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Abstract

In this paper we analyze a PDE system modelling (non-isothermal) phase transitions and dam-

age phenomena in thermoviscoelastic materials. The model is thermodynamically consistent: in

particular, no small perturbation assumption is adopted, which results in the presence of quadratic

terms on the right-hand side of the temperature equation, only estimated in L1. The whole system

has a highly nonlinear character.

We address the existence of a weak notion of solution, referred to as “entropic”, where the

temperature equation is formulated with the aid of an entropy inequality, and of a total energy

inequality. This solvability concept reflects the basic principles of thermomechanics as well as

the thermodynamical consistency of the model. It allows us to obtain global-in-time existence

theorems without imposing any restriction on the size of the initial data.

We prove our results by passing to the limit in a time discretization scheme, carefully tailored

to the nonlinear features of the PDE system (with its “entropic” formulation), and of the a priori

estimates performed on it. Our time-discrete analysis could be useful towards the numerical study

of this model.

1 Introduction

We consider the following PDE system

ϑt + χ
tϑ+ ρϑ div(ut)− div(K(ϑ)∇ϑ) = g + a(χ)ε(ut)Vε(ut) + |χt|2 in Ω× (0, T ), (1.1)

utt − div(a(χ)Vε(ut) + b(χ)Eε(u)− ρϑ1) = f in Ω× (0, T ), (1.2)

χ
t + µ∂I(−∞,0](χt)− div(|∇χ|p−2∇χ) +W ′(χ) 3 −b′(χ)

ε(u)Eε(u)

2
+ ϑ in Ω× (0, T ),

(1.3)

supplemented with the boundary conditions (here n denotes the outward unit normal to ∂Ω)

K(ϑ)∇ϑ · n = h, u = 0, ∂nχ = 0 on ∂Ω× (0, T ). (1.4)

Equations (1.1)–(1.3) were derived according to M. FRÉMOND’s modeling approach (see [12, 13]), in

[28]. There, it was shown that this PDE system describes (non-isothermal) phase transitions, or (non-

isothermal) damage, in a material body occupying a reference domain Ω ⊂ Rd, d ∈ {2, 3}. We refer

to [28] for a quite detailed survey on the literature on phase transition and damage problems in ther-

moviscoelasticity. In (1.1)–(1.3), the symbols ϑ and u respectively denote the absolute temperature of

the system and the small displacement vector, while χ is an internal parameter: its meaning depends

on the phenomenon described by (1.1)–(1.3), which also determines the choices of the coefficients a

and b in the momentum equation (1.2), and of the constant µ ∈ {0, 1} in (1.3). More precisely,
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- the choices a(χ) = 1 − χ and b(χ) = χ correspond to the case of phase transitions in ther-

moviscoelastic materials: in this case, χ is the order parameter, standing for the local proportion

of one of the two phases. We assume that χ takes values between 0 and 1, choosing 0 and 1

as reference values: in the case of phase transitions, χ = 1 stands for the liquid phase while
χ = 0 for the solid one and one has 0 < χ < 1 in the so-called mushy regions. Unidirec-

tionality, or irreversibility, of the phase transition process may be encompassed in the model by

taking µ = 1 in (1.3), which “activates” the term ∂I(−∞,0](χt) (i.e. the subdifferential in the

sense of convex analysis of the indicator function I(−∞,0], evaluated at χt), yielding the con-

straint χt ≤ 0 a.e. in Ω × (0, T ). The meaning of a(χ) = 1 − χ and b(χ) = χ in (1.2) is

that, in the purely solid phase χ = 0 only the elastic energy, in addition to the thermal expan-

sion energy, contributes to the stress σ = a(χ)Vε(ut) + b(χ)Eε(u)− ρϑ1 (where E and V
are the elasticity and viscosity tensors, respectively). Instead, in the purely liquid, or “viscous”,

phase χ = 1 only the viscosity contribution remains, whereas in mushy regions both elastic

and viscous effects are present.

- The choices a(χ) = b(χ) = χ correspond to damage. In this case,χ is the damage parameter,

assessing the soundness of the material microscopically, around a point in the material domain

Ω. In fact, we have χ = 0 in the presence of complete damage, while χ takes the value 1 when

the material is fully sound, and 0 < χ < 1 describes partial damage.

Finally, K in (1.1) is the heat conductivity, W in (1.3) is a mixing energy density, which we assume of

the form

W = β̂ + γ̂ with β̂ : dom(β̂)→ R convex, possibly nonsmooth, and γ̂ ∈ C2(R),

while f is a given bulk force, and g and h heat sources.

Observe that, in the case when both coefficients a(χ) and b(χ) in the momentum equation degenerate

to zero (which happens, for instance, with a(χ) = b(χ) = χ, when complete damage occurs), the

equation for u loses its elliptic character. This leads to serious troubles as, for instance, no control of

the term b′(χ) ε(u)Eε(u)
2

on the right-hand side of (1.3) is possible. That is why, in what follows we shall

confine our analysis of system (1.1)–(1.3) only to the case case in which the functions a, b ∈ C1(R)

are bounded from below away from 0 (cf. (2.16) in Sec. 2). The reader may refer to our previous

contribution [28], where we deal with complete damage and elliptic degeneracy of the momentum

equation, in a simplified case.

In fact, in [28] we analyzed the following reduced system

ϑt + χ
tϑ+ ρϑ div(ut)− div(K(ϑ)∇ϑ) = g in Ω× (0, T ),

utt − div(a(χ)Vε(ut) + b(χ)Eε(u)− ρϑ1) = f in Ω× (0, T ), (1.5)

χ
t + µ∂I(−∞,0](χt)− div(|∇χ|p−2∇χ) +W ′(χ) 3 −b′(χ)

ε(u)Eε(u)

2
+ ϑ in Ω× (0, T ),

where the quadratic contributions in the velocities on the right-hand side in the internal energy balance

(1.1) are neglected by means of the small perturbation assumption (cf. [14]).

In this paper, instead, we address the full system (1.1)–(1.3). Let us stress that, since we keep the

quadratic terms a(χ)ε(ut)Vε(ut) and |χt|2 on the right-hand side of (1.1), the model is thermody-

namically consistent, as shown in [28]. However,
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- the highly nonlinear character of the whole system, with the multivalued term ∂I(−∞,0](χt) and

the possibly nonsmooth contribution β̂ to the energy W ;

- the quadratic terms on the right-hand side of (1.1), which make it difficult to get suitable esti-

mates on (ϑ,u, χ),

bring about severe difficulties in the analysis of (1.1)–(1.3). This is the reason why we are going to

develop an existence analysis only for a suitable weak solution concept for (1.1)–(1.3), which we

illustrate in the following lines.

The “entropic” formulation. We resort to a weak solution notion for (1.1)–(1.3) partially mutuated

from [9]. There, a thermodynamically consistent model for phase transitions, consisting of the tem-

perature and of the phase parameter equations, was analyzed: the temperature equation, featuring

quadratic terms on its right-hand side, was weakly formulated in terms of an entropy inequality and of

a total energy inequality. In the present framework, the pointwise internal energy balance (1.1) is thus

replaced by this entropy inequality∫ t

s

∫
Ω

(log(ϑ) + χ)ϕt dx dr + ρ

∫ t

s

∫
Ω

div(ut)ϕ dx dr −
∫ t

s

∫
Ω

K(ϑ)∇ log(ϑ) · ∇ϕ dx dr

≤ −
∫ t

s

∫
Ω

K(ϑ)
ϕ

ϑ
∇ log(ϑ) · ∇ϑ dx dr −

∫ t

s

∫
Ω

(
g + a(χ)ε(ut)Vε(ut) + |χt|2

) ϕ
ϑ

dx dr

−
∫ t

s

∫
∂Ω

h
ϕ

ϑ
dS dr, (1.6)

where ϕ is a sufficiently regular, positive test function (cf. (2.37)), coupled with the following total

energy inequality

E (ϑ(t),u(t),ut(t), χ(t)) ≤ E (ϑ(s),u(s),ut(s), χ(s)) +

∫ t

s

∫
Ω

g dx dr

+

∫ t

0

∫
∂Ω

h dS dr +

∫ t

s

∫
Ω

f · ut dx dr ,

(1.7)

where

E (ϑ,u,ut, χ) :=

∫
Ω

ϑ dx+
1

2

∫
Ω

|ut|2 dx+
1

2

∫
Ω

b(χ(t))ε(u(t))Eε(u(t)) dx

+
1

p

∫
Ω

|∇χ|p dx+

∫
Ω

W (χ) dx .

(1.8)

Both (1.6) and (1.7) are required to hold for almost all t ∈ (0, T ] and almost all s ∈ (0, t), and

for s = 0. This formulation of the heat equation has been first developed in [7, 2] in the framework

of heat conduction in fluids, and then applied to a phase transition model, also derived according to

FRÉMOND’s approach [12], firstly in [9]. Successively, the so-called entropic notion of solution has

been used to prove global-in-time existence results in models for special materials like liquid crystals

(cf. [8], [10], [11]), and more recently in the analysis of models for the evolution of non-isothermal

binary incompressible immiscible fluids (cf. [6]).

This notion of solution for the temperature equation corresponds exactly to the physically meaningful

requirement that the system should satisfy the second and first principle of Thermodynamics. Indeed,

3



one of the main advantages of this formulation resides in the fact that the thermodynamically consis-

tency of the the model immediately follows from the existence proof. It can be also shown that it is

consistent with the standard one, (cf. the discussion in Sec. 2.3, in particular Remark 2.3, and in [9]).

From an analytical viewpoint, observe that the entropy inequality (1.6) has the advantage that all the

troublesome quadratic terms on the right-hand side of (1.1) feature as multiplied by a negative test

function. This, and the fact that (1.6) is an inequality, allows for upper semicontinuity arguments in the

limit passage in a suitable approximation of (1.6)–(1.8).

In addition to (1.6)–(1.8), the entropic formulation of system (1.1)–(1.3) also consists of the momentum

balance (1.2), given pointwise a.e. in Ω× (0, T ), and of the internal variable equation (1.3). The latter

is required to hold pointwise almost everywhere in the reversible case µ = 0. In the irreversible case

µ = 1, we confine the analysis to the case in which β̂ is the indicator function I[0,+∞) of [0,+∞),

henceW (χ) = I[0,+∞)(χ) + γ̂(χ). For reasons expounded in Sec. 2.3, we have to weakly formulate

(1.3) in terms of the requirement χt ≤ 0 a.e. in Ω× (0, T ), of the one-sided variational inequality∫
Ω

(
χ
t − div(|∇χ|p−2∇χ) + ξ + γ(χ) + b′(χ)

ε(u)Eε(u)

2
− ϑ
)
ψ dx ≥ 0

for all ψ ∈ W 1,p(Ω) with ψ ≤ 0,

(1.9)

almost everywhere in (0, T ) (where γ := γ̂′), and of the energy inequality∫ t

s

∫
Ω

|χt|2 dx dr +

∫
Ω

(
1

p
|∇χ(t)|p +W (χ(t))

)
dx

≤
∫

Ω

(
1

p
|∇χ(s)|p +W (χ(s))

)
dx

+

∫ t

s

∫
Ω

χ
t

(
−b′(χ)

ε(u)Eε(u)

2
+ ϑ

)
dx dr

(1.10)

for all t ∈ (0, T ] and almost all s ∈ (0, t), with ξ a selection in the (convex analysis) subdifferential

∂β̂(χ) = ∂I[0,+∞)(χ) of I[0,+∞). In [28, Prop. 2.14] (see also [16]), we prove that, under additional

regularity properties any weak solution in fact fulfills (1.3) pointwise.

Let us also mention that other approaches to the weak solvability of coupled PDE systems with an L1-

right-hand side are available in the literature: in particular, we refer here to [33] and [30]. In [33], the

notion of renormalized solution has been used in order to prove a global-in-time existence result for a

nonlinear system in thermoviscoelasticity. In [30] the focus is on rate-independent processes coupled

with viscosity and inertia in the displacement equation, and with the temperature equation. There

the internal variable equation is not of gradient-flow type as (1.3) but instead features a 1-positively

homogeneous dissipation potential. For the resulting PDE system, a weak solution concept partially

mutuated from the theory of rate-independent processes by A. MIELKE (cf., e.g., [22]) is analyzed.

An existence result is proved combining techniques for rate-independent evolution, with Boccardo-

Gallouët type estimates of the temperature gradient in the heat equation with L1-right-hand side.

Our existence results. The main results of this paper, Theorems 2.5 and 2.8, state the existence of

entropic solutions for system (1.1–1.4) in the irreversible (µ = 1) and reversible (µ = 0) cases.
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More precisely, in the case of unidirectional evolution for χ we can prove the existence of a global-

in-time entropic solution (i.e. satisfying the entropy (1.6) and the total energy (1.7) inequalities, the

(pointwise) momentum balance (1.2), the one-sided (1.9) and the energy (1.10) inequalities for χ).

We work under fairly general assumptions on the nonlinear functions in (1.1)–(1.3). More precisely, we

require that a and b are sufficiently smooth and bounded from below by a positive constant, b convex,

and we standardly assume that W = I[0,+∞) + γ̂, with γ̂ smooth and λ-convex. A crucial role is

played by the requirement that the heat conductivity function K = K(ϑ) grows at least like ϑκ with

κ > 1, and that the exponent p in the gradient regularization of the equation for χ fulfills p > d.

This ensures that χ is estimated in W 1,p(Ω) ⊂ C0(Ω). Moreover, under some restriction on κ (i.e.

κ ∈ (1, 5/3) for space dimension d = 3), we can also obtain an enhanced regularity for ϑ and that

conclude that the total energy inequality actually holds as an equality.

In the reversible case (µ = 0), instead, under the same assumptions above described (but with a

general β̂), we improve the estimates, hence the regularity, of the internal variable χ. Therefore, we

prove the existence of a weak formulation of (1.1)–(1.3), featuring, in addition to (1.6), (1.7), and (1.2),

a pointwise formulation of equation (1.3). Again, in the case of the aforementioned restriction on κ,

we enhance the time-regularity of ϑ. What is more, also exploiting the improved formulation of the

equation for χ, we are able to conclude existence for a stronger formulation of the heat equation (1.2),

of variational type. Instead, a uniqueness result seems to be out of reach, at the moment, not only

in the irreversible but also in the reversible cases (cf. Remarks 2.6 and 2.9). Only for the isothermal

reversible system a continuous dependence result, yielding uniqueness, can be proved exactly like in

[28, Thm.3].

Finally, in the last Section 6 we address the analysis of system (1.1)–(1.3), with µ = 1, in the case the

p-Laplacian regularization in (1.3) is replaced by the standard Laplacian operator. We approximate it

by adding a p-Laplacian term, modulated by a small parameter δ, on the left-hand side of (1.3), so

that Thm. 2.8 guarantees the existence of approximate solutions (ϑδ,uδ, χδ). Then, we let δ tend to

zero. In this context, the enhanced elliptic regularity estimates on the momentum equation exploited

in the proof of Thm. 2.5, and which would here yield some suitable compactness for the quadratic

term a(χδ)ε(∂tuδ)Vε(∂tuδ) on the right-hand side of (1.1), are no longer available. In fact, they

rely on the requirement p > d. A crucial step for proving the existence of (a slightly weaker notion

of) entropic solutions to system (1.1)–(1.3) (cf. Theorem 6.2), then consists in deriving some suitable

strong convergence for (∂tuδ)δ with an ad hoc technique, strongly relying on the fact that µ = 1, and

on the additional assumption that b is non-decreasing.

Our main existence results Thms. 2.5 and 2.8 are proved by passing to the limit in a time-discretization

scheme, unique for the reversible and the irreversible cases, carefully tuned to the nonlinear features

of the PDE system. In particular, it is devised in such a way as to obtain that the piecewise constant

and piecewise linear interpolants of the discrete solutions satisfy the discrete versions of the entropy

inequality (1.6), of total energy inequality (1.8), and of the energy inequality (1.10) in the case µ = 1.

Moreover, with delicate calculations we are also able to translate on the time-discrete level a series

of a priori estimates on the heat equation, having a nonlinear character. This detailed time-discrete

analysis could be interesting in view of further numerical studies of this model.

Plan of the paper. In Section 2 we fix some notation, state some preliminaries that will be used in

the rest of the paper, list our assumptions on the data as well as our main global-in-time existence
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results. In Section 3 we perform a series of formal a-priori estimates on our system. We render them

rigorously in Section 4, where we set up our time-discrete scheme. Theorems 2.5 and 2.8 are proved

by passing to the limit in the approximated entropy and energy inequality, as well as in the discretized

versions of (1.2) and (1.3), throughout Sec. 5. Section 6 is then devoted to the proof of Theorem 6.2.

2 Setup and results

After fixing some notation and results which shall be used throughout the paper, in Section 2.2 we col-

lect our working assumptions on the nonlinear functions K, a, b, andW in the PDE system (1.1)–(1.3),

and on the data. Then, in Secs. 2.3 and 2.4 we discuss the weak formulations of (the initial-boundary

value problem for) (1.1)–(1.3) in the irreversible and reversible cases, respectively corresponding to

µ = 1 and µ = 0 in (1.3).

2.1 Preliminaries

Notation 2.1. Throughout the paper, given a Banach space X we shall denote by ‖ · ‖X its norm,

and use the symbol 〈·, ·〉X for the duality pairing between X ′ and X . Moreover, we shall denote

by BV([0, T ];X) (by C0
weak([0, T ];X), respectively), the space of functions from [0, T ] with values

in X that are defined at every t ∈ [0, T ] and have bounded variation on [0, T ] (and are weakly

continuous on [0, T ], resp.).

Let Ω ⊂ Rd be a bounded domain, d ∈ {2, 3}. We set Q := Ω × (0, T ). We identify both L2(Ω)

and L2(Ω; Rd) with their dual spaces, and denote by (·, ·) the scalar product in Rd, by (·, ·)L2(Ω) both

the scalar product in L2(Ω), and in L2(Ω; Rd), and by H1
0 (Ω; Rd) and H2

0 (Ω; Rd) the spaces

H1
0 (Ω; Rd) := {v ∈ H1(Ω; Rd) : v = 0 on ∂Ω }, endowed with the norm

‖v‖2
H1

0 (Ω;Rd) :=

∫
Ω

ε(v) : ε(v) dx,

H2
0 (Ω; Rd) := {v ∈ H2(Ω; Rd) : v = 0 on ∂Ω }.

Note that ‖·‖H1
0 (Ω;Rd) is a norm equivalent to the standard one onH1(Ω; Rd). We will use the symbol

D(Q) for the space of the C∞-functions with compact support on Q := Ω × (0, T ) and for q > 1

we will adopt the notation

W 1,q
+ (Ω) :=

{
ζ ∈ W 1,q(Ω) : ζ(x) ≥ 0 for a.a.x ∈ Ω

}
, and analogously for W 1,q

− (Ω).

We denote by Ap the p-Laplacian operator with zero Neumann boundary conditions, viz.

Ap : W 1,p(Ω)→ W 1,p(Ω)′ given by 〈Apu, v〉W 1,p(Ω) :=

∫
Ω

|∇u|p−2∇u · ∇v dx .

In the weak formulation of the momentum equation (1.2), besides V and E we will also make use of

the operator

Cρ : L2(Ω)→ H−1(Ω; Rd) defined by 〈Cρ(θ),v〉H1(Ω;Rd) := −ρ
∫

Ω

θ div(v) dx. (2.1)

6



Finally, throughout the paper we shall denote by the symbols c, c′, C, C ′ various positive constants

depending only on known quantities. Furthermore, the symbols Ii, i = 0, 1, ..., will be used as place-

holders for several integral terms popping in the various estimates: we warn the reader that we will not

be self-consistent with the numbering, so that, for instance, the symbol I1 will occur several times with

different meanings.

Recaps of mathematical elasticity. The elasticity and viscosity tensors fulfill

E = (eijkh), V = (vijkh) ∈ C1(Ω; Rd×d×d×d) (2.2)

with coefficients satisfying the classical symmetry and ellipticity conditions (with the usual summation

convention)
eijkh = ejikh = ekhij , vijkh = vjikh = vkhij

∃α0 > 0 : eijkhξijξkh ≥ α0ξijξij ∀ ξij : ξij = ξji

∃ β0 > 0 : vijkhξijξkh ≥ β0ξijξij ∀ ξij : ξij = ξji.

(2.3)

Observe that with (2.3) we also encompass in our analysis the case of an anisotropic and inhomoge-

neous material.

In order to give the variational formulation of the momentum equation, we need to introduce the bilinear

forms related to the χ-dependent elliptic operators appearing in (1.2). Hence, given a non-negative

function η ∈ L∞(Ω) (later, η = a(χ) or η = b(χ)), let us consider the bilinear symmetric forms

e(η·, ·), v(η·, ·) : H1
0 (Ω; Rd)×H1

0 (Ω; Rd)→ R defined for all u,v ∈ H1
0 (Ω; Rd) by

e(ηu,v) := 〈− div(ηEε(u)),v〉H1(Ω;Rd) =
d∑

i,j,k,h=1

∫
Ω

η eijkh εkh(u)εij(v),

v(ηu,v) := 〈− div(ηVε(u)),v〉H1(Ω;Rd) =
d∑

i,j,k,h=1

∫
Ω

η vijkh εkh(u)εij(v).

(2.4)

Thanks to (2.3) and Korn’s inequality (see eg [4, Thm. 6.3-3]), the forms e(η·, ·) and v(η·, ·) fulfill

∃C1 > 0 ∀u, v ∈ H1
0 (Ω; Rd) :

{
e(ηu,u) ≥ infx∈Ω(η(x))C1‖u‖2

H1(Ω),

v(ηu,u) ≥ infx∈Ω(η(x))C1‖u‖2
H1(Ω).

(2.5)

It follows from (2.2) that they are also continuous, namely

∃C2 > 0 ∀u, v ∈ H1
0 (Ω; Rd) :

|e(ηu,v)|+ |v(ηu,v)| ≤ C2‖η‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω).
(2.6)

We shall denote by E(η ·) : H1
0 (Ω; Rd) → H−1(Ω; Rd) and V(η ·) : H1

0 (Ω; Rd) → H−1(Ω; Rd)

the linear operators associated with the forms e(η·, ·) and v(η·, ·), respectively, that is

〈E (ηv) ,w〉H1(Ω;Rd) := e(ηv,w), 〈V (ηv) ,w〉H1(Ω;Rd) := v(ηv,w)

for all v, w ∈ H1
0 (Ω; Rd).

(2.7)

It can be checked via an approximation argument that the following regularity results hold

if η ∈ L∞(Ω) and u ∈ H1
0 (Ω; Rd), then E (ηu) , V (ηu) ∈ H−1(Ω; Rd), (2.8a)

if η ∈ W 1,d(Ω) and u ∈ H2
0 (Ω; Rd), then E (ηu) , V (ηu) ∈ L2(Ω; Rd). (2.8b)
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Finally, let us recall the following elliptic regularity result (see e.g. [23, Lemma 3.2, p. 260])

∃C3, C4 > 0 ∀u ∈ H2
0 (Ω; Rd) : C3‖u‖H2(Ω) ≤ ‖ div(ε(u))‖L2(Ω) ≤ C4‖u‖H2(Ω) . (2.9)

Useful inequalities. In order to make the paper as self-contained as possible, we recall here the

Gagliardo-Nirenberg inequality (cf. [24, p. 125]) in a particular case: for all r, q ∈ [1,+∞], and for all

v ∈ Lq(Ω) such that∇v ∈ Lr(Ω), there holds

‖v‖Ls(Ω) ≤ CGN‖v‖θW 1,r(Ω)‖v‖1−θ
Lq(Ω) with

1

s
= θ

(
1

r
− 1

d

)
+ (1− θ)1

q
, 0 ≤ θ ≤ 1, (2.10)

the positive constant CGN depending only on d, r, q, θ. Combining the compact embedding

H2
0 (Ω; Rd) b W 1,d?−η(Ω; Rd), with d? =

{
∞ if d = 2,

6 if d = 3,
for all η > 0, (2.11)

(where for d = 2 we mean that H2
0 (Ω; Rd) b W 1,q(Ω; Rd) for all 1 ≤ q <∞), with [20, Thm. 16.4,

p. 102], we have

∀ % > 0 ∃C% > 0 ∀u ∈ H2
0 (Ω; Rd) : ‖ε(u)‖Ld?−η(Ω) ≤ %‖u‖H2(Ω) + C%‖u‖L2(Ω). (2.12)

We will also use the following nonlinear Poincaré-type inequality (cf. e.g. [15, Lemma 2.2]), withm(w)

the mean value of w:

∀ q > 0 ∃Cq > 0 ∀w ∈ H1(Ω) :

‖|w|qw‖H1(Ω) ≤ Cq(‖∇(|w|qw)‖L2(Ω) + |m(w)|q+1) .
(2.13)

2.2 Assumptions

In most of this paper, we shall suppose that

Ω ⊂ Rd, d ∈ {2, 3} is a bounded connected domain, with C2-boundary ∂Ω. (2.14)

This will allow us to apply elliptic regularity results and to conclude H2(Ω; Rd)-regularity for u. In

Section 6 we will see that this regularity requirement can be dropped, at the price of proving the

existence of a weaker notion of solution for the irreversible system.

