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ABSTRACT. A numerical method for the fully adaptive sampling and interpolation of PDE with
random data is presented. It is based on the idea that the solution of the PDE with stochastic
data can be represented as conditional expectation of a functional of a corresponding stochastic
differential equation (SDE). The physical domain is decomposed subject to a non-uniform grid
and a classical Euler scheme is employed to approximately solve the SDE at grid vertices.
Interpolation with a conforming finite element basis is employed to reconstruct a global solution
of the problem. An a posteriori error estimator is introduced which provides a measure of the
different error contributions. This facilitates the formulation of an adaptive algorithm to control
the overall error by either reducing the stochastic error by locally evaluating more samples, or
the approximation error by locally refining the underlying mesh. Numerical examples illustrate
the performance of the presented novel method.

1. INTRODUCTION

It becomes increasingly common that problems in the applied sciences, e.g. in engineering and
computational biology, involve uncertainties of model parameters. These can for instance be
related to coefficients of random media, i.e. material properties, inexact domains and stochastic
boundary data. The uncertainties may result from heterogeneities and incomplete knowledge
or inherent stochasticity of parameters. With steadily increasing computing power, the research
field of uncertainty quantification (UQ) has become a rapidly growing and vividly active area of
research which covers many aspects of dealing with such uncertainties for problems of practical
interest.

In this work, we derive a novel adaptive numerical approach for the solution of PDEs with sto-
chastic data. The proposed method is based on the presentation in [1] where a similar idea was
described in combination with a global regression and without adaptivity (except for the step
width in the Euler scheme). The important topic of adaptivity is picked up in this work where
a unique feature of the method is exploited, namely the completely decoupled and localized
parametrization (and thus control) of approximation errors and stochastic errors. This becomes
feasible since

� the pointwise solution in the physical domain is determined by an appropriate SDE and
solved by an adaptive Euler scheme as in [1],

� the global solution on the physical domain is reconstructed based on a triangulation and
interpolation in between vertices (i.e. on a discrete finite element space).

Consequently, the overall error is determined by

1 the accuracy of the single SDE solutions determined by the step width of the scheme,
2 the stochastic error for the pointwise expected value determined by the number of solu-

tions computed on each vertex,
3 the number of solution points in the physical domain determined by the refinement level

of the employed mesh.

Hence, the second item related to the stochastic error enables a localized adaptivity for the
sampling while the first and third items are related to the approximation quality in the physical
domain. In comparison to other common methods such as the Monte Carlo FEM for stochastic
PDEs, the proposed method provides means to adjust the number of samples locally while also
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reconstructing global solutions. Moreover, it is also highly parallelizable and thus well suited for
modern distributed multi-core architectures.

While the derivation of the method in the next section is rather general, a specific motivation
is given by a model relevant in practical problems, namely the Darcy equation related to the
modeling of groundwater flow. It reads

−∇ · (κ(x)∇u(x)) = f(x), x ∈ D,(1a)

u(x) = g(x), x ∈ ∂D,(1b)

where the solution u is the hydraulic head, κ denotes the conductivity coefficient describing the
porosity of the medium, f is a source term and the Dirichlet boundary data is defined by g. The
computational domain in d dimensions is denoted D ⊂ Rd and we suppose that D is a convex
polygon. Moreover, all data are supposed to be sufficiently smooth such that the problem always
exhibits a unique solution which then is also smooth. A detailed regularity analysis is not in the
scope of this paper. In principle, although we restrict our investigations to a stochastic coefficient
κ, any data of the PDE can be modeled as being stochastic. The model (1) is quite popular for
analytical and numerical examinations since it is one of the simplest models which reveals some
major difficulties that also arise in more complex stochastic models. Moreover, the deterministic
second order elliptic PDE is a well-studied model problem and it is of practical relevance, e.g. in
the context of groundwater contamination.

