∣∣∣∣ . (2)

The measured |R̃−1,2
−−−

(ω, τ)|2 integrated in ω over the GX resonance (we used an integration
range extending a FWHM to either side of the resonance in the data shown), denoted by
|R̄−1,2

−−−
(ωGX, τ )|

2, is shown as black circles in figure 4(d). The initial rise of the FWM signal
is a result of the inhomogeneous broadening σ and the related photon echo formation in real
time [35], as depicted in figure 5(b). For τσ � 1 the real time response corresponds to a half-
Gaussian (orange trace). For larger delays, such that τσ � 1, the photon echo is fully developed
(blue trace) and the integrated FWM power shows an exponential decay rate versus τ of 4γ .

The simulation of |R̄−1,2
−−−

(ωGX, τ )|
2 is given as a dash-dotted line in figure 4(d), and

yields the parameters (γ, σ )= (8 ± 1, 36 ± 4) µeV, corresponding to T2 = 82 ± 3 ps and T ∗

2 =

18 ± 2 ps. The T2 time of the investigated QD is about five times shorter than the typical PL
lifetime [36] of TPL ' 400 ps. However, these PL lifetime measurements under non-resonant
excitation can be influenced by dark states and can be significantly longer than the radiative
lifetime of the bright state. Nevertheless, a radiative lifetime given by the T1 = T2/2 ' 41 ps
is unlikely. Therefore, we assume that there is significant pure dephasing present, possibly by
scattering with free carriers accumulated in the GaAs layer at 7 nm below the QD.
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. . . .

Figure 5. FWM spectrum as a function of delay τ in the presence of
inhomogeneous broadening σ . (a) Pulse sequence in the FWM experiment. For
positive delay, E1 arrives at t = −τ and induces the first-order coherence, which
evolves until the arrival of E2 at t = 0. The FWM transient is emitted for t > 0. Its
integrated intensity as a function of τ yields the coherence dynamics. (b) Sketch
of real-time FWM dynamics for τ � σ−1 (orange, left) and τ > σ−1 (blue, right).
(c), (d) Measured |R̃−1,2

− −−
(ω, τ)| of the GX transition in QD B. (c) τ = 0.4 ps, and

simulation by |L(ω)| (orange dashed line). (d) τ = 38 ps, and simulation by a
Gaussian (blue dashed line). σ = σB was used in the simulations, determined
from the echo duration in the time domain. A constant offset, reflecting the
amplitude noise, was added to the simulations for better visibility.

In figure 4(d) we also present the FWM dynamics |R̄−1,2
− −−

(ωXB, τ )|
2 of the XB transition,

denoted by green squares. The quantitative analysis is less reliable, due to the limited dynamic
range of the data. Still, from the exponential decay at larger delays, we can estimate its
homogeneous dephasing time T2,XB = 58 ± 8 ps. The shorter T2 time of XB with respect to GX
indicates that the spectral fluctuations of the exciton and biexciton are not fully correlated [37].

The inhomogeneous broadening and the associated photon echo formation create a delay-
dependent FWM spectrum |R̃−1,2

− −−
(ω, τ)|. For τ = 38 ps (figure 5(d)) the Gaussian echo is fully

developed in the time domain, creating a Gaussian in the frequency domain (blue line), which
is also measured. For τ = 0.4 ps (figure 5(c)) instead, the FWM transient has the form of a half-
Gaussian 2(t) exp(iωGXt − σ 2t2/2). The FWM spectrum is then given by its Fourier transform
which reads

L(ω)=
1

2σ
exp

(
−
(ω−ωGX)

2

2σ 2

)
+

i

σ
√
π

D

(
ω−ωGX

σ
√

2

)
, (3)

where D is the Dawson function. The resulting FWM amplitude |L(ω)| for σ = σB shown
in figure 5(c) has Lorentzian tails (∝ |ω−ωGX|

−1), in agreement with the measured spectrum.
A smooth evolution between the two limiting spectral shapes is observed for intermediate delays
(not shown).
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Figure 6. Fluence dependence of FWM. (a) |R̄−1,2
		−(ωGX, 2 ps)|2 as a function

of the fluence of E1 for pulses of 760 fs duration. The predicted dependence
(equation (A.25)) is given as a violet line. (b) |R̄−1,2

��|
(ωGY, τ )|

2 and (c)

|R̄−1,2
�� |

(ωYB, τ )|
2 for the same pulse duration as in (a) and the E1 and E2 fluence

of about 6µJ cm−2 and 12µJ cm−2.

To determine the excitation fluence range for which the signal is dominated by the third-
order response we have measured |R̄−1,2

		−(ωGX, 2 ps)|2 as a function of the fluence of E1,
for a fixed fluence of E2 of 12µJ cm−2, as shown in figure 6. The co-circular polarization
configuration was chosen to suppress biexcitonic contributions. To reduce the effect of non-
resonant two-photon absorption for a given pulse area of the excitation, we have spectrally
centered the excitation to the exciton transition and narrowed it to 2.4 meV, increasing the pulse
duration to 760 fs. |R̄−1,2

		−(ωGX, 2 ps)|2 peaks at a E1 fluence of around 15µJ cm−2. The peak is
expected [38] for a pulse area of π/2. Further increasing the fluence and thus the pulse area of E1

reduces the signal, with a zero expected at a pulse area of π . The predicted fluence dependence
given by equation (A.25) is shown as a violet line in figure 6(a). From such a Rabi oscillation,
we estimate a transition dipole moment [39, 40] of 10 ± 3 Debye, which is lower than that for
single excitons weakly confined by interface fluctuations in a quantum well [38]. Most of the
data in this work were taken at pulse areas of about π/5 corresponding to a fluence of about
2µJ cm−2 for 760 fs pulses shown as a vertical dashed line in figure 6(a). For this fluence, χ (5)

contributions are expected to be more than an order of magnitude below the χ (3) response. Their
influence can be still observed in |R̄−1,2

�� |
(ωGY, τ )|

2 and |R̄−1,2
�� |

(ωYB, τ )|
2, shown in figures 6(b)

and (c) (see also figures 10 and 12). A beating with a period of about 0.75 ps corresponding to
a spectral splitting of 5.5 meV is due to exciton–biexciton beating occurring in fifth order [41],
and is absent in third order, as shown in the appendix.

3.2.2. Vectorial polarization dynamics. To resolve the vectorial polarization dynamics of the
emitted FWM we use DHSI [24]. By setting the heterodyne frequency to �1 and �2 and
measuring the spectral interferences of E1 and E2 in J (�1, ω, τ ) and J (�2, ω, τ ), respectively,
we determine the polarization state of the excitation fields, which is controlled by combinations
of quarter- and half-wave plates for each excitation pulse.

The FWM of QD A in (−,−,−) and (|, |, |) configuration, probing the GX, XB and
GY, YB transitions, respectively, shows an FSS of 1A = 61 ± 7µeV, consistent with the PL
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Figure 7. Polarization-resolved FWM from QD A. (a) Top: |R−1,2
��+(ω, 0.5 ps)|2;

bottom: |R−1,2
		+(ω, 0.5 ps)|2. The two detected polarization components are given

separately (− black, | red). (b) |R̄−1,2
��−

(ωGX, τ )|
2 (black circles), with prediction

(green, dash-dotted line). |R̄−1,2
��−

(ωXB, τ )|
2 (blue triangles). Similar data are

obtained for | detection of GY and YB transitions (not shown). The noise level
is given by open circles.

results of figure 1. To excite all transitions in the 4LS, we use the configuration (�,�,+), which
creates a superposition of GX and GY transitions introducing a dynamics of the polarization
state [24] observable both in the emitted FWM polarization and in a beat versus τ , as presented
in figure 7(b) for (−) detection. The quantum beat (black dots), which is observed on both
GX and GY (latter not shown) with a period of T1 = 2π/1= 65 ± 5 ps, which yields 1=

63 ± 5µeV, in agreement with the splitting measured in the FWM and PL spectra. Such an
agreement of FSS and beat period was also observed for QD B, exhibiting 1B = 27 ± 7µeV
and, respectively, T1 = 153 ± 39 ps.

The delay time dynamics of the FWM at XB instead shows only the dynamics of the
corresponding excitonic resonances GX (see blue triangles in figure 7(b)) since it is created by
the DG on X. The equivalent holds for the GY and YB transitions (not shown). The coupling of
X and Y via G is not influencing the FWM signal at the biexciton transition in third order.

For co-circular configuration (	,	,+) a coherence dynamics similar to (�,�,+) is found
for the excitonic transitions (not shown), while biexcitonic transitions do not emit, as shown in
figure 7(a) (bottom), independent of τ . Even though the FSS transfers first-order coherence to
the � polarization, at the arrival of the second pulse, it cannot be converted into a DG by the 	
polarized second pulse, excluding FWM at the biexcitonic transitions (see table 1).

In DHSI the relative phase between | and − FWM components can be measured such
that the time-dependent polarization state can be reconstructed [24]. Here we determine this
dynamics for the excitons of QDs A and B exhibiting considerably different FSSs. We use
both (�,�,+) and (	, 	, +) configurations, exciting different initial relative phases of GX
and GY transitions. The real-time dynamics of the polarization-resolved FWM amplitudes
|R−1,2
��+(t, 0.5 ps)| and |R−1,2

		+(t, 0.5 ps)| is shown in figures 8(a) and (b). The finite spectrometer
resolution yields the instrument response rS(t) shown by the dashed-dotted line. To reduce noise
and eliminate the emission of XB and YB, the data were filtered in the spectral domain with a
Gaussian (FWHM of 0.62 meV) centered on the GX transition, resulting in a temporal resolution
of 3 ps, as depicted by the horizontal bar in figure 8(a).

New Journal of Physics 15 (2013) 055006 (http://www.njp.org/)

http://www.njp.org/


12

Table 1. Relative third-order FWM amplitudes of an exciton–biexciton system
with a FSS (4LS), as displayed in figure 3(b), for various excitation and detection
polarizations for positive (>) and negative (<) delays τ . GX and GY are
transitions from the ground state to (−) polarized and (|) polarized excitons,
respectively. Transitions from these excitons toward the biexciton are assigned
as XB and YB, respectively. We consider a dipole moment ratio between
excitonic and biexcitonic transitions α = µGX/µXB = µGY/µYB with µXBµGX =

µYBµGY = µ2 and the ratio between the excitation field amplitudes at biexcitonic
and excitonic transitions, β = |E(ωXB)/E(ωGX)|. The table is normalized with
respect to equation (A.19) in the appendix.

E1 E2 τ GX GY XB YB

− − > 2α2 0 β 0
− − < β2 0 β 0
− | > 0 0 β 0
− | < β2 0 β 0
	 	 >

√
2α2

√
2α2 0 0

	 	 < 0 0 0 0
	 � > 0 0 0 0
	 � < 0 0 0 0
	 − >

√
2α2 0 β/

√
2 β/

√
2

	 − < β2/
√

2 β2/
√

2 β/
√

2 β/
√

2

The relative phase between (|) and (−) components ϕ(t)= arg R−1,2
��−

(t, 0.5 ps)−

arg R−1,2
�� |

(t, 0.5 ps) and ϕ(t)= arg R−1,2
		−(t, 0.5 ps)− arg R−1,2

		 |
(t, 0.5 ps) is shown in

figures 8(c) and (d) for QD A and B, respectively. The different value of 1 results in
different phase slopes. After around 70 ps, the excitonic wave packet in QD A has acquired a
2π phase shift, whereas in QD B a π phase shift is found.