We list below our basic assumptions on the functions K, a, b, and W in system (1.1)–(1.3).

Hypothesis (I). We suppose that

the function K : [0,+∞)→ (0,+∞) is continuous and

∃ c0, c1 > 0 κ > 1 ∀ϑ ∈ [0,+∞) : c0(1 + ϑκ) ≤ K(ϑ) ≤ c1(1 + ϑκ) .
(2.15)

We will denote by K̂ the primitive K̂(x) :=
∫ x

0
K(r) dr of K.

Hypothesis (II). We require

a ∈ C1(R), b ∈ C2(R) and ∃ c2 > 0 : a(x), b(x) ≥ c2 for all x ∈ R (2.16)
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and that the function b is convex. The latter requirement could be weakened to λ-convexity, i.e. that b′′

is bounded from below (cf. also (2.19)), see. Remark 4.9 later on.

Hypothesis (III). We suppose that the potential W in (1.3) is given by W = β̂ + γ̂, where

β̂ : dom(β̂)→ R is proper, l.s.c., convex , γ̂ ∈ C2(R), (2.17)

∃ cW , c′W > 0 : W (r) ≥ cW |r| − c′W ∀r ∈ dom(β̂) . (2.18)

Moreover, we impose that

∃λ > 0 ∀ r ∈ R : γ̂′′(r) ≥ −λ. (2.19)

Hereafter, we shall use the notation

β := ∂β̂, γ := γ̂′.

Observe that, we have not required that dom(β̂) ⊂ [0,+∞), which would enforce the (physically

feasible) positivity of the phase/damage variable χ. In fact, for the analysis of the irreversible case (i.e.

with µ = 1), we will have to confine the discussion to the case β̂ = I[0,+∞), cf. Hypothesis (IV) later

on. Instead, in the reversible case µ = 0, we will allow for a general β̂ (complying with Hypothesis

(III)).

Remark 2.2 (A generalization of the p-Laplacian). In fact, our analysis of system (1.1)–(1.3) extends to

the case the p-Laplacian operator −div(|∇χ|p−2∇χ), with p > d, is replaced by an elliptic operator

B : W 1,p(Ω)→ W 1,p(Ω)∗ of the form

〈B(χ), v〉W 1,p(Ω) :=

∫
Ω

∇ζφ(x,∇χ(x)) · ∇v(x) dx, (2.20)

where φ : Ω× Rd → [0,+∞) is a Carathéodory integrand such that

the map φ(x, ·) : Rd → [0,+∞) is convex, with φ(x, 0) = 0, and in C1(Rd) for a.a. x ∈ Ω,

∃ c3, c4, c5 > 0 for a.a.x ∈ Ω ∀ ζ ∈ Rd :

{
φ(x, ζ) ≥ c3|ζ|p − c4,

|∇ζφ(x, ζ)| ≤ c5(1 + |ζ|p−1) .

This more general framework was analyzed in [28], to which we refer the reader for all details.

Problem and Cauchy data. We suppose that the data f , g, and h fulfill

f ∈ L2(0, T ;L2(Ω; Rd)), (2.21)

g ∈ L1(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)′), g ≥ 0 a.e. in Ω× (0, T ) , (2.22)

h ∈ L1(0, T ;L2(∂Ω)), h ≥ 0 a.e. in ∂Ω× (0, T ) , (2.23)

and that the initial data comply with

ϑ0 ∈ L1(Ω), ∃ϑ∗ > 0 : inf
Ω
ϑ0 ≥ ϑ∗ > 0 , log ϑ0 ∈ L1(Ω), (2.24)

u0 ∈ H2
0 (Ω; Rd), v0 ∈ L2(Ω; Rd) , (2.25)

χ
0 ∈ W 1,p(Ω), β̂(χ0) ∈ L1(Ω). (2.26)
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2.3 A global existence result for the irreversible system

Before stating precisely our notion of weak solution to (the initial-boundary value problem for) system

(1.1)–(1.3) in the case of unidirectional evolution, let us briefly motivate the weak formulations for the

heat balance equation (1.1), and for the phase/damage parameter subdifferential inclusion (1.3) (with

µ = 1). They will be coupled with the pointwise (in time and space) formulation of the momentum

equation (1.2) (cf. (2.40) later on).

For (1.1), we adopt the weak formulation of proposed in [2, 7, 9]. It consists of a so-called “entropy

inequality", and of an “energy conservationïdentity. The former is obtained by formally dividing (1.1) by

ϑ, and testing it by a smooth test function ϕ. Integrating over space and time leads to∫ T

0

∫
Ω

(∂t log(ϑ) + χ
t + ρdiv(ut))ϕ dx dt+

∫ T

0

∫
Ω

K(ϑ)∇ log(ϑ)∇ϕ dx dt

−
∫ T

0

∫
Ω

K(ϑ)
ϕ

ϑ
∇ log(ϑ)∇ϑ dx dt

=

∫ T

0

∫
Ω

(g + a(χ)ε(ut)Vε(ut) + |χt|2)
ϕ

ϑ
dx dt+

∫ T

0

∫
∂Ω

h
ϕ

ϑ
dS dt

(2.27)

for all ϕ ∈ D(Q). Then, the entropy inequality (2.37) below follows. The total energy identity (2.38)

associated with system (1.1)–(1.3) is obtained by testing (1.1) by 1, (1.2) by ut, and (1.3) by χt.

Remark 2.3. Conversely, it can be checked that, when the functions ϑ and χ are sufficiently smooth,

inequalities (2.37)–(2.38), combined with (1.2) and (1.3), yield the heat equation (1.1).

Indeed, the weak formulation of (1.1) is equivalent, for sufficiently smooth solutions, to the (2.37)

with identity sign. Hence, let us suppose, by contradiction, that (2.37) holds with strict inequality sign

(hence, (1.1) does not hold). Then, using (1.2) and (1.3), we can conclude that the total energy balance

(2.38) is not satisfied.

However, at the moment the necessary regularity for ϑ and χ to carry out this argument is out of reach.

Let us emphasize that the entropy inequality (2.37) below has the advantage that all the troublesome

quadratic quantities on the right-hand side of (1.1) are tested by the negative function −ϕ. This will

allow for upper semicontinuity arguments in the limit passage for proving the existence of weak so-

lutions, cf. Sec. 5 later on. Let us also mention in advance that, when dropping the unidirectionality

constraint (i.e., in the case µ = 0), under an additional condition (cf. Hypothesis (V)), we will be able

to get an existence result for an improved formulation of (1.1), cf. Theorem 2.8 below.

A significant difficulty in the analysis of system (1.1)–(1.3) is due to the triply nonlinear character of

(1.3), featuring, in addition to the p-Laplacian and to β = ∂β̂ which contributes to W ′, the (maximal

monotone) operator ∂I(−∞,0]. Since the latter is unbounded, it is not possible to perform comparison

estimates in (1.3) and an estimate for the termsApχ and β(χ) (treated as single-valued in the context

of this heuristical discussion) could be obtained only by testing (1.3) by ∂t(Apχ + β(χ)). However,

the related calculations, involving an integration by parts in time on the right-hand side of (1.3), cannot

be carried out in the present case. That is why, we need to resort to a weak formulation of (1.3) which

does not feature the termApχ+β(χ). We draw it from [16, 17], and as therein we confine the analysis

to the particular case in which
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Hypothesis (IV).
β̂ = I[0,+∞). (2.28)

This still ensures the constraint

χ ∈ [0, 1] a.e. in Ω× (0, T ) (2.29)

provided we start from an initial datum χ
0 ≤ 1 a.e. in Ω, we will obtain by irreversibility that χ(t) ≤

χ
0 ≤ 1 a.e. in Ω, for almost all t ∈ (0, T ).

To motivate the weak formulation of (1.3) from [16, 17], we observe that (1.3) rephrases as

χ
t ≤ 0 in Ω× (0, T ), (2.30a)(
χ
t − div(|∇χ|p−2∇χ) + ξ + γ(χ) + b′(χ)

ε(u)Eε(u)

2
− ϑ
)
ψ ≥ 0 (2.30b)

for all ψ ≤ 0 in Ω× (0, T ),(
χ
t − div(|∇χ|p−2∇χ) + ξ + γ(χ) + b′(χ)

ε(u)Eε(u)

2
− ϑ
)
χ
t ≤ 0 (2.30c)

in Ω× (0, T ),

with ξ ∈ ∂I[0,+∞)(χ) in Ω × (0, T ). Our weak formulation of (1.3) in fact consists of (2.30a), of the

integrated version of (2.30b), with negative test functions from W 1,p(Ω), and of the energy inequality

obtained by integrating (2.30c). In [28, Prop. 2.14] (see also [16, Thm. 4.6]), we prove that, under

additional regularity properties, any weak solution in the sense of (2.41)–(2.44) in fact fulfills (1.3)

pointwise.

We are now in the position to specify our weak solution concept, for which we borrow the terminology

from [9].

Definition 2.4 (Entropic solutions to the irreversible system). Let µ = 1. Given initial data (ϑ0,u0,

v0, χ0) fulfilling (2.24)–(2.26), we call a triple (ϑ,u, χ) an entropic solution to the (initial-boundary

value problem) for system (1.1)–(1.3), with the boundary conditions (1.4), if

ϑ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L1(Ω)), (2.31)

log(ϑ) ∈ L2(0, T ;H1(Ω)), (2.32)

u ∈ H1(0, T ;H2
0 (Ω; Rd)) ∩W 1,∞(0, T ;H1

0 (Ω; Rd)) ∩H2(0, T ;L2(Ω; Rd)) , (2.33)

χ ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), (2.34)

(ϑ,u, χ) complies with the initial conditions

u(0, x) = u0(x), ut(0, x) = v0(x) for a.a.x ∈ Ω, (2.35)

χ(0, x) = χ
0(x) for a.a.x ∈ Ω, (2.36)

(while the initial condition for ϑ is implicitly formulated in (2.38) below), and with the entropic formulation

of (1.1)–(1.3), consisting of

11



- the entropy inequality for almost all t ∈ (0, T ] and almost all s ∈ (0, t), and for s = 0:∫ t

s

∫
Ω

(log(ϑ) + χ)ϕt dx dr − ρ
∫ t

s

∫
Ω

div(ut)ϕ dx dr −
∫ t

s

∫
Ω

K(ϑ)∇ log(ϑ) · ∇ϕ dx dr

≤ 〈log(ϑ(t)), ϕ(t)〉W 1,d+ε(Ω)− 〈log(ϑ(s)), ϕ(s)〉W 1,d+ε(Ω)

−
∫ t

s

∫
Ω

K(ϑ)
ϕ

ϑ
∇ log(ϑ) · ∇ϑ dx dr (2.37)

−
∫ t

s

∫
Ω

(
g + a(χ)ε(ut)Vε(ut) + |χt|2

) ϕ
ϑ

dx dr −
∫ t

s

∫
∂Ω

h
ϕ

ϑ
dS dr

for all ϕ in C0([0, T ];W 1,d+ε(Ω)) for some ε > 0, and ϕ ∈ H1(0, T ;L6/5(Ω)), with ϕ ≥ 0;

- the total energy inequality for almost all t ∈ (0, T ] and almost all s ∈ (0, t), and for s = 0:

E (ϑ(t),u(t),ut(t), χ(t)) ≤ E (ϑ(s),u(s),ut(s), χ(s))

+

∫ t

s

∫
Ω

g dx dr +

∫ t

s

∫
∂Ω

h dS dr +

∫ t

s

∫
Ω

f · ut dx dr ,
(2.38)

where for s = 0 we read ϑ0, and

E (ϑ,u,ut, χ) :=

∫
Ω

ϑ dx+
1

2

∫
Ω

|ut|2 dx+
1

2
e(b(χ(t))u(t),u(t))

+
1

p

∫
Ω

|∇χ|p dx+

∫
Ω

W (χ) dx ;

(2.39)

- the momentum equation

utt + V (a(χ)ut) + E (b(χ)u) + Cρ(ϑ) = f a.e. in Ω× (0, T ); (2.40)

- the weak formulation of (1.3), viz.

χ
t(x, t) ≤ 0 for a.a. (x, t) ∈ Ω× (0, T ), (2.41)∫
Ω

(
χ
t(t)ψ + |∇χ(t)|p−2∇χ(t) · ∇ψ + ξ(t)ψ + γ(χ(t))ψ

+ b′(χ(t))
ε(u(t))Eε(u(t))

2
ψ − ϑ(t)ψ

)
dx ≥ 0

for all ψ ∈ W 1,p
− (Ω), for a.a. t ∈ (0, T ),

(2.42)

where ξ ∈ ∂I[0,+∞)(χ) in the sense that

ξ ∈ L1(0, T ;L1(Ω)) and 〈ξ(t), ψ − χ(t)〉W 1,p(Ω) ≤ 0 ∀ψ ∈ W 1,p
+ (Ω),

for a.a. t ∈ (0, T ), (2.43)

as well as and the energy inequality for all t ∈ (0, T ], for s = 0, and for almost all 0 < s ≤ t∫ t

s

∫
Ω

|χt|2 dx dr +

∫
Ω

(
1

p
|∇χ(t)|p +W (χ(t))

)
dx

≤
∫

Ω

(
1

p
|∇χ(s)|p +W (χ(s))

)
dx

+

∫ t

s

∫
Ω

χ
t

(
−b′(χ)

ε(u)Eε(u)

2
+ ϑ

)
dx dr.

(2.44)
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We now state our existence result for system (1.1)–(1.3) in the case µ = 1. As far as the time-regularity

of ϑ goes, observe that we will just prove BV-in-time regularity for log(ϑ) (cf. (2.46) below). Indeed,

we will obtain BV-in-time regularity for ϑ, as well, under an additional restriction on the exponent κ in

Hypothesis (I) (note that the range of the admissible values below depends on the space dimension),

viz.

Hypothesis (V). The exponent κ in (2.15) satisfies

κ ∈ (1, 5/3) if d = 3 and κ ∈ (1, 2) if d = 2 . (2.45)

Theorem 2.5 (Existence of entropic solutions, µ = 1). Let µ = 1. Assume Hypotheses (I)–(III)
and, in addition, (IV) (i.e., β̂ = I[0,+∞)), as well as conditions (2.21)–(2.26) on the data f , g, h, ϑ0,

u0, v0, χ0. Then, there exists an entropic solution (in the sense of Definition 2.4) (ϑ,u, χ) to the

initial-boundary value problem for system (1.1)–(1.3), such that

log(ϑ) ∈ BV([0, T ];W 1,d+ε(Ω)∗) for all ε > 0, (2.46)

and ξ in (2.43) is given by

ξ(x, t) = −Iχ=0(x, t)

(
γ(χ(x, t)) + b′(χ(x, t))

ε(u(x, t))E(x)ε(u(x, t))

2
− ϑ(x, t)

)+

, (2.47)

for almost all (x, t) ∈ Ω× (0, T ), where Iχ=0 denotes the characteristic function of the set {χ = 0},
and such that ∃ϑ > 0 such that

ϑ(x, t) ≥ ϑ > 0 for a.a. (x, t) ∈ Ω× (0, T ). (2.48)

Furthermore, if in addition K satisfies Hypothesis (V), there holds

ϑ ∈ BV([0, T ];W 2,d+ε(Ω)∗) for every ε > 0, (2.49)

and the total energy inequality (2.38) holds for all t ∈ [0, T ], for s = 0, and for almost all s ∈ (0, t).

Observe that (2.49) yields that there exists D ⊂ [0, T ], at most infinitely countable, such that ϑ ∈
C0([0, T ] \ D;W 2,d+ε(Ω)∗). We will develop the proof in Section 5, by passing to the limit in the

time-discretization scheme carefully devised in Section 4.

Remark 2.6 (Uniqueness and extensions).

1 Uniqueness of solutions for the irreversible system, even in the isothermal case, is still an open

problem. This is mainly due to the doubly nonlinear character of (1.3) (cf. also [5] for non-

uniqueness examples for a general doubly nonlinear equation).

2 Theorem 2.5 could be easily extended to the case in which the indicator function I(−∞,0] in (1.3)

is replaced by
α̂ : R→ [0,+∞] convex, 1-positively homogeneous,

with dom(α̂) ⊂ (−∞, 0] and 0 ∈ α(0).
(2.50)
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2.4 A global existence result for the reversible system

In the case µ = 0, we are able to cope with a weak solvability notion for system (1.1)–(1.3) stronger

than the one from Definition 2.4. Indeed, it features a pointwise formulation for the internal parameter

equation (1.3), while keeping the entropic formulation for the heat equation (1.1). Under the additional

Hypothesis (V), we will also improve the weak formulation of the heat equation (cf. (2.54) below). As a

byproduct, we will manage to prove the total energy identity for all t ∈ [0, T ].

Definition 2.7 (Entropic solutions to the reversible system). Let µ = 0. Given initial data (ϑ0,u0,v0,
χ

0) fulfilling (2.24)–(2.26), we call a triple (ϑ,u, χ) an entropic solution to the (initial-boundary value

problem) for system (1.1)–(1.3), with the boundary conditions (1.4), if it has the regularity (2.31)–(2.34),

it complies with the initial conditions (2.35)–(2.36), and with

- the entropy inequality (2.37);

- the total energy inequality (2.38) for almost all t ∈ (0, T ], for s = 0, and for almost all s ∈
(0, t);

- the momentum equation (2.40);

- the internal parameter equation

χ
t + Apχ+ ξ + γ(χ) = −b′(χ)

ε(u)Eε(u)

2
+ ϑ a.e. in Ω× (0, T ), (2.51)

with

ξ ∈ L2(0, T ;L2(Ω)) s.t. ξ(x, t) ∈ β(χ(x, t)) for a.a. (x, t) ∈ Ω× (0, T ). (2.52)

Our second main result states the existence of an entropic solution (ϑ,u, χ) (in the sense of Definition

2.7) to the PDE system (1.1)–(1.3). Furthermore, we show that, under the additional Hypothesis (V),

the formulation of the heat equation (1.1) improves to a standard variational formulation (cf. (2.54)

below), albeit with suitably smooth test functions, and the total energy inequality (2.38) holds as an

equality. We shall refer to the solutions thus obtained as weak.

Theorem 2.8 (Existence of entropic and weak solutions, µ = 0). Let µ = 0. Assume Hypotheses (I)–
(III) and conditions (2.21)–(2.26) on the data f , g, h, ϑ0, u0, v0, χ0,. Then, there exists an entropic

solution (in the sense of Definition 2.7) (ϑ,u, χ) to the initial-boundary value problem for system

(1.1)–(1.3), such that the strict positivity property (2.48) holds for ϑ, and such that χ has the enhanced

regularity

χ ∈ L2(0, T ;W 1+σ,p(Ω)) for all 0 < σ <
1

p
. (2.53)

Moreover, if K also complies with Hypothesis (V), then ϑ has the enhanced regularity (2.49) and the
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heat equation (1.1) is fulfilled in the following weak form for all t ∈ [0, T ]∫
Ω

ϕ(t)ϑ(t)(dx)−
∫ t

0

∫
Ω

ϑϕt dx ds+

∫ t

0

∫
Ω

χ
tϑϕ dx ds+ ρ

∫ t

0

∫
Ω

div(ut)ϑϕ dx ds

+

∫ t

0

∫
Ω

K(ϑ)∇ϑ∇ϕ dx ds =

∫ t

0

∫
Ω

(
g +

ε(ut)Vε(ut)
2

+ |χt|2
)
ϕ dx ds

+

∫ t

0

∫
∂Ω

hϕ dS ds+

∫
Ω

ϑ0ϕ(0) dx

for all ϕ ∈ C0([0, T ];W 2,d+ε(Ω)) ∩H1(0, T ;L6/5(Ω)) for some ε > 0.

(2.54)

In this case, the triple (ϑ,u, χ) complies with the total energy equality

E (ϑ(t),u(t),ut(t), χ(t)) = E (ϑ(s),u(s),ut(s), χ(s)) +

∫ t

s

∫
Ω

g dx dr

+

∫ t

0

∫
∂Ω

h dS dr +

∫ t

s

∫
Ω

f · ut dx dr ,

(2.55)

for all 0 ≤ s ≤ t ≤ T .

The proof will be given in Section 5, passing to the limit in the time-discretization scheme set up in

Sec. 4. We mention in advance that the argument for (2.54) and for the total energy identity (2.55)

for all t ∈ [0, T ] relies on obtaining, for the sequence (uk, χk) of approximate solutions, the strong

convergences

uk → u in H1(0, T ;H1
0 (Ω; Rd)), χ

k → χ in H1(0, T ;L2(Ω)). (2.56)

This allows us to pass to the limit on the right-hand side of the approximate version of (2.54). In

turn, the proof of (2.56) is based on a lim sup-argument, for which it is essential to have preliminarily

obtained the pointwise formulation (2.51) of the equation for χ. This is the reason why we have not

been able to obtain the improved formulation (2.54) in the irreversible case µ = 1.

Remark 2.9 (Uniqueness in the reversible case). As in the irreversible case, a uniqueness result for

the full system seems to be out of reach. Instead, for the isothermal case in [28, Thm. 3] we have

proved uniqueness and continuous dependence of the solutions on the data. This result has been

obtained in the case the p-Laplacian operator −div(|∇χ|p−2∇χ) is replaced by an elliptic operator

of the type described in Remark 2.2, fulfilling an additional non-degeneracy condition, cf. Hypothesis

(VII) in [28]: for instance, we may consider −div((1 + |∇χ|2)(p−2)/2).

3 (Formal) A priori estimates

In this section, we perform a series of formal estimates on system (1.1)–(1.3). All of these estimates

will be rigorously justified on the time-discrete approximation scheme proposed in Section 4. Yet,

we believe that, in order to enhance the readability of the paper, it is worthwhile to develop all the

significant calculations on the (easier) time-continuous level. This is especially useful for the Second

and the Third a priori estimates, which have a non-standard character and are in fact tailored to handle

the quadratic terms on the right-hand side of (1.1).
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More in detail, we start by showing the strict positivity of the temperature ϑ, via a comparison argument

in the same lines as the one for proving positivity in [9, Subsection 4.2.1]. All the ensuing estimates rely

on this property, starting from the basic energy estimate (i.e. the one corresponding to the total energy

inequality (2.38)). After this, we test (1.1) by ϑα−1, with α ∈ (0, 1). This enables us somehow to

confine the troublesome quadratic terms to the left-hand side. Carefully using the Gagliardo-Nirenberg

inequality, we infer a bound for ϑα in L2(0, T ;H1(Ω)). Ultimately, exploiting the fact that the heat flux

K controls ϑκ (cf. (2.15)) we conclude an estimate for ϑ in L2(0, T ;H1(Ω)). This done, we are in

the position to perform all the remaining estimates, i.e. subtracting the temperature equation tested by

1 from the total energy inequality (2.38); performing an elliptic regularity estimate on the momentum

equation (1.3), and comparison estimates in (1.1) and (1.3).