The stochastic data used in the PDE model is a stochastic field given with an adequate rep-
resentation. This can for instance be based on actual measurements, expert-knowledge or
simplifying assumptions regarding the statistics. For actual numerical computations, the rep-
resentation has to be amenable for the employed method. It is a common modeling assumption
that the random fields are Gaussian. They are thus completely specified by the first two mo-
ments. In fact, any stochastic field κ : Ω ×D → R with finite variance can be represented in
terms of

(2) κ(x, ω) = E[κ] +
∞∑
m=1

am(x)ξm(ω)

where the product of the sum separates the dependence on ω ∈ Ω (a random event) and
x ∈ D (a point in the physical domain) with spatial functions am and independent random
variables ξm. A typical method to obtain such a representation is the Karhunen-Loève expansion
(KL) which will be used in the numerical examples with a finite number of terms (truncated
KL). In this case, the basis am consists of eigenfunctions of the covariance integral operator
weighted by the eigenvalues of this operator. The smoothness of the am is directly related to
the smoothness of the covariance function used to model the respective stochastic field, see
e.g. [8, 26, 19].

A variety of numerical methods is available to obtain approximate solutions of the model prob-
lem (1) with random data and we only refer to [19, 25, 18] for an overview in the context of
uncertainty quantification (UQ). These methods often rely on the separation of the determin-
istic and the stochastic space and introduce separate discretizations [24]. Common methods
are based on sampling of the stochastic space, the projection onto an appropriate stochastic
basis or a perturbation analysis. The most well-known sampling approach is the Monte Carlo
(MC) method which is very robust and easy to implement. Recent developments include the
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quite successful application of multilevel ideas for variance reduction and advances with struc-
tured point sequences (Quasi-MC), cf. [7, 9, 16, 17, 5]. (Pseudo-)Spectral methods represent
a popular class of projection techniques which can e.g. be based on interpolation (Stochastic
Collocation) [2, 22, 23] or orthogonal Projections with respect to the energy norm induced by
the differential operator of the random PDE (Stochastic Galerkin FEM) [14, 20, 4, 3, 13, 11, 12].
These methods are more involved to analyze and implement but offer the benefit of possibly
drastically improved convergence rates when compared to standard Monte Carlo sampling. The
deterministic discretization often relies on the finite element method (FEM) which also holds for
MC.

The aim of this paper is the description of a novel highly adaptive numerical approach which is
founded on the observation that the random PDE (1) is directly related to a stochastic differential
equation driven by a stochastic process, namely

(3) dXt = b(Xt)dt+ σ(Xt)dWt

with appropriate coefficients b and σ, Brownian motion W and additional boundary conditions.
For deterministic data κ, f, g, for any x ∈ D, the Feynman-Kac formula leads to a collection
of random variables ϕx = ϕx(κ, f, g) such that u(x) = E[ϕx], i.e. the deterministic solution
at x is equivalent to the expectation of the random variable. When the data are stochastic, the
solution u(ω, x) of the random PDE at x ∈ D can be expressed as the conditional expectation
u(ω, x) = E[ϕx |κ, f, g] and the variance of u(x) can be bounded by the variance of ϕx.
To determine ϕx at points x ∈ D, a classical Euler method can be employed. In order to
recover a global solution in the physical domain D, opposite to the previous work [1] where
global regression was utilized, we here rely on a mesh T which is a regular triangulation of D.
Sampled approximations of ϕx are then computed at the nodes of the mesh and the values
are used for an interpolation in a discrete finite element space. This yields the approximate
expectation of the solution u(·) = E[u(ω, ·)] defined on the entire domain D.

A distinct advantage of this approach is the separation of all error components as mentioned
above, which in the case of the discrete interpolation enables the application of simple finite
element (FE) a posteriori error estimates to refine the spatial mesh, i.e. the location of sample
points in the domain guided by the global approximation error.

One can regard the proposed method as a combination of sampling and interpolation tech-
niques, that make use of classical stochastic solution techniques pointwise and a global inter-
polation with FE basis functions. When compared to MC which samples a stochastic space
(Ω,F , P ) by (typically) determining a FE solution at every point and subsequently averaging
the solutions, our method determines realizations of stochastic solutions at points in the phys-
ical domain D and determines an approximation of the expectation by a global interpolation in
the physical space. Thus, the method does not require any type of global deterministic solver
and can be parallelized extremely well.