It is interesting to note that the phase slope (figures 8(c) and (d)) is constant over
approximately 70 ps, in spite of the inhomogeneous broadening σ by spectral wandering. For
QD B, this amounts to σ

√
8 ln 2 = 100µeV ' 41. This shows that the spectral wandering is

affecting GX and GY similarly, such that their relative phase is conserved over a timescale
longer than σ−1. It is expected for the spectral wandering mechanism due to locally fluctuating
electric fields, as the two transitions GX and GY involve exciton states which are different only
in their spin component, but have the same spatial exciton wave function. The latter determines
the static dipole moment, which governs the spectral wandering by its interaction energy with an
electrostatic field. Conversely, the spatial wave functions of exciton and biexciton are typically
different [42]. Therefore electric fluctuations influence them differently, such that spectral
wandering of both is not completely correlated, as previously concluded from |R̄−1,2

− −−
(ωXB, τ )|

2

shown in figure 4(d).
The time-resolved polarization state can be represented [24] by the angles (ψ, χ) of the

polarization ellipse, describing azimuth angle and ellipticity. These are plotted in figures 8(e)
and (f) and show agreement with the theoretical prediction for equal dipole moments of the
transitions. A sketch of the time evolution of the polarization state is given in figure 8(g). For
QD A and (�,�,+) (upper row) we observe the evolution from the excited (�) polarization
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Figure 8. Polarization- and time-resolved FWM of (a), (c), (e) QD A, and
(b), (d), (f) QD B. (a) |R−1,2

��+(t, 0.5 ps)|. Dash-dotted line: spectrometer
response rS(t). The temporal resolution of 3 ps is given by the horizontal bar.
(b) |R−1,2

		+(t, 0.5 ps)|; inset: |R̃−1,2
		+(ω, 0.5 ps)|2. (c), (d) Time-resolved relative

phase ϕ(t). (e), (f) Stokes parameter of (a), (b), respectively. (g) Sketch of the
vectorial FWM polarization at different times corresponding to (a) (top) and
(b) (bottom).

at t = 0, through an elliptical polarization state, to circular polarization 	 at t = T1/4 ∼ 16 ps,
followed by orthogonal elliptical polarization reaching (�) at t = T1/2 ∼ 35 ps, then via cross-
circular polarization (�) at t = 3T1/4 = 50 ps back to the initial (�) at t = T1 = 70 ps at the
end of the quantum beat period. For QD B and (	,	,+) the dynamics starts with (	) at t = 0,
through (�) at t = T1/4 ∼ 41 ps, to opposite circular polarization (�) at t = T1/2 ∼ 70 ps.

3.2.3. Dual polarization 2DFWM. The exciton–biexciton 4LS gives rise to a characteristic
2DFWM, as was shown for quantum wells [43]. The 2DFWM representation of the data is
obtained by Fourier-transforming R̃−1,2(ω, τ) for τ > 0 from τ to ω1 yielding |Ř−1,2(ω, ω1)|

2.
We use here the data set analyzed in figure 7(b). For τ > 0 the biexciton FWM at XB (YB) is
driven by GX (GY), respectively. We can therefore use the FWM on the XB (YB) transitions
as phase reference [22]. The resulting polarization-resolved 2DFWM |Ř−1,2

��−
(ω, ω1)|

2 and

|Ř−1,2
�� |

(ω, ω1)|
2 is shown in figure 9(a). We observe that the FWM on GX and GY is created by
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Figure 9. 2DFWM of QD A on a linear color scale as shown. (a)
|Ř−1,2
��+(ω, ω1)|

2. Top: (|) detection; bottom: (−) detection. (b) Simulations
corresponding to (a).

both GX and GY (peaks at (ω, ω1) ∈ {(ωGX, ωGX), (ωGX, ωGY)} in (−) detection and (ω, ω1) ∈

{(ωGY, ωGX), (ωGY, ωGY)} in (|) detection). This coherent coupling of GX and GY is due to their
common ground state. The FWM on XB (YB) is only created by the first-order coherence on GX
(GY), respectively. The experimental data are reproduced by the theoretical simulations shown
in figure 9(b). As discussed in the appendix, the modeling is based on solving time evolution
of the density matrix for the exciton–biexciton system, with delta-like excitation pulses [44].
In addition, the polarization control of E1, E2 was introduced and the resulting field is resolved
in both linear polarizations. Specifically, in simulations shown in figure 9(b) we have assumed
equal dipole moments and equal driving of all four transitions,1= 61µeV, a biexciton binding
energy of 5.6 meV and a spectral resolution of 15µeV FWHM. We have set the pulse area of
π/50 for E1 and π/25 for E2. Note a reduction of biexcitons’ intensity with respect to excitons’
ones, as expected (see table 1).

3.2.4. Polarization selection rules. The strong exciton confinement in the QDs studied here
creates a 4LS without a nearby biexcitonic continuum, with defined polarization selection
rules as derived in the appendix. We demonstrate here on this textbook four-level scheme the
different FWM creation pathways. They can be separated by polarization-selective excitation
and detection for positive and negative delays [41, 43, 45, 46], realized by τ = ±0.5 ps in the
measurements. The polarization selection rules in a 4LS in the framework of optical Bloch
equations truncated to third order in the pulse areas are given in table 1. We have introduced an
exciton–biexciton dipole moment ratio α and an excitation field amplitudes ratio β between the
biexciton and exciton. In the following discussion of the relative FWM amplitudes, we assume
α = 1 and β = 1.

Using linear polarization (−) of E1 (see figure 10) we excite transitions GX and XB. For
τ > 0, E1 comes first, creating a GX coherence. If E2 is co-linearly polarized, it creates a DG in
G and X, and drives the FWM on both GX and XB transitions, with the amplitude of XB half of
GX, as the former is created only by the X grating. For τ < 0, E2 arrives first and creates a TPC
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Figure 10. FWM pathways of an exciton–biexciton system in its linear
polarization basis. (a) |R̃−1,2

− −−
(ω,±0.5 ps)|. The green trace shows the spectral

amplitude of excitation. (b) |R̃−1,2
− |−

(ω,±0.5 ps)|. Red traces are the results of a
simulation as derived in the appendix. A common amplitude scaling is preserved
for all spectra presented in figures 10 and 12. Right: FWM creation pathways
for τ > 0 (top) and τ < 0 (bottom). Black arrow: transition driven by the pulse
given; wiggle: density grating on level; magenta thick arrow: RC; cyan thick
arrow: TPC; orange arrow: FWM coherence. Time ordering from left to right.
Dotted circles connect the excitation and consequent FWM transitions.

[25, 26] between G and B, which is converted by E1 into FWM on GX and XB of equal
amplitudes. Using a cross-linearly (|) polarized E2, the FWM is unchanged for τ < 0, as the
TPC remains the same. For τ > 0, in contrast, E2 excites only the GY transition and no DG is
formed. Instead, a second-order RC [27, 28] between GX and GY is created, and converted by
E2, driving the YB transition to FWM on the XB transition. Exchanging (−) and (|) polarizations
for all fields results in an equivalent finding in experiment and theory (not shown), with the role
of X and Y exchanged.

In the third-order limit, FWM of a 4LS can therefore originate from three different, second-
order components: DG, RC and TPC. The corresponding FWM creation pathways are illustrated
at the right sides of figures 10 and 12. Alternatively, they can be represented by double-sided
Feynman diagrams [47], as shown in figure 11. In such diagrams, density matrix elements
carrying DG, RC and TPC can be readily identified.

Moving to circular polarization (	) of E1 (see figure 12), we now excite both excitonic
transitions with a π/2 phase shift. The delay τ = ±0.5 ps is sufficiently small to neglect
the FS dynamics during the time between the arrival of the two pulses, so that one can
discuss the transitions in terms of excitons with spin ±1, |P〉 = (|X〉 + i|Y〉)/

√
2 and |M〉 =

(|X〉 − i|Y〉)/
√

2.
For co-circular polarization (	) of E2, no biexcitonic FWM is observed (see figure 7(a),

bottom left), due to the alternate circular polarization of the GP (	) and PB (�) transitions.
For the same reason, no TPC can be created by E2 and no FWM is observed for negative delay.
The excitonic transition is initially (	) polarized, and shows a polarization beat due to the FS
splitting (i.e. coupling to M). For cross-circular polarization (�) of E2, no FWM is created, as
the RC cannot be converted into FWM via the B.
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Figure 11. Double-sided Feynman diagrams illustrating FWM creation pathways
in a linear polarization basis. Density matrix elements carrying DG, RC and TPC
are indicated by grayed areas. (a) (−, −, −), τ > 0 corresponding to figure 10(a)
(top). DG-induced contributions to FWM on XB (left) and GX transitions
(middle and right). (b) (−, |, −), τ > 0 corresponding to figure 10(b) (top).
RC-induced contributions to FWM on XB transition. (c) (−, −, −, ), τ < 0
corresponding to figure 10(a) (bottom). TPC-induced contributions to FWM on
XB (left) and GX transitions (right). Similarly, in configuration (−, |, −), τ < 0,
as shown in (d), corresponding to figure 10(b) (bottom). Equivalent diagrams can
be drawn for (|, |, |) and (|, −, |).
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Figure 12. The same as in figure 10 but for (	,−,+) polarization configuration.
(a) |R−1,2

	−−(ω,±0.5 ps)| and (b) |R−1,2
	−|

(ω,±0.5 ps)|.

For circular polarization (	) of E1 and linear polarization (−) of E2, different FWM
pathways are open. For positive delay, we form a DG on G and X, which results in FWM
on GX and XB twice larger than that on GX. We also form an RC between X and Y, resulting in
a FWM signal on YB. For negative delay, TPC on GB is created by E2, which is converted into
FWM on all four transitions with equal amplitude by the circularly polarized E1.

A selection of experimental results shown in figures 10 and 12 shows qualitative agreement
with the predictions. For a quantitative comparison, we use previously retrieved α = 1.03 and
β = 0.87 taken from the measured excitation spectrum (see the green line in figure 10(a)).
Small deviations from the third-order response are observed. Specifically, in figure 10(b) we
observe that for (−, |,−) the amplitude of XB is about 1.3 times larger for τ = +0.5 ps than for
τ = −0.5 ps, while it is predicted to be equal. Additionally, a weak FWM is observed on GX
for τ = +0.5 ps. The latter is absent in the FWM in the third-order response. Such a signal
is, however, allowed by taking into account fifth-order contributions. The FWM analytical
modeling of the 4LS, which is described in the appendix, includes all orders. The outcome
is presented by red traces in figures 10 and 12, using for all eight spectra one common absolute
scaling as the only adjustable parameter. Quantitative agreement between the simulations and
the experimental results is achieved.

3.3. Four-wave mixing imaging and two-dimensional four-wave mixing

To characterize the spatial distribution and the statistical properties of the investigated QDs,
we use FWM hyperspectral imaging [22, 34], measuring the FWM power |R̃−1,2

−−−
(ω, τ ; r)|2 as a

function of the spatial position r = (x, y). Results on the high-density sample at τ = 0 are shown
in figures 13(a)–(c). Individual excitons are identified by their localized response in spatial and
spectral domains. In the χ (3) regime, the imaging has a spatial resolution of about 300 nm.
At higher excitation power beyond the third-order response, the spatial resolution gradually
deteriorates [34]. A movie of the hyperspectral imaging over the range x = (−2.1, 2.1) µm,
y = (−2.1, 2.1) µm and ω = (1607.46, 1624.04)meV is given in the supplementary data
(available from stacks.iop.org/NJP/15/055006/mmedia).
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Figure 13. (a)–(c) FWM hyperspectral imaging |R̃−1,2(ω, 0; r)|2 on the high-
density sample atω as labeled. Data are post-selected for t > 0.5 ps to remove the
instantaneous non-resonant FWM of bulk GaAs around t = 0. Linear color scale
from black (zero) to white using the color map shown in (a). (d) FWM power
〈|R̃−1,2(ω, τ ; r)|2〉r spatially averaged over the ∼10µm2 area shown in (a)–(c).
Orange, dashed line: not post-selected; black line: post-selected t > +0.5 ps.

The FWM power, spatially averaged over a 10µm2 area, 〈|R̃−1,2
−−−

(ω, τ ; r)|2〉r, is shown
in figure 13(d). Some 70 individual FWM resonances are detected within the energy range of
15 meV. For τ = 0 we observe a spectrally broad background (see the orange, dashed line)
attributed to FWM from the GaAs substrate and cap layer, which is excited 100 meV above
its band gap. This signal decays on a 100 fs timescale [48] via LO-phonon and carrier–carrier
scattering of the underlying interband electron–hole excitations. This quasi-instantaneous signal
is removed from the measured FWM by time-filtering the FWM, retaining only the signal for
t > 0.5 ps (black line in figure 13(d)). Such a posteriori time or spectral filtering is enabled
by the retrieval of the FWM field in amplitude and phase and provides a powerful tool to
discriminate between different components of the signal [17].

The observed spatial and spectral vicinity of QDs indicates that coherent coupling might
occur between individual X. To measure coherent coupling, we perform 2DFWM spectroscopy
that efficiently retrieves such mutual couplings [16, 19, 22, 23]. The resulting |Ř−1,2

−−−
(ω, ω1; r)|2

at r = (0, 0), as marked by the white crosses in figures 13(a)–(c), is shown in figure 14. We
observe peaks from exciton transitions GX1..9. They are aligned along the diagonal ω = ω1

(orange dashed line and magenta dashed line). The multiple diagonals are due to the discrete
Fourier transform along the equidistant delay step of1τ = 0.5 ps, resulting in a determination of
ω1 only up to integer multiples 2π/1τ ' 8.27 meV. A second set of red-shifted peaks (dotted,
orange line) is observed for each exciton at ω = ω1 − δB, which are biexciton transitions XB1..4

with a binding energy of δB ' 5.5 meV.
Coherent coupling between excitons creates off-diagonal signals connecting the

corresponding diagonal exciton signals. No such features are observed in figure 14, despite
the fact that all observed excitons are located within the excitation focus of 0.5µm diameter.
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Figure 14. 2DFWM |Ř−1,2
−−−

(ω, ω1; r)|2 derived from a delay scan τ = 0.5–40 ps
with 0.5 ps steps, taken at r = (0, 0) of figure 13. Logarithmic color scale over
four orders of magnitude as indicated. Orange dashed (dotted) lines indicate
diagonals for GX (XB) transitions (see text). The magenta dashed diagonal is
a replica of the GX diagonal shifted by about 8.27 meV. The corresponding
ω1 frequency jump is indicated by the arrow labeled ‘folding’. The orange
(magenta) ω1-axis corresponds to orange (magenta) diagonals. The black crosses
in the inset indicate the spatial positions of the excitons, as labeled. The
approximate extension of the excitation intensity, modeled as a 2D Gaussian
with a width of 0.5µm (FWHM), is indicated by the yellow region.

To determine spatial positions of the GX transitions we fitted the data cube |R̃−1,2(ω, 0; r)|2

shown in figure 13 with a Lorentzian in the spectral domain and a 2D Gaussian in real space,
yielding a position with an accuracy of about 50 nm, an order of magnitude better than the
spatial resolution. The positions are shown in the inset of figure 14, and show distances in
the 200 nm range. The lack of coherent coupling over such distances is consistent with the
predicted strength of the radiative coupling between QDs [49] in the µeV range. We conclude
that the coherent response of these excitons is uncoupled. Absence of coupling among these
strongly confined excitons is in contrast to the results on weakly confined QDs [22], where
coherent coupling over distances up to a micrometer was observed. We note that the strength
and range of the radiative coupling between QDs is predicted to be enhanced by up to two
orders of magnitude in photonic crystal structures [50]. Coherent coupling of different excitonic
states within a single QD instead is strong, as shown by the biexciton renormalization, and the
coupling of fine-structure split states shown in section 3.2.3.

4. Conclusions

Improving the sensitivity of the heterodyne spectral interferometry technique and its dual-
polarization extension enabled a comprehensive investigation of the vectorial, coherent,
nonlinear response in an exciton–biexciton model system in individual GaAs/AlGaAs strongly
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confined QDs. Using FWM measurements we have determined the exciton coherence
time and assessed underlying homogeneous and inhomogeneous dephasing mechanisms.
We have studied the coherent dynamics of the exciton–biexciton 4LS and identified fifth-
order contributions to the FWM coherent dynamics and vectorial response. We have
shown, both experimentally and theoretically, different FWM creation pathways, and their
polarization selection rules. The results are promising for the application of heterodyne spectral
interferometry to a large range of QD systems, like site-controlled QDs [51–54] or QD
molecules [55, 56] and—in a broader context—other individual optical transitions in solid state.
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Appendix. The model

In this appendix we derive the vectorial FWM response and polarization selection rules, as
experimentally studied in section 3.2.4. We consider an individual 4LS, as depicted in the inset
of figure 3, formed by a ground state G, a pair of fine-structure split exciton states X, Y and a
biexciton state B. The state labels are chosen to represent the polarization of the states and their
transitions, i.e. in order to excite the exciton X from the ground state G (the transition GX) an
x-polarized light field is needed. The model is written directly in this linearly polarized basis
I= {|G〉, |X〉, |Y 〉, |B〉} so that the polarization selection rules are explicitly worked out from
the beginning. The starting point is the model Hamiltonian

H =

∑
νεI

h̄ων|ν〉〈ν| −
∑
ν,ν′εI

h̄Mν,ν′(t)|ν〉〈ν ′
|, (A.1)

where h̄ων is the energy of the state ν and the Rabi matrix h̄Mν,ν′ describes the dipole coupling
between the exciting fields and the different optical transitions, given by

M(t)=


0 �∗

GX �∗

GY 0

�GX 0 0 �∗

XB

�GY 0 0 �∗

YB

0 �XB �YB 0

 (A.2)

with exciton and biexciton Rabi frequencies (i = GX,GY,XB,YB)

�i(t)= µiEωi (t)=

∑
j

µiE( j)
ωi
δ(t − t j). (A.3)

The j th pulse arrives at the sample at times t j and has its i-polarized component described
by a complex envelope E( j)

ωi
= (E ( j)

i /2) eiφj . To model degenerate FWM we use j = 1, 2.
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Following [44] we model the time dependence of the laser field amplitude by a δ function. This
approximation holds in the limit of pulses with the same temporal shape for both polarization
components of the j th pulse and shorter than the characteristic electron–phonon coupling time.
However, figures 3(b) and 10(a) show that the spectral width of the pulses is finite, driving
biexciton and exciton transitions differently. In order to take this into account we introduce the
ratio β between the excitation field amplitudes at biexcitonic and excitonic transitions. Using
this notation we have E( j)

ωXB
= βE( j)

ωGX
= β(E j/2)eiφj , the label i has been dropped for brevity and

j has been lowered to lighten the notation.
This analytical model considers a single repetition of the experiment, assigning a relative

phase relation between the two exciting pulses with two phases φ j . In practice, this phase
relation between the pulses is set by optical heterodyning. The experimental implementation
(see section 2) employs pulse trains, with a repetition rate τ−1

r , which are phase shifted by
φ j =� jτr by acousto-optic modulators operating at � j . We define the arrival time of the first
pulse as t = −τ and that of the second pulse as t = 0, as illustrated in figure 5(a). We denote a
delay as positive (negative) when the pulse with φ1 arrives first (second), but always use τ > 0
in the following notation.

We use the homogeneous broadenings γGX, γGY, γXB, γYB of the transitions given by
the imaginary part of the corresponding resonance frequency. Even though inhomogeneous
broadenings and phonon-induced dephasing are observed in the experiment, here they are
disregarded for simplicity.

In order to model circular and linear polarizations for the exciting fields and to compare
quantitatively the spectra, we express the electric fields in circular polarization and take the
circular–linear transformation explicitly. Being contravariant components, the change of basis

| − 〉 =
|	〉 + |�〉

√
2

, | | 〉 = −i
|	〉 − |�〉

√
2

(A.4)

gives the following relations for the field components:

E− =
E	 + E�

√
2

, E | = i
E	− E�

√
2

. (A.5)

With this choice, x-polarized light (−) will be modeled with E j 	 = E j � = E j/
√

2 and
φ j 	 = φ j � = φ j , where for brevity we dropped the x label in E and we lowered the j related to
the time ordering of the pulse. The y-polarization (|) corresponds to E j/

√
2 = E j 	 = E j 	 and

φ j = φ j 	 = φ j � +π (dropping the corresponding y label). In general, the optical polarization
is a sum over contributions from all transitions between states with electron–hole pair numbers
differing by one [57]. For instance, the k-component of the electronic polarization reads

〈P (3)
(i, j,k)〉(φ1, φ2, t, τ )=

∑
ν,ν′>ν

µ∗

k ρν,ν′(t, τ ), (A.6)

where the density matrix elements are defined over all four states of the 4LS

ρν,ν′ = 〈|ν〉〈ν ′
|〉 (A.7)

and the sum is understood for those ν ′ to ν transitions parallel to the k-direction (i.e. if k = x ,
then the sum will be over GX and XB). In the present context the two-time FWM response can
be extracted from the quantum mechanical electronic polarization as

R−1,2
(i, j,k)(t, τ )

≷
=

∫
dφ1 dφ2〈P (3)

(i, j,k)〉(φ1, φ2, t, τ )ei(2φ2−φ1), (A.8)
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where ≷ stands for positive and negative delay, respectively. Its Fourier transformation with
respect to the real time t yields the calculated spectra shown in figures 10 and 12 as

R−1,2
(i, j,k)(ω, τ)

≷
=

1
√

2π

∫
dt R−1,2

(i, j,k)(t, τ )
≷ eiωt . (A.9)

This model admits rather compact analytical solutions at all orders in the exciting
electric fields, giving an access to specific microscopic parameters (homogeneous T2 and
inhomogeneous T ∗

2 broadening of the transitions, and—to some extent—electric dipole
moments) by a fitting procedure. The inclusion of higher-order nonlinear terms (specifically
the fifth order) was necessary to attain quantitative agreement with experimental results. For
instance, in (−, |,−) and τ > 0 configuration shown in figure 10(b) (top), a weak yet non-
negligible FWM signal on GX transition is explained by a fifth-order contribution and is not
predicted in the third-order regime. We note that having found good parameters for the best
fit in figure 10(a) (and of figure 4(d) for the analysis of GX dephasing), without any further
adjustment (with only one common absolute scaling) our simulations and data superposed in all
other spectra in figures 10 and 12.

In particular, the density matrix ρ̂ν,ν′ = |ν〉〈ν ′
| in equation (A.7) evolves according to the

equation ih̄∂t ρ̂ = [H, ρ̂]. We follow the step indicated in [44] in the form used in [22], by
assuming delta-like pulses and a simple Lorentzian dephasing model, the time evolution of the
density matrix and the FWM response can be calculated analytically. Explicitly, the free time
evolution between two successive pulses is given by

ρν,ν′(t)= ρν,ν′(t0) ei3ν,ν′ (t−t0), (A.10)

where 3ν,ν′ = ων −ων′ + iγν,ν′ and γν,ν′ are phenomenological damping rates, matrix
elements of 

0 γGX γGY 0

γGX 2γGX 0 γXB

γGY 0 2γGY γYB

0 γXB γYB γXB + γYB

 . (A.11)

The arrival of the j th pulse changes the density matrix to

ρν,ν′(t+
j )=

[
e−iM jρ(t−

j ) eiM j
]
ν,ν′
, (A.12)

inside the brackets the matrix product is assumed and

M j = lim
ε→0

∫ t j +ε

t j −ε

M(t) dt. (A.13)

In general, the FWM response is extracted as shown in equation (A.8); in the light of the
exact analytic solution the terms in the density matrix evolution contributing to the FWM signal
are those proportional to exp{i(2φ2 −φ1)}.

In the following, we summarize the most relevant results, including third-order limits
in the excited fields E1 and E2 given in table 1. We first derive the two-time solutions in
(−,−,−) polarization. We then present the solutions for spectrally resolved FWM signals at
specific delays shown in figures 10 and 12. For simplicity we take µGX = µGY = µ and µXB =

µYB = µB , and define M =
√
µ2 +β2µ2

B, ωXB = ωB −ωX, ωYB = ωB −ωY, ωGX = ωX −ωG and
ωGY = ωY −ωG.
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The real time and delay FWM response for positive delays and upon (−,−,−) polarization
configuration reads

R−1,2
− −−

(t, τ )> = θ(t)
{

e−i(ωGX−iγGX)t
(
−ei(ωGX+iγGX)τCX

GX + ei(ωXB+iγXB)τCX
XB

)
+e−i(ωXB−iγXB)t

(
ei(ωGX+iγGX)τCB

GX − ei(ωXB+iγXB)τCB
XB

) }
(A.14)

with

CX
GX = i

µ4

M5
sin

(
1

2
E1 M

) (
µ2 cos

(
1

2
E1 M

)
+β2µ2

B

)
sin

(
1

2
E2 M

)2

,

CX
XB = i

8µ4µ2
B

M5
β2 cos

(
1

4
E1 M

)
sin

(
1

4
E1 M

)3

cos

(
1

2
E2 M

)
sin

(
1

4
E2 M

)2

,

CB
GX = i

2µ2µ2
B

M5
β sin

(
1

2
E1 M

) (
µ2 cos

(
1

2
E1 M

)
+β2µ2

B

)
cos

(
1

2
E2 M

)
sin

(
1

4
E2 M

)2

,

CB
XB = i

4µ2µ4
B

M5
β3 cos

(
1

4
E1 M

)
sin

(
1

4
E1 M

)3

sin

(
1

2
E2 M

)2

. (A.15)

The pulse E1 arrives first at t = −τ and in the lowest order drives the GX coherence; this is
the sin( 1

2 E1 M) term in CX
GX and CB

GX. Between the two pulses (−τ, 0−) the system undergoes a
free evolution giving the exponentials in τ at the transition that E1 drove, at its corresponding
order. In the degenerate FWM configuration employed here, the pulse E2 arriving at t = 0
triggers a two-fold action: it creates a density grating (DG) in the GX transition and drives the
FWM response at both resonances. The terms proportional to exp(−iωGXt) and exp(−iωXBt)
correspond to the FWM on GX and XB, respectively. This solution is shown by Feynman
diagrams in figure 11(a).

For negative delay, see diagrams in figure 11(c), one can readily identify the TPC that E2

creates, the sin( 1
4 E2 M)2 term, with the lowest order of two in E2, and notice how E1, arriving

second, converts this coherence into a FWM on GX and XB, which has up to the factor β equal
amplitude in lowest order:

R−1,2
− −−

(t, τ )< = θ(t) e−iωBτ2 iβ
µ2µ2

B

M7
sin

(
1

2
E1 M

) (
µ2 cos

(
1

2
E2 M

)
+β2µ2

B

)

× sin

(
1

4
E2 M

)2 [
−β e−i(ωGX−iγGX)t

(
µ2 cos

(
1

2
E1 M

)
+β2µ2

B

)

+ e−i(ωXB−iγXB)t

(
µ2 +β2 cos

(
1

2
E1 M

)
µ2

B

)]
. (A.16)
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Once Fourier transformed with respect to the real time, we obtain the spectrally resolved FWM
for positive delay

R−1,2
− −−

(ω, τ)> =
2

M5
√

2π
µ2 sin

(
1

2
E1 M

)
sin

(
1

4
E2 M

)2
{

+
2µ2

ω−ωGX + iγGX

×

[
ei(ωGX+iγGX)τ D1 cos

(
1

4
E2 M

)2

− ei(ωXB+iγXB)τ D2 cos

(
1

2
E2 M

)]

−
βµ2

B

ω−ωXB + iγXB

[
ei(ωGX+iγGX)τ D1 cos

(
1

2
E2 M

)
− ei(ωXB+iγXB)τ4D2 cos

(
1

4
E2 M

)2
]}

(A.17)

with D1 = µ2 cos
(

1
2 E1 M

)
+β2µ2

B, D2 = µ2
Bβ

2 sin
(

1
4 E1 M

)2
. (A.18)

The dipole moment ratio α can be retrieved from the ratio between the FWM amplitudes
of the exciton and biexciton in third order in E1 and E2, for which equation (A.17) reads

R−1,2
− −−

(ω, τ)(3)> =
ei(ωGX+iγGX)τ

√
2π

µ2

16
E1 E2

2

{
2µ2

ω−ωGX + iγGX
−

βµ2
B

ω−ωXB + iγXB

}
. (A.19)

We note that the normalization factor in table 1 reads 1
√

2π

µ2µ2
B

16 E1 E2
2 . Assuming an equal

broadening for the two transitions, the ratio of the FWM spectral amplitudes integrated around
exciton and biexciton transitions∫ ∣∣∣ R−1,2

− −−
(ω, τ)

(3)>
GX

∣∣∣ dω3 = AGX,

∫ ∣∣∣ R−1,2
− −−

(ω, τ)
(3)>
XB

∣∣∣ dω = AXB (A.20)

yields

AGX

AXB
=

2µ2

βµ2
B

=
2α2

β
. (A.21)

Conversely, the full solution for spectrally resolved FWM at negative delays reads

R−1,2
− −−

(ω, τ)< = e−iωBτ
2µ2µ2

Bβ

M7
√

2π
sin

(
1

2
E1 M

)
sin

(
1

4
E2 M

)2 (
µ2 cos

(
1

2
E2 M

)
+β2µ2

B

)

×

 β
(
µ2 cos(1

2 E1 M)+β2µ2
B

)
ω−ωGX + iγGX

−

(
µ2 +β2 cos( 1

2 E1 M)µ2
B

)
ω−ωXB + iγXB

 . (A.22)

Next, for positive and negative delays, upon (−, |,−) polarization (as in figure 10(b) and
corresponding Feynman diagrams depicted in figures 11(b) and (d)) we obtain

R−1,2
− |−

(ω, τ)> =
2µ2µ2

Bβ

M5
√

2π
sin

(
1

2
E1 M

)
sin

(
1

4
E2 M

)2

×

 2βµ2 sin( 1
4 E1 M)2 ei(ωXB+iγXB)τ

ω−ωGX + iγGX
+

ei(ωGX+iγGX)τ
(
µ2 cos(1

2 E1 M)+β2µ2
B

)
ω−ωXB + iγXB

 ,
(A.23)
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R−1,2
− |−

(ω, τ)< = e−iωBτ
2µ2µ2

Bβ

M7
√

2π
sin

(
1

2
E1 M

)
sin

(
1

4
E2 M

)2 (
µ2 cos

(
1

2
E2 M

)
+β2µ2

B

)

×

 −
β

(
µ2 cos( 1

2 E1 M)+β2µ2
B

)
ω−ωGX + iγGX

+
µ2 +β2 cos( 1

2 E1 M)µ2
B

ω−ωXB + iγXB

 . (A.24)

The respective non-zero solutions for circularly polarized excitation read

R−1,2
		−

(ω, τ)> = −
µ

8
√
π

ei(ωGX+iγGX)τ + ei(ωGY+iγGY)τ

ω−ωGX + iγGX
sin(E1µ) sin

(
1

2
E2µ

)2

, (A.25)

R−1,2
		 |

(ω, τ)> = i
µ

8
√
π

ei(ωGX+iγGX)τ + ei(ωGY+iγGY)τ

ω−ωGY + iγGY
sin(E1µ) sin

(
1

2
E2µ

)2

. (A.26)

Finally, for circular-linear excitation (as performed in figure 12) we obtain

R−1,2
	− −

(t, τ )> =
µ ei(ωGX+iγGX)τ

2M
√
π

sin(µE1) sin

(
1

4
E2 M

)2

×

 −2µ2 cos( 1
4 E2 M)2

ω−ωGX + iγGX
+
βµ2

B cos( 1
2 E2 M)

ω−ωXB + iγXB

 , (A.27)

R−1,2
	− |

(t, τ )> =
iβ µµ2

B

2M
√
π

ei(ωGY+iγGY)τ
sin(µE1) sin( 1

4 E2 M)2

ω−ωYB + iγYB
, (A.28)

R−1,2
	− −

(ω, τ)< =
e−iωBτ

√
πM4

β µµB sin

(
1

4
E2 M

)2 (
µ2 cos

(
1

2
E2 M

)
+β2µ2

B

)

×

 −µ cos(1
2 E1µ) sin( 1

2 E1βµB)

ω−ωGX + iγGX
+
µB sin( 1

2 E1µ) cos( 1
2 E1βµB)

ω−ωXB + iγXB

 , (A.29)

R−1,2
	− |

(t, τ )< =
e−iωBτ

√
πM4

β µµB sin

(
1

4
E2 M

)2 (
µ2 cos

(
1

2
E2 M

)
+β2µ2

B

)

×

 −iµ cos( 1
2 E1µ) sin(1

2 E1βµB)

ω−ωGY + iγGY
+

iµB sin(1
2 E1µ) cos( 1

2 E1βµB)

ω−ωYB + iγYB

 . (A.30)

References

[1] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E and Imamoǧlu A 2000 Science
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