We mention in advance that, with the exception of the last one, all of the ensuing estimates hold both

in the reversible (µ = 0), and in the irreversible (µ = 1) cases.

Positivity of ϑ [µ ∈ {0, 1}]. Scooping all the quadratic terms in (1.1) to the right-hand side, we

obtain

ϑt − div(K(ϑ)∇ϑ) = g + a(χ)ε(ut)Vε(ut) + |χt|2 − χtϑ− ρϑdiv(ut)

≥ g + c|ε(ut)|2 +
1

2
+ |χt|2 − Cϑ2 ≥ −Cϑ2 a.e. in Ω× (0, T ),

where we have written (1.1) in a formal way, disregarding the (positive) boundary datum h. Indeed, for

the first inequality we have used that V is positive definite, that a is strictly positive, and the fact that

| div(ut)| ≤ c(d)|ε(ut)| a.e. in Ω× (0, T ) (3.1)

with c(d) a positive constant only depending on the space dimension d. The second estimate also

relies on the fact that g ≥ 0 a.e. in Ω × (0, T ). Therefore we conclude that v solving the Cauchy

problem

vt = −1

2
v2, v(0) = ϑ∗ > 0

is a subsolution of (1.1). Hence, a comparison argument yields

ϑ(·, t) ≥ v(t) > ϑ∗ > 0 for all t ∈ [0, T ] . (3.2)

First estimate [µ ∈ {0, 1}]. Test (1.1) by 1, (1.2) by ut, (1.3) by χt and integrate over (0, t),

t ∈ (0, T ]. Adding the resulting equations and taking into account cancellations, we obtain∫
Ω

ϑ(t) dx+
1

2

∫
Ω

|ut(t)|2 dx+
1

2
e(b(χ(t))u(t),u(t)) +

1

p

∫
Ω

|∇χ(t)|p dx+

∫
Ω

W (χ(t)) dx

=

∫
Ω

ϑ0 dx+
1

2

∫
Ω

|v0|2 dx+
1

2
e(b(χ0)u0,u0) +

1

p

∫
Ω

|∇χ0|p dx+

∫
Ω

W (χ0) dx (3.3)

+

∫ t

0

∫
Ω

g dx ds+

∫ t

0

∫
∂Ω

h dS ds+

∫ t

0

∫
Ω

f · ut dx ds ,

viz. the total energy equality (2.55). For (3.3), we have also used the integration-by-parts formula∫ t

0

e(b(χ(t))u(s),ut(s)) ds+
1

2

∫ t

0

∫
Ω

b′(χ)χtε(u)Eε(u) dx ds

=
1

2
e(b(χ(t))u(t),u(t))− 1

2
e(b(χ0)u0,u0)

(3.4)
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as well as the fact that
∫ t

0

∫
Ω
∂I(−∞,0](χt)χt dx ds =

∫ t
0

∫
Ω
I(−∞,0](χt) dx ds = 0 (where we have

formally written ∂I(−∞,0](χt) as a single-valued operator). Using (2.21)–(2.26) for the data f , g, h and

the initial data (ϑ0,u0, χ0), the positivity of ϑ (cf. (3.2)), and the coercivity (2.18) ofW (cf. Hypothesis

(III)), also in view of the Poincaré inequality we conclude the following estimate

‖ϑ‖L∞(0,T ;L1(Ω)) + ‖u‖W 1,∞(0,T ;L2(Ω;Rd)) + ‖b(χ)1/2ε(u)‖L∞(0,T ;L2(Ω;Rd×d))

+ ‖χ‖L∞(0,T ;W 1,p(Ω)) ≤ C ,
(3.5)

as well as

‖W (χ)‖L∞(0,T ;L1(Ω)) ≤ C . (3.6)

Second estimate [µ ∈ {0, 1}]. Let F (ϑ) = ϑα/α, with α ∈ (0, 1). We test (1.1) by F ′(ϑ) :=

ϑα−1 , and integrate on (0, t) with t ∈ (0, T ]. We thus have∫
Ω

F (ϑ0) dx+

∫ t

0

∫
Ω

gF ′(ϑ) dx ds+

∫ t

0

∫
∂Ω

hF ′(ϑ) dS ds

+

∫ t

0

∫
Ω

a(χ)ε(ut)Vε(ut)F ′(ϑ) dx ds+

∫ t

0

∫
Ω

|χt|2F ′(ϑ) dx ds

=

∫
Ω

F (ϑ(t)) dx+

∫ t

0

∫
Ω

χ
tϑF

′(ϑ) dx ds+ ρ

∫ t

0

∫
Ω

ϑ div(ut)F
′(ϑ) dx ds

+

∫ t

0

∫
Ω

K(ϑ)∇ϑ∇(F ′(ϑ)) dx ds

whence (cf. (2.5) and the positivity (2.22) and (2.23) of g and h)

4(1− α)

α2

∫ t

0

∫
Ω

K(ϑ)|∇(ϑα/2)|2 dx ds+ c2

∫ t

0

∫
Ω

|ε(ut)|2F ′(ϑ) dx ds

+

∫ t

0

∫
Ω

|χt|2F ′(ϑ) dx ds ≤
∫

Ω

|F (ϑ0)| dx+ I1 + I2 + I3,

where we have used (2.5) and (2.16). We estimate

I1 =

∫
Ω

|F (ϑ(t))| dx ≤ 1

α

∫
Ω

max{ϑ(t), 1}α dx ≤ 1

α

∫
Ω

max{ϑ(t), 1} dx ≤ C

since α < 1 and taking into account the previously obtained (3.5). Analogously we can estimate∫
Ω
|F (ϑ0)| dx; moreover,

I2 =

∫ t

0

∫
Ω

|χtϑF ′(ϑ)| dx ds ≤ 1

4

∫ t

0

∫
Ω

|χt|2F ′(ϑ) dx ds+

∫ t

0

∫
Ω

F ′(ϑ)ϑ2 dx ds.

Using (2.16) and inequality (3.1), we have that

I3 = |ρ|
∫ t

0

∫
Ω

|ϑ div(ut)F
′(ϑ)| dx ds ≤ 1

4

∫ t

0

∫
Ω

|ε(ut)|2F ′(ϑ) dx ds

+ C

∫ t

0

∫
Ω

F ′(ϑ)ϑ2 dx ds ≤ c2

4

∫ t

0

∫
Ω

|ε(ut)|2F ′(ϑ) dx ds+ C

∫ t

0

∫
Ω

F ′(ϑ)ϑ2 dx ds ,

with c2 from (2.16).
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All in all, we conclude

4(1− α)

α2

∫ t

0

∫
Ω

K(ϑ)|∇(ϑα/2)|2 dx ds+
c2

4

∫ t

0

∫
Ω

|ε(ut)|2F ′(ϑ) dx ds

+
1

2

∫ t

0

∫
Ω

|χt|2F ′(ϑ) dx ds ≤ C + C

∫ t

0

∫
Ω

ϑα+1 dx ds.

(3.7)

Now, we fix q ≥ 4 and introduce the auxiliary quantity η := max{ϑ, 1}. Observe that η is still in

H1(Ω), and that, for q sufficiently big (see below) we have

α

2
≥ α + 1

q
whence η(α+1)/q ≤ ηα/2

.
= w. (3.8)

Therefore, taking into account that∫ t

0

∫
Ω

K(ϑ)|∇(ϑα/2)|2 dx ds ≥ c1

∫∫
{ϑ≥1}

|∇(ϑα/2)|2 dx ds = c1

∫ t

0

∫
Ω

|∇w|2 dx ds,

thanks to (2.15), we infer from (3.7) and (3.8) that∫ t

0

∫
Ω

|∇w|2 dx ds ≤ C + C

∫ t

0

‖w‖qLq(Ω) ds. (3.9)

We now apply the Gagliardo-Nirenberg inequality for d = 3 (for d = 2 even better estimates hold

true), yielding

‖w‖Lq(Ω) ≤ c1‖∇w‖θL2(Ω;Rd)‖w‖
1−θ
Lr(Ω) + c2‖w‖Lr(Ω) (3.10)

with 1 ≤ r ≤ q and θ satisfying 1/q = θ/6 + (1− θ)/r. Hence θ = 6(q − r)/q(6− r). Observe

that θ ∈ (0, 1) if q < 6 and that, by the way, this restriction on q implies that, for (3.8) we need to

have α ∈ [1/2, 1). Plugging the Gagliardo-Nirenberg estimate into (3.9) and using Young’s inequality

we ultimately conclude

c

2

∫ t

0

∫
Ω

|∇w|2 dx ds ≤ C + C

∫ t

0

‖w‖2q(1−θ)/(2−qθ)
Lr(Ω) ds+ C ′

∫ t

0

‖w‖qLr(Ω) ds . (3.11)

Now, choosing r ≤ 2/α, we have that

‖w‖Lr(Ω) =

(∫
Ω

ηrα/2 dx

)1/r

≤
(∫

Ω

η dx

)1/r

≤ C‖ϑ‖L∞(0,T ;L1(Ω)) + |Ω| ≤ C ,

where the latter inequality is due to estimate (3.5). Combining the above estimate with (3.11) we infer

a bound for w = ηα/2 in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;Lr(Ω)). Ultimately, also in view of (3.9), we

conclude that

‖ϑα/2‖L2(0,T ;H1(Ω))∩L∞(0,T ;Lr(Ω)) ≤ C. (3.12)

Third estimate [µ ∈ {0, 1}]. It follows from (3.7) and (2.15) that

C ≥
∫ t

0

∫
Ω

K(ϑ)|∇(ϑα/2)|2 dx ds ≥ c1

∫ t

0

∫
Ω

ϑκ|∇(ϑα/2)|2 dx ds

=

∫ t

0

∫
Ω

|ϑκ+α−2||∇ϑ|2 dx ds

=

∫ t

0

∫
Ω

|∇(ϑ(κ+α)/2)|2 dx ds

(3.13)
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with α ∈ [1/2, 1) arbitrary.

From (3.13) and the strict positivity of ϑ (3.2) it follows that∫ t

0

∫
Ω

|∇ϑ|2 dx ds ≤ C,

provided that κ + α − 2 ≥ 0. Observe that, since κ > 1 we can choose α ∈ [1/2, 1) such that

this inequality holds. Hence, taking into account estimate (3.5) and applying Poincaré inequality, we

deduce

‖ϑ‖L2(0,T ;H1(Ω)) ≤ C. (3.14)

By interpolation (cf. (2.10)), we also get

‖ϑ‖Lh(Ω×(0,T )) ≤ C with h = 8/3 if d = 3, h = 3 if d = 2 . (3.15)

For later use, we also point out that estimates (3.13) and (3.14) yield that ‖∇ϑ(κ−α)/2‖L2(0,T ;L2(Ω)) ≤
C . Combining this with estimate (3.5) and using a nonlinear version of the Poincaré inequality (cf. e.g.

(2.13)), we infer

‖ϑ(κ−α)/2‖L2(0,T ;H1(Ω)), ‖ϑ(κ+α)/2‖L2(0,T ;H1(Ω)) ≤ C. (3.16)

Fourth estimate [µ ∈ {0, 1}]. We test (1.1) by 1, integrate over (0, t), and subtract the resulting

identity from the total energy balance (3.3). We thus obtain

1

2

∫
Ω

|ut(t)|2 dx+

∫ t

0

v(a(χ)ut,ut) ds+
1

2
e(b(χ(t))u(t),u(t)) +

∫ t

0

∫
Ω

|χt|2 dx ds

+

∫
Ω

1

p
|∇χ(t)|p +W (χ(t)) dx =

1

2

∫
Ω

|u0|2 dx+
1

2
e(b(χ0)u0,u0) (3.17)

+

∫
Ω

1

p
|∇χ0|p +

∫
Ω

W (χ0) dx+

∫ t

0

∫
Ω

ϑ (ρ div ut + χ
t) dx ds+

∫ t

0

∫
Ω

f ut dx ds.

Using now (2.25)–(2.26) to estimate the initial data (u0, χ0), (2.21) on f , Hyp. (III) (which in particular

yields that W is bounded from below), and combining estimate (3.14) on ϑ with (3.1), we obtain

‖χt‖L2(Ω×(0,T )) + ‖a(χ)1/2ε(ut)‖L2(Ω×(0,T );Rd×d) ≤ C , (3.18)

whence ‖ut‖L2(0,T ;H1
0 (Ω;Rd)) ≤ C , by (2.16).

Fifth estimate [µ ∈ {0, 1}]. We use here the crucial assumption that p > d. We test (1.2) by

−div(ε(ut)) and integrate on time (cf. also [28, Sec. 3]). Using the assumption p > d, we can fix
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ζ > 0 such that p ≥ d+ ζ , we get

−
∫ t

0

∫
Ω

E (b(χ)u) · div(ε(ut)) dx ds

= −
∫ t

0

∫
Ω

∇b(χ)Eε(u)div(ε(ut)) dx ds−
∫ t

0

∫
Ω

b(χ)div(E(ε(u)))div(ε(ut)) dx ds

≤ C

∫ t

0

‖∇b(χ)‖Ld+ζ(Ω;Rd)‖ε(u)‖Ld?−ζ(Ω;Rd×d)‖div(ε(ut))‖L2(Ω;Rd) ds

+ C

∫ t

0

‖u‖H2(Ω;Rd)‖ut‖H2(Ω;Rd) ds

≤ σ

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ Cσ

∫ t

0

(
‖χ‖2

W 1,p(Ω)‖u‖2
H2(Ω;Rd) + ‖u‖2

H2(Ω;Rd)

)
ds .

Here, d? is from (2.11) and we have exploited inequality (2.12) with a constant σ that we will choose

later, and some Cσ > 0. Moreover, we have used that ‖b(χ)‖Ld+ζ(Ω) ≤ C‖χ‖W 1,p(Ω). Furthermore,

relying on the elliptic regularity result in (2.9) and on (2.16), we obtain

−
∫ t

0

∫
Ω

V (a(χ)ut)) · div(ε(ut)) dx ds =

∫ t

0

∫
Ω

−∇a(χ)Vε(ut)div(ε(ut)) dx ds

−
∫ t

0

∫
Ω

a(χ)div(V(ε(ut)))div(ε(ut)) dx ds (3.19)

≥ C

∫ t

0

∫
Ω

|div(ε(ut))|2 dx ds+ I1 ≥ c

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ I1,

where we get

|I1| =
∣∣∣∣∫ t

0

∫
Ω

∇a(χ)Vε(ut)div(ε(ut))

∣∣∣∣ dx ds

≤ C

∫ t

0

‖∇a(χ)‖Ld+ζ(Ω;Rd)‖ε(ut)‖Ld?−ζ(Ω;Rd×d)‖div(ε(ut))‖L2(Ω;Rd) ds

≤ δ

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ Cδ

∫ t

0

‖∇a(χ)‖2
Ld+ζ(Ω;Rd)‖ε(ut)‖

2
Ld?−ζ(Ω;Rd×d) ds

≤ δ

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ Cδ%

2

∫ t

0

‖χ‖2
W 1,p(Ω)‖ut‖2

H2(Ω;Rd) ds

+ CδC%

∫ t

0

‖χ‖2
W 1,p(Ω)‖ut‖2

L2(Ω;Rd) ds,

again exploiting (2.12), for some positive constants δ and % that we will choose later and for some

Cδ, C% > 0. Moreover, we also have that∣∣∣∣ρ∫ t

0

∫
Ω

∇ϑ · div(ε(ut)) dx ds

∣∣∣∣ ≤ η

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ Cη

∫ t

0

‖∇ϑ‖2
L2(Ω;Rd) ds (3.20)

holds true for some positive constant η to be fixed later and for someCη > 0. Collecting (3.19)–(3.20),

(3.5) and (3.14), and also using that
∫

Ω
uttdiv(ε(ut)) dx = 1

2
d
dt

(∫
Ω
|ε(ut)|2 dx

)
, we conclude that

1

2

∫
Ω

|ε(ut(t))|2 dx+ c

∫ t

0

‖ut‖2
H2(Ω;Rd) ds ≤ 1

2

∫
Ω

|ε(v0)|2 dx+ C‖f‖2
L2(0,T ;L2(Ω;Rd))

+
c

2

∫ t

0

‖ut‖2
H2(Ω;Rd) ds+ C

(
1 + ‖u0‖2

H2(Ω;Rd) +

∫ t

0

∫ s

0

‖ut‖2
H2(Ω;Rd) dr ds

)
,
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where we have used the fact that
∫ t

0
‖u‖2

H2(Ω;Rd)
ds ≤ ‖u0‖2

H2(Ω;Rd)
+
∫ t

0

∫ s
0
‖ut‖2

H2(Ω;Rd)
dr ds

and chosen σ, δ, % and η sufficiently small. Taking into account condition (2.21) on f , the assumptions

on the initial data (2.25), and using a standard Gronwall lemma, we conclude

‖ut‖L2(0,t;H2
0 (Ω;Rd))∩L∞(0,t;H1

0 (Ω;Rd)) ≤ C. (3.21)

By comparison in (1.2), taking into account the regularity property (2.8b), we also get

‖utt‖L2(0,t;L2(Ω;Rd)) ≤ C. (3.22)

Sixth estimate [µ ∈ {0, 1}] We multiply (1.1) by w
ϑ

, with w a test function in W 1,d(Ω) ∩ L∞(Ω)

(in particular, this is true for w ∈ W 1,d+ε(Ω) with ε > 0). We integrate in space, only. We thus obtain

(cf. (2.27)) that∣∣∣∣∫
Ω

∂t log(ϑ)w dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

Hw dx

∣∣∣∣+

∣∣∣∣∫
Ω

K(ϑ)

ϑ
∇ϑ · ∇w dx

∣∣∣∣+

∣∣∣∣∫
Ω

K(ϑ)

ϑ2
|∇ϑ|2w dx

∣∣∣∣
+

∣∣∣∣∫
Ω

Jw dx

∣∣∣∣+

∣∣∣∣∫
∂Ω

hw dS

∣∣∣∣ .= I1 + I2 + I3 + I4 + I5

where we have used the place-holders H := −χt− ρdiv(ut) and J := 1
ϑ
(g+ a(χ)ε(ut)Vε(ut) +

|χt|2). Estimate (3.18) yields that ‖H‖L2(0,T ;L2(Ω)) ≤ C , therefore |I1| ≤ H(t)‖w‖L2(Ω) with

H(t) = ‖H(·, t)‖L2(Ω) ∈ L2(0, T ). Analogously, also in view of (2.22) and of (3.2) we have that

|I4| ≤
1

ϑ∗
J(t)‖w‖L∞(Ω) with J(t) := ‖J(·, t)‖L1(Ω) ∈ L1(0, T ). (3.23)

Moreover, |I5| ≤ ‖h(t)‖L2(∂Ω)‖w‖L2(∂Ω), with ‖h(t)‖L2(∂Ω) ∈ L1(0, T ) thanks to (2.23). Using the

growth condition (2.15) for K, we estimate

|I2| ≤ C

∫
Ω

ϑκ−1|∇ϑ||∇w| dx+ C

∫
Ω

1

ϑ
|∇ϑ||∇w| dx .

= I2,1 + I2,2. (3.24)

Thanks to the previously proved positivity (3.2), we have

I2,2 ≤
C

ϑ∗
O(t)‖∇w‖L2(Ω;Rd) with O(t) := ‖∇ϑ(t)‖L2(Ω;Rd) ∈ L2(0, T )

by (3.14). We estimate I2,1 via the Hölder inequality, taking into account (3.13) and (3.16), whence, for

d ∈ {2, 3},

I2,1 ≤ C‖ϑ(κ+α−2)/2∇ϑ‖L2(Ω;Rd)‖ϑ(κ−α)/2‖L6(Ω)‖∇w‖L3(Ω;Rd)
.
= CO∗(t)‖∇w‖L3(Ω;Rd)

with O∗(t) := ‖ϑ(t)(κ+α−2)/2∇ϑ(t)‖L2(Ω;Rd)‖ϑ(t)(κ−α)/2‖L6(Ω) ∈ L1(0, T ).

Finally, we have

|I3| ≤ C

∫
Ω

ϑκ−2|∇ϑ|2|w| dx+ C

∫
Ω

1

ϑ2
|∇ϑ|2|w| dx .

= I3,1 + I3,2. (3.25)

The positivity property (3.2) again guarantees

I3,2 ≤
C

ϑ2
∗
O(t)2‖w‖L∞(0,T ) with O(t)2 ∈ L1(0, T )
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while, using that ϑκ−2 ≤ cϑκ+α−2 + c′, we infer

I3,2 ≤ ‖w‖L∞(Ω)

(
c

∫
Ω

ϑκ+α−2|∇ϑ|2 dx+ c′
∫

Ω

|∇ϑ|2 dx

)
.
= ‖w‖L∞(Ω)O∗(t)

with O∗(t) = c

∫
Ω

ϑ(t)κ+α−2|∇ϑ(t)|2 dx+ c′
∫

Ω

|∇ϑ(t)|2 dx ∈ L1(0, T ),

(3.26)

thanks to (3.13) and (3.14).

Collecting all of the above calculations, we conclude that

‖∂t log(ϑ)‖L1(0,T ;(W 1,d(Ω)∩L∞(Ω))∗) ≤ C. (3.27)

Seventh estimate [µ ∈ {0, 1}], κ ∈ (1, 5/3) if d = 3 and κ ∈ (1, 2) if d = 2 Assume in

addition Hypothesis (V). We multiply (1.1) by a test function w ∈ W 1,∞(Ω) (which e.g. holds if

w ∈ W 2,d+ε(Ω) for ε > 0). By comparison we have∣∣∣∣∫
Ω

ϑtw dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

Lw dx

∣∣∣∣+

∣∣∣∣∫
Ω

K(ϑ)∇ϑ · ∇w dx

∣∣∣∣+

∣∣∣∣∫
∂Ω

hw dS

∣∣∣∣ .= I1 + I2 + I3,

where we have set L = −χtϑ− ρϑdiv(ut) + g + a(χ)ε(ut)Vε(ut) + |χt|2. Therefore,

|I1| ≤ L(t)‖w‖L∞(Ω) with L(t) := ‖L(t)‖L1(Ω) ∈ L1(0, T ),

|I3| ≤ ‖h(t)‖L2(∂Ω)‖w‖L2(∂Ω) with h ∈ L1(0, T )

thanks to (3.14), (3.18) and (2.23), respectively. As for I2, in view of (2.15), taking into account (3.13)

and using the Hölder inequality, we obtain

|I2| ≤ C‖ϑ(κ−α+2)/2‖L2(Ω)‖ϑ(κ+α−2)/2∇ϑ‖L2(Ω;Rd)‖∇w‖L∞(Ω;Rd)

+ C‖∇ϑ‖L2(Ω;Rd)‖∇w‖L2(Ω;Rd).
(3.28)

Observe that, since α can be chosen arbitrarily close to 1, in view of estimate (3.15) we have that

ϑ(κ−α+2)/2 is bounded in L2(0, T ;L2(Ω)) if and only if κ < 5
3

if d = 3, and κ < 2 if d = 2. Under

this restriction on κ, we have that |I2| ≤ CL∗(t)‖∇w‖L∞(Ω) for some L∗ ∈ L1(0, T ). Ultimately,

we conclude that

‖ϑt‖L1(0,T ;W 1,∞(Ω)∗) ≤ C. (3.29)

Eighth estimate [µ = 0]. In view of the previously obtained estimates (3.5), (3.14), (3.18), and

(3.21), a comparison in equation (1.3) yields that (recall that ξ is a selection in β(χ) a.e. in Ω×(0, T )),

‖Ap(χ) + ξ‖L2(0,T ;L2(Ω)) ≤ C

whence, by standard elliptic regularity,

‖Ap(χ)‖L2(0,T ;L2(Ω)) + ‖ξ‖L2(0,T ;L2(Ω)) ≤ C. (3.30)

In view of the regularity results [31, Thm. 2, Rmk. 2.5], we finally infer the enhanced regularity (2.53)

for χ.
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Remark 3.1 (The p-Laplacian regularization). A close perusal at the above calculations shows that

the fact that p > d for the p-Laplacian term in the χ-equation (1.3) has been used only for carrying out

the calculations in the Sixth estimate. All the other estimates do not depend on the condition p > d,

and would therefore hold if the operator Ap in (1.3) were replaced by the Laplacian.

In turn, the Sixth estimate for u will play a crucial role in the limit passage arguments at the basis of

the proofs of Theorems 2.5 and 2.8: it will ensure strong compactness in H1(0, T ;H2
0 (Ω; Rd)) (cf.

Lemma 5.1) for the sequences of approximate solutions constructed in Sec. 4. Relying on this, we will

be able to pass to the limit with the quadratic term |ε(ut)|2 on the right-hand side of (1.1).

Nonetheless, in Sec. 6 we will show that, in the case µ = 1 of unidirectional evolution, it is ultimately

possible to drop the constraint p > d and in fact we will obtain an existence result for the entropic

formulation of system (1.1)–(1.3), in the case (1.3) simply features the Laplacian (i.e. for p = 2).

4 Time discretization

In Section 4.1 we set up a single time discretization scheme for both the irreversible (µ = 1) and for

the reversible (µ = 0) systems. We then show in Section 4.2 that the piecewise constant and piece-

wise linear interpolants of the discrete solutions satisfy a total energy inequality, and the approximate

versions of the entropy inequality and of equations (1.2)–(1.3). Finally, in Section 4.3 we rigorously

prove the a priori estimates from Section 3 in the time-discrete context.

Notation 4.1. In what follows, also in view of the extension (2.50) mentioned at the end of Sec. 2.3,

we will use α̂ and α as place-holders for I(−∞,0] and ∂I(−∞,0].

4.1 Setup of the time discretization

We consider an equidistant partition of [0, T ], with time-step τ > 0 and nodes tkτ := kτ , k =

0, . . . , Kτ . In this framework, we approximate the data f , g, and h by local means, i.e. setting for all

k = 1, . . . , Kτ

fkτ :=
1

τ

∫ tkτ

tk−1
τ

f(s) ds , gkτ :=
1

τ

∫ tkτ

tk−1
τ

g(s) ds , hkτ :=
1

τ

∫ tkτ

tk−1
τ

h(s) ds . (4.1)

Consider the following initial data

ϑ0
τ := ϑ0, u0

τ := u0, u−1
τ := u0 − τv0, χ0

τ := χ
0. (4.2)

We construct discrete solutions to system (1.1)–(1.3) by solving the following elliptic system, featuring

the operator Ak : X → H1(Ω)∗, with

X = {θ ∈ H1(Ω) :

∫
Ω

K(θ)∇θ · ∇v dx is well defined for all v ∈ H1(Ω)},

Ak : X → H1(Ω)∗ defined by

〈Ak(θ), v〉H1(Ω) :=

∫
Ω

K(θ)∇θ · ∇v dx−
∫
∂Ω

hkτv dS .

(4.3)
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Problem 4.2 (Time discretization of the reversible system, µ ∈ {0, 1}). Starting from (u0
τ , u

−1
τ , χ0

τ ,

ϑ0
τ ) as in (4.2), find {ϑkτ ,ukτ , χkτ}Kτk=1 ⊂ X ×H2

0 (Ω; Rd)×W 1,p(Ω) fulfilling

ϑkτ − ϑk−1
τ

τ
+
χk
τ − χk−1

τ

τ
ϑkτ + ρ div

(
ukτ − uk−1

τ

τ

)
ϑkτ + Ak(ϑkτ ) = gkτ (4.4)

+ a(χk−1
τ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
+

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 +
τ 1/2

2

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 in H1(Ω)∗,

ukτ − 2uk−1
τ + uk−2

τ

τ 2
+ V

(
a(χk−1

τ )
ukτ − uk−1

τ

τ

)
+ E

(
b(χkτ )u

k
τ

)
(4.5)

+ Cρ(ϑ
k
τ ) = fkτ a.e. in Ω,

χk
τ − χk−1

τ

τ
+
√
τ
χk
τ − χk−1

τ

τ
+ µζkτ + Ap(χ

k
τ ) + ξkτ

+ γ(χkτ ) 3 −b′(χkτ )
ε(uk−1

τ )Eε(uk−1
τ )

2
+ ϑkτ a.e. in Ω ,

(4.6)

where I ∈ Rd×d×d×d denotes the identity tensor and

ξkτ ∈ β(χkτ ) a.e. in Ω, (4.7)

ζkτ ∈ α
(
χk
τ − χk−1

τ

τ

)
a.e. in Ω. (4.8)

Remark 4.3 (Features of the time-discretization scheme). A few observations on Problem 4.2 are in

order.

First of all, let us point out that the scheme is fully implicit and, in particular, (4.6) is coupled to the

system (4.4)–(4.5) by the implicit term ϑkτ on the right-hand side, in view of proving the strict positivity

(4.10) below for the discrete temperature ϑkτ . As we will see, our argument for (4.10) is the discrete

version of the comparison argument developed at the beginning of Section 3 and strongly relies on the

structure of the discrete temperature equation (4.4). However, in the case of unidirectional evolution,

we could have decoupled the discrete equation for χ from (4.4)–(4.5), replacing (4.6) by

χk
τ − χk−1

τ

τ
+µζkτ +Ap(χ

k
τ )+ξkτ +γ(χkτ ) 3 −b′(χkτ )

ε(uk−1
τ )Eε(uk−1

τ )

2
+ϑk−1

τ a.e. in Ω , (4.9)

and, accordingly, replacing the coupling term
χk
τ−χ

k−1
τ

τ
ϑkτ on the left-hand side of (4.4) by

χk
τ−χ

k−1
τ

τ
ϑk−1
τ . In Remark 4.5 below, we will show how it is still possible to prove the strict positiv-

ity of the discrete temperature for this partially decoupled scheme.

Second, observe that τ1/2

2

∣∣∣χkτ−χk−1
τ

τ

∣∣∣2 appears on the right-hand side of (4.4) and, accordingly,
√
τ
χk
τ−χ

k−1
τ

τ
features on the left-hand side of (4.6). These terms have been added for technical rea-

sons, related to the proof of the discrete version of the total energy inequality (2.38), cf. the text above

Proposition 4.8. Clearly, they will disappear when passing to the limit with τ ↓ 0.

Because of the implicit character of system (4.4)–(4.6), for the existence proof (cf. Lemma 4.4 below)

we shall have to resort to a fixed-point type result from the theory for elliptic systems featuring pseudo-

monotone operators, drawn from [29, Chap. II]. Indeed, we will not apply it directly to system (4.4)–

(4.6), but to an approximation of (4.4)–(4.6), i.e. system (4.15)–(4.17) below, obtained in the following

way. We will need to
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1 truncate K, along the lines of [15], in such a way as to have a bounded function in the elliptic

operator in the temperature equation (4.4). Therefore, the truncated operator KM , with M a

positive parameter, shall be defined on H1(Ω) (in place of X), with values in H1(Ω)∗ (in place

of X∗). Accordingly, we shall truncate all occurrences of ϑ in a quadratic term;

2 following [30], add the higher order terms −νdiv(|ε(ukτ )|η−2Iε(ukτ )) and ν|χkτ |η−2χk
τ , with

ν > 0 and η > 4, on the left-hand sides of (4.5) and (4.6), respectively. Their role is to

compensate the quadratic terms on the right-hand side of (4.4). As a result, both for d = 2

and for d = 3 the pseudo-monotone operator by means of which we will rephrase system

(4.15)–(4.17) will turn out to be coercive, in its ϑ-component, with respect to the H1(Ω)-norm;

3 in the case µ = 1, in order to cope with the (possible) unboundedness of the operator α we

will have to replace it with its Yosida-regularization αν (cf. [3]), with ν the same parameter as

above.

Then, in the proof of Lemma 4.4 we will

1 prove the existence of solutions to the approximate discrete system (4.15)–(4.17);

2 pass to the limit in (4.15)–(4.17) first as the truncation parameter M → ∞ and conclude an

existence result for an approximation of system (4.4)–(4.6), still depending on the parameter

ν > 0;

3 pass to the limit in this approximate system as ν → 0 and conclude the existence of solutions

to (4.4)–(4.6).

We postpone to Remark 4.6 some comments on the reason why we need to keep the two limit pas-

sages as M →∞ and ν → 0 distinct.

Our existence result for Problem 4.2 reads

Lemma 4.4 (Existence for the time-discrete Problem 4.2, µ ∈ {0, 1}). Assume Hypotheses (I)–(III),
and assumptions (2.21)–(2.26) on the data f , g, h, ϑ0, u0, v0, χ0. Then, there exists τ̄ > 0 such

that for all 0 < τ ≤ τ̄ Problem 4.2, admits at least one solution {(ϑkτ ,ukτ , χkτ )}Kτk=1.

Furthermore, any solution {(ϑkτ ,ukτ , χkτ}Kτk=1 of Problem 4.2 fulfills

ϑkτ (x) ≥ ϑ > 0 for a.a. x ∈ Ω (4.10)

for some ϑ = ϑ(T ).

Proof. We split the proof in some steps.

Step 1: approximation. As already mentioned, we construct our approximation of system (4.4)–

(4.6) by truncating K in (4.4) and the quadratic terms in ϑ, replacing α with its Yosida approximation

αν , and adding higher order terms to (4.5) and (4.6). Namely, let

KM(r) :=


K(−M) if r < −M,

K(r) if |r| ≤M,

K(M) if r > M

(4.11)
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and accordingly introduce the operator

Ak
M : H1(Ω)→ H1(Ω)∗

defined by 〈Ak
M(θ), v〉H1(Ω) :=

∫
Ω

KM(θ)∇θ · ∇v dx−
∫
∂Ω

hkτv dS.
(4.12)

Observe that, thanks to (2.15) there still holds KM(r) ≥ c0 for all r ∈ R, and therefore

〈Ak
M(θ), θ〉H1(Ω) ≥ c0

∫
Ω

|∇θ|2 dx for all θ ∈ H1(Ω). (4.13)

We also introduce the truncation operator TM : R→ R

TM(r) :=


−M if r < −M,

r if |r| ≤M,

M if r > M.

(4.14)

Furthermore, for a given ν > 0 we denote by αν the Yosida approximation of α with parameter ν.

Then, we consider following approximation of system (4.4)–(4.6):

ϑkτ − ϑk−1
τ

τ
+
χk
τ − χk−1

τ

τ
TM(ϑkτ ) + ρ div

(
ukτ − uk−1

τ

τ

)
TM(ϑkτ ) + Ak

M(ϑkτ ) = gkτ (4.15)

+ a(χk−1
τ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
+

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 +
τ 1/2

2

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 in H1(Ω)∗,

ukτ − 2uk−1
τ + uk−2

τ

τ 2
+ V

(
a(χk−1

τ )
ukτ − uk−1

τ

τ

)
+ E

(
b(χkτ )u

k
τ

)
+ Cρ(TM(ϑkτ ))

− νdiv(|ε(ukτ )|η−2Iε(ukτ )) = fkτ in W 1,η(Ω; Rd)∗,

(4.16)

χk
τ − χk−1

τ

τ
+
√
τ
χk
τ − χk−1

τ

τ
+ µαν

(
χk
τ − χk−1

τ

τ

)
+ Ap(χ

k
τ ) + ξkτ + γ(χkτ )

+ ν|χkτ |η−2χk
τ = −b′(χkτ )

ε(uk−1
τ )Eε(uk−1

τ )

2
+ TM(ϑkτ ) a.e. in Ω ,

(4.17)

with ξkτ ∈ β(χkτ ) a.e. in Ω.

Step 2: existence of solutions for the approximate system. Observe that system (4.15)–(4.17)

can be recast as

ϑkτ +
(
χk
τ − χk−1

τ

)
TM(ϑkτ ) + ρ div

(
ukτ − uk−1

τ

)
TM(ϑkτ ) + τAk

M(ϑkτ )

− τa(χk−1
τ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
− τ

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 − τ 3/2

2

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2
= ϑk−1

τ + τgkτ in H1(Ω)∗, (4.18)
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ukτ + τV
(
a(χk−1

τ )(ukτ − uk−1
τ )

)
+ τ 2E

(
b(χkτ )u

k
τ

)
+ τ 2Cρ(TM(ϑkτ ))− ντ 2div(|ε(ukτ )|η−2Iε(ukτ )) (4.19)

= 2uk−1
τ − uk−2

τ + τ 2fkτ in W 1,η(Ω; Rd)∗,

χk
τ +
√
τχkτ + µταν

(
χk
τ − χk−1

τ

τ

)
+ τAp(χ

k
τ ) + τξkτ + τγ(χkτ ) + ντ |χkτ |η−2χk

τ − τTM(ϑkτ )

(4.20)

= χk−1
τ +

√
τχk−1

τ − τb′(χkτ )
ε(uk−1

τ )Eε(uk−1
τ )

2
a.e. in Ω .

Denoting by Rk−1 the operator acting on the unknown (ϑkτ ,u
k
τ , χ

k
τ ) and by Hk−1 the vector of the

terms on the r.h.s. of the above equations, we can reformulate system (4.18)–(4.20) in the abstract

form

Rk−1(ϑkτ ,u
k
τ , χ

k
τ ) = Hk−1. (4.21)

It can be checked that Rk−1 is a pseudo-monotone operator (according to [29, Chap. II, Def. 2.1]) on

H1(Ω)×W 1,η
0 (Ω; Rd)×H1(Ω). In order to check that Rk−1 is coercive on that space, it is sufficient

to test (4.18) by ϑkτ , (4.19) by ukτ , (4.20) by χkτ and add the resulting equations. To obtain a bound for

‖ϑkτ‖H1(Ω) we use that Ak
M is coercive (cf. (4.13)). The additional terms −νdiv(|ε(ukτ )|η−2Iε(ukτ ))

and ν|χkτ |η−2χk
τ in (4.19) and (4.20) enable us to control the quadratic terms on the right-hand side

of (4.18). More in detail, the test of (4.18) by ϑkτ gives rise, e.g., to the term I1 :=
∫

Ω
a(χk−1

τ )ε(ukτ )

Vε(ukτ )ϑkτ dx, which can be estimated as follows

|I1| ≤ C‖a(χk−1
τ )‖L∞(Ω)‖ε(ukτ )‖2

L4(Ω;Rd×d)
‖ϑkτ‖L2(Ω)

≤ 1
4
‖ϑkτ‖2

L2(Ω) + C‖ε(ukτ )‖4
L4(Ω;Rd×d)

≤ 1
4
‖ϑkτ‖2

L2(Ω) + ντ2

4
‖ε(ukτ )‖

η
Lη(Ω;Rd×d)

+ C,

where the first estimate follows from the Hölder inequality, the second one from the fact that

‖a(χk−1
τ )‖L∞(Ω) ≤ C since χk−1

τ ∈ W 1,p(Ω) and a ∈ C0(R), and the last one relies on η > 4.

Therefore, the right-hand side terms can be absorbed by the left-hand side ones, also resulting from

the test of (4.19) by ukτ . With analogous calculations we estimate I2 :=
∫

Ω
(|χkτ |2 + τ1/2

2
|χkτ |2)ϑkτ dx,

exploiting the term ντ |χkτ |η−2χk
τ on the left-hand side of (4.20).

Therefore, the Leray-Lions type existence result of [29, Chap. II, Thm. 2.6] applies, yielding the exis-

tence of a solution (ϑkτ ,u
k
τ , χ

k
τ ) (whose dependence on the parameters M and ν is not highlighted,

for simplicity) to (4.15)–(4.17).

Step 3: proof of the strict positivity (4.10). Observe first that, for ϑkτ solving (4.15)–(4.17) the strict

positivity (4.10) holds for k = 0 with ϑ := ϑ∗ due to (2.24). In order to prove that ϑkτ ≥ ϑ > 0 a.e. in

Ω, for every k ≥ 1, we proceed in the same spirit of the proof of the strict positivity of ϑ in Sec. 3 (cf.

also [19, Sec. 5.2]). Namely, we start by deducing from (4.4) that∫
Ω

ϑkτ − ϑk−1
τ

τ
w dx+

∫
Ω

KM(ϑkτ )∇ϑkτ∇w dx

≥ −C
∫

Ω

(ϑkτ )
2w dx for every w ∈ W 1,2

+ (Ω),

(4.22)
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where C is independent of k. We now consider the decreasing sequence {vk} ⊆ R defined recur-

sively as
vk − vk−1

τ
= −Cv2

k, v0 = ϑ∗ > 0 , (4.23)

whereC is the same constant of (4.22). We write now (4.23), adding the term− div(KM(ϑkτ )∇vk) =

0, in the form

1

τ

∫
Ω

(vk − vk−1)w dx+

∫
Ω

KM(ϑkτ )∇vk · ∇w dx = −C
∫

Ω

v2
kw dx for every ww ∈ W 1,2

+ (Ω).

Subtracting (4.22) from (4.23) and testing the difference by w = Hε(vk − ϑk), where

Hε(v) =


0 if v ≤ 0

v/ε if v ∈ (0, ε)

1 if v ≥ ε

we obtain, since vk < vk−1 that∫
Ω

(
(vk − vk−1)− (ϑkτ − ϑk−1

τ )
)
Hε(vk − ϑkτ ) dx ≤ 0 . (4.24)

Assume now that ϑk−1
τ ≥ vk−1 a.e. in Ω (which is true for k = 1). Taking ε ↘ 0, (4.24) yields

ϑkτ ≥ vk a.e. in Ω, and, by induction, ϑkτ ≥ vk > vKτ a.e. in Ω for every k = 1, . . . , Kτ . We

now prove that there exists ϑ > 0 such that vKτ ≥ ϑ a.e. in Ω. To this aim, observe that vKτ
rewrites as vKτ = G−1(G(vKτ )), whereG(z) := −

∫ v0

z
1
s2

ds is monotonlcally increasing on (0, v0],

G(0+) = −∞,G(v0) = 0, hence, by the mean value theorem, for every k = 1, . . . , Kτ there exists

sk ∈ [vk, vk−1] such that

G(vk)−G(vk−1)

vk − vk−1

= G′(sk) =
1

s2
k

≤ 1

v2
k

,

from which we deduce, using (4.23),

G(vk)−G(vk−1)

−Cτv2
k

≤ 1

v2
k

=⇒ G(vKτ ) ≥ −CτKτ .

Hence, we get

ϑkτ > vKτ = G−1(G(vKτ )) ≥ G−1(−CτKτ ) = G−1(−CT ) =: ϑ(T ). (4.25)

Thus, we conclude (4.10) with ϑ = G−1(−CT ).

Step 4: passage to the limit as M → ∞. We now pass to the limit in (4.15)–(4.17) as M →
∞, for ν > 0 fixed. In this framework, we will denote by (ϑM ,uM , χM) the solutions of (4.15)–

(4.17), with (ϑk−1
τ ,uk−1

τ , χk−1
τ ) given and ν > 0 fixed. First of all, we derive a bunch of estimates for

(ϑM ,uM , χM)M , holding for constants independent of M > 0 (but possibly depending on τ > 0,

as well as on norms of (ϑk−1
τ ,uk−1

τ , χk−1
τ )).
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We test (4.15) by 1, (4.16) by uM − uk−1
τ , (4.17) by χM − χk−1

τ , and add the resulting relations.

Taking into account all cancellations, conditions (2.21)–(2.26), as well as the fact that the Yosida ap-

proximation α̂ν of α̂ = I(∞,0] is a positive function, we obtain that

∃C > 0 ∀M > 0 : ‖ϑM‖L1(Ω) + ‖uM‖H1(Ω;Rd)

+ ν1/η‖ε(uM)‖Lη(Ω;Rd×d) + ‖χM‖W 1,p(Ω) ≤ C.
(4.26)

We now test (4.15) by TM(ϑM). Observing that

KM(ϑM)∇ϑM∇(TM(ϑM)) = K(TM(ϑM))|∇(TM(ϑM)))|2
ϑMTM(ϑM) ≥ |TM(ϑM)|2

}
a.e. in Ω,

we get

1

τ

∫
Ω

|TM(ϑM)|2 dx+

∫
Ω

K(TM(ϑM))|∇(TM(ϑM)))|2 dx

≤
∫

Ω

|gkτ + ϑk−1
τ ||TM(ϑM)| dx+

∫
∂Ω

hkτ |TM(ϑM)| dS

+

∫
Ω

|`kτ,M ||TM(ϑM)|2 dx+

∫
Ω

|jkτ,M ||TM(ϑM)| dx

(4.27)

with the place-holders

`kτ,M :=−
χ
M − χk−1

τ

τ
− ρ div

(
uM − uk−1

τ

τ

)
,

jkτ,M :=a(χk−1
τ )ε

(
uM − uk−1

τ

τ

)
Vε
(

uM − uk−1
τ

τ

)
+

∣∣∣∣χM − χk−1
τ

τ

∣∣∣∣2 +
τ 1/2

2

∣∣∣∣χM − χk−1
τ

τ

∣∣∣∣2 .
Arguing in the same way as in the proof of [28, Thm. 2] (see also [28, Rmk. 2.10] and [15]), combining

the growth condition (2.15) on K with the Poincaré inequality (2.13), and taking into account estimate

(4.26), we deduce that

∃ c, C > 0 ∀M > 0 :

∫
Ω

K(TM(ϑM))|∇(TM(ϑM)))|2 dx

≥ c‖∇(TM(ϑM)))‖2
L2(Ω;Rd) + ‖TM(ϑM)‖κ+2

L3κ+6(Ω) − C.

On the other hand,∫
Ω

|`kτ,M ||TM(ϑM)|2 dx ≤ ‖`kτ,M‖L2(Ω)‖TM(ϑM)‖L3(Ω)‖TM(ϑM)‖L6(Ω)

≤ c

4
‖∇(TM(ϑM)))‖2

L2(Ω;Rd) + C‖TM(ϑM)‖2
L3(Ω)

≤ c

2
‖∇(TM(ϑM)))‖2

L2(Ω;Rd) + C‖TM(ϑM)‖2
L1(Ω),

where we have used that supM ‖`kτ,M‖L2(Ω) ≤ C thanks to (4.26). The last inequality follows from

the fact that H1(Ω) b L3(Ω) ⊂ L1(Ω), yielding that for all ρ > 0 there exists Cρ > 0 such

that ‖TM(ϑM)‖L3(Ω) ≤ ρ‖TM(ϑM)‖H1(Ω) + Cρ‖TM(ϑM)‖L1(Ω). In the same way, estimate (4.26)

ensures that ∫
Ω

|jkτ,M ||TM(ϑM)| dx ≤ C‖TM(ϑM)‖L2(Ω).
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All in all, from (4.27), taking into account (4.26) and conditions (2.22) and (2.23) on g and h, we deduce

that

∃C > 0 ∀M > 0 : ‖TM(ϑM)‖H1(Ω) + ‖TM(ϑM)‖L3κ+6(Ω) ≤ C. (4.28)

We now introduce the notation

SM := {x ∈ Ω : ϑM(x) ≤M}, OM := Ω \ SM .

In view of estimate (4.28) we have that

M3κ+6

∫
OM

1 dx ≤
∫

OM

|TM(ϑM)|3κ+6 dx ≤ C whence |OM | ≤
C

M3κ+6
→ 0 as M →∞.

(4.29)

Let us finally test (4.15) by ϑM . Relying on the coercivity (4.13) of Ak
M and again arguing as in the

proof of [28, Thm. 2] we find

sup
M>0

(
‖ϑM‖H1(Ω) + ‖ϑM‖L3κ+6(SM )

)
≤ C. (4.30)

Here, we have essentially used the same arguments as for treating (4.27) and estimated the terms

involving `kτ,M and jkτ,M by means of (4.26).

In the end, it remains to estimate the terms αν((χM−χk−1
τ )/τ),Ap(χM) and ξM in (4.6). First of all,

we may suppose that the terms Ap(χk−1
τ ), ξk−1

τ ∈ β(χk−1
τ ) from the previous step are bounded in

L2(Ω) by a constant independent ofM . Then, we test (4.6) by (Ap(χM)−Ap(χk−1
τ )+(ξM−ξk−1

τ )),

thus obtaining∫
Ω

λM(Ap(χM)− Ap(χk−1
τ ) + ξM − ξk−1

τ ) dx+ ‖Ap(χM) + ξM‖2
L2(Ω)

=

∫
Ω

(Ap(χM) + ξM)(Ap(χ
k−1
τ ) + ξk−1

τ ) dx

+

∫
Ω

µM(Ap(χM)− Ap(χk−1
τ ) + ξM − ξk−1

τ ) dx
.
= I1 + I2.

Here, we have used the place-holders λM := (χM − χk−1
τ )/τ +

√
τ(χM − χk−1

τ )/τ + αν((χM −
χk−1
τ )/τ) and µM := ϑM − b′(χM) ε(u

k−1
τ )Eε(uk−1

τ )
2

− γ(χM) − ν(χM)η−2η. With monotonicity

arguments, we see that the first integral on the left-hand side is positive. We estimate

I1 ≤
1

2
‖Ap(χM) + ξM‖2

L2(Ω) +
1

2
‖Ap(χk−1

τ ) + ξk−1
τ ‖2

L2(Ω) .

It follows from the estimates on uk−1
τ , χk−1

τ , and from (4.26) for χM and from (4.30) for ϑM that

‖µM‖L2(Ω) ≤ C for a constant independent of M > 0. Therefore we have

I2 ≤
1

4
‖Ap(χM) + ξM‖2

L2(Ω) +
1

4
‖Ap(χk−1

τ ) + ξk−1
τ ‖2

L2(Ω) + C .

With this, we conclude that ‖Ap(χM) + ξM‖L2(Ω) ≤ C for a constant independent of M . By

the monotonicity of the operator β (cf., e.g., [1, Lemma 3.3]), we find ‖Ap(χM)‖L2(Ω) ≤ C and

‖ξM‖L2(Ω) ≤ C . Then, a comparison argument in (4.6) yields

µ

∥∥∥∥αν (χM − χk−1
τ

τ

)∥∥∥∥
L2(Ω)

+ ‖Ap(χM)‖L2(Ω) + ‖ξM‖L2(Ω) ≤ C. (4.31)
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Standard compactness arguments together with (4.30) imply that there exists ϑ ∈ H1(Ω) such that,

up to a (not relabeled) subsequence,

ϑM ⇀ ϑ in H1(Ω), ϑM → ϑ in Lq(Ω) for all q <

{
∞ if d = 2,

6 if d = 3.
(4.32)

In particular, ϑM → ϑ in measure. Combining this with (4.29) we infer that TM(ϑM)→ ϑ in measure.

Therefore, in view of estimate (4.28) and of the Egorov theorem we ultimately have that

ϑ ∈ L3κ+6(Ω), TM(ϑM) ⇀ ϑ in H1(Ω) ∩ L3κ+6(Ω),

TM(ϑM)→ ϑ in Lq(Ω) for all 1 ≤ q < 3κ+ 6.
(4.33)

Therefore, taking into account the growth condition (2.15) for K, we have

KM(ϑM) = K(TM(ϑM))→ K(ϑ) in Lq(Ω) for all 1 ≤ q < 3 +
6

κ
.

Combining this with the fact that∇ϑM ⇀ ∇ϑ in L2(Ω; Rd), we infer on the one hand that Ak
M(ϑM)

weakly converges in the space W 1,s(Ω)∗ to the operator Ãk(ϑ) defined by 〈Ãk(ϑ), v〉W 1,s(Ω) :=∫
Ω

K(ϑ)∇ϑ∇v dx −
∫
∂Ω
hkτv dx for all v ∈ W 1,s(Ω), for some sufficiently big s > 0. On the other

hand, a comparison in (4.15) shows that (Ak
M(ϑM))M is bounded in H1(Ω)∗. Therefore, it is not

difficult to infer that the operator Ãk(ϑ) extends to H1(Ω) and coincides with the operator Ak from

(4.3), and that

Ak
M(ϑM) ⇀ Ak(ϑ) in H1(Ω)∗ as M →∞. (4.34)

From estimates (4.26) and (4.31) we also deduce that there exist u, χ, ξ and, if µ = 1, ζ such that,

up to a subsequence, uM ⇀ u in W 1,η
0 (Ω; Rd), χM → χ in W 1,p(Ω) (this follows from the fact

that (χM)M is bounded in W 1+σ,p(Ω) for all 0 < σ < 1
p

by [31, Thm. 2, Rmk. 2.5]), ξM ⇀ ξ

in L2(Ω), and, if µ = 1, αν((χM − χk−1
τ )/τ) ⇀ ζ in L2(Ω). By the strong-weak closedness in

the sense of graphs of αν (viewed as a maximal monotone graph in L2(Ω) × L2(Ω)), we infer, in

the case µ = 1, that ζ = αν((χ
k
τ − χk−1

τ )/τ) a.e. in Ω. Analogously, the strong-weak closedness

property of β yields that ξ ∈ β(χ). Combining this convergences with (4.33)–(4.34) we conclude that

the functions ϑ, u, χ, ξ, ζ fulfill a.e. in Ω

χ− χk−1
τ

τ
+
√
τ
χ− χk−1

τ

τ
+ µαν((χ− χk−1

τ )/τ) + Ap(χ) + ξ + γ(χ) + ν|χ|η−2χ

= −b′(χ)
ε(uk−1

τ )Eε(uk−1
τ )

2
+ ϑ

as well as

ϑ− ϑk−1
τ

τ
+
χ− χk−1

τ

τ
ϑ+ ρ div

(
u− uk−1

τ

τ

)
ϑ+ Ak(ϑ) (4.35)

= gkτ + a(χk−1
τ )Λk +

∣∣∣∣χ− χk−1
τ

τ

∣∣∣∣2 +
τ 1/2

2

∣∣∣∣χ− χk−1
τ

τ

∣∣∣∣2 in H1(Ω)∗, (4.36)

u− 2uk−1
τ + uk−2

τ

τ 2
+ V

(
a(χk−1

τ )
u− uk−1

τ

τ

)
+ E (b(χ)u) + Cρ(ϑ)− νdiv(Γk)

= fkτ in W 1,η(Ω; Rd)∗, (4.37)
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where Λk denotes the weak limit of ε
(

uM−uk−1
τ

τ

)
Vε
(

uM−uk−1
τ

τ

)
in L2(Ω), and Γk stands for the

weak limit of |ε(uM)|η−2Iε(uM) in Lη/(η−1)(Ω; Rd). In order to identify them, it is sufficient to test

(4.16) by uM and show that

lim sup
M→∞

〈−div(|ε(uM)|η−2Iε(uM)),uM〉W 1,η(Ω;Rd)

= lim sup
M→∞

∫
Ω

|ε(uM)|η dx ≤ 〈−div(Γk),u〉W 1,η(Ω;Rd),

which we can do, exploiting that u solves (4.37). This enables us to conclude that Γk
= −div(|ε(u)|η−2Iε(u)) and that uM → u strongly inW 1,η(Ω; Rd). The latter convergence clearly

allows us to conclude that Λk = ε
(

u−uk−1
τ

τ

)
Vε
(

u−uk−1
τ

τ

)
. All in all, (ϑ,u, χ) solves the system

ϑ− ϑk−1
τ

τ
+
χ− χk−1

τ

τ
ϑ+ ρ div

(
u− uk−1

τ

τ

)
ϑ+ Ak(ϑ) = gkτ (4.38)

+ a(χk−1
τ )ε

(
u− uk−1

τ

τ

)
Vε
(

u− uk−1
τ

τ

)
+

(
1 +

τ 1/2

2

) ∣∣∣∣χ− χk−1
τ

τ

∣∣∣∣2 in H1(Ω)∗,

u− 2uk−1
τ + uk−2

τ

τ 2
+ V

(
a(χk−1

τ )
u− uk−1

τ

τ

)
+ E (b(χ)u) + Cρ(ϑ)

− νdiv(|ε(u)|η−2Iε(u)) = fkτ in W 1,η(Ω; Rd)∗,

(4.39)

(1 +
√
τ)
χ− χk−1

τ

τ
+ µαν

(
χ− χk−1

τ

τ

)
+ Ap(χ) + ξkτ + γ(χ)

+ ν|χ|η−2χ 3 −b′(χ)
ε(uk−1

τ )Eε(uk−1
τ )

2
+ ϑ a.e. in Ω ,

(4.40)

with ξkτ ∈ β(χkτ ) a.e. in Ω. It follows from Step 3 and convergences (4.32) that ϑ also fulfills the strict

positivity property (4.10).

Step 5: passage to the limit as ν → 0. We now pass to the limit in (4.38)–(4.40) as ν → 0. We

denote by by (ϑν ,uν , χν) the solutions of (4.38)–(4.40) and, as before, obtain a series of estimates

independent of the parameter ν.

First, we test (4.38) by 1, (4.39) by uν − uk−1
τ , (4.40) by χν − χk−1

τ , and add the resulting relations.

We thus conclude that

∃C > 0 ∀ ν > 0 : ‖ϑν‖L1(Ω) + ‖uν‖H1(Ω;Rd) + ν1/η‖ε(uν)‖Lη(Ω;Rd) + ‖χν‖W 1,p(Ω) ≤ C.

(4.41)

Second, we test (4.38) by ϑα−1
ν , with α ∈ (0, 1). With the very same calculations as for the Second a

priori estimates, cf. also the proof of Prop. 4.10 ahead, we conclude that (cf. (3.7)) that

c

∫
Ω

K(ϑν)|∇ϑα/2ν |2 dx+ c

∫
Ω

∣∣∣∣ε(uν − uk−1
τ

τ

)∣∣∣∣2 ϑα−1
ν dx

+ c

∫
Ω

∣∣∣∣χν − χk−1
τ

τ

∣∣∣∣2 ϑα−1
ν dx ≤ C + C

∫
Ω

ϑα+1
ν dx
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whence, with the same arguments as throughout (3.8)–(3.13), we arrive at
∫

Ω
|∇ϑ(κ+α)/2

ν |2 dx ≤ C

for a constant independent of ν. Then, choosing α ∈ [1/2, 1) such that κ+α ≥ 2, we conclude that

‖ϑν‖H1(Ω) ≤ C (4.42)

and, again arguing via the nonlinear Poincaré inequality, we also have that

‖ϑ(κ+α)/2
ν ‖H1(Ω) ≤ C . (4.43)

We then test (4.40) by (Ap(χν) − Ap(χk−1
τ ) + ξν − ξk−1

τ ) and, arguing in the very same way as in

Step 4, conclude that

µ

∥∥∥∥αν (χν − χk−1
τ

τ

)∥∥∥∥
L2(Ω)

+ ‖Ap(χν)‖L2(Ω) + ‖ξν‖L2(Ω) ≤ C. (4.44)

We can now pass to the limit in system (4.38) –(4.40) as ν ↓ 0. It follows from the previously proved

a priori estimates that, along a (not relabeled) subsequence, uν ⇀ u in H1
0 (Ω; Rd), χν → χ in

W 1,p(Ω), and ϑν ⇀ ϑ in H1(Ω). Using these convergences, it is not difficult to pass to the limit in

(4.39) and conclude that u fulfills (4.5). With the same argument as in Step 4, testing (4.39) by uν we

conclude that

lim sup
ν→0

∫
Ω

ε(uν)Eε(uν) dx ≤
∫

Ω

ε(u)Eε(u) dx,

yielding that uν → u strongly in H1(Ω; Rd). Therefore,

a(χk−1
τ )ε

(
uν − uk−1

τ

τ

)
Vε
(

uν − uk−1
τ

τ

)
→ a(χk−1

τ )ε

(
u− uk−1

τ

τ

)
Vε
(

u− uk−1
τ

τ

)
in L1(Ω).

(4.45)

We use this information to pass to the limit in (4.38). Moreover, estimate (4.43) allows us to conclude

that, up to a subsequence, ϑ(κ+α)/2
ν ⇀ ϑ(κ+α)/2 in H1(Ω), hence ϑ(κ+α)/2

ν → ϑ(κ+α)/2 in L6−ε(Ω)

for all ε > 0, whence, taking into account the growth condition on K, that

K(ϑν)→ K(ϑ) in L3+α/κ−ε(Ω) for all ε > 0.

This allows us to pass to the limit in the term K(ϑν)∇ϑν , tested against v ∈ W 1,s(Ω) for some

sufficiently big s > 0. All in all, we infer that (ϑ,u, χ) satisfies (4.4) in some dual space W 1,s(Ω)∗,

such that, also,W 1,s(Ω) ⊂ L∞ in accord with the L1-convergence (4.45). Finally, we pass to the limit

in (4.40). Due to estimate (4.44), we have that there exist ξ ∈ L2(Ω) and, if µ = 1, ζ ∈ L2(Ω) such

that

αν

(
χ
ν − χk−1

τ

τ

)
⇀ ζ, ξν ⇀ ξ in L2(Ω).

The strong-weak closedness of β yields that ξ ∈ β(χ) a.e. in Ω. In order to show that, in the case

µ = 1, ζ ∈ α((χ− χk−1
τ )/τ) a.e. in Ω, we show that

lim sup
ν↓0

∫
Ω

αν

(
χ
ν − χk−1

τ

τ

)(
χ
ν − χk−1

τ

τ

)
dx ≤

∫
Ω

ζ

(
χ− χk−1

τ

τ

)
dx

and invoke well-knows results from the theory of maximal monotone operators.

All in all, we conclude that (ϑ,u, χ) solves system (4.4)–(4.6), where (4.4) is to be understood in

W 1,s(Ω)∗.
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Step 6: H2(Ω; Rd)-regularity for ukτ and conclusion. A comparison argument in (4.5) yields that

V

(
a(χkτ )

ukτ − uk−1
τ

τ

)
and E

(
b(χkτ )u

k
τ

)
are in L2(Ω; Rd).

From the latter information we now deduce that ukτ ∈ H2(Ω; Rd). Indeed, multiplying E
(
b(χkτ )u

k
τ

) .
=

hkτ ∈ L2(Ω; Rd) by − div(ε(ukτ ), we get

∫
Ω

b(χkτ )E| div(ε(ukτ )|2 dx ≤
∣∣∣∣∫

Ω

∇b(χkτ )Eε(ukτ ) div(ε(ukτ ) dx

∣∣∣∣+

∣∣∣∣∫
Ω

hkτ div(ε(ukτ ) dx

∣∣∣∣
≤ Cδ + δ

∫
Ω

∣∣div(ε(ukτ )
∣∣2 dx

where in the latter estimate δ > 0 is sufficiently small, and we have relied on the fact that

‖ukτ‖H1(Ω;Rd) + ‖χkτ‖W 1,p(Ω) ≤ C , combined with assumption (2.16) on b. Also using (2.16) and

choosing 0 < δ < C1c2 (cf. (2.5) and (2.16)), we then infer that∫
Ω

| div(ε(ukτ )|2 dx ≤ C.

Then, a standard regularity result for elliptic systems with constant coefficients (cf. (2.9)), yields that

ukτ ∈ H2(Ω; Rd).

In the end, exploiting that that ukτ ∈ H2(Ω; Rd), a comparison argument in the heat equation allows

us to conclude that
∫

Ω
K(ϑ)∇ϑ · ∇v dx is well defined for all test functions v ∈ H1(Ω), hence (4.4)

is solved in H1(Ω)∗.

Remark 4.5. In the case µ = 1, as mentioned in Remark 4.3, the discrete χ-equation could be

decoupled from the discrete equations for ϑ and u, cf. (4.9). This would lead to having the term
χk
τ−χ

k−1
τ

τ
ϑk−1
τ . The argument for the strict positivity of ϑkτ in Step 3 in this case would not go through.

Nonetheless, it would be possible to prove that ϑkτ ≥ 0 a.e. in Ω, by testing the discrete heat equation

by −(ϑkτ )
−, and using that

∫
Ω

χk
τ−χ

k−1
τ

τ
ϑk−1
τ (−(ϑkτ )

−) dx ≥ 0 since χkτ ≤ χk−1
τ a.e. in Ω.

Remark 4.6. We briefly comment on the reason why we need to perform two distinct passages to the

limit in the proof of Lemma 4.4. As the above proof shows, in the passage to limit as ν → 0 we lose

the information that the right-hand side of the equation for ϑ is estimated in L2(Ω). Hence, we need

to carry out refined estimates on the ϑ-equation (i.e., testing it by ϑα−1), where we fully exploit the

growth of K to carry out the related calculations. Clearly, to do so we first have to pass to the limit with

the truncation parameter.

4.2 Approximate entropy and total energy inequalities

Preliminarily, we establish the

Notation 4.7 (Interpolants and discrete integration-by-parts formula). Hereafter, for a given Banach

space X and a Kτ -tuple (hkτ )
Kτ
k=1 ⊂ X , we shall use the short-hand notation

Dτ,k(h) :=
hkτ − hk−1

τ

τ
, D2

τ,k(h) := Dτ,k(Dτ,k(h)) =
hkτ − 2hk−1

τ + hk−2
τ

τ 2
.
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We recall the well-known discrete by-part integration formula

Kτ∑
k=1

τDτ,k(h)vkτ = hKττ vKττ − h0
τv

1
τ −

Kτ∑
k=2

τhk−1
τ Dτ,k(v) for all {hkτ}Kτk=1, {v

k
τ}Kτk=1 ⊂ X . (4.46)

We introduce the left-continuous and right-continuous piecewise constant, and the piecewise linear

interpolants of the values {hkτ}Kτk=1 by

hτ : (0, T )→ X defined by hτ (t) := hkτ ,

h
τ

: (0, T )→ X defined by h
τ
(t) := hk−1

τ ,

hτ : (0, T )→ X defined by hτ (t) := t−tk−1
τ

τ
hkτ + tkτ−t

τ
hk−1
τ

 for t ∈ (tk−1
τ , tkτ ].

We also introduce the piecewise linear interpolant of the values {(hkτ − hk−1
τ )/τ}Kτk=1 (namely, the

values taken by the -piecewise constant- function h′τ ), viz.

ĥτ : (0, T )→ X ĥτ (t) :=
t− tk−1

τ

τ

hkτ − hk−1
τ

τ
+
tkτ − t
τ

hk−1
τ − hk−2

τ

τ
for t ∈ (tk−1

τ , tkτ ].

Note that ĥ′τ (t) = D2
τ,k(h) for t ∈ (tk−1

τ , tkτ ].

Furthermore, we denote by tτ and by tτ the left-continuous and right-continuous piecewise constant

interpolants associated with the partition, i.e. tτ (t) := tkτ if tk−1
τ < t ≤ tkτ and tτ (t) := tk−1

τ if

tk−1
τ ≤ t < tkτ . Clearly, for every t ∈ [0, T ] we have tτ (t) ↓ t and tτ (t) ↑ t as τ → 0.

In view of (2.21), (2.22), and (2.23), it is easy to check that the piecewise constant interpolants (f τ )
Kτ
k=1,

(gτ )
Kτ
k=1, (hτ )

Kτ
k=1 of the values fkτ , gkτ , hkτ (4.1) fulfill as τ ↓ 0

f τ → f in L2(0, T ;L2(Ω; Rd)), (4.47)

gτ → g in L1(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)′). (4.48)

hτ → h in L1(0, T ;L2(∂Ω)). (4.49)

We now rewrite the discrete equations (4.4)–(4.6) in terms of the interpolants ϑτ , ϑτ , uτ , uτ , uτ ,

ûτ , χτ , χτ , χτ , ξτ , and ζτ of the elements (ϑkτ ,u
k
τ , χ

k
τ , ξ

k
τ , ζ

k
τ )Kτk=1. Indeed, we have for almost all

t ∈ (0, T )

∂tϑτ (t) + ∂tχτ (t)ϑτ (t) + ρ div(∂tuτ (t))ϑτ (t) + A
t̄τ (t)
τ (ϑτ (t)) = gτ (t)+

+ a(χτ (t))ε (∂tuτ (t)) Vε (∂tuτ (t)) + (1 + τ 1/2) |∂tχτ (t)|2 in X∗,
(4.50)

∂tûτ (t) + V (a(χτ (t))∂tuτ (t)) + E
(
b(χτ (t))uτ (t)

)
+ Cρ(ϑτ ) = f τ (t)

a.e. in Ω,
(4.51)

(1 +
√
τ)∂tχτ (t) + µζτ (t) + Apχτ (t) + ξτ (t) + γ(χτ (t))

= −b′(χτ (t))
ε(uτ (t))Eε(uτ (t))

2
+ ϑτ (t)

a.e. in Ω,

(4.52)

with ξτ ∈ β(χτ ) and ζτ ∈ ∂I(−∞,0](∂tχτ ) a.e. in Ω× (0, T ).
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Our next result states that the interpolants of suitable discrete solutions to system (4.4)–(4.6) also

satisfy the approximate versions of the entropy inequality (2.37) and of the total enegy inequality

(2.38).

For stating the discrete entropy inequality (4.55) below, we need to introduce discrete test functions.

Namely, with every test function ϕ ∈ C0([0, T ];W 1,d+ε(Ω)) ∩H1(0, T ;L6/5(Ω)) we associate

for k = 1, . . . , Kτ ϕkτ := ϕ(tkτ ) (4.53)

and consider the piecewise constant and linear interpolants ϕτ and ϕτ of the values (ϕkτ )
Kτ
k=1. It can

be shown that the following convergences hold as τ → 0

ϕτ → ϕ in L∞(0, T ;W 1,d+ε(Ω)) and ∂tϕτ → ∂tϕ in L2(0, T ;L6/5(Ω)). (4.54)

Then, (4.55) is obtained by testing (4.4) by ϕkτ/ϑ
k
τ , for k = 1, . . . , Kτ .

As for the total energy inequality (4.56) below, let us mention that it results from our carefully designed

time-discretization scheme, observing in addition that (4.6) is indeed the Euler-Lagrange equation for

a suitable minimum problem, cf. (4.58) below, where the additional term

τ 3/2

2

∫
Ω

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 dx

has the role to “compensate” for the possible non-convexity of
∫

Ω
γ̂(χ) dx. Accordingly, to get the

discrete total energy inequality (4.56) we need to add the term τ1/2

2

∣∣∣χkτ−χk−1
τ

τ

∣∣∣2 to the right-hand side

of (4.4). This will lead to the necessary cancellations, cf. (4.66) below.

Proposition 4.8 (Discrete entropy and total energy inequalities, µ ∈ {0, 1}). Under Hypotheses
(I)–(III), for τ > 0 sufficiently small, the discrete solutions (ϑkτ ,u

k
τ , χ

k
τ )
Kτ
k=1 to Problem 4.2 fulfill

- the discrete entropy inequality∫ tτ (t)

tτ (s)

∫
Ω

(log(ϑτ (r)) + χ
τ (r))∂tϕτ (r+τ) dx dr

+ ρ

∫ tτ (t)

tτ (s)

∫
Ω

div(∂tuτ (r))ϕτ (r) dx dr

−
∫ tτ (t)

tτ (s)

∫
Ω

K(ϑτ (r))∇ log(ϑτ (r)) · ∇ϕτ (r) dx dr

≤
∫

Ω

(log(ϑτ (tτ (t))) + χ
τ (tτ (t)))ϕ(tτ (t)) dx

−
∫

Ω

(log(ϑτ (tτ (s))) + χ
τ (tτ (s)))ϕ(tτ (s)) dx

−
∫ tτ (t)

tτ (s)

∫
Ω

K(ϑτ (r))
ϕτ (r)

ϑτ (r)
∇ log(ϑτ (r)) · ∇ϑτ (r) dx dr

−
∫ tτ (t)

tτ (s)

∫
Ω

(
gτ (r) + a(χτ (r))ε(∂tuτ (r))Vε(∂tuτ (r)) + |∂tχτ (r)|2

+
τ 3/2

2
|∂tχτ (r)|2

)
ϕτ (r)

ϑτ (r)
dx dr −

∫ tτ (t)

tτ (s)

∫
∂Ω

hτ (r)
ϕτ (r)

ϑτ (r)
dS dr

(4.55)
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for all 0 ≤ s ≤ t ≤ T and for all ϕ ∈ C0([0, T ];W 1,d+ε(Ω)) ∩ H1(0, T ;L6/5(Ω)) with

ϕ ≥ 0;

- the discrete total energy inequality for all 0 ≤ s ≤ t ≤ T , viz.

E (ϑτ (t),uτ (t), ∂tuτ (t), χτ (t)) ≤ E (ϑτ (s),uτ (s), ∂tuτ (s), χτ (s))

+

∫ tτ (t)

tτ (s)

∫
Ω

(gτ + f τ · ∂tuτ ) dx dr +

∫ tτ (t)

tτ (s)

∫
∂Ω

hτ dS dr ,
(4.56)

with E from (2.39).

For the proof of the discrete entropy inequality, we will rely on a crucial inequality satisfied by any

concave function ψ : dom(ψ)→ R, i.e.

ψ(x)− ψ(y) ≤ ψ′(y)(x− y) for all x, y ∈ dom(ψ). (4.57)

Proof. We split the proof in two steps.

Step 1: proof of the total energy inequality. Let us consider the minimum problem

min
χ∈W 1,p(Ω)

{∫
Ω

(τ 3/2

2

∣∣∣∣χ− χk−1
τ

τ

∣∣∣∣2 +

(
χk
τ − χk−1

τ

τ

)
χ+ µα̂

(
χ− χk−1

τ

τ

)
+
|∇χ|p

p
+ β̂(χ) + γ̂(χ) + b(χ)

ε(uk−1
τ )Eε(uk−1

τ )

2
− ϑkτχ

)
dx
} (4.58)

where χkτ is the discrete solution from Lemma 4.4, and let λ > 0 such that γ̂′′ ≥ −λ as in (2.19).

Then, the function

r 7→ γ̂(r) + λ|r|2 is strictly convex. (4.59)

Let τ̄ > 0 such that 1/(2τ) > λ for all 0 < τ ≤ τ̄ . We may rewrite the minimum problem (4.58) as

min
χ∈W 1,p(Ω)

{∫
Ω

((
1

2
√
τ
− λ
)
|χ− χk−1

τ |2

+

(
χk
τ − χk−1

τ

τ

)
χ+ µα̂

(
χ− χk−1

τ

τ

)
+
|∇χ|p

p
+ β̂(χ) + γ̂(χ)

+ λ|χ|2 + b(χ)
ε(uk−1

τ )Eε(uk−1
τ )

2
− ϑkτχ+ λ|χk−1

τ |2 + 2λχχk−1
τ

)
dx

}
.

(4.60)

Observe that the Euler-Lagrange equation for (4.60) is exactly (4.6). Using the convexity of α̂, β̂, b,

and the λ-convexity of γ̂ (whence (4.59)), it is not difficult to check that (4.6) has a unique solution.

We may thus conclude that the minimum problem (4.60) has a unique solution, which coincides with

the discrete solution χkτ from Lemma 4.4.
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Now, choosing χk−1
τ as a competitor for χkτ in the minimum problem (4.58) yields

τ

∫
Ω

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 dx+

∫
Ω

τ 3/2

2

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 dx+ µ

∫
Ω

α̂

(
χk
τ − χk−1

τ

τ

)
dx

+

∫
Ω

|∇χkτ |p

p
dx+

∫
Ω

β̂(χkτ ) dx+

∫
Ω

γ̂(χkτ ) dx

+

∫
Ω

b(χkτ )
ε(uk−1

τ )Eε(uk−1
τ )

2
dx−

∫
Ω

ϑkτχ
k
τ dx

≤
∫

Ω

|∇χk−1
τ |p

p
dx+

∫
Ω

β̂(χk−1
τ ) dx+

∫
Ω

γ̂(χk−1
τ ) dx

+

∫
Ω

b(χk−1
τ )

ε(uk−1
τ )Eε(uk−1

τ )

2
dx−

∫
Ω

ϑkτχ
k−1
τ dx.

(4.61)

Hence, we test (4.5) by ukτ − uk−1
τ and observe that , for all k = 1, . . . , Kτ ,

τ

∫
Ω

D2
τ,k(u) ·Dτ,k(u) dx ≥ 1

2
‖Dτ,k(u)‖2

L2(Ω) −
1

2
‖Dτ,k−1(u)‖2

L2(Ω;Rd) (4.62)

〈V
(
a(χk−1

τ )Dτ,k(u)
)
,ukτ − uk−1

τ 〉H1(Ω)

= τ

∫
Ω

a(χk−1
τ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
dx.

(4.63)

Furthermore, we have

〈E
(
b(χkτ )u

k
τ

)
,
ukτ − uk−1

τ

τ
〉
H1(Ω;Rd)

≥ 1

2

∫
Ω

b(χkτ )ε(u
k
τ )Eε(ukτ ) dx

− 1

2

∫
Ω

b(χkτ )ε(u
k−1
τ )Eε(uk−1

τ ) dx

=
1

2

∫
Ω

b(χkτ )ε(u
k
τ )Eε(ukτ ) dx

− 1

2

∫
Ω

b(χk−1
τ )ε(uk−1

τ )Eε(uk−1
τ ) dx

− 1

2

∫
Ω

(b(χkτ )− b(χk−1
τ ))ε(uk−1

τ )Eε(uk−1
τ ) dx .

(4.64)

Finally,

τ 〈Cρ(ϑkτ ),
ukτ − uk−1

τ

τ
〉
H1(Ω;Rd)

= −ρ
∫

Ω

ϑkτdiv

(
ukτ − uk−1

τ

τ

)
dx . (4.65)

Next, we multiply (4.4) by τ and integrate over Ω. We add the resulting relation to the equation obtained

testing (4.16) by ukτ − uk−1
τ and to (4.61). The terms

τ

∫
Ω

Dτ,k(χ)ϑkτ dx, ρτ

∫
Ω

ϑkτ div(Dτ,k(u)) dx,

τ

∫
Ω

a(χk−1
τ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
dx, τ

∫
Ω

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 dx

τ 3/2

2

∫
Ω

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2 dx,
1

2

∫
Ω

(b(χkτ )− b(χk−1
τ ))ε(uk−1

τ )Eε(uk−1
τ ) dx

(4.66)
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cancel out.

We sum over the index k = m, . . . , j, for any couple of indexes 1 ≤ m < j ≤ Kτ . Taking into

account (4.61)–(4.65), we ultimately obtain∫
Ω

(
ϑjτ +

1

2
|Dτ,j(u)|2 +

1

2
b(χj

τ )ε(u
j
τ )Eε(ujτ ) +

|∇χjτ |p

p
+ β̂(χjτ ) + γ̂(χjτ )

)
dx

≤
∫

Ω

(
ϑmτ +

1

2
|Dτ,m(u)|2 +

1

2
b(χmτ )ε(umτ )Eε(umτ ) +

|∇χmτ |p

p
+ β̂(χmτ ) + γ̂(χmτ )

)
dx

+

j∑
k=m

τ

(∫
Ω

(
gkτ + fkτ ·Dτ,k(u)

)
dx+

∫
∂Ω

hkτ dS

)
, (4.67)

which yields (4.56).

Step 2: proof of the entropy inequality. Let us fix an arbitrary posititive test function

ϕ ∈ C0([0, T ];W 1,d+ε(Ω)) ∩H1(0, T ;L6/5(Ω))

with (ϕkτ )
Kτ
k=1 defined by (4.53). We multiply (4.4) by ϕkτ

ϑkτ
∈ H1(Ω) (hence, an admissible test function

for (4.4)) and integrate over Ω. We obtain∫
Ω

(
gkτ + a(χkτ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
+

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2
+
τ 1/2

2

∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2
)
ϕkτ
ϑkτ

dx+

∫
∂Ω

hkτ
ϕkτ
ϑkτ

dS

=

∫
Ω

(
ϑkτ − ϑk−1

τ

τ
+
χk
τ − χk−1

τ

τ
ϑkτ + ρ div

(
ukτ − uk−1

τ

τ

)
ϑkτ

)
ϕkτ dx

+

∫
Ω

K(ϑkτ )∇ϑkτ · ∇
(
ϕkτ
ϑkτ

)
dx

≤
∫

Ω

(
log(ϑkτ )− log(ϑk−1

τ )

τ
+
χk
τ − χk−1

τ

τ
+ ρ div

(
ukτ − uk−1

τ

τ

))
ϕkτ dx

+

∫
Ω

(
K(ϑkτ )

ϑkτ
∇ϑkτ · ∇ϕkτ −

K(ϑkτ )

|ϑkτ |2
|∇ϑkτ |2ϕkτ

)
dx

(4.68)

where we have used that (cf. (4.57))

ϑkτ − ϑk−1
τ

ϑkτ
≤ log(ϑkτ )− log(ϑk−1

τ ) a.e. in Ω.

Note that this inequality is preserved by the positivity of the discrete test function ϕkτ . We now sum

(4.68), multiplied by τ , over k = m, . . . , j, for any couple of indexes 1 ≤ m < j ≤ Kτ . We use the
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discrete integration by parts formula (4.46), yielding

j∑
k=m

τ

∫
Ω

Dτ,k(log(ϑkτ ))ϕ
k
τ dx =

∫
Ω

log(ϑjτ )ϕ
j
τ dx−

∫
Ω

log(ϑmτ )ϕm+1
τ dx

−
j−1∑
k=m

τ

∫
Ω

log(ϑkτ )Dτ,k+1(ϕ) dx

j∑
k=m

τ

∫
Ω

Dτ,k(χ
k
τ )ϕ

k
τ dx =

∫
Ω

χj
τϕ

j
τ dx−

∫
Ω

χm
τ ϕ

m+1
τ dx−

j−1∑
k=m

τ

∫
Ω

χk
τDτ,k+1(ϕ) dx.

Inserting the two above inequalities in (4.68) (summed up over k = m, . . . , j), rearranging terms, we

conclude (4.55).

Remark 4.9. A close perusal of the proof of Proposition 4.8 reveals that, b is only λ-convex, in place

of convex, it is still possible to prove that the discrete equation for χ (4.6) admits a unique solution, and

therefore conclude that χkτ is the unique minimizer for (4.58). This, provided we replace the p-Laplacian

operator in (4.6) with its non-degenerate version, cf. Remark 2.9.

4.3 A priori estimates revisited

The following result collects all the a priori estimates for the approximate solutions constructed via time

discretization. In particular, the proof renders on the discrete level the Second and Sixth estimates,

which have a nonlinear character and thus translate with some difficulty within the frame of the dis-

crete system (4.4)–(4.6). In particular, the Sixth estimate (cf. (4.69h) below) is deduced with careful

calculations from the discrete entropy inequality (4.55).

Proposition 4.10. Assume Hypotheses (I)–(III) and (2.21)–(2.26). Let µ ∈ {0, 1}. Then, there exists

a constant S > 0 such that for all τ > 0 the following estimates

‖uτ‖L∞(0,T ;H2
0 (Ω;Rd)) ≤ S, (4.69a)

‖uτ‖H1(0,T ;H2
0 (Ω;Rd))∩W 1,∞(0,T ;H1

0 (Ω;Rd)) ≤ S, (4.69b)

‖ûτ‖H1(0,T ;L2(Ω;Rd)) ≤ S, (4.69c)

‖χτ‖L∞(0,T ;W 1,p(Ω)) ≤ S, (4.69d)

‖χτ‖L∞(0,T ;W 1,p(Ω))∩H1(0,T ;L2(Ω)) ≤ S, (4.69e)

‖ log(ϑτ )‖L2(0,T ;H1(Ω)) ≤ S, (4.69f)

‖ϑτ‖L2(0,T ;H1(Ω))∩L∞(0,T ;L1(Ω)) ≤ S, (4.69g)

‖ log(ϑτ )‖BV([0,T ];W 1,d+ε(Ω)∗) ≤ S for all ε > 0 (4.69h)

hold. Furthermore, under Hypothesis (V) (i.e. if 1 < κ < 5/3), we have in addition

sup
τ>0
‖ϑτ‖BV([0,T ];W 2,d+ε(Ω)∗) ≤ S for all ε > 0. (4.69i)

Finally, if µ = 0 we also have

sup
τ>0

(
‖χτ‖L2(0,T ;W 1+σ,p(Ω)) + ‖ξτ‖L2(0,T ;L2(Ω))

)
≤ S for all 1 ≤ σ <

1

p
. (4.69j)

40



We now sketch the proof, showing how the formal a priori estimates in Section 3 can be translated

in the framework of the time discretization scheme; we shall only detail the argument for the discrete

version of the Sixth estimate.

Proof. From the discrete total energy inequality (4.56), arguing in the very same way as for the First
a priori estimate, we deduce

‖ϑτ‖L∞(0,T ;L1(Ω)) + ‖uτ‖W 1,∞(0,T ;L2(Ω;Rd)) + ‖χτ‖L∞(0,T ;W 1,p(Ω)) ≤ C, (4.70)

whence (4.69d). We also infer that ‖b(χτ )1/2ε(uτ )‖L∞(0,T ;L2(Ω;Rd×d)) ≤ C which gives, via (2.16)

and Korn’s inequality, that

‖uτ‖L∞(0,T ;H1
0 (Ω;Rd)) ≤ C.

Next, along the lines of the Second a priori estimate, we test (4.4) by F ′(ϑkτ ) = (ϑkτ )
α−1, with

α ∈ (0, 1). Since F (ϑ) = ϑα/α is concave, by (4.57) we have

(ϑkτ − ϑk−1
τ )F ′(ϑkτ ) ≤ F (ϑkτ )− F (ϑk−1

τ ) a.e. in Ω,

therefore we obtain∫
Ω

(
gkτ + a(χkτ )ε

(
ukτ − uk−1

τ

τ

)
Vε
(

ukτ − uk−1
τ

τ

)
+

(
1 +

τ 1/2

2

) ∣∣∣∣χkτ − χk−1
τ

τ

∣∣∣∣2
)
F ′(ϑkτ ) dx+

∫
∂Ω

hkτF
′(ϑkτ ) dS

≤
∫

Ω

(
F (ϑkτ )− F (ϑk−1

τ )

τ
+
χk
τ − χk−1

τ

τ
ϑkτF

′(ϑkτ )

+ρ div

(
ukτ − uk−1

τ

τ

)
ϑkτF

′(ϑkτ ) + K(ϑkτ )∇ϑkτ∇(F ′(ϑkτ ))

)
dx .

(4.71)

Then, we multiply (4.71) by τ . Summing over the index k and recalling that g ≥ 0 and h ≥ 0, we

obtain for all t ∈ (0, T ]

4(1− α)

α2

∫ tτ (t)

0

∫
Ω

K(ϑτ )|∇((ϑτ )
α/2)|2 dx ds

+

∫ tτ (t)

0

∫
Ω

(
c2|ε(∂tuτ )|2F ′(ϑτ ) +

(
1 +

τ 1/2

2

)
|∂tχτ |2F ′(ϑτ )

)
dx ds

≤
∫

Ω

F (ϑτ (t)) dx−
∫

Ω

F (ϑ0) dx+

∫ tτ (t)

0

∫
Ω

(
∂tχτϑτF

′(ϑτ ) + ρ div(∂tuτ )ϑτF
′(ϑτ )

)
dx ds .

Starting from this inequality, we develop calculations completely analogous to the ones in Section 3

for the Second a priori estimate. In particular, we conclude that∫ tτ (t)

0

∫
Ω

K(ϑτ )|∇((ϑτ )
α/2)|2 dx ds ≤ C . (4.72)

The same calculations as for the Third estimate allow us then to deduce from (4.72) and (4.70)

estimate (4.69g). As a byproduct of these calculations, we again have for all α ∈ [1/2, 1)

‖(ϑτ )(κ−α)/2‖L2(0,T ;H1(Ω)), ‖(ϑτ )(κ+α)/2‖L2(0,T ;H1(Ω)) ≤ C . (4.73)
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Moreover, since

ϑτ (t) ≥ ϑ a.e. in Ω for all t ∈ [0, T ], (4.74)

(with ϑ from (4.25)), we also have (4.69f).

As for the Fourth estimate, we subtract from the discrete total energy inequality (4.56) the discrete

heat equation (4.4) multiplied by τ and summed over the index k. Therefore, we obtain for all t ∈ [0, T ]

1

2

∫
Ω

|∂tuτ (tτ (t))|2 dx+

∫ tτ (t)

0

v(a(χτ )∂tuτ , ∂tuτ ) ds+
1

2
e(b(χτ (tτ (t)))uτ (tτ (t)),uτ (tτ (t)))

+

(
1 +

τ 1/2

2

)∫ tτ (t)

0

∫
Ω

|∂tχτ |2 dx ds+

∫
Ω

1

p
|∇χτ (tτ (t))|p +W (χτ (tτ (t))) dx

= I0 +

∫ tτ (t)

0

∫
Ω

ϑτ (ρ div(∂tuτ ) + ∂tχτ ) dx ds+

∫ tτ (t)

0

∫
Ω

f τ · ∂tuτ dx ds ,

where we have used the place-holder I0 = 1
2
e(b(χ0)u0,u0) +

∫
Ω

(1
2
|v0|2 + 1

p
|∇χ0|p +W (χ0)) dx.

Exploiting (2.21) and estimate (4.69g), we control the second term on the right-hand side with∫ t
0

∫
Ω
|∂tχτ |2 dx ds and the second term on the left-hand side, which bounds∫ tτ (t)

0
‖∂tuτ‖2

H1(Ω;Rd)
ds thanks to (2.5). Therefore, we conclude that ‖∂tuτ‖L2(0,T ;H1(Ω;Rd)) ≤ C ,

as well as estimate (4.69e).

The Fifth estimate is performed on the time-discretization scheme by testing (4.5) by − div(ε(ukτ −
uk−1
τ )). For all the calculations, we refer to [28, (3.61)–(3.67)]: therein, the equation for u was the same

as our own (1.2), but the elasticity and viscosity tensors E and V were assumed to be independent

of the space variable x. Nonetheless, the computations from [28] carry over to the present setting,

cf. also the formal calculations for the Fourth a priori estimate in Sec. 3. Therefore, we conclude

estimates (4.69a) and (4.69b). A comparison argument in (4.5), joint with (2.8b), yields (4.69c).

In order to render the Sixth estimate in the time discrete setting, let us fix a partition 0 = σ0 < σ1 <

. . . < σJ = T of the interval [0, T ]. Preliminarily, from the discrete entropy inequality (4.55), written

on the interval [σi−1, σi] and for a constant-in-time test function ϕ ∈ W 1,d+ε(Ω) for some ε > 0, we

deduce that ∫
Ω

(`i − `i−1)ϕ dx+ Λi(ϕ) ≥ 0 for all ϕ ∈ W 1,d+ε
+ (Ω), (4.75)∫

Ω

(`i−1 − `i)ϕ dx− Λi(ϕ) ≥ 0 for all ϕ ∈ W 1,d+ε
− (Ω), (4.76)

where we have used the place-holders

`i = log(ϑτ (σi)) + χ
τ (σi),

Λi(ϕ) =

∫ tτ (σi)

tτ (σi−1)

∫
Ω

K(ϑτ )∇ log(ϑτ ) · ∇ϕ dx dr − ρ
∫ tτ (σi)

tτ (σi−1)

∫
Ω

div(∂tuτ )ϕ dx dr

−
∫ tτ (σi)

tτ (σi−1)

∫
Ω

K(ϑτ )
ϕ

ϑτ
∇(log(ϑτ ))∇ϑτ dx dr −

∫ tτ (σi)

tτ (σi−1)

∫
∂Ω

hτ
ϕ

ϑτ
dS dr

−
∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
gτ + a(χτ )ε(∂tuτ )Vε(∂tuτ ) +

(
1 +

τ 1/2

2

)
|∂tχτ |2

)
ϕ

ϑτ
dx dr.
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For later use, we also introduce the place-holder

Rτ := ρ div(∂tuτ ) + K(ϑτ )|∇(log(ϑτ ))|2 + (gτ + a(χτ )ε(∂tuτ )Vε(∂tuτ )

+

(
1 +

τ 1/2

2

)
|∂tχτ |2

)
1

ϑτ
,

such that

Λi(ϕ) =

∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
K(ϑτ )∇ log(ϑτ ) · ∇ϕ− Rτϕ

)
dx dr−

∫ tτ (σi)

tτ (σi−1)

∫
∂Ω

hτ
ϕ

ϑτ
dS dr . (4.77)

We also deduce from (4.75) with ϕ ≡ 1 that∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
`i − `i−1

tτ (σi)− tτ (σi−1)
− Rτ

)
dx dr ≥

∫ tτ (σi)

tτ (σi−1)

∫
∂Ω

hτ
1

ϑτ
dS dr ≥ 0. (4.78)

We now estimate the total variation of (log(ϑτ ) + χ
τ ) with values in W 1,d+ε(Ω)∗, i.e.

VarW 1,d+ε(Ω)∗(log(ϑτ ) + χ
τ ; [0, T ])

= sup
0=σ0<σ1<...<σJ=T

J∑
i=1

‖(log(ϑτ (σi) + χ
τ (σi))− (log(ϑτ (σi−1) + χ

τ (σi−1))‖W 1,d+ε(Ω)∗

by proceeding as follows. We observe that for every fixed ϕ ∈ W 1,d+ε(Ω) with ‖ϕ‖W 1,d+ε(Ω) ≤ 1,

there holds∣∣∣ 〈`i − `i−1, ϕ〉W 1,d+ε(Ω)

∣∣∣ ≤ ∣∣∣∣∫
Ω

(`i − `i−1)ϕ+ dx+ Λi(ϕ
+)

∣∣∣∣+ |Λi(ϕ
+)|

+

∣∣∣∣∫
Ω

(`i−1 − `i)(−ϕ−) dx− Λi(−ϕ−)

∣∣∣∣+ |Λi(ϕ
−)|

=

∫
Ω

(`i − `i−1)|ϕ| dx+ Λi(|ϕ|) + |Λi(ϕ
+)|+ |Λi(ϕ

−)|,

(4.79)

where ϕ+ (ϕ−, resp.) denotes the positive (negative) part of ϕ. The last equality ensues from (4.75)–

(4.76), allowing us to remove the absolute values, and from the linearity of the map ϕ 7→ Λi(ϕ),

yielding Λi(ϕ
+)− Λi(−ϕ−) = Λi(|ϕ|). Therefore,

J∑
i=1

‖`i − `i−1‖W 1,d+ε(Ω)∗

=
J∑
i=1

sup
‖ϕ‖

W1,d+ε(Ω)
≤1

∣∣∣ 〈`i − `i−1, ϕ〉W 1,d+ε(Ω)

∣∣∣
(1)

≤
J∑
i=1

sup
‖ϕ‖

W1,d+ε(Ω)
≤1

∫
Ω

(`i − `i−1)|ϕ| dx+ Λi(|ϕ|) + |Λi(ϕ
+)|+ |Λi(ϕ

−)|

(2)

≤
J∑
i=1

sup
‖ϕ‖

W1,d+ε(Ω)
≤1

∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
`i − `i−1

tτ (σi)− tτ (σi−1)
− Rτ

)
|ϕ| dx dr

+

∫ tτ (σi)

tτ (σi−1)

∫
Ω

K(ϑτ )∇ log(ϑτ ) · ∇(|ϕ|) dx dr

−
∫ tτ (σi)

tτ (σi−1)

∫
∂Ω

hτ
|ϕ|
ϑτ

dS dr + |Λi(ϕ
+)|+ |Λi(ϕ

−)|,

(4.80)
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where (1) follows from (4.79) and (2) follows from rewriting Λi(|ϕ|) by means of (4.77). Then, we

continue the above chain of inequalities by observing that∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
`i − `i−1

tτ (σi)− tτ (σi−1)
− Rτ

)
|ϕ| dx dr

≤ ‖ϕ‖L∞(Ω)

∫ tτ (σi)

tτ (σi−1)

∫
Ω

(
`i − `i−1

tτ (σi)− tτ (σi−1)
− Rτ

)
dx dr

≤ C

(∫
Ω

(`i − `i−1) dx−
∫ tτ (σi)

tτ (σi−1)

∫
Ω

Rτ dx dr

)
for all ϕ ∈ W 1,d+ε(Ω) with ‖ϕ‖W 1,d+ε(Ω) ≤ 1

(4.81)

where the first inequality follows from (4.78), and the second one from the continuous embedding

W 1,d+ε(Ω) ⊂ L∞(Ω). We then estimate (cf. in particular (3.26))

J∑
i=1

∣∣∣∣∣
∫ tτ (σi)

tτ (σi−1)

∫
Ω

Rτ dx dr

∣∣∣∣∣ ≤ C

∫ T

0

(
‖∂tuτ‖H1(Ω;Rd) +

∫
Ω

|ϑτ |κ+α−2|∇ϑτ |2 dx

+

∫
Ω

|∇ϑτ |2 dx+ ‖gτ‖L1(Ω) + ‖ε(∂tuτ )‖2
L2(Ω;Rd×d) + ‖∂tχτ )‖2

L2(Ω)

)
ds ,

(4.82)

where we have used the fact that |1/ϑτ | ≤ C a.e. in Ω× (0, T ) by (4.74). We also estimate

J∑
i=1

sup
‖ϕ‖

W1,d+ε(Ω)
≤1

∣∣∣∣∣
∫ tτ (σi)

tτ (σi−1)

∫
Ω

K(ϑτ )∇ log(ϑτ ) · ∇(|ϕ|) dx dr

∣∣∣∣∣
≤

J∑
i=1

sup
‖ϕ‖

W1,d+ε(Ω)
≤1

‖ϕ‖W 1,3(Ω)

∫ tτ (σi)

tτ (σi−1)

‖(ϑτ )(κ+α−2)/2∇ϑτ‖L2(Ω;Rd)‖(ϑτ )(κ−α)/2‖L6(Ω) ds

≤ C

∫ T

0

‖(ϑτ )(κ+α−2)/2∇ϑτ‖L2(Ω;Rd)‖(ϑτ )(κ−α)/2‖L6(Ω) ds (4.83)

and proceed analogously for the term
∫ tτ (σi)

tτ (σi−1)

∫
∂Ω
hτ
|ϕ|
ϑτ

dS dr, relying on (4.49) and again on the

fact that |1/ϑτ | ≤ C a.e. in Ω × (0, T ) by (4.74). With the same calculations as throughout (4.82)–

(4.83) we also estimate the terms |Λi(ϕ
+)| and |Λi(ϕ

−)|, exploiting (4.77). Inserting (4.81)–(4.83)

into (4.80), we then get

J∑
i=1

‖`i − `i−1‖W 1,d+ε(Ω)∗

(1)

≤ C

∫
Ω

(
log(ϑτ (T )) + χ

τ (T )− log(ϑ0)− χ0

)
dx+ C

(2)

≤ C,

where (1) follows from the previously proved estimates (4.69b), (4.69d), (4.69e), (4.69g), (4.72), and

(4.49). Finally, (2) is due to (4.69d) and to the fact that | log(ϑτ (t))| ≤ C
(
|ϑτ (t)|+ 1

|ϑτ (t)|

)
≤

C
(
|ϑτ (t)|+ 1

ϑ(T )

)
a.e. in Ω for all t ∈ [0, T ] thanks to (4.74). Also view of (4.69f), we ultimately

conclude that

‖ log(ϑτ ) + χ
τ‖BV([0,T ];W 1,d+ε(Ω)∗) ≤ C

for all ε > 0. Therefore, (4.69h) follows, on account of (4.69e).
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Under the additional Hypothesis (V), the same comparison argument in (4.4) as for the Eighth esti-
mate yields (4.69i).

For the Ninth estimate, in the case µ = 0 we perform a comparison in (4.6). Based on (4.69a),

(4.69d), (4.69e), and (4.69g) we conclude

sup
τ>0

(
‖Ap(χτ )‖L2(0,T ;L2(Ω)) + ‖ξτ‖L2(0,T ;L2(Ω))

)
≤ C

whence (4.69j) by the aforementioned regularity results from [31].

5 Passage to the limit

Let (ϑτ , ϑτ ,uτ ,uτ ,uτ , ûτ , χτ , χτ , χτ )τ be a family of approximate solutions, fulfilling the discrete

entropy inequality (4.55) and the discrete total energy inequality (4.56): its existence is ensured by

Proposition 4.8. We derive a preliminary compactness result, relying on the a priori estimates from

Prop. 4.10.

Lemma 5.1 (Compactness, µ ∈ {0, 1}). Under Hypotheses (I)–(III) and conditions (2.21)–(2.26) on

the data f , g, h, ϑ0,u0,v0, χ0, for any sequence (τk)k ⊂ (0,+∞) with τk ↓ 0 as k → ∞, there

exist a (not relabeled) subsequence, and a triple (ϑ,u, χ) such that the following convergences hold

uτk⇀
∗u in H1(0, T ;H2

0 (Ω; Rd)) ∩W 1,∞(0, T ;H1
0 (Ω; Rd)), (5.1)

uτk , uτk → u in L∞(0, T ;H2−ε(Ω; Rd)) for all ε ∈ (0, 1], (5.2)

uτk → u in C0([0, T ];H2−ε(Ω; Rd)) for all ε ∈ (0, 1], (5.3)

∂tûτk ⇀ utt in L2(0, T ;L2(Ω; Rd)), (5.4)

∂tuτk → ut in L2(0, T ;H1(Ω; Rd)), (5.5)

χ
τk , χτk ,

χ
τk ⇀ χ in L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), (5.6)

χ
τk → χ in C0([0, T ];X) for all X such that W 1,p(Ω) b X ⊂ L2(Ω), (5.7)

ϑτk ⇀ ϑ in L2(0, T ;H1(Ω)), (5.8)

log(ϑτk) ⇀ log(ϑ) in L2(0, T ;H1(Ω)), (5.9)

log(ϑτk)→ log(ϑ) in L2(0, T ;Ls(Ω)) for all s ∈ [1, 6) if d = 3, (5.10)

and all s ∈ [1,∞) if d = 2,

log(ϑτk(t)) ⇀ log(ϑ(t)) in W 1,d+ε(Ω)∗ for all ε > 0 and for all t ∈ [0, T ], (5.11)

ϑτk → ϑ in Lh(Ω× (0, T )) for all h ∈ [1, 8/3) for d = 3 (5.12)

and all h ∈ [1, 3) if d = 2,

and ϑ also fulfills

ϑ ∈ L∞(0, T ;L1(Ω)), log ϑ ∈ BV([0, T ];W 1,d+ε(Ω)∗) for all ε > 0,

ϑ ≥ ϑ a.e. in Ω× (0, T )
(5.13)

(with ϑ from (4.10)).
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Under the additional Hypothesis (V), we also have ϑ ∈ BV([0, T ];W 2,d+ε(Ω)∗) for all ε > 0, and

ϑτk → ϑ in L2(0, T ;Y ) for all Y such that H1(Ω) b Y ⊂ W 2,d+ε(Ω)∗, (5.14)

ϑτk(t)→ ϑ(t) in W 2,d+ε(Ω)∗ for all t ∈ [0, T ]. (5.15)

Proof. Due to due to estimates (4.69b) and (4.69c), there holds

‖uτ − uτ‖L∞(0,T ;H2
0 (Ω;Rd)) ≤ τ 1/2‖∂tuτ‖L2(0,T ;H2

0 (Ω;Rd)) ≤ Sτ 1/2,

‖ûτ − ∂tuτ‖L∞(0,T ;L2(Ω;Rd)) ≤ τ 1/2‖∂tûτ‖L2(0,T ;L2(Ω;Rd)) ≤ Sτ 1/2.
(5.16)

Taking into account (4.69a), (4.69b), (4.69c), and applying well-known weak and strong compactness

results (for the latter, cf. e.g. [32]), we conclude convergences (5.1)–(5.5). The same kind of arguments

yields (5.6)–(5.7) on account of estimates (4.69d) and (4.69e). The bound (4.69g) gives the weak con-

vergence (5.8). Since the family (log(ϑτ ))τ is bounded inL2(0, T ;H1(Ω))∩BV([0, T ];W 1,d+ε(Ω)∗)

for all ε > 0, an Aubin-Lions type compactness result for BV-functions (see, for instance, [32, Cor4̇]

or [29, Chap. 7, Cor. 4.9]) ensures that, up to a subsequence, log(ϑτk) converges to some λ in

L2(0, T ;Z) for every Banach space Z such that H1(Ω) b Z ⊂ W 1,d+ε(Ω)∗. Therefore, log(ϑτk)

converges to λ pointwise almost everywhere in Ω × (0, T ) and accordingly ϑτk converges to eλ.

Then, in view of (5.8), λ = log(ϑ), and convergences (5.9) and (5.10) ensue. The BV-compactness

result [22, Thm. 6.1] also ensures that log(ϑ) ∈ BV([0, T ];W 1,d+ε(Ω)∗), and the additional weak

convergence (5.11). With a lower semicontinuity argument one also has that ϑ ∈ L∞(0, T ;L1(Ω)),

and convergence (5.12) follows from an interpolation argument (cf. (3.15)). Relying on this and on the

approximate positivity property (4.74), we also conclude the last of (5.13).

Under the additional Hypothesis (V), we also dispose of the BV-estimate (4.69i) for ϑτ . Combining this

with (4.69g) and applying the aforementioned compactness results from [32] and [22], we conclude

(5.14)–(5.15).

We are now in the position to develop the Proof of Theorem 2.5, by passing to the limit in the time-

discrete scheme set up in Sec. 4. Let (τk)k be a vanishing sequence of time-steps, and let

(ϑτk , ϑτk ,uτk ,uτk ,uτk , ûτk ,
χ
τk , χτk ,

χ
τk)k

be a sequence of approximate solutions. We can exploit the compactness results from Lemma 5.1.

We split the limit passage in the following steps.

Ad the weak momentum equation (2.40) Relying on convergences (5.1), (5.4)–(5.5), (5.7) and

(5.8), as well as (4.47) for (f τk)k, we pass to the limit in (4.51) and conclude that the triple (ϑ,u, χ)

fulfills (2.40).

Ad the weak formulation (2.41)–(2.44) of the equation for χ, µ = 1 The argument for obtaining

(2.41)–(2.44) in the limit follows exactly the same lines as the proof of [16, Thms. 4.4, 4.6] (see also

[28, Thm. 3]). Therefore we only recapitulate it, referring to the latter papers for all details.

First of all, as we have pointed out in the proof of Proposition 4.8, (4.6) can be interpreted as the Euler-

Lagrange equation for the minimum problem (4.58), i.e. (recall that here µ = 1 and that α̂ = I(−∞,0]
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and β̂ = I[0,+∞))

min
χ∈W 1,p(Ω)

{∫
Ω

(τ 3/2

2

∣∣∣∣χ− χk−1
τ

τ

∣∣∣∣2 +

(
χk
τ − χk−1

τ

τ

)
χ+ I(−∞,0]

(
χ− χk−1

τ

τ

)
+
|∇χ|p

p
+ I[0,+∞)(χ) + γ̂(χ) + b(χ)

ε(uk−1
τ )Eε(uk−1

τ )

2
− ϑkτχ

)
dx
} (5.17)

Writing necessary optimality conditions for the minimum problem (5.17), with the very same calcula-

tions as for [28, Thm. 3], we arrive at∫
Ω

(
∂tχτ (t)ψ +

√
τ∂tχτ (t)ψ + |∇χτ (t)|p−2∇χτ (t) · ∇ψ + γ(χτ (t))ψ + jτ (t)ψ

)
dx ≥ 0

for all t ∈ [0, T ] and all ψ ∈ W 1,p(Ω) s.t. there exists ν > 0 (5.18)

with 0 ≤ νψ + χ
τ (t) ≤ χ

τ (t) a.e. in Ω,

where where we have used the place-holder

jτ := b′(χτ )
ε(uτ )Eε(uτ )

2
− ϑτ . (5.19)

Choosing ψ = −∂tχτ (t) in (5.18) and and summing over the index k we deduce the discrete version

of the energy inequality (2.44) for all 0 ≤ s ≤ t ≤ T , viz.∫ tτ (t)

tτ (s)

∫
Ω

(1 + τ 1/2)|∂tχτ |2 dx dr +

∫
Ω

(
1

p
|∇χτ (tτ (t)))|p +W (χτ (tτ (t)))

)
dx

≤
∫

Ω

(
1

p
|∇χτ (tτ (s))|p +W (χτ (tτ (s)))

)
dx (5.20)

+

∫ tτ (t)

tτ (s)

∫
Ω

∂tχτ

(
−b′(χτ )

ε(uτ )Eε(uτ )
2

+ ϑτ

)
dx dr + Cτ‖∂tχτ‖2

L2(0,T ;L2(Ω)) ,

where we have used that∫ tτ (t)

tτ (s)

γ(χτ )∂tχτ dx dr =

∫ tτ (t)

tτ (s)

γ(χτ )∂tχτ dx dr

+

∫ tτ (t)

tτ (s)

(
γ(χτ )− γ(χτ )

)
∂tχτ dx dr

.
= I1 + I2

and that, by the chain rule,

I1 =

∫
Ω

γ̂(χτ (tτ (t))) dx−
∫

Ω

γ̂(χτ (tτ (s))) dx =

∫
Ω

W (χτ (tτ (t))) dx−
∫

Ω

W (χτ tτ (s))) dx

(due to β̂ = I[0,+∞)), while

I2 ≤ ‖∂tχτ‖L2(0,T ;L2(Ω))‖γ(χτ )− γ(χτ )‖L2(0,T ;L2(Ω)) ≤ Cτ‖∂tχτ‖2
L2(0,T ;L2(Ω))

thanks to the Lipschitz continuity of γ.

Second, repeating the “recovery sequence” argument from [16, proof of Thm. 4.4], we improve the

weak convergence (5.6) to
χ
τk → χ in Lp(0, T ;W 1,p(Ω)). (5.21)
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We refer to [16] and [28] for all the related calculations.

We are now in the position to taking the limit as τk ↓ 0 in the approximate energy inequality (5.20).

We pass to the limit on the left-hand side by lower semicontinuity, relying on convergences (5.6) and

(5.21). For the right-hand side, we exploit the latter strong convergence as well as (5.7), yielding that
χ
τk(s) → χ(s) in W 1,p(Ω), whence χτk(s) → χ(s) in C0(Ω), for almost all s ∈ (0, T ). It follows

from γ̂ ∈ C2(R) that γ̂ has at most quadratic growth on bounded subsets of R. We combine this

with the uniform convergence of (χτk(s))k to conclude that
∫

Ω
γ̂(χτk(s)) dx →

∫
Ω
γ̂(χ(s)) dx for

almost all s ∈ (0, T ). Since β̂ = I[0,+∞), we have
∫

Ω
W (χτk(s)) dx→

∫
Ω
W (χ(s)) dx for almost

all s ∈ (0, T ). Since (χτ )τ is bounded in H1(0, T ;L2(Ω)), we also have

√
τ∂tχτk → 0 in L2(0, T ;L2(Ω)). (5.22)

Combining the weak convergence (5.6) with the strong ones (5.2), (5.7), and (5.12), we also pass

to the limit in the second integral term on the right-hand side of (5.20). The last summand obviously

tends to zero. Therefore, we conclude the energy inequality (2.44).

Clearly, convergence (5.6) and the fact that ∂tχτ ≤ 0 a.e. in Ω × (0, T ) ensure that χt ≤ 0 .e.

in Ω × (0, T ), i.e. (2.41). To obtain the variational inequality (2.42), together with (2.43), we proceed

exaclty as in [16, 28]. The main steps are as follows: passing to the limit in (5.18) as τk ↓ 0 with suitable

test functions from [16, Lemma 5.2], also relying on (5.22), we prove that for almost all t ∈ (0, T )∫
Ω

(
χ
t(t)ψ̃ + |∇χ(t))|p−2∇χ(t) · ∇ψ̃ + γ(χ(t))ϕ̃

+ b′(χ(t))
ε(u(t))Eε(u(t))

2
ψ̃ − ϑ(t)ψ̃

)
dx ≥ 0

for all ψ̃ ∈ W 1,p
− (Ω) with {ψ̃ = 0} ⊃ {χ(t) = 0}.

From this, arguing as in the proof of [16, Thm. 4.4] we deduce that for almost all t ∈ (0, T )∫
Ω

(
χ
t(t)ψ + |∇χ(t))|p−2∇χ(t) · ∇ψ + γ(χ(t))ϕ

+ b′(χ(t))
ε(u(t))Eε(u(t))

2
ψ − ϑ(t)ψ

)
dx

≥
∫
{χ(t)=0}

(
γ(χ(t)) + b′(χ(t))

ε(u(t))Eε(u(t))

2
− ϑ(t)

)+

ψ dx

for all ψ ∈ W 1,p
− (Ω).

(5.23)

Relying on (5.23), it is possible to check that the function ξ from (2.47) complies with (2.42) and (2.43).

Ad the entropy inequality (2.37) Let us fix a test function ϕ ∈ C0([0, T ];W 1,d+ε(Ω)) ∩H1(0, T ;

L6/5(Ω)) (for some ε > 0), for the entropy inequality (2.37). We pass to the limit as τk ↓ 0 in the

discrete entropy inequality (4.55), with the discrete test functions constructed from ϕ in (4.53). In

order to pass to the limit in the first two integral terms on the left-hand side of (4.55), we combine

convergences (5.1), (5.7), and (5.10), with the convergence (4.54) for the test functions. In order to

deal with the last integral on the left-hand side, we observe that the family

(K(ϑτ )∇ log(ϑτ ))τ is bounded in L1+δ(Q; Rd) for some δ > 0. (5.24)
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Indeed, the growth condition (2.15) implies that

|K(ϑτ )∇ log(ϑτ )| ≤ C

(
|ϑτ |κ−1 +

1

ϑτ

)
|∇ϑτ | ≤ | ≤ C

(
|ϑτ |κ−1 +

1

ϑ(T )

)
|∇ϑτ |

a.e. in Ω× (0, T )

(also due to (4.74)). Thus, it remains to bound the term |ϑτ |κ−1|∇ϑτ |. To do so, we observe∫∫
Q

(
|ϑτ |κ−1|∇ϑτ |

)r
dx dt ≤ ‖(|ϑτ |(κ−α)/2)r‖L2/(2−r)(Q)‖(|ϑτ |(κ+α−2)/2|∇ϑτk)r‖L2/r(Q;Rd)

≤ C‖(|ϑτ |(κ−α)/2)r‖L2/(2−r)(Q) (5.25)

for some r > 0 (to be chosen below), where we exploited that (|ϑτ |(κ+α−2)/2∇ϑτ )τ is bounded

in L2(Q; Rd) thanks to (3.16) (cf. also (3.13)). Indeed the latter estimate yields that ((ϑτ )
(κ+α)/2)τ

is bounded in L2(Q), hence that ((ϑτ )
(κ−α)/2)τ is bounded in L2(κ+α)/(κ−α)(Q). Therefore, it is

sufficient to choose in (5.25) r such that 2r/(2− r) = 2(κ+α)/(κ−α), i.e. r = (κ+α)/κ, which

is strictly bigger than 1. Therefore, up to some subsequence K(ϑτk)∇ log(ϑτk) weakly converges to

some η in L1+δ(Q; Rd). In order to identify η as K(ϑ)∇ log(ϑ), we use these facts. We first show

that

|ϑτk |(κ+α−2)/2∇ϑτk ⇀ |ϑ|(κ+α−2)/2∇ϑ in L2(Q; Rd). (5.26)

Indeed, on the one hand, (5.8) gives ∇ϑτk ⇀ ∇ϑ in L2(0, T ;L2(Ω; Rd)). On the other hand, the

pointwise convergence ϑτk → ϑ a.e. in Ω× (0, T ) combined with the fact that (ϑτk)k is bounded in

Lκ+α(Ω) yields that ϑτk → ϑ inLκ+α−ε(Ω) for all ε > 0. Therefore |ϑτ |(κ+α−2)/2 → |ϑ|(κ+α−2)/2 in

L2(κ+α)/(κ+α−2)−ε(Ω) for all ε > 0 . Since (|ϑτk |(κ+α−2)/2∇ϑτk)k is bounded in L2(Q; Rd), (5.26)

follows. Second, we have that

|ϑτk |(κ−α)/2 → ϑ(κ−α)/2 in L2(κ+α)/(κ−α)−ε(Ω) for all ε > 0, (5.27)

again due to the pointwise convergence of ϑτk and to the fact (ϑτk)k is bounded inLκ+α(Ω). It follows

from (5.26), (5.27) , and the growth condition on K, that

K(ϑτk)∇ log(ϑτk) ⇀ K(ϑ)∇ log(ϑ) in L1+δ(Q; Rd). (5.28)

This and convergence (4.54) enables us to take the limit in third term on the left-hand side of (4.55).

The passage to the limit in the first two integrals on the right-hand side results from convergences

(5.7), (5.11), and again (4.54). For the third term, we use that

lim inf
k→∞

∫ tτk (t)

tτk (s)

∫
Ω

K(ϑτk(r))ϕτk(r)
∣∣∇ log(ϑτk(r))

∣∣2 dx dr

≥
∫ t

s

∫
Ω

K(ϑ(r))ϕ(r) |∇ log(ϑ(r))|2 dx dr

which results from the weak convergence (5.9), combined with the pointwise convergence ϑτk → ϑ

a.e. in Ω×(0, T ), (4.54) for the discrete test functions, applying the Ioffe theorem [18]. With analogous

arguments we pass to the limit in the last two integrals on the right-hand side of (4.55), and therefore

conclude (2.37).
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Ad the total energy inequality (2.38) It follows from passing to the limit as τk ↓ 0 in the discrete

total energy inequality (4.56), based on convergences (4.47)–(4.49) for f τk , gτk , hτk , and on (5.2),

(5.5), (5.7), and (5.12). Observe that convergences (5.2), (5.5), and (5.7) are sufficient to pass to the

limit on the left-hand side of (4.56), by lower semicontinuity, for all t ∈ [0, T ]. However, (5.12) only

guarantees that ϑτk(t)→ ϑ(t) in L1(Ω) for almost all t ∈ (0, T ).

Enhanced regularity and improved total energy inequality under Hypothesis (V) If in addition

Hyp. (V) holds, in view of Lemma 5.1 ϑ is in BV([0, T ];W 2,d+ε(Ω)∗) for every ε > 0, and the

enhanced convergences (5.14) and (5.15) hold. The latter pointwise convergence allows us to pass to

the limit on the left-hand side of (4.56) for all t ∈ [0, T ]. This concludes the proof.

We conclude this section with the Proof of Theorem 2.8: Let (τk)k be a vanishing sequence of time-

steps, and (ϑτk , ϑτk ,uτk ,uτk ,uτk , ûτk ,
χ
τk , χτk ,

χ
τk)k be a sequence of approximate solutions; let

(ξτk)k be a sequence of selections in β(χτk), such that (χτk , ξτk) satisfy for all k ∈ N the approxi-

mate equation (4.52).

In the case µ = 0, in addition to convergences (5.1)–(5.15), estimates (4.69j) yield, up to a subse-

quence, the further convergences

χ
τk ⇀ χ in L2(0, T ;W 1+σ,p(Ω)) for all 1 ≤ σ <

1

p
,

χ
τk ⇀ χ in Lq(0, T ;W 1,p(Ω)) for all 1 ≤ q <∞.

(5.29)

Furthermore, there exists ξ ∈ L2(0, T ;L2(Ω)) such that

ξτk ⇀ ξ in L2(0, T ;L2(Ω)). (5.30)

The strong convergence (5.29) and the strong-weak closedness of β (as a maximal monotone opera-

tor from L2(Ω) to L2(Ω)) immediately yield that ξ ∈ β(χ) a.e. in Ω× (0, T ).

Therefore, also exploiting convergences (5.1)–(5.8) we pass to the limit in the discrete equation for
χ (4.52) and immediately conclude that the quadruple (ϑ,u, χ, ξ) fulfills the pointwise formulation

(2.51)–(2.52) of the internal parameter equation (1.3). The proof of the entropy inequality, of the total

energy inequality, and of the momentum equation is clearly the same as for Theorem 2.5.

Under the additional Hypothesis (V), as previously seen ϑ is in BV([0, T ];W 2,d+ε(Ω)∗). We prove

the weak form (2.54) of the heat equation by passing to the limit as τk ↓ 0 in the approximate heat

equation (4.50), tested by an arbtitrary ϕ ∈ C0([0, T ];W 2,d+ε(Ω)) ∩H1(0, T ;L6/5(Ω)). The pas-

sage to the limit in the first three terms on the left-hand side, and on the first two terms on the right-hand

side, results from convergences (4.48), (4.49) for (gτk)k and (hτk)k, and from (5.1)–(5.2), (5.5)–(5.8):

in particular, we exploit that ε(∂tuτk)Eε(∂tuτk) → ε(ut)Eε(ut) strongly in L1(Q) thanks to the

strong convergence (5.5).

In order to pass to the limit with the fourth term on the left-hand side of (4.50), we need to derive a

finer estimate for (K(ϑτk)∇ϑτk)k. Arguing as for (3.28) we use that

|K(ϑτk)∇ϑτk | ≤ C|ϑτk |(κ−α+2)/2|ϑτk |(κ+α−2)/2|∇ϑτk |+ C|∇ϑτk |.

Now, (ϑτk)
(κ+α−2)/2∇ϑτk is bounded in L2(0, T ;L2(Ω; Rd)) (thanks to (4.72)). On the other hand,

(ϑτk)k is bounded in Lp(Q) for all 1 ≤ p < 8/3, in the case d = 3 (to which we confine this
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discussion). Therefore, choosing α ∈ [1/2, 1) such that α > κ − 2
3

(this can be done since κ <

5/3 by assumption), we conclude that ((ϑτk)
(κ−α+2)/2)k is bounded in L2+δ(Q) for some δ > 0.

Ultimately, we conclude that (K(ϑτk)∇ϑτk)k is bounded in L1+δ̄(0, T ;L1+δ̄(Ω)) for some δ̄ > 0,

hence

∃ η ∈ L1+δ̄(0, T ;L1+δ̄(Ω)) : K(ϑτk)∇ϑτk ⇀ η in L1+δ̄(0, T ;L1+δ̄(Ω)) . (5.31)

In order to identify the weak limit η, it is sufficient to observe that (cf. [21]) K(ϑτk)∇ϑτk = ∇K̂(ϑτk)

a.e. in Ω× (0, T ). Combining the growth property (2.15) of K (where 1 ≤ κ < 5/3), with the strong

convergence (5.12) of ϑτk in Lp(Q) for all 1 ≤ p < 8/3, we ultimately conclude that (K̂(ϑτk))k
strongly converges to K̂(ϑ) in L1+δ̃(Q) for some δ̃ > 0. A standard argument then yields

η = ∇K̂(ϑ) = K(ϑ)∇ϑ a.e. in Ω× (0, T ). (5.32)

Combining (5.31) and (5.32) leads to∫ T

0

∫
Ω

K(ϑτk)∇ϑτk) · ∇ϕ dx dt→
∫ T

0

∫
Ω

K(ϑ)∇ϑ · ∇ϕ dx dt

for every test function ϕ ∈ C0([0, T ];W 2,d+ε(Ω)).

To complete the passage to the limit on the right-hand side of (4.50), it remains to show that

∂tχτk → χ
t in L2(0, T ;L2(Ω)). (5.33)

This follows from testing the discrete equation for χ (4.52) by ∂tχτk , integrating in time, and passing

to the limit as k →∞. Indeed, exploiting convergences (5.2) and (5.6)–(5.8) we deduce that

lim sup
k→∞

∫ T

0

∫
Ω

|∂tχτk |2 dx dt ≤
∫ T

0

∫
Ω

|χt|2 dx dt,

whence (5.33). This concludes the proof of (2.54).

The total energy equality (2.55) then ensues from testing (2.54) by ϕ = 1, the momentum balance

(2.40) by ut, and the (pointwise) χ-equation (2.51) by χt, adding the resulting relations, and integrating

in time.

6 From the p-Laplacian to the Laplacian

In this Section we prove a global-in-time existence result for a suitable entropic formulation of the initial-

boundary value problem for system (1.1)–(1.3), in the case the p-Laplacian operator

− div(|∇χ|p−1∇χ) is replaced by the Laplacian −∆χ, i.e. for p = 2, keeping the evolution uni-

directional (i.e., µ = 1). Hence, (1.3) rewrites as

χ
t + ∂I(−∞,0](χt)−∆χ+W ′(χ) 3 −b′(χ)

ε(u)Eε(u)

2
+ ϑ in Ω× (0, T ). (6.1)
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We restrict, apparently for technical reasons (which however we cannot bypass), to the irreversible

case µ = 1. The main idea of the technique consists in passing to the limit as δ ↘ 0 in the following

approximation of (6.1)

χ
t + ∂I(−∞,0](χt)−∆χ− δ div(|∇χ|p−1∇χ)

+W ′(χ) 3 −b′(χ)
ε(u)Eε(u)

2
+ ϑ in Ω× (0, T ).

(6.2)

Indeed, we can apply Thm. 2.5 to the initial-boundary value problem for system (1.1)–(1.2), (6.2), with

p > d (supplemented with the boundary conditions (1.4)), and conclude the existence of global-in-

time entropic solutions. In this entropic formulation we will pass to the limit as δ ↘ 0, recovering an

existence result for the case p = 2. Let us now state the notion of entropic solution for the limit system

as δ → 0. We mention in advance that the solution concept introduced below is weaker than the one

we have obtained in the case p > d (cf. Definition (2.4)). In fact, the total energy inequality holds true

only on (0, t) (cf. (6.7) below), and not on a generic interval (s, t), and so does the energy inequality in

the weak formulation of the equation for χ. Moreover, the momentum equation is no longer formulated

pointwise a.e. in Ω× (0, T ), but in H−1(Ω; Rd), a.e. in time, only. Let us also anticipate that we will

confine to initial data χ0 ∈ H1(Ω) such that χ0 ≥ 0 a.e. in Ω (which gives β̂(χ0) ∈ L1(Ω) as in

(2.26)) and, at the same time, χ0 ≤ 1 a.e. in Ω. This and the irreversible character of the evolution

will ensure that χ ∈ [0, 1] a.e. in Ω× (0, T ), in accord with its physical meaning.

Definition 6.1 (Entropic solutions to the irreversible system with p = 2). Given initial data (ϑ0,u0,v0

fulfilling (2.24)–(2.25), and χ0 such that

χ
0 ∈ H1(Ω), 0 ≤ χ

0 ≤ 1 a.e. in Ω, (6.3)

we call a triple (ϑ,u, χ) an entropic solution to the (initial-boundary value problem) for system (1.1)–

(1.2), (6.1) with the boundary conditions (1.4), if

ϑ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L1(Ω)) , (6.4)

u ∈ H1(0, T ;H1
0 (Ω; Rd)) ∩W 1,∞(0, T ;L2(Ω; Rd)) ∩H2(0, T ;H−1(Ω; Rd)) , (6.5)

χ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), (6.6)

(ϑ,u, χ) complies with the initial conditions (2.35)–(2.36), and with the entropic formulation of (1.1)–

(1.2), (6.1) consisting of

- the entropy inequality (2.37);

- the total energy inequality for almost all t ∈ (0, T ]:

E (ϑ(t),u(t),ut(t), χ(t)) ≤ E (ϑ0,u0,v0, χ0) +

∫ t

0

∫
Ω

g dx dr

+

∫ t

0

∫
∂Ω

h dS dr +

∫ t

0

∫
Ω

f · ut dx dr ,

(6.7)

where

E (ϑ,u,ut, χ) :=

∫
Ω

ϑ dx+
1

2

∫
Ω

|ut|2 dx+
1

2
e(b(χ(t))u(t),u(t))

+
1

2

∫
Ω

|∇χ|2 dx+

∫
Ω

W (χ) dx ;

(6.8)
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- the momentum equation

utt + V (a(χ)ut) + E (b(χ)u) + Cρ(ϑ) = f in H−1(Ω; Rd); (6.9)

- the weak formulation of (6.1), viz.

χ
t(x, t) ≤ 0 for a.a. (x, t) ∈ Ω× (0, T ), (6.10)∫
Ω

(
χ
t(t)ψ +∇χ(t) · ∇ψ + ξ(t)ψ + γ(χ(t))ψ

+ b′(χ(t))
ε(u(t))Eε(u(t))

2
ψ − ϑ(t)ψ

)
dx ≥ 0

for all ψ ∈ W 1,2
− (Ω) ∩ L∞(Ω), for a.a. t ∈ (0, T ),

(6.11)

where ξ ∈ ∂I[0,+∞)(χ) in the sense that

ξ ∈ L1(0, T ;L1(Ω)) and 〈ξ(t), ψ − χ(t)〉W 1,2(Ω) ≤ 0 ∀ψ ∈ W 1,2
+ (Ω) ∩ L∞(Ω),

for a.a. t ∈ (0, T ), (6.12)

as well as the energy inequality for all t ∈ (0, T ]:∫ t

0

∫
Ω

|χt|2 dx dr +

∫
Ω

(
1

2
|∇χ(t)|2 +W (χ(t))

)
dx

≤
∫

Ω

(
1

2
|∇χ0|2 +W (χ0)

)
dx

+

∫ t

0

∫
Ω

χ
t

(
−b′(χ)

ε(u)Eε(u)

2
+ ϑ

)
dx dr.

(6.13)

We are in the position now to state the main existence result of this section.

Theorem 6.2 (Existence of entropic solutions, µ = 1 and p = 2). Assume Hypotheses (I)–(III) with

b′(x) ≥ 0 for all x ∈ R, (6.14)

and, in addition, Hypothesis (IV) (i.e., β̂ = I[0,+∞)), as well as conditions (2.21)–(2.25) on the data

f , g, h, ϑ0, u0, v0, and (6.3) on χ0. Then, there exists an entropic solution (in the sense of Definition

6.1) (ϑ,u, χ) to the initial-boundary value problem for system (1.1)–(1.2), (6.1), such that ξ in (6.12)

is given by (2.47) and ϑ satisfies (2.48).

Proof. Let (ϑδ,uδ, χδ) be a suitable family of entropic solutions to the initial-boundary value problem

for (1.1)–(1.2), supplemented with initial data (ϑ0,u0,v0) fulfilling (2.24)–(2.25), and with a sequence

of data (χδ0)δ such that

(χδ0)δ ⊂ W 1,p(Ω), 0 ≤ χδ
0(x) ≤ 1 for all x ∈ Ω for all δ > 0, χδ

0 → χ
0 in H1(Ω). (6.15)

Observe that we cannot rigorously perform on the entropic formulation of (1.1)–(1.2) the a priori esti-

mates in Section 3. Therefore we need to confine the discussion only to the entropic solutions which

arise from the time-discretization scheme set up in Sec. 4. In the present framework (i.e. with p = 2

and µ = 1, and no upper bound on κ, cf. Hypothesis (V)), the a priori estimates for the time-discrete

solutions in Prop. 4.10 are inherited in the time-continuous limit by the entropic solutions, with the
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exception of those corresponding to the Fifth, the Seventh, and the Eighth a priori estimates in Sec. 3,

cf. also Remark 3.1.

The convergences from Lemma 5.1 combined with lower semicontinuity arguments indeed ensure

that the strict positivity of ϑδ (cf. (3.2)), as well as estimates (3.5), (3.14), (3.16), (3.18), (3.27), hold

with constants uniform w.r.t. δ. Moreover, combining the fact that β̂ = I[0,+∞) with the unidirectional

character of the evolution and with the fact that χδ(0) = χδ
0 ∈ [0, 1] on Ω, we infer that

∃C > 0 ∀ δ > 0 : ‖χδ‖L∞(Q) ≤ C. (6.16)

Therefore, repeating the compactness arguments in the proof of Lemma 5.1, based on the compact-

ness results in [32], for every vanishing sequence δk ↓ 0 as k → ∞ there exist a not relabeled

subsequence and a triple (ϑ,u, χ) along which there holds as k →∞:

ϑδk⇀
∗ϑ in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L1(Ω)) , (6.17)

uδk⇀
∗u in H2(0, T ;H−1(Ω; Rd)) ∩W 1,∞(0, T ;L2(Ω; Rd)) ∩H1(0, T ;H1(Ω; Rd)) , (6.18)

∂tuδk → ∂tu in L2(0, T ;L2(Ω; Rd)) , (6.19)

χ
δk⇀

∗χ in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) , (6.20)

χ
δk → χ in Lh(Ω× (0, T )) for all h ∈ [1,+∞) , (6.21)

log(ϑδk)→ log(ϑ) in L2(0, T ;Ls(Ω)) for all s ∈ (1, 6) for d = 3 (6.22)

and for all s ∈ (1,+∞) for d = 2 ,

ϑδk → ϑ in Lh(Ω× (0, T )), for every h ∈ [1, 8/3) for d = 3 and h ∈ [1, 3) if d = 2. (6.23)

Now, in order to pass to the limit as δ ↘ 0 we need to prove the following further convergence.

Observe that, in the case of the p-Laplacian regularization for χ, we were able to prove an additional

the strong convergence for ∂tu in L2(0, T ;H1(Ω; Rd)). Our argument resulted from compactness

arguments, relying on the Fifth a priori estimate (i.e. the elliptic regularity estimate on u). The latter is

no longer at our disposal, now.

Strong convergence of ∂tuδ in L2(0, T ;H1(Ω; Rd)). This argument is strongly based on the

irreversible character of our system. Let us test the weak formulation (2.40) of momentum equation

fulfilled by the approximate solutions (ϑδk ,uδk , χδk)k, by ∂t(uδk − u), where u is the limit of (uδk)k
as in (6.18)–(6.19). We get

0 =

∫ t

0

∫
Ω

∂2
ttuδk∂t(uδk − u) dx ds+

∫ t

0

v(a(χδk)∂tuδk , ∂t(uδk − u)) ds

+

∫ t

0

e(b(χδk)uδk , ∂t(uδk − u)) ds− ρ
∫ t

0

∫
Ω

ϑδk div(∂t(uδk − u)) dx ds

−
∫ t

0

∫
Ω

f∂t(uδk − u) dx ds =:
5∑
i=1

Ii .
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Let us now deal separately with the single integrals:

I1 : =

∫ t

0

∫
Ω

∂2
ttuδk∂t(uδk − u) dx ds =

∫ t

0

∫
Ω

∂2
tt(uδk − u)∂t(uδk − u) dx ds

+

∫ t

0

∫
Ω

∂2
ttu∂t(uδk − u) dx ds

=
1

2
‖∂t(uδk − u)(t)‖2

L2(Ω;Rd) −
1

2
‖∂t(uδk − u)(0)‖2

L2(Ω;Rd)

+

∫ t

0

〈∂2
ttu, ∂t(uδk − u)〉H1(Ω;Rd) ds ,

and the third integral tends to 0 when δk ↘ 0 due to (6.18). Moreover,

I2 : =

∫ t

0

v(a(χδk)∂tuδk , ∂t(uδk − u)) ds

=

∫ t

0

v(a(χδk)∂t(uδk − u), ∂t(uδk − u)) ds+

∫ t

0

v(a(χδk)∂tu, ∂t(uδk − u)) ds .

Now, observe that

a(χδk)∂tu→ a(χ)∂tu in L2(0, T ;H1(Ω; Rd)). (6.24)

This follows from the fact that a(χδk)ut → a(χ)ut and a(χδk)ε(ut)→ a(χ)ε(ut) a.e. in Ω×(0, T ),

in view of convergence (6.21) and of the continuity of a. Moreover, also due to (6.16), we have that

‖a(χδk)ut‖H1(Ω;Rd) ≤ C‖ut‖H1(Ω;Rd) for a constant independent of k ∈ N. Therefore, using the

Lebesgue theorem (6.24) ensues. This implies that
∫ t

0
〈∂2
ttu, ∂t(uδk − u)〉H1(Ω;Rd) ds tends to 0

when δk ↘ 0, due to (6.18). Integrating by parts in time, we get

I3 : =

∫ t

0

e(b(χδk)uδk , ∂t(uδk − u)) ds

=

∫ t

0

e(b(χδk)(uδk − u), ∂t(uδk − u)) ds+

∫ t

0

e(b(χδk)u, ∂t(uδk − u)) ds

= −
∫ t

0

∫
Ω

b′(χδk)∂tχδk
ε(uδk − u)Eε(uδk − u)

2
dx ds

+
1

2
e(b(χδk(t)(uδk − u)(t), (uδk − u)(t))

− 1

2
e(b(χδk(0))(uδk − u)(0), (uδk − u)(0)) +

∫ t

0

e(b(χδk)u, ∂t(uδk − u)) ds ,

where the last integral tends to 0 (this can be shown arguing in the same way as for I2), while the first

integral is non-negative due to the fact that ∂tχδk ≤ 0 a.e. on Ω× (0, T ) and that b′ ≥ 0.This is the

point where we exploit the unidirectional character of the system (i.e. µ = 1). Finally,

I4 := −
∫ t

0

∫
Ω

ϑδkε(∂t(uδk − u)) dx ds→ 0 , I5 := −
∫ t

0

∫
Ω

f∂t(uδk − u) dx ds→ 0 ,

as δk ↘ 0, due to the convergences (6.18), (6.23), as well as assumption (2.21) on f . Ultimately, we

get

‖∂t(uδk − u)(t)‖2
L2(Ω;Rd) +

∫ t

0

v(a(χδk)∂t(uδk − u), ∂t(uδk − u)) ds

+ e(b(χδk(t)(uδk − u)(t), (uδk − u)(t))→ 0
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as δk ↘ 0, which entails

uδk → u strongly in W 1,∞(0, T ;L2(Ω; Rd)) ∩H1(0, T ;H1(Ω; Rd)) . (6.25)

Conclusion of the proof. Using this strong convergence, we can now pass to the limit as k → ∞
in the energy inequality (2.42) in the weak formulation of the equation for χδk as follows. We have to

identify the weak limit of

ξδk(x, t) = −Iχ
δk

=0(x, t)

(
γ(χδk(x, t))

+ b′(χδk(x, t))
ε(uδk(x, t))E(x)ε(uδk(x, t))

2
− ϑδk(x, t)

)+

.

(6.26)

First of all note that (Iχ
δk

=0)k is bounded in L∞(Q) independently of k ∈ N. Hence, we can select

a subsequence (Iχ
δk

=0)k weakly star converging in L∞(Q) to some I. Observe that we cannot

establish that I = Iχ=0. On the other hand, it follows from the previously proved convergences that

(γ(χδk)+b′(χδk)
ε(uδk )Eε(uδk )

2
−ϑδk)+ strongly converges inL1(Q) to (γ(χ)+b′(χ) ε(u)Eε(u)

2
−ϑ)+.

Hence we identify

ξ = −I(x, t)(γ(χ(x, t)) + b′(χ(x, t))
ε(u(x, t))Eε(u(x, t))

2
− ϑ(x, t))+ (6.27)

and observe that ξδk ⇀ ξ in L1(Q). Then, integrating (2.42)δk from 0 to T and passing to the limit as

k →∞, using the fact that or all ψ ∈ Lp(0, T ;W 1,p
− (Ω)) ∩ L∞(Q)∣∣∣∣∫ T

0

∫
Ω

δk|∇χδk |p−2∇χδk · ∇ψ dx dt

∣∣∣∣ ≤ δk‖∇χδk‖
p−1
Lp−1(Q;Rd)

‖∇ψ‖Lp(Q;Rd) → 0 ,

we get ∫ T

0

∫
Ω

(
χ
t(t)ψ +∇χ(t) · ∇ψ + γ(χ(t))ψ

+ b′(χ(t))
ε(u(t))Eε(u(t))

2
ψ − ϑ(t)ψ

)
dx dt ≥ −

∫ T

0

∫
Ω

ξ(t)ψ dxdt ,

(6.28)

for all ψ ∈ Lp(0, T ;W 1,p
− (Ω)) ∩ L∞(Q), where ξ is defined in (6.27). From (6.28), we get (6.11).

It remains to show that χ complies with the variational inequality (6.12). To do so, we have to pass to

the limit in (2.43)δk , whence∫ T

0

(∫
Ω

ξδk(ψ − χδk(t)) dx

)
ζ(t) dt ≥ 0

for all ψ ∈ W 1,p
+ (Ω)L∞(Ω) and all ζ ∈ L∞(0, T ) with ψ, ζ ≥ 0 .

Observe that the two weak convergences χδk⇀
∗χ in L∞(Q) and ξδk ⇀ ξ in L1(Q) do not allow for

a direct limit passage in the term
∫∫

Q
ξδkχδkζ dx dt, which equals zero for all k ∈ N due to (6.26).

Indeed, we need to argue in a more refined way. It follows from (6.21) that χδk converges almost
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uniformly to χ in Q, i.e. for every ε > 0 there exists Qε ⊂ Q such that |Q \ Qε| < ε and χδk → χ

uniformly on Qε. The latter property implies that

I ≡ 0 on Qε ∩ {Iχ=0 ≡ 0} . (6.29)

Indeed, Iχ=0(x, t) = 0 implies χ(x, t) 6= 0. Since χδk converges to χ uniformly on Qε, there exists

an index k̄, independent of (x, t), such that for all k ≥ k̄, χδk(x, t) 6= 0, hence Iχ
δk

=0(x, t) = 0.

With this argument we conclude that that Iχ
δk

=0 ≡ 0 on Qε ∩ {Iχ=0 ≡ 0}, whence (6.29). It follows

from (6.29) and (6.27) that

ξ(x, t)χ(x, t) = 0 for a.a. (x, t) ∈ Qε, whence

∫∫
Qε

ξ(x, t)χ(x, t)ζ(t) dx dt = 0 .

On the other hand, using the properties of the Lebesgue integral we have that

∀ η > 0 ∃ε = εη > 0 : |Q \Qε| < ε ⇒
∫∫

Q\Qε
|ξ(x, t)χ(x, t)ζ(t)| dx dt < η.

Therefore we conclude that

∀ η > 0

∣∣∣∣∫∫
Q

ξ(x, t)χ(x, t)ζ(t) dx dt

∣∣∣∣ < η,

i.e. ∫∫
Q

ξ(x, t)χ(x, t)ζ(t) dx dt = 0 = lim
k→∞

∫∫
Q

ξδkχδkζ dx dt

Hence

0 ≤
∫∫

Q

ξδk(ψ − χδk)ζ dx dt→
∫∫

Q

ξ(ψ − χ)ζ dx dt =

∫ T

0

(∫
Ω

ξ(ψ − χ(t)) dx

)
ζ(t) dt,

which implies∫
Ω

ξ(t)(ψ − χ(t)) dx ≥ 0 for a.e. t ∈ (0, T ) for all ψ ∈ W 1,p
+ (Ω) ∩ L∞(Ω).

With a density argument we get (6.12) for all ψ ∈ W 1,2
+ (Ω).

Convergences (6.17)–(6.23) also guarantee the passage to the limit in the momentum equation,

whence (6.9).

Finally, we pass to the limit in the entropy inequality (2.37) and in the total energy inequality (2.38)

by the very same compactness/lower semicontinuity arguments as in the proof of Theorem 2.5, thus

deducing (2.37) and the total energy inequality (6.7) on the generic interval (0, t).

Remark 6.3. Notice that, we have been able to obtain the energy inequalities (6.13) and (6.8) only

on intervals of the type (0, t), and not on the generic interval (s, t) ⊂ (0, T ), due to the weak con-

vergence of (∇χδk) in L2(Q; Rd), which does not yield the pointwise-in-time convergence required

to take the limit of the right-hand sides of (2.44) and (2.38). It is an open poblem to improve the

convergence of (∇χδk) to a strong one.

This limit passage also reveals that the notion of entropic solution enjoys stability properties. It is clearly

the right one in the present framework, and, seemingly, the entropy inequality cannot be improved to

an equality, at least with these techniques. Indeed, due to a lack of elliptic regularity estimates on the

displacement which were previously made possible by the p-Laplacian regularization, in the limit as

δ ↓ 0 the right-hand side of the heat equation is only estimated in L1(Q).
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