The structure of the paper is as follows: In Section 2, we elaborate on the representation of de-
terministic and stochastic PDEs in terms of stochastic differential equations (SDEs). Moreover,
we recall the employed numerical methods to determine pointwise stochastic solutions, namely
the Euler method and Monte Carlo sampling. Additionally, based on a deterministically chosen
set of stochastic solutions in the physical domain, the reconstruction of a global approximation
by means of an interpolation in a discrete FE basis is described. This allows for a fully adaptive
algorithm which is derived in Section 3. There, the different error components are identified and
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a practical approach for the determination of the discretization parameters is explained. The pa-
per is concluded with a numerical example in Section 4 where the performance of our method
is demonstrated.

2. STOCHASTIC SAMPLING AND INTERPOLATION

This section is concerned with the description of the numerical method which was presented
in [1] in the context of a regression approach for the global solution in the physical domain. For
the convenience of the reader, we first recall stochastic representations of solutions of stochastic
PDEs (SPDEs), i.e. PDEs with stochastic data, in terms of solutions of stochastic differential
equations (SDEs). More precisely, we want to construct an SDE such that the solution u(ω, x)
of the SPDE at some point x ∈ D can be expressed as conditional expectation of some
functional of the solution of an appropriate SDE. This forms the basis of the method which
is developed successively and which will be extended to a fully adaptive scheme. For a more
comprehensive treatment of the well-known basic stochastic theory, we refer for instance to [21].

2.1. Stochastic representations of PDEs. We first consider the relation of a deterministic
PDE to an appropriate stochastic differential equation (SDE). The starting point is the following
SDE

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x,(4a)

where x ∈ Rd is a deterministic point,W is a d-dimensional standard Brownian motion defined
on some probability space (Ω,F , P ) and b : Rd → Rd, σ : Rd → Rd×d are assumed to be
uniformly Lipschitz continuous functions. We could just as easily consider a Brownian motion
with a different dimension. Additionally, we shall sometimes consider the derived processes

Yt := exp

(∫ t

0

c(Xs)ds

)
, Zt :=

∫ t

0

f(Xs)Ysds,(4b)

for some functions c, f : Rd → R. In particular, for every T > 0, (4) has a unique (strong)
solution on [0, T ], i.e., there is a unique process X adapted to the filtration generated by the
Brownian motion W which satisfies∫ T

0

E
[
|Xt|2

]
dt <∞ and Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs,

where the integral w.r.t. W is considered in the Itô-sense. If we want to stress the dependence
on the initial value we writeXx

t :=Xt. The random variables Y and Z depend on x as well and
we shall write Y x

t and Zx
t if we want to stress this dependence.

We assume that all data (σ, b, c, f , g and, where relevant, the domain D) exhibits sufficient
regularity such that the objects under consideration are well-defined, and the numerical approx-
imations converge. A convenient assumption to work with will be the usual uniform ellipticity
assumption, even though most of the facts will be true under weaker assumptions. Uniform
ellipticity will generally also allow to assume that the PDEs have classical solutions which is
important for the Itô formula.

The numerically challenging part of (4) is the simulation of the paths of the process X . With
such paths available, finding Y and Z is just a one-dimensional quadrature problem.
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The infinitesimal generator of the SDE (4) is the differential operator L acting on test functions
f by

(5) Lf(x) =
n∑
i=1

bi(x)
∂

∂xi
f(x) +

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
f(x),

where a(x) := σ(x)>σ(x). We employ the following version of Itô’s formula: for any function
F : [0, T ]× Rd → R which is C1 in time and C2 in space it holds

F (t,Xt) = F (0, x) +

∫ t

0

(
∂

∂t
F (s,Xs) + LF (s,Xs)

)
ds

+

∫ t

0

n∑
i=1

d∑
j=1

∂

∂xi
F (s,Xs)σij(Xs)dW

j
s .

Moreover, recall that for any process u(s) adapted to the filtration generated by W , t 7→∫ t
0
u(s)dWs is a martingale on [0, T ] provided that

∫ T
0

E
[
|u(t)|2

]
dt < ∞ and the expec-

tation vanishes, i.e. E
[∫ t

0
u(s)dWs

]
= 0.

We now examine stochastic representations for solutions of PDEs posed in terms of L. For
simplicity, we first consider the Cauchy problem for (t, x) ∈ [0,∞[×Rn,

∂

∂t
u(t, x) = Lu(t, x) + c(x)u(t, x) + f(x),(6a)

u(0, x) = g(x).(6b)

Assuming that the solution u ∈ C1,2 ([0,∞[×Rn) and that the coefficients of L and c, f are
Lipschitz continuous, we can use that

(7) u(t, x) = E[g (Xx
t )Y x

t + Zx
t ] , t ≥ 0, x ∈ Rd.

Indeed, fix some T > 0 and consider the functional F (t, x) := u(T − t, x). We assume for
simplicity that c = f = 0 which implies that Y ≡ 1 and Z ≡ 0. Itô’s formula and (6a) yield

u(0, Xx
T )− u(T, x) =

∫ T

0

(
− ∂

∂t
u(T − t,Xx

t ) + Lu(T − t,Xx
t )

)
dt

+

∫ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t,Xx

t )σij(X
x
t )dW j

t

=

∫ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t,Xx

t )σij(X
x
t )dW j

t .

Inserting (6b) and taking expectations on both sides, we obtain

u(T, x) = E[g(Xx
T )] .

Hence, for any x ∈ D for which we want to obtain the solution u(t, x) of (6), we have to
compute a solution of the SDE (4). We thus have to solve two problems,

(i) Find an approximation XN of Xt, which we can actually compute.
(ii) Given such an approximation, E

[
g
(
XN

)]
is computed by a (quasi) Monte Carlo method.



6

Before discussing practical approaches for these two items in Sections 2.2 and 2.3, we first
describe an extension of the previous considerations to a random elliptic Dirichlet problem in
the sense of (16), i.e. with random data b, σ, f , c, g. For the above derivation to make sense,
we choose a Brownian motionW independent of the other sources of randomness. This means
we need to work on a probability space (Ω,F , P ) large enough such that the random fields and
processes b, σ, f , c, g and W are all defined on the probability space and W is independent
of the data. Given a probability space carrying the fields and another probability space carrying
the Brownian motion, this simplifies to choosing the product space as the joint probability space.

We suppose that a Brownian motion W is defined on a probability space (Ω1,F1, P1) where
we shall writeWt(ω1) to stress the interpretation ofW as a process on (Ω1,F1, P1). Moreover,
we are given a second probability space (Ω2,F2, P2) on which the random fields b = b(ω2, x),
σ = σ(ω2, x), c = c(ω2, x), f = f(ω2, x), x ∈ D, and g(ω2, x), x ∈ ∂D, ω2 ∈ Ω2 are
defined. Additionally, we consider the product probability space

(Ω,F , P ) := (Ω1,F1, P1)⊗ (Ω2,F2, P2) = (Ω1 × Ω2,F1 ⊗F2, P1 ⊗ P2).

Obviously, we can extend any random variable Y on (Ω1,F1, P1) to a random variable on
(Ω,F , P ) by setting Y (ω1, ω2) := Y (ω1), for any ω = (ω1, ω2) ∈ Ω, and likewise for random
variables Z defined on (Ω2,F2, P2). Note that the construction implies that any such extended
random variables Y and Z are independent. In this way, we obtain a Brownian motion W and
random fields b, σ, g, c, f on (Ω,F , P ) with W independent of the data.

We interpret the random fields as random variables taking values in some function spaces.
More precisely, the random variables b(ω) := b(ω, ·), σ(ω) := σ(ω, ·) and g(ω) := g(ω, ·),
c(ω) := c(ω, ·), f(ω) := f(ω, ·) should assume values in the space of Lipschitz continuous
functions in order to avoid complications with regard to the solution of the related SDEs.

On the one hand, inserting these into (4), for x ∈ D we obtain systems of SDEs of the form

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x.(8a)

It is clear that the solution Xt = Xt(ω) can only be considered on the full probability space
(Ω,F , P ). As in (4b), we further define

Yt := exp

(∫ t

0

c(Xs)ds

)
, Zt :=

∫ t

0

f(Xs)Ysds.(8b)

On the other hand, we consider the random PDE given by the coefficients b, σ, g, c, f . More
precisely, define the random matrix field a := σ>σ and the random differential operator L by

(9) L(ω2)h(x) =
n∑
i=1

bi(ω2)(x)
∂

∂xi
h(x) +

1

2

n∑
i,j=1

aij(ω2)(x)
∂2

∂xi∂xj
h(x).

Obviously, L is obtained by inserting the random coefficients into the deterministic formula for
L as given in (5). Next, consider u = u(ω2)(x) = u(ω2, x), the random solution of the random
PDE

Lu+ cu+ f = 0,(10a)

u(ω2, x) = g(ω2, x), x ∈ ∂D.(10b)

From (17), we immediately derive the following stochastic representation for u: define the stop-
ping time τ = τx as before, i.e., τ := τx := inf{t ≥ 0|Xt ∈ Dc}. By integrating out the ran-
domness induced by the Brownian motion W and using the joint probability space (Ω,F , P ),
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this leads to the solution

u(x) = E
[
g
(
Xx
τx

)
Y x
τx + Zx

τx

∣∣ b, σ, f, c, g] = E
[
g
(
Xx
τx

)
Y x
τx + Zx

τx

∣∣F2

]
with F2 = σ (b, σ, f, c, g) and equating the σ-algebras F2 and Ω1 × F2 ⊂ F . Moreover, it
holds

(11) E[u(x)] = E
[
g
(
Xx
τx

)
Y x
τx + Zx

τx

]
.

2.2. Discretization of the SDE. Clearly the most popular approximation method for SDEs is a
straight-forward generalization of the Euler method for ODEs. Indeed, let 0 = t0 < · · · < tN =
t be a time grid and denote ∆ti := ti − ti−1, ∆Wi :=Wti −Wti−1

, ∆tmax := maxi ∆ti. Set
X0 := x and iteratively define

(12) X i :=X i−1 + b
(
X i−1

)
∆ti + σ

(
X i−1

)
∆Wi, i = 1, . . . , N.

Under very weak assumptions we have strong convergence with rate 1/2, i.e.,

E
[∣∣Xt −XN

∣∣] ≤ C
√

∆tmax

for some constant C independent of ∆tmax. More relevant in most applications is the concept
of weak approximation. Fortunately, the Euler scheme typically exhibits first order weak conver-
gence, i.e., for any suitable test function F : Rd → R it holds

(13)
∣∣E[F (Xt)]− E

[
F
(
XN

)]∣∣ ≤ C∆tmax

with a constant C independent of ∆tmax.

We now consider the parabolic Cauchy problem (6a) with Dirichlet boundary conditions and
compatible data h, g on a smooth domain D

∂

∂t
u(t, x) = Lu(t, x) + c(x)u(t, x) + f(x), t ≥ 0, x ∈ D,(14a)

u(t, x) = g(x), x ∈ ∂D and u(0, x) = u0(x), x ∈ D.(14b)

This leads to the stochastic representation

(15) u(t, x) = E
[(
u0(Xx

t )1τx≥t + g(Xx
τx)1τx<t

)
Y x

min(t,τx) + Zx
min(t,τx)

]
.

Here, τ := τx := inf{t ≥ 0|Xx
t ∈ Dc} denotes the first exit time of X from D and we use the

same Euler discretization (12) as before. Hence, τ is approximated by the first exit time τ of the
discrete time process X i, i = 0, . . . , N .

Note that there are two sources of errors in the approximation of τ by τ :

(i) the error in the approximation of X by X ;
(ii) the possibility that exit occurs between two grid points ti and ti+1.

Unfortunately, the second source of error reduces the weak error rate, i.e., the approximation
error for u(t, x) to the rate 1/2. For adaptive time-step refinements which can recover the order
of convergence to an observed order 1 again, we refer to the references given in [1].

For the elliptic problem with Dirichlet boundary conditions,

Lu(x) + c(x)u(x) + f(x) = 0, x ∈ D,(16a)

u(x) = g(x), x ∈ ∂D,(16b)
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the stochastic representation is obtained from the solution of the parabolic problem as the limit
for t → ∞. Hence, the stochastic representation of the Dirichlet problem (16) for the stopping
time τ is given by

(17) u(x) = E[g(Xx
τ )Y x

τ + Zx
τ ] , x ∈ D.

We note that a more general class of problems can be considered similarly and again refer to
[21].

2.3. Monte Carlo approximation of the expectation. Another step in the discretization is the
approximation of the expected value as in (17) with a Monte Carlo estimator. Multilevel Monte
Carlo methods are also possible but require the construction of two related realizations of XM

for each sample on the individual levels as described in [15]. Here, we restrict ourselves to the
Monte Carlo estimator which is defined as

EMS
M,N [u(x)] :=

1

N

N∑
i=1

g
(
Xx
τ (ωi)

)
Y x
τ (ωi) + Zx

τ (ωi),(18)

where (ωi)
N
i=1 is a set of samples drawn from the random space (Ω,F ,P) and M describes

the number of steps for the discrete diffusion process. Note that this random space represents
both the diffusion process XM and the random field κ from the initial Darcy problem (1). In this
case c ≡ 0 and it follows that

Y x
τ ≡ 1 and Zx

τ =

∫ τ

0

f(Xs) ds.

Furthermore it holds a(x) = 2κ(x)In and b(x) = ∇κ(x) for the parameters from (5) where
In is the n-dimensional identity matrix. Since this holds for the normal distribution N0,∆t ∼√

∆tN0,1, for the time steps t0, t1, . . . and for m = 0, . . . ,M , we derive

X0 = x,

Xm = Xm−1 +∇κ(Xm−1)∆tm +
√

2κ(Xm−1)∆tm N0,1,

where M is the last index with Xm ∈ D for m = 0, . . . ,M and XM+1 6∈ D. Here, N0,1 de-
notes the standard normal distribution in d dimensions. The stopping position and the stopping
time tτ of the diffusion process is now approximated by the projection

Xτ := arg min {||X −XM || |X ∈ ∂D,X = XM + s(XM+1 −XM), s ≥ 0}(19)

of XM onto the boundary ∂D in direction of XM+1. (18) provides the estimator with a simple
one-point integration rule via

EMS
M,N [u(x)] :=

1

N

N∑
i=1

g(Xτ (ωi)
)

+
∑

m∈(0,...,M,τ)

f
(
Xm(ωi)

)
∆tm

 .

Simple time adaptivity is applied by choosing ∆tj = dist(∂D,Xj−1)∆t0 where dist(∂D, x) :=
min {||xd − x|| | xd ∈ ∂D} is the Euclidean distance to the boundary of the domain. The en-
tire process is depicted in Algorithm 2.1 where a simple rectangle integration method is used.
Moreover, Figure 1 sketches the described process.
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D

X0

X1

X2

XM

XM+1

Xτ

(∆t0)

(∆t1)

Figure 1. Sketch of a discrete diffusion process realization with endpoint pro-
jection and indicated step width.

In : point x ∈ D, number of samples N , initial time step ∆t0
Out: EMS

M,N [u(x)]

for i = 0, . . . , N do
X0 = x
F = 0
m = 1
sample κi = κ(ωi) with ωi ∈ Ω
while Xm ∈ D do

F = F + f(Xm−1)∆tm−1

∆tm = min {dist(∂D,X), 1}∆t0
sample Ξ fromN0,1

Xm = Xm−1 +∇κi(Xm−1)∆tm +
√

2κi(Xm−1)∆tmΞ
m = m+ 1

compute Xτ and tτ according to 19
F = F + f(Xτ )∆tτ
ui = g(Xτ ) + F

return N−1
∑N

i=0 u
i

Algorithm 2.1. Point estimate algorithm to compute the estimator EMS
M,N [u(x)]

using the simple one-point rectangle method for integration.

2.4. Extension to the whole Domain. In the following, the pointwise approximation of the so-
lution at some x ∈ D obtained by some Monte Carlo estimator is extended to the whole domain
D using interpolation techniques. This allows to apply finite element a posteriori error control
with respect to a global approximation of the solution which we define as follows: Consider
some given mesh Th as a triangulation of the physical domain D with vertices Nh = (νih)

|Nh|
i=1

and edges Eh = {Ei}|Eh|i=1. Note that the coefficients of a Courant P1 function correspond to
the function values at the vertices (nodes) of the mesh and that the nodal interpolation opera-
tor denoted by Ih is defined by these values. Hence, let the discrete solution EMS

M,N [uh] with
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M = (Mi)
|Nh|
i=1 and N = (Ni)

|Nh|
i=1 be a Courant P1 function on this mesh determined by

setting the nodal values for i = 1, . . . , |Nh| by

EMS
M,N [uh] (νih) := EMS

Mi,Ni

[
u(νih)

]
for i = 1, . . . , |Nh| .

This introduces three types of errors into the approximation. The first is the stochastic approxi-
mation error originating from the Monte Carlo estimators. It can be controlled by means of the
Central Limit Theorem (CLT) subject to the number of samples Ni for each point. The second
error arises from the approximation of the diffusion process and is controlled by the parameters
Mi. The third error contribution results from the P1 interpolation which is approximated by the
Monte Carlo estimators and determined by the interpolation mesh parameter h.

We shall consider two error representations. The first describes a decomposition of the mean
square error into three error parts resulting from the interpolation error, the discretization of the
ordinary differential equation, and the sampling error in the Monte Carlo method. For this, define
the expected value of the discrete ordinary differential equation as E

[
uMh
]

:= E
[
EMS
M,N [uh]

]
.

Then it holds for the pointwise mean square error in the approximation that

E
[(

EMS
M,N [uh]− E[u]

)2
]

= E
[
EMS
M,N [uh]

2]− 2 E
[(

EMS
M,N [uh]

)]
E[u] + E[u]2

= E
[
EMS
M,N [uh]

2]− E
[
uMh
]2

+
(
E
[
uMh
]
− E[u]

)2

=
1

N
Var
[
uMh
]

+
(
E
[
uMh
]
− E[u]

)2
.

(20)

The second decomposition seeks to represent the error locally in the L2 norm. We assume
D ⊆ R2 for the sake of a simpler presentation. Higher dimensions are possible with different
inequalities for the norms. Consider the element T ∈ Th and the pointwise P1 interpolation
operator Ih on the mesh Th. By a triangle inequality and interpolation error estimates, for the
approximation error it holds∣∣∣∣E[u]− EMS

M,N [uh]
∣∣∣∣
L2(T )

. ||E[u]− Ih E[u]||L2(T ) +
∣∣∣∣Ih E[u]− EMS

M,N [uh]
∣∣∣∣
L2(T )

. ||E[u]− E[uh]||L2(T ) + ||E[uh]− Ih E[u]||L2(T )

+
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

+
∣∣∣∣E[uMh ]− EMS

M,N [uh]
∣∣∣∣
L2(T )

. hTηT + h2
T |u|2 + |T |∆t0 + |T | max

K∈N (T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
.(21)

The element-wise error indicator ηT which controls the FE approximation error is described in
Section 3. The first two terms are both governed by properties of the mesh Th and can be
controlled through refinement as well as the adaptive algorithms described in Section 3. The
third term represents the Monte Carlo estimation error. It solely depends on the number of
samples used for each node in the element as the variance converges to the variance of the
continuous solution Var[u] for M → ∞ and h → 0. The last term represents the error in
the approximation of the diffusion process in the Euler scheme for the stochastic differential
equation. Numerical experiments show that ∆t0 ' hmin is a reasonable choice in the two-
dimensional case.



11

3. ADAPTIVITY

To achieve convergence of the method presented in Section 2 by means of an adaptive algo-
rithm, all error components in the decomposition (21) have to converge separately. For optimal
convergence, for all contributing parts the same rate should be achieved with respect to compu-
tational effort that has to be invested to gain the error reduction. The main idea of an adaptive al-
gorithm is therefore to base the parameter choices in some way on the underlying mesh. Hence,
in the following it is the goal to define some optimal sequence of meