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1 Model equations, notation, and assumptions 1

Abstract

We consider electro-reaction-diffusion systems consisting of continuity equations
for a finite number of species coupled with a Poisson equation. We take into account
heterostructures, anisotropic materials and rather general statistic relations.

We investigate thermodynamic equilibria and prove for solutions to the evolution
system the monotone and exponential decay of the free energy to its equilibrium value.
Here the essential idea is an estimate of the free energy by the dissipation rate which
is proved indirectly.

The same properties are shown for an implicit time discretized version of the
problem. Moreover, we provide a space discretized scheme for the electro-reaction-
diffusion system which is dissipative (the free energy decays monotonously). On a
fixed grid we use for each species different Voronoi boxes which are defined with
respect to the anisotropy matrix occurring in the flux term of this species.

1 Model equations, notation, and assumptions

Let Ω ⊂ R
d be a bounded domain, Γ := ∂Ω. We consider m electrically charged species

Xν with charge numbers qν and initial densities Uν . These species underly drift-diffusion
processes and take part in chemical reactions. We assume that the free energy of the
system is a sum of a chemical and an (electrostatic) interaction part, where the chemical
part is a sum of 1-species free energies. This leads to state equations giving the relation
between the densities uν of the species Xν and the corresponding chemical potentials vν

of type
uν = uνgν(vν − vν), ν = 1, . . . ,m. (1)

The functions uν and vν are known reference densities and reference potentials, respec-
tively. The fact that the reference values may depend on the spatial position expresses
the possible heterogeneity of the system under consideration. The functions gν reflect
the underlying statistics. In the case of Boltzmann statistics each gν is the exponential
function. Our assumptions with respect to gν are such that all cases of practical interest
are included, in particular the Fermi–Dirac statistics. Moreover, in the case where the
chemical part of the free energy is a sum of 1-species free energies the inverse Hessian
matrix is diagonal with its ν-th component uνg

′
ν(vν − vν).

Let v0 denote the electrostatic potential. To describe the fluxes jν of the species Xν we
need the electrochemical potential ζν := vν + qνv0. According to [2, 8, 19], we assume
that the driving force of the flux is the antigradient of the electrochemical potential and
that the flux is proportional the inverse Hessian. In the simplest case with Boltzmann
statistics and no anisotropies of the material jν is proportional to −uν∇ζν. In this paper
we suppose that

jν = −uνg′ν(vν − vν)Sν(·)∇ζν , ν = 1, . . . ,m, (2)

where Sν is a pointwise given d×d matrix function which prescribes the anisotropy of the
material

Sν(x) = QT
ν (x)diag

(
µ1

ν(x), . . . , µd
ν(x)

)
Qν(x). (3)
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The d-dimensional orthogonal matrices Qν and QT
ν have to be introduced since in gen-

eral the crystallographic axes and the orientation of the modeled heterostructure do not
coincide. Then the anisotropic mobility matrix in diagonal form diag(µ1, . . . , µd) can be
applied and QT

ν serves for the back transformation (see e.g. [15, 16, 17]). Moreover the
structure of the flux terms reflects the fact that the inverse Hessian of the part of the
ν-th species in the free energy has to be a factor in the flux term (see [2, 8, 19]). In the
sequel δ denotes an appropriate strictly positive constant, and the subscript + indicates
the standard positive cone in a space. For the anisotropic mobility matrix we suppose
that µk

ν ∈ L∞
+ (Ω), ess infΩµk

ν ≥ δ, k = 1, . . . d, ν = 1, . . . ,m. Especially let us remark
that under these assumptions the matrix Sν a.e. on Ω is symmetric and positive definite,
what is needed in many estimates.

To describe chemical reactions we assume that R ⊂ Z
m
+ × Z

m
+ is a finite subset. A pair

(α, β) ∈ R represents the vectors of stoichiometric coefficients of reversible reactions,
usually written in the following form:

α1X1 + · · · + αmXm ⇋ β1X1 + · · · + βmXm.

We assume that the net rate of this pair of reactions is of the form kαβ(aα − aβ), where
kαβ is a reaction coefficient, aν := exp(ζν) is the electrochemical activity of Xν , and
aα :=

∏m
ν=1 aαν

ν . In this model we replaced the concentrations by activities. This is
necessary for the model to be in accordance with the Second Law of Thermodynamics (cf.
Othmer [18]). The net production rate of species Xν corresponding to the reaction rates
for all reactions taking place is

Rν :=
∑

(α,β)∈R

kαβ(aα − aβ)(βν − αν). (4)

The continuity equation for the concentrations taking into account reaction, diffusion, and
drift processes can be written as follows:

∂uν

∂t
+ ∇ · jν = Rν in R+ × Ω, n · jν = 0 on R+ × Γ,

uν(0) = Uν in Ω, ν = 1, . . . ,m.
(5)

The Poisson equation satisfied by the electrostatic potential has the form

−∇ · (Sε∇v0) = f +
m∑

ν=1

qνuν in R+ × Ω, n · (Sεv0) + τv0 = fΓ on R+ × Γ, (6)

where Sε is the dielectric permittivity matrix

Sε(x) = QT
ε (x)diag(ε1(x), . . . , εd(x))Qε(x) (7)

with a (diagonal) dielectric permittivity matrix diag(ε1(x), . . . , εd(x)) and some orthogonal
matrix Qε. Supposing that εk ∈ L∞

+ (Ω), ess infΩεk ≥ δ, k = 1, . . . , d, the matrix Sε a.e.
on Ω becomes symmetric and positive definite, too. In some cases where a unified notation
gives advantages (see Section 4) we write S0, Q0, µk

0 instead of Sε, Qε, εk.
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Now we collect assumptions which we suppose to be fulfilled in the paper.

(A1) Ω is a bounded Lipschitzian domain in R
2, Γ = ∂Ω;

(A2) gν ∈ C1(R), uν ∈ L∞
+ (Ω), uν ≥ δ, vν ∈ L∞(Ω), ν = 1, . . . ,m,

lim
y→∞

1
ygν(y) = +∞, 0 < δ min{1, gν(y)} ≤ g′ν(y) ≤ δ−1gν(y),

δ min{1, exp(y)} ≤ gν(y) ≤ δ−1 exp(y), ν = 1, . . . ,m, y ∈ R;

(A3) µk
ν ∈ L∞

+ (Ω), ess infΩµk
ν ≥ δ, k = 1, 2, ν = 1, . . . ,m;

(A4) R ⊂ Zm
+ × Zm

+ finite subset, kαβ ∈ L∞
+ (Ω),

∫
Ω kαβ dx > 0 for (α, β) ∈ R;

(A5) Uν ∈ L∞
+ (Ω), qν ∈ Z, ν = 1, . . . ,m;

(A6) εk ∈ L∞
+ (Ω), ess infΩεk ≥ δ, k = 1, 2, τ ∈ L∞

+ (Γ),
∫
Γ τdΓ > 0,

f ∈ L∞(Ω), fΓ ∈ L∞(Γ).

Existence results for special realizations of the electro-reaction-diffusion system (5), (6)
(without anisotropies, ansatzes for the fluxes not related to the inverse Hessian of the free
energy, special statistics, restrictions concerning the reaction terms) in the sense of weak
solutions can be found in [6, 7, 12]. In this paper we are interested in energy estimates for
the continuous and discrete time and space version of (5), (6). Again, for the continuous
problem in special situations we have already obtained results (see [10] and [11] (Boltzmann
statistics only)).

To give a weak formulation of the equations (5), (6) we introduce the following spaces:

V := H1(Ω; Rm+1), W := {v ∈ V : exp(vν) ∈ L∞(Ω), ν = 1, . . . ,m} , (8)

and the stoichiometric subspaces

S := span{α − β : (α, β) ∈ R}, S⊥ := orthogonal complement of S in R
m. (9)

In addition to (A1) – (A6) we assume that we are given U ∈ V ∗ such that

(A7) U =
( m∑

ν=1

qνUν , U1, . . . , Um

)
,

m∑

ν=1

λν〈Uν , 1〉 > 0 if λ = (λ1, . . . , λm) ∈ S⊥
+\{0}.

V ∗ denotes the space dual to V , and 1 means the constant function on Ω taking the value
1. Note that (A7) with respect to U is satisfied if Uν ≥ 0, Uν 6= 0, ν = 1, . . . ,m. The
element U plays the role of an initial value for the vector function u := (u0, . . . , um), where

u0 =
m∑

ν=1

qνuν (10)

is the charge density.
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Next we define operators A : W → V ∗, and E : V → V ∗ as follows:

〈Av, v̂〉 :=

∫

Ω

m∑

ν=1

e′ν(·, vν)Sν∇ζν · ∇ζ̂ν dx

+

∫

Ω

∑

(α,β)∈R

kαβ(aα − aβ)(α − β) · ζ̂ dx, v ∈ W, v̂ ∈ V, (11)

where a := (exp(ζ1), . . . , exp(ζm)), ζν = vν + qνv0, ζ̂ν = v̂ν + qν v̂0, ν = 1, . . . ,m,

〈E0v0, v̂0〉 :=

∫

Ω

(
Sε∇v0 · ∇v̂0 − f v̂0

)
dx +

∫

Γ

(
τv0 − fΓ

)
v̂0 dΓ, v0, v̂0 ∈ H1(Ω), (12)

Ev := (E0v0, e1(·, v1), . . . , em(·, vm)), v ∈ V, (13)

where

eν(x, y) := uν(x)gν(y − vν(x)) for x ∈ Ω, y ∈ R, ν = 1, . . . ,m, (14)

and e′ν(·, y) means the derivative with respect to the second argument. Using (A6) we
obtain that E0 : H1(Ω) → H1(Ω)∗ is strongly monotone, i.e., there exists γ > 0 such that

〈E0v0 − E0w0, v0 − w0〉 ≥ γ‖v0 − w0‖2
H1 for v0, w0 ∈ H1(Ω). (15)

Now we write the transient problem (5), (6) with (1), (2) and (4) more precisely as follows:

u′(t) + Av(t) = 0, u(t) = Ev(t) f.a.a. t ∈ R+, u(0) = U,

u ∈ H1
loc(R+;V ∗), v ∈ L2

loc(R+;V ) ∩ L∞
loc(R+;W ).

(16)

For v ∈ V the value

D(v) :=

∫

Ω

m∑

ν=1

e′ν(·, vν)Sν ∇ζν · ∇ζν dx +

∫

Ω

∑

(α,β)∈R

kαβ(eζ·α − eζ·β)(α − β) · ζdx (17)

is called the dissipation rate associated to v. The reason for this terminology is the
following. If (u, v) is a solution to the initial value problem (16) then

D(v(t)) = 〈Av(t), v(t)〉 = −〈u′(t), v(t)〉,

and in thermodynamics this expression is the dissipation rate of the process governed by
(16) at time t.

To define the free energy of a state of the system under consideration we first introduce a
functional G : V → R as follows:

G(v) :=

∫

Ω

(1

2
Sε∇v0 · ∇v0 − fv0

)
dx +

∫

Γ

(τ

2
v2
0 − fΓv0

)
dΓ

+

∫

Ω

m∑

ν=1

∫ vν

0
eν(·, y) dy dx.

(18)
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The functional G is continuous, strictly convex and Gâteaux differentiable, hence subdif-
ferentiable and ∂G = E. The conjugate of the functional G will be denoted by F ,

F (u) := sup
v∈V

{
〈u, v〉 − G(v)

}
. (19)

F is proper, lower semicontinuous and convex. Moreover, it holds u = Ev = ∂G(v) if and
only if v ∈ ∂F (u). For u ∈ V ∗ the value F (u) is to be interpreted as the free energy of the
state u. We are interested in a relation between the free energy and the dissipation rate.
To describe this relation we need some information about stationary solutions to (16).

2 Thermodynamic equilibria

We define

U :=
{

u ∈ V ∗ : u0 =

m∑

ν=1

qνuν , (〈u1, 1〉, . . . , 〈um, 1〉) ∈ S
}

. (20)

If (u, v) is a solution to (16) then u(t)−U ∈ U for every t > 0. Therefore, if u∗ := lim
t→∞

u(t)

exists, then we have necessarily u∗ ∈ U + U . The set U⊥ := {v ∈ V : 〈u, v〉 = 0 for every
u ∈ U} can be characterized as follows:

U⊥ =
{
v ∈ V : ∇ζ = 0, ζν = vν + qνv0, ζ = (ζ1, . . . , ζm) ∈ S⊥

}
.

We cite some earlier result (cf. [10, Lemma 3.3]). There it is proved without the matrix
function Sε. But due to (A6) an estimate

γ‖v0‖2
H1 ≤

∫

Ω
Sε∇v0 · ∇v0 dx +

∫

Γ
τv2

0 dΓ ≤ γ̃‖v0‖2
H1 , v0 ∈ H1(Ω) (21)

holds, and the techniques can be applied in this case, too.

Lemma 2.1 The functional G0 := G + IU⊥ −U is proper, convex, and lower semicontin-
uous. It satisfies lim

‖v‖V →∞
G0(v) = +∞.

Here IU⊥ denotes the indicator functional of U⊥, vanishing on U⊥ and taking the value
+∞ on V \U⊥.

Theorem 2.1 There exists a unique v∗ ∈ W such that Av∗ = 0 and u∗ := Ev∗ ∈ U + U .
It holds ∇ζ∗ = 0 and ζ∗ ∈ S⊥.

Proof. 1. By Lemma 2.1 there exists a v∗ such that G0(v
∗) is the minimal value of G0.

Then 0 ∈ ∂G0(v
∗). We have

∂G0 = E + ∂IU⊥ − U, ∂IU⊥(v) = U for v ∈ U⊥. (22)

Since v∗ ∈ U⊥ we find 0 = Ev∗ + u − U for some u ∈ U . Therefore,

E0v
∗
0 = U0 − u0 =

m∑

ν=1

qν(Uν − uν) =

m∑

ν=1

qνeν(·, v∗ν) =

m∑

ν=1

qνeν(·, ζ∗ν − qνv
∗
0),
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where ζ∗ν = v∗ν + qνv
∗
0 . Using Grögers boundedness result [13], (A2) and (A6) we find that

v∗0 ∈ L∞(Ω). This implies that v∗ν = ζ∗ν − qνv
∗
0 ∈ L∞(Ω), ν = 1, . . . ,m.

2. Because of ∇ζ∗ = 0 and ζ∗ ∈ S⊥ we obtain, for every v ∈ V ,

〈Av∗, v〉 =

∫

Ω

m∑

ν=1

e′ν(·, v∗ν)Sν∇ζ∗ν · ∇ζν dx

+
∑

(α,β)∈R

∫

Ω
kαβ

(
eζ∗·α − eζ∗·β

)
(α − β) · ζ dx = 0,

which means Av∗ = 0.

3. Let Av = 0 and Ev ∈ U + U for some v ∈ V . Then

0 = 〈Av, v〉 =

∫

Ω

m∑

ν=1

e′ν(·, vν)Sν ∇ζν · ∇ζν dx +
∑

(α,β)∈R

∫

Ω
kαβ

(
eζ·α − eζ·β

)
(α − β) · ζ dx.

In view of (A2), (A3) and (A4) we obtain ∇ζ = 0 and kαβ

(
eζ·α − eζ·β

)
(α− β) · ζ = 0, for

(α, β) ∈ R. Therefore it follows ζ ∈ S⊥. Since Ev − Ev∗ ∈ U and v − v∗ ∈ U⊥ we have

〈Ev − Ev∗, v − v∗〉 = 0. (23)

According to the definition of E this gives

0 =

∫

Ω
Sε∇(v0 − v∗0) · ∇(v0 − v∗0) dx +

∫

Γ
τ(v0 − v∗0)

2 dΓ

+

∫

Ω

m∑

ν=1

uν(gν(vν − vν) − gν(v∗ν − vν))(vν − v∗ν) dx.

(A2), (A6) then lead to vν = v∗ν , ν = 0, . . . ,m, which completes the proof. �

As in the proof of [10, Lemma 3.4]) we can show the following assertion: If v∗ is the
minimal point of G0 then u∗ := Ev∗ is the unique minimal point of F |U + U .

3 Exponential decay of the free energy

First we prove an estimate of the free energy by the dissipation rate. Let

M := {u ∈ U + U : It exists a ∈ ∂R
m
+ such that aα = aβ for (α, β) ∈ R

and uν = eν(·, log aν − qνE
−1
0 u0) if aν > 0, uν = 0 else, ν = 1, . . . ,m}

(24)

and
RM := inf

u∈M
F (u) (RM = +∞ if M = ∅). (25)

Remark 3.1 Obviously, M = ∅ if there is no a ∈ ∂R
m
+ such that aα = aβ for all (α, β) ∈

R. But even if there exists such a ∈ ∂R
m
+ it may happen that there is no u in U + U such

that uν = 0 ⇐⇒ aν = 0. In this case the set M is empty as well.



3 Exponential decay of the free energy 7

Following the proofs of ([10, Lemma 3.5, Lemma 3.7]) and taking into account (21) we
obtain the following estimates for the free energy functional.

Lemma 3.1 Let u = Ev ∈ U + U and let (u∗, v∗) be the thermodynamic equilibrium
according to Theorem 2.1. Then there are constants c > 0 such that

1

c

(
‖v0 − v∗0‖2

H1 +

m∑

ν=1

‖
√

uν −
√

u∗
ν‖2

L2

)
≤ F (u) − F (u∗)

≤ c
(
‖v0 − v∗0‖2

H1 +

m∑

ν=1

‖uν − u∗
ν‖2

L2

)
,

∫

Ω

k∑

ν=1

uν log uν dx ≤ c (F (u) + 1).

Theorem 3.1 Let (A1) – (A7) be fulfilled. Moreover, let R < RM be fixed, and let (u∗, v∗)
be the thermodynamic equilibrium according to Theorem 2.1. Then there exists a constant
cR > 0 such that

F (u) − F (u∗) ≤ cRD(v) (26)

provided that v ∈ V, u = Ev ∈ U + U , and F (Ev) ≤ R.

Proof. 1. Let v ∈ V and a = (exp(ζ1), . . . , exp(ζm)). Then

D(v) =

∫

Ω

m∑

ν=1

e′ν(·, vν)Sν∇ζν · ∇ζν dx +

∫

Ω

∑

(α,β)∈R

kαβ(aα − aβ)(α − β) · ζ dx

≥
∫

Ω
δ

m∑

ν=1

e′ν(·, vν)|∇ζν |2dx +

∫

Ω

∑

(α,β)∈R

kαβ

(
aα/2 − aβ/2

)2
dx =: D1(v).

Here we used the estimate (x− y) log x
y ≥ |√x−√

y|2 for x, y > 0. Therefore it suffices to
prove the inequality

F (u) − F (u∗) ≤ CD1(v). (27)

2. If (27) would be false, then we find un ∈ U + U , vn ∈ V, n ∈ N, such that

un = Evn, F (un) ≤ R, F (un) − F (u∗) = CnD1(vn) > 0, (28)

and lim
n→∞

Cn = +∞. Let ζn denote the vector of the corresponding electrochemical poten-

tials. Lemma 3.1 and the boundedness results of [13] show that

‖vn0‖H1 + ‖vn0‖L∞ +

m∑

ν=1

‖unν‖L1 ≤ c1. (29)

3. Let kν = |qν |c1 + ‖vν‖L∞ + kν , ν = 1, . . . ,m, where kν > 0 is such that gν(kν) ≥ 1.
Then, for ζnν > kν we have vnν − vν > kν − qνvn0 − vν > kν − |qν |c1 −‖vν‖L∞ = kν which
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means gν(vnν − vν) > 1 if (ζnν − kν)
+ > 0 and we can estimate

‖∇(ζnν − kν)+‖2
L2 ≤

∫

Ω
min{1, gν(vnν − vν)}|∇(ζnν − kν)|2dx

≤ 1

δ

∫

Ω
g′ν(vnν − vν)|∇(ζnν − kν)|2dx (30)

≤ 1

δ

∫

Ω
g′ν(vnν − vν)|∇ζnν |2dx ≤ cD1(vn)

≤ c

Cn
(R − F (u∗)) → 0 as n → ∞.

For ζnν ≥ kν we have unν
uν

≥ k̃ν with some k̃ν , 0 < k̃ν < 1. Since gnu is strongly monotone
on [−a,∞) its inverse is Lipschitzian on [a,∞), a > 0 and we find for ζnν > kν

|(ζnν − kν)+| ≤ |ζnν | ≤
∣∣∣∣g

−1
ν

(unν

uν

)
+ vν + qνvn0

∣∣∣∣ ≤
∣∣∣∣g

−1
ν

(unν

uν

)
− g−1

ν (1)

∣∣∣∣ + c ≤ c(1 + unν).

Also for ζnν ≤ kν we obtain |(ζnν − kν)
+| ≤ c(1 + unν). Hence ‖(ζnν − kν)

+‖L1 ≤ c and
‖(ζnν −kν)+‖H1 ≤ c (cf. (29) and (30)). Setting anν := exp(ζnν) we obtain by Trudinger’s
imbedding theorem

‖anν‖Lp = ‖eζnν‖Lp ≤ ‖ekνe(ζnν−kν)+‖Lp ≤ cp, ν = 1, . . . ,m, p ∈ [1,∞).

Using (A2) and (29) we find

anν√
g′ν(vnν − vν)

≤ 1√
δ
eζnν

(
1 +

1√
gν(vnν − vν)

)
≤ c

(
eζnν +

√
eζnν

)
≤ c(anν + 1).

Thus, for
1

r
=

1

2
+

1

p
,

‖∇anν‖Lr = ‖anν∇ζnν‖Lr ≤ ‖ anν√
g′ν(vnν − vν)

‖Lp‖
√

g′ν(vnν − vν)∇ζnν‖L2

≤ c‖anν + 1‖Lp D1(vn)1/2.

(31)

The right hand side of (31) converges to 0 as n → ∞ (cf. (30)). Passing to a subsequence
if necessary we may assume that

an → a in W 1,r(Ω; Rm), r ∈ [1, 2), vn0 ⇀ v0 in H1(Ω)

where ∇a = 0. In addition we may assume that the sequence (an) converges pointwise
almost everywhere to a. We check that

(aα/2
n − aβ/2

n )2 → (aα/2 − aβ/2)2 in W 1,r(Ω), if r < 2.

Therefore, ∫

Ω
kαβ(aα/2

n − aβ/2
n )2dx → (aα/2 − aβ/2)2

∫

Ω
kαβ dx.
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Since, for (α, β) ∈ R,

0 ≤
∫

Ω
kαβ(aα/2

n − aβ/2
n )2dx ≤ D1(vn) ≤ 1

Cn
(R − F (u∗)) → 0,

we have necessarily
aα = aβ ∀(α, β) ∈ R. (32)

4. Due to 0 < g′ν(θ) ≤ δ−1gν(θ) ≤ δ−2eθ we can estimate by the generalized mean value
theorem

|gν(x) − gν(y)|
|ex − ey| ≤ sup

θ∈[x,y]

g′ν(θ)

eθ
≤ c. (33)

We introduce

uν := eν(·, log(aν) − qνv0) if aν 6= 0, uν := 0 if aν = 0. (34)

If uν 6= 0 then by (33)

|unν − uν | ≤ c|gν(log(anν) − qνvn0 − vν) − gν(log(aν) − qνv0 − vν)|
≤ c| exp(log(anν) − qνvn0 − vν) − exp(log(aν) − qνv0 − vν)| (35)

≤ c(|anν − aν | + (anν + 1)|vn0 − v0|).

Such an estimate for |unν − uν | is true also if uν = 0. Since the right hand side of (35)
converges to 0 in Lp(Ω) for every finite p as n tends to ∞, we have

unν → uν in Lp(Ω), p ∈ [1,∞).

5. We set u0 :=
∑m

ν=1 qνuν and u := (u0, u1, . . . , um). Because of un − U ∈ U and
E0vn0 = un0 we obtain by passing to the limit u − U ∈ U and E0v0 = u0. The oper-
ator E−1

0 : H1(Ω)∗ → H1(Ω) is Lipschitzian because of being the inverse of a strongly
monotone operator. Therefore, vn0 = E−1

0 un0 → v0 in H1(Ω). Moreover, due to the lower
semicontinuity of F on V ∗,

F (u) ≤ lim inf
n→∞

F (un) ≤ R < RM.

Thus, u /∈ M (see (24), (25)). This is possible only if aν > 0, ν = 1, . . . ,m. Defin-
ing ζν := log(aν), vν := ζν − qνv0, ν = 1, . . . ,m, we get v := (v0, v1, . . . , vm) ∈ V ,
u = Ev ∈ U + U , and Av = 0. By Theorem 2.1 we conclude that v = v∗ and u = u∗.

6. Due to the convergence properties of the sequences (vn0) and (un) we have (see
Lemma 3.1)

λn :=
√

F (un) − F (u∗) → 0 as n → ∞. (36)

Additionally (according to (28)) we find

1

Cn
=

1

λ2
n

D1(vn) =

∫

Ω

(
δ

m∑

ν=1

e′ν(·, vnν)

∣∣∣∣
∇ζnν

λn

∣∣∣∣
2

+
∑

(α,β)∈R

kαβ

λ2
n

(
aα/2

n − aβ/2
n

)2 )
dx. (37)

We introduce the quantities

ṽn0 :=
1

λn
(vn0 − v0), ũn :=

1

λn
(un − u), bnν :=

1

λn

(√
anν

aν
− 1

)
, ν = 1, . . . ,m.
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Lemma 3.1 ensures that ‖ṽn0‖H1 ≤ c. Because of (34), unν = eν(·, log(anν) − qνvn0),
eν(·, y) ≤ c ey, ‖anν‖W 1,r ≤ c and ‖vn0‖H1 ≤ c we estimate

‖ũnν‖L3/2 = ‖ 1

λn
(
√

unν −√
uν)(

√
unν +

√
uν)‖L3/2

≤ ‖ 1

λn
(
√

unν −√
uν)‖L2‖(√unν +

√
uν)‖L6 ≤ c.

We have

|anν − aν | =

∣∣∣∣exp

(
g−1
ν

(
unν

uν

)
+ vν + qνvn0

)
− exp

(
g−1
ν

(
uν

uν

)
+ vν + qνv0

)∣∣∣∣

≤ c(anν + 1)
|unν − uν |

uν
+ c|vn0 − v0|.

Therefore,
‖bnν‖L1 ≤ c‖anν + 1‖L3‖ũnν‖L3/2 + c‖ṽn0‖H1 .

Using

∇bnν =
1

2λn

√
anν

aν
∇ζnν =

1

2λn

√
anν

aνg′ν(vnν − vν)

√
g′ν(vnν − vν)∇ζnν

and
anν

g′ν(vnν − vν)
≤ 1

δ
eζnν

(
1 +

1

gν(vnν − vν)

)
≤ ceζnν

(
1 +

1

eζnν

)
≤ c(anν + 1)

we find

‖∇bnν‖Lr ≤ c‖anν + 1‖Lp

∥∥∥∥∥

√
g′ν(vnν − vν)∇ζnν

λn

∥∥∥∥∥
L2

≤ c

Cn

provided that
1

r
=

1

2
+

1

p
. By means of (35) we obtain

|ũnν | ≤ c

∣∣∣∣
anν − aν

λn

∣∣∣∣ + c(anν + 1)|ṽn0| ≤ c(
√

anν +
√

aν)|bnν | + c(anν + 1)|ṽn0|. (38)

In summary, the preceding estimates show that, passing to a subsequence if necessary, we
may assume that

bnν → bν in W 1,r(Ω), r < 2,

ṽn0 ⇀ ṽ0 in H1(Ω), ũn ⇀ ũ in Lp(Ω, Rm+1), p ∈ [1,∞),

and that the sequences (bnν), (ṽn0) converge pointwise almost everywhere in Ω.

7. In view of un−U ∈ U we have
1

λn
(un−u) ∈ U . Passing to the limit we find that ũ ∈ U .

In particular, (∫

Ω
ũ1 dx, . . . ,

∫

Ω
ũm dx

)
∈ S. (39)

By the definition of bnν we have, for (α, β) ∈ R,

a−α
(
aα/2

n − aβ/2
n

)2
=

( m∏

ν=1

(λnbnν + 1)αν −
m∏

ν=1

(λnbnν + 1)βν

)2

=
(
λn

m∑

ν=1

bnν(αν − βν)
)2

+ Qn,

(40)
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where

|Qn| ≤ cλ3
n(|bn| + 1)p0 , 0 ≤ p0 ≤ 2 max

(α,β)∈R
max

{ m∑

ν=1

αν ,

m∑

ν=1

βν

}
.

Taking into account that λn → 0 as n → ∞, we obtain

1

λ2
n

‖Qn‖L1 ≤ cλn

∫

Ω
(|bn| + 1)p0 dx → 0 as n → ∞.

This result together with (37) and (40) gives

lim
n→∞

∫

Ω
kαβ

( m∑

ν=1

bnν(αν − βν)
)2

dx = 0 ∀(α, β) ∈ R.

Hence
b := (b1, . . . , bm) ∈ S⊥. (41)

8. Letting n → ∞ in

ũnν =
uν

λn

(
gν(log(anν) − qνvn0 − vν) − gν(log(aν) − qνv0 − vν)

)

we find

ũν = uνg′ν(log(aν) − qνv0 − vν)(2bν − qν ṽ0) = uνg
′
ν(vν − vν)(2bν − qν ṽ0). (42)

The equations satisfied by vn0 and v0, respectively, imply that, for some γ > 0,

γ‖vn0 − v0‖2
H1 ≤ 〈E0vn0 − E0v0, vn0 − v0〉 =

m∑

ν=1

∫

Ω
qν(unν − uν)(vn0 − v0) dx. (43)

Dividing by λ2
n and passing to the limit as n → ∞, we obtain,

γ‖ṽ0‖2
H1 ≤

m∑

ν=1

∫

Ω
qν ũν ṽ0 dx.

Using (39), (41), and (42) we derive from this inequality that

γ‖ṽ0‖2
H1 ≤

m∑

ν=1

∫

Ω
ũν(qν ṽ0 − 2bν) dx = −

m∑

ν=1

∫

Ω
uνg

′
ν(vν − vν)(qν ṽ0 − 2bν)2dx ≤ 0.

Thus it follows ṽ0 = 0, b = 0, and ũ = 0.

9. Dividing (43) by λ2
n we find that ṽn0 → ṽ0 = 0 in H1(Ω). By (38)

|ũnν | ≤ c(
√

anν + 1)|bnν | + c(anν + 1)|ṽn0|.
Hence ũn → 0 in Lp(Ω, Rm+1), p ∈ [1,∞). By the definition of λn (see (36)) and
Lemma 3.1

1 =
1

λ2
n

(F (un) − F (u∗)) ≤ c
(
‖ṽn0‖2

H1 +
m∑

ν=1

‖ũnν‖2
L2

)
.

Because of the preceding results the right hand side converges to 0 as n → ∞. This
contradiction shows that the assumption made in the beginning of the second step of the
proof was wrong, i.e., (27) holds, and the proof is complete. �

Now we are able to prove the exponential decay of the free energy to its equilibrium value.
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Theorem 3.2 Let (A1) – (A7) be fulfilled, let (u, v) be a solution to the initial value
problem (16), and let (u∗, v∗) be the thermodynamic equilibrium. We suppose that F (U) <
RM. Then there exists λ > 0 such that

F (u(t)) − F (u∗) ≤ e−λt(F (U) − F (u∗)) ∀ t ≥ 0.

Proof. If (u, v) is a solution to (16), then v(t) ∈ ∂F (u(t)) for a.e. t ∈ R+, and according
to [1, Lemma 3.3] we obtain for λ ∈ R

eλ t(F (u(t)) − F (u∗)) − (F (U) − F (u∗))

=

∫ t

0
eλ s

{
λ(F (u(s)) − F (u∗)) + 〈u′(s), v(s)〉

}
ds

=

∫ t

0
eλ s

{
λ(F (u(s)) − F (u∗)) − 〈A(v(s)), v(s)〉

}
ds

=

∫ t

0
eλ s

{
λ(F (u(s)) − F (u∗)) − D(v(s))

}
ds.

(44)

Setting in (44) λ = 0, we get F (u(t)) ≤ F (U) < RM for all t ∈ R+. Since v(s) ∈ V ,
u(s) = Ev(s) ∈ U + U f.a.a. s ∈ R+ we conclude by Theorem 3.1 that

F (u(s)) − F (u∗) ≤ cR D(v(s)) f.a.a. s ∈ R+.

Thus (44) with λ = 1/cR proves the theorem. �

Remark 3.2 We obtained for general electro-reaction-diffusion systems the exponential
decay of the free energy to its equilibrium value by an indirect proof. Therefore we did not
get an explicit rate of convergence. But we took into account heterostructures, anisotropies,
a wide class of statistics and any final set of reversible reactions.

There are papers where for special situations an explicit rate of convergence is proved.
Gajewski and Gärtner [4] did this for the van Roosbroeck system with magnetic field.
Desvillettes and Fellner [3] provide an explicit rate of convergence for a reaction-diffusion
system of two species and the reaction 2X1 ⇋ X2 and one invariant and for a system of
three species, the reaction X1 + X2 ⇋ X3 and two invariants, respectively.

Remark 3.3 In [9] it is demonstrated how results concerning steady states and energy
estimates for electro-reaction-diffusion systems can be carried over to reduced system ar-
rising for the limit case that some of the kinetic subprocesses are very fast. There for
all species Boltzmann statistics is assumed and no anisotropies are considered. But the
essential ideas slightly modified can also be applied in our more complicated situation.
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4 Discretized problems

4.1 Time discretization

Theorem 4.1 Let (A1) – (A7) be fulfilled, let (u∗, v∗) be the thermodynamic equilibrium
and let h > 0. Then the implicit time discretization scheme

u(nh) − u
(
(n − 1)h

)
+ hAv(nh) = 0, u(nh) = Ev(nh), n ≥ 1,

u(0) = U, v(nh) ∈ V, n ≥ 0
(45)

is dissipative. Moreover, if F (U) ≤ R < RM. Then there exists λ > 0 such that

F
(
u(nh)

)
− F (u∗) ≤ e−λnh

(
F (U) − F (u∗)

)
∀n ≥ 1.

Proof. 1. A Solution to the time discrete problem (45) fulfills the invariance property

u(nh) − U ∈ U , n ≥ 1.

The discrete problem has the same steady state (u∗, v∗) as the continuous problem (16).
2. F is subdifferentiable in arguments u, where uν > 0, ν = 1, . . . ,m. If u = Ev, then
u ∈ ∂G(v) and v ∈ ∂F (u) and we obtain the inequality

F (w) − F (u) ≥ 〈v,w − u〉 ∀w ∈ V ∗. (46)

3. We shortly write un, vn for u(nh), v(nh), n ≥ 0. Let n2 > n1 ≥ 0 and λ ≥ 0. Using
ul = Evl, (46) and the relation D(vl) = 〈Avl, vl〉 we estimate

eλn2h
(
F (un2) − F (u∗)

)
− eλn1h

(
F (un1) − F (u∗)

)

=

n2∑

l=n1+1

eλ(l−1)h
{
(eλh − 1)

(
F (ul) − F (u∗)

)
+

(
F (ul) − F (ul−1)

)}

≤
n2∑

l=n1+1

h eλ(l−1)h
{

eλhλ
(
F (ul) − F (u∗)

)
− D(vl)

}
.

(47)

4. Since D(v) ≥ 0 for v ∈ V , we obtain by setting λ = 0 in (47) that

F (un2) ≤ F (un1) ≤ F (U) ≤ R < RM ∀n2 ≥ n1 ≥ 0.

Because of F (ul) ≤ R < RM, ul = Evl ∈ U + U for l ≥ 1, Theorem 3.1 supplies a cR > 0
such that (26) is fulfilled. Choosing now λ > 0 such that λeλ hcR < 1 and n1 = 0, the
estimate (47) proves the theorem. �

4.2 Space discretization

For our further considerations we set vν = 0, ν = 1, . . . ,m. Moreover, in a first step we
assume a 2D structure with constant material parameters uν , kαβ , Sν , Sε.
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Let a Delaunay grid with M grid points {xk : xk ∈ Ω, k = 1, . . . ,M} be given. We use
the following sets of indeces

V :=
{
k : xk ∈ Ω}, T := {k : xk ∈ Ω \ Ω

}
.

Due to (3), (7), (A3) and (A6) the anisotropy matrices Sν are invertible 2 × 2 matrices.
For x, y ∈ Ω we introduce new distances defined via the anisotropy matrices Sν ,

dν(x, y) :=

√
(x − y)T S

−1
ν (x − y), ν = 0, . . . ,m.

By means of these we define anisotropic Voronoi cells for each species (see Labelle and
Shewchuk [14])

V k
ν =

{
x ∈ Ω : dν(x, xk) ≤ dν(x, xl) ∀l ∈ V

}
, ν = 0, . . . ,m , k ∈ V.

Remark 4.1 1. Note that since Sν are constant the sets ∂V k
ν ∩ ∂V l

ν are parts of straight
lines or they are empty. Only if the points are directly neighbored the sets have positive
measure.
2. For y ∈ Kkl

ν := {y : dν(x
k, y) = dν(xl, y)} we have

2
(
y,S−1

ν (xk − xl)
)

= (xk,S−1
ν xk) − (xl,S−1

ν xl),

thus
(
y − z,S−1

ν (xk − xl)
)

= 0 ∀ y =
(

y1
y2

)
, z =

(
z1
z2

)
∈ Kkl

ν . (48)

The vector (y2−z2, z1−y1)
T is parallel to the normal vector nkl

ν to Kkl
ν . And (xk

2−xl
2, x

l
1−

xk
1)

T is orthogonal to xk − xl. Since Sν is an invertible 2 × 2 matrix, (48) implies

(
Sν

(
y2 − z2

z1 − y1

)
,

xk
2 − xl

2

xl
1 − xk

1

)
= 0.

Thus, the construction guarantees that the vector Sνn
kl
ν is parallel to xk − xl. For directly

neighbored points xk and xl we denote the (outer) normal vector on V k
ν at ∂V k

ν ∩ ∂V l
ν by

nkl
ν , and ν = 0, . . . ,m too.

3. Moreover, the neighborhood relations can differ from species to species due to the
different anisotropies.

For k ∈ V we denote by uk
ν and uk

0 we the mass of the ν-th species in V k
ν and the charge

in V k
ε , respectively. Taking into account that the Voronoi cells can differ for the different

species, the relation (10) has to be substituted for the discrete situation by

uk
0 =

m∑

ν=1

qν

∑

l∈V

|V k
ε ∩ V l

ν |
|V l

ν |
ul

ν . (49)
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Associated to the grid points we have electrostatic potentials vk
0 , chemical potentials vk

ν

and electrochemical potentials ζk
ν , ν = 1, . . . ,m. The discrete version of the state equations

(1) then is

uk
ν = uνgν(v

k
ν )|V k

ν |, k ∈ V , ν = 1, . . . ,m. (50)

Electrochemical potentials are determined by

ζk
ν = vk

ν + qν

∑

l∈V

|V l
ε ∩ V k

ν |
|V k

ν | vl
0, k ∈ V , ν = 1, . . . ,m. (51)

The discrete version of the Poisson equation (6) is obtained by testing with the character-
istic function of V k

ε and using Gauss theorem. We obtain

−
∑

l∈V

vl
0 − vk

0

|xl − xk| |Sεn
kl
ε ||∂V k

ε ∩ ∂V l
ε | + τvk

0 |∂V k
ε ∩ Γ| − fk = uk

0 , k ∈ V, (52)

where

fk =

∫

V k
ε

f dx +

∫

∂V k
ε ∩Γ

fΓ dΓ.

In order to find a space discrete version of the drift-diffusion term in the continuity equa-
tions (5), we again use Gauss theorem and write for k ∈ V \ T

∫

V k
ν

∇ · jν dx =
∑

l∈V

∫

∂V k
ν ∩∂V l

ν

jν · nkl
ν dΓ ≈

∑

l∈V

Jkl
ν |∂V k

ν ∩ ∂V l
ν |.

The approximation of the flux jν · nkl
ν of the ν-th species across ∂V k

ν ∩ ∂V l
ν is done by

∫

∂V k
ν ∩∂V l

ν

jν · nkl
ν dΓ = −

∫

∂V k
ν ∩∂V l

ν

Sνuνg
′
ν(vν)∇ζν · nkl

ν dΓ

= −
∫

∂V k
ν ∩∂V l

ν

uνg
′
ν(vν)∇ζν · Sνn

kl
ν dΓ

≈ −uν Zkl
ν

ζ l
ν − ζk

ν

|xl − xk| |Sνnkl
ν ||∂V k

ν ∩ ∂V l
ν |

=: Jkl
ν |∂V k

ν ∩ ∂V l
ν |,

where

Zkl
ν =





gν(vl
ν)−gν(vk

ν )
vl

ν−vk
ν

for vl
ν 6= vk

ν

g′ν(vk
ν ) for vl

ν = vk
ν

. (53)

Since homogeneous Neumann boundary conditions for the continuity equations are in-
cluded, we end up with the following discrete version of the continuity equations (5),
considering the anisotropic Voronoi cells V k

ν

uk
ν
′
+

∑

l∈V

Jkl
ν |∂V k

ν ∩ ∂V l
ν | − Rk

ν = 0, k ∈ V , ν = 1, . . . ,m, (54)
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where the source terms Rk
ν have to be calculated by

Rk
ν =

∑

α,β∈R

(βν − αν)
∑

k1∈V

· · ·
∑

kν−1∈V

∑

kν+1∈V

· · ·
∑

km∈V

Rαβ

[
ζk1
1 , . . . , ζ

kν−1

ν−1 , ζk
ν , ζ

kν+1

ν+1 , . . . , ζkm
m

]

× |V k1
1 ∩ · · · ∩ V

kν−1

ν−1 ∩ V k
ν ∩ V

kν+1

ν+1 ∩ · · · ∩ V km
m |

with
Rαβ

[
ζk1
1 , . . . , ζkm

m

]
= kαβ

(
e
∑m

ν=1 ανζkν
ν − e

∑m
ν=1 βνζkν

ν

)
(55)

and the expression for ζk
ν given in (51).

We use the notation

~u = (~u0, . . . , ~um), ~v = (~v0, . . . , ~vm), ~uν =
(
uk

ν

)
k∈V

, ~vν =
(
vk
ν

)
k∈V

, ν = 0, . . . ,m.

The equations (52) form a system of linear equations

P~v0 − ~f = ~u0, where ~f =
(
fk

)
k=1,...,M

.

Lemma 4.1 We assume (A1) and (A6). Moreover, let Sε and τ be constant. Then for
arbitrarily given ~u0 , ~f ∈ R

M there exists a unique solution ~v0 ∈ R
M to P~v0 − ~f = ~u0.

Proof. The M ×M matrix P is symmetric. Moreover, since τ > 0 (see (A6)) the relation
(P ~w0, ~w0) = 0 implies ~w0 = 0. Here we argue as follows: Let

0 = (P ~w0, ~w0)

= −
∑

k∈V

(∑

l∈V

wl
0 − wk

0

|xl − xk| |Sεn
kl
ε ||∂V k

ε ∩ ∂V l
ε |wk

0 + τ (wk
0)2|∂V k

ε ∩ Γ|
)

=
∑

k,l∈V , l≤k

(wl
0 − wk

0)2

|xl − xk| |Sεn
kl
ε ||∂V k

ε ∩ ∂V l
ε | +

∑

k∈V

τ (wk
0)2|∂V k

ε ∩ Γ|.

Then wk
0 = 0 for all k ∈ T . For all k̂ ∈ V we find a finite path of neighboring Voronoi cells

starting at V k̂
ε and ending at a V k∗

ε , k∗ ∈ T , which can be used in opposite direction to

show cell by cell that the corresponding wk
0 = 0 and finally wk̂

0 = 0, too. In summary, zero
is not an eigenvalue of P and the matrix P is regular. �

4.3 Discrete energy functionals

First, we define as a discrete version of E (cf. (13)) the operator Ê : R
M(m+1) → R

M(m+1),

Ê~v =
(
P~v0 − ~f,

((
uνgν(v

k
ν )|V k

ν |
)
k∈V

)
ν=1,...,m

)

and obtain the corresponding discrete potential Ĝ : R
M(m+1) → R,

Ĝ(~v) =
1

2
(P~v0, ~v0) − (~f,~v0) +

m∑

ν=1

∑

k∈V

uν |V k
ν |

∫ vk
ν

0
gν(y) dy.
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As in (18), (19) we introduce the discrete free energy F̂ as the conjugate functional,

F̂ (~u) = sup
~v∈RM(m+1)

{
(~u,~v) − Ĝ(~v)

}
.

Then again, F̂ : R
M(m+1) → R is convex and lower semicontinuous. F̂ is differentiable in

arguments ~u, where ~uν > 0, ν = 1, . . . ,m. If ~u = Ê~v, then ~u = Ĝ′(~v) and ~v = F̂ ′(~u). In
particular we obtain for ~u = Ê~v, ~v ∈ R

M(m+1) the inequality

F̂ (~w) − F̂ (~u) ≥ F̂ ′(~u) · (~w − ~u) ∀~w ∈ R
M(m+1), (56)

which will be used to show that our discretization scheme (Euler backward in time and
space discretization of the Poisson equation and the continuity equations as described in
Theorem 4.2 below) is dissipative. Moreover, for ~u = Ê~v we calculate

F̂ (~u) = (Ê~v,~v) − Ĝ(~v)

=
1

2
(P~v0, ~v0) +

m∑

ν=1

∑

k∈V

uν |V k
ν |

(
gν(vk

ν )vk
ν −

∫ vk
ν

0
gν(y) dy

)
.

4.4 Dissipativity of the discretization scheme

We define discrete initial values

Uk
ν :=

∫

V k
ν

Uν dx, k ∈ V , ν = 1, . . . ,m.

Uk
0 is calculated via (49), where the uk

ν have to be substituted by Uk
ν .

Theorem 4.2 We assume (A1) – (A6). Moreover, let vν = 0 and let uν , Sν , kαβ , Sε and
τ be constant. Let h > 0 be given. The following discrete version of (5), (6) is dissipative

P~v0(nh) − ~f = ~u0(nh), n ≥ 0,

~u k
ν

(
nh

)
− ~u k

ν

(
(n − 1)h

)

h
= −

∑

l∈V

Jkl
ν (nh)|∂V k

ν ∩ ∂V l
ν | + Rk

ν(nh),

k ∈ V, n ≥ 1, ν = 1, . . . ,m,

uk
ν(0) = Uk

ν , k ∈ V, ν = 0, . . . ,m.
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Proof. Let n ∈ N be arbitrarily fixed. For ~u
(
(n − 1)h

)
we write ~u old, for quantities used

at time t = nh we leave the time argument. Using (56) and (49) we can estimate

F̂ (~u) − F̂ (~u old) ≤ ~v · (~u − ~u old) =
∑

l∈V

(ul
0 − ul old

0 )vl
0 +

m∑

ν=1

∑

k∈V

(uk
ν − uk old

ν )vk
ν

=
∑

l∈V

m∑

ν=1

qν

∑

k∈V

|V l
ε ∩ V k

ν |
|V k

ν | (uk
ν − uk old

ν )vl
0 +

m∑

ν=1

∑

k∈V

(uk
ν − uk old

ν )vk
ν

=

m∑

ν=1

∑

k∈V

(uk
ν − uk old

ν )
[
vk
ν + qν

∑

l∈V

|V l
ε ∩ V k

ν |
|V k

ν | vl
0

]

=

m∑

ν=1

∑

k∈V

(uk
ν − uk old

ν ) · ζk
ν .

Next, we insert the discrete continuity equations and obtain

F̂ (~u) − F̂ (~u old) ≤ h

m∑

ν=1

∑

k∈V

(
−

∑

l∈V

Jkl
ν |∂V k

ν ∩ ∂V l
ν |ζk

ν + Rk
νζ

k
ν

)

= −h

m∑

ν=1

∑

k,l∈V , l≤k

uν Zkl
ν

(ζ l
ν − ζk

ν )2

|xl − xk| |Sνnkl
ν |∂V k

ν ∩ ∂V l
ν |

+ h

m∑

ν=1

∑

k∈V

Rk
νζk

ν .

The last but one line containing the parts from drift-diffusion is non-positive, because of
Zkl

ν > 0, since the functions gν are strictly monotonously increasing (see (53) and (A2)).
The summand

m∑

ν=1

∑

k∈V

Rk
νζk

ν

=
m∑

ν=1

∑

k∈V

∑

(α,β)∈R

(βν − αν)
∑

k1∈V

. . .
∑

kν−1∈V

∑

kν+1∈V

. . .
∑

km∈V

Rαβ

[
ζk1
1, . . . , ζ

kν−1

ν−1, ζ
k
ν , ζ

kν+1

ν+1, . . . , ζ
km
m

]

× |V k1
1 ∩ · · · ∩ V

kν−1

ν−1 ∩ V k
ν ∩ V

kν+1

ν+1 ∩ · · · ∩ V km
m |ζk

ν

=
∑

(α,β)∈R

∑

k1∈V

· · ·
∑

km∈V

Rαβ

[
ζk1
1 , . . . , ζkm

m

] m∑

ν=1

(βν − αν)ζkν
ν |V k1

1 ∩ · · · ∩ V km
m |

is non-positive due to (55) and the monotonicity of the exponential function. Thus we
arrive at F̂ (~u) ≤ F̂ (~u old) and our scheme is dissipative. �

Remark 4.2 Gajewski, Gärtner [5] use a Crank-Nicholson like time discretization to
show the dissipativeness for a discrete scheme for a nonlocal phase segregation model. This
is necessary due to the fact that the free energy functional in that model is not convex.
In our convex situation we can apply an Euler backward scheme because we can exploit
inequality (56) to proceed in the proof of Theorem 4.2.
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4.5 Remarks concerning heterostructures

We assume a 2D heterostructure, where in subregions the material parameters are con-
stants and consider the following model problem. Let Ω ∈ R

2 be composed by two con-
nected, bounded, nonempty polyhedral open subsets ΩA and ΩB with one common edge
ΓH = ΩA ∩ ΩB, Ω = ΩA ∪ ΩB. On ΩI we have constant material parameters uI

ν , kI
αβ , S

I
ν ,

µkI
ν , QI

ν , I = A,B. Moreover, (see (3), (7)) we denote

ϕI
0 := max

ν=0,...,m
arccos

min(µ1I
ν , µ2I

ν )

max(µ1I
ν , µ2I

ν )
.

According to (A3) and (A6) we have ϕI
0 ∈ [0, π/2). We consider a grid {xk : xk ∈ Ω, k =

1, . . . ,M} which respects the interface ΓH .

Lemma 4.2 Let for all directly neighboring grid points xk and xm on the heterostructure
interface ΓH and all inner grid points xl ∈ ΩI the inequality

|xk − xl|2 + |xm − xl|2 − |xk − xm|2
2|xk − xl||xm − xl| ≥ sin ϕI

0

be fulfilled. Then all directly neighboring grid points on the interface ΓH are directly
neighboring in the metric induced by the anisotropy matrices S

I
ν, ν = 0, . . . ,m, I = A,B,

too.

Proof. We show the assertion for arbitrarily fixed I and ν and skip these indeces in the
proof. Let xk and xm be directly neighboring grid points on ΓH and let xl be any inner
grid point in ΩI (cf. Fig. 1). We have to ensure that

d(xk,
xk + xm

2
) ≤ d(xl,

xk + xm

2
), d(xm,

xk + xm

2
) ≤ d(xl,

xk + xm

2
).

We prove the first estimate (the second uses analogous arguments). The line {y : d(y, xl) =
d(y, xk)} (lightgray solid line in Fig. 1 with normal vector nkl) arises by rotation of the
midperpendicular to xk − xl (lightgrey dashed line) by a vector ϕ with

cos ϕ =
(Snkl, nkl)

|Snkl||nkl| ≥
min(µ1, µ2)

max(µ1, µ2)
.

Thus |ϕ| ≤ ϕ0 (see Remark 4.1, 2), too). If ϕ is negative, nothing more is to show.
Otherwise we must guarantee that the angle γ in Fig. 1 is less or equal to π/2−ϕ0. Since

γ = arccos
|xk − xl|2 + |xm − xl|2 − |xk − xm|2

2|xk − xl||xm − xl|

and the cos function is monotonously decreasing on (0, π) this requirement is equivalent
to

|xk − xl|2 + |xm − xl|2 − |xk − xm|2
2|xk − xl||xm − xl| ≥ cos

(π

2
− ϕ0

)
= sinϕ0

which we formulated in the lemma. �
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grid points

heterostructure interface

midperpendicular to xk − xl

Kkl = {y : d(xk,y) = d(xl,y)}

xl

xm

xk

xk+xm

2

ϕϕ
γ

γ

Snkl

nkl

Figure 1: Discretization near heterostructure interfaces

Remark 4.3 Let κ denote the quotient of the maximal distance of two directly neighboring
grid points on the heterostructure interface ΓH and of the minimal distance of inner grid
points to the heterostructure interface ΓH and let ϕ∗

0 := max(ϕA
0 , ϕB

0 ). Then the condition

κ ≤
√

2 − 2 sin ϕ∗
0 (57)

is sufficient for the assertion of Lemma 4.2.

Remark 4.4 The severe restriction (57) on the placement of vertices on and close to
interfaces and boundaries allows to handle general heterostructures and boundary condi-
tions. The described integration procedure can be applied independently on each ΩI and
the fluxes and potentials fulfill the continuity conditions.
If QI

ν = QI holds, the restriction can be seriously relaxed, especially in cases of straight
line interfaces. But still the largest eigenvalue ratio for each ΩI defines a forbidden region
for interior vertices around the interfaces or boundaries.
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4. H. Gajewski and K. Gärtner, On the discretization of van Roosbroeck’s equations with
magnetic field, Z. Angew. Math. Mech. 76 (1996), 247–264.



References 21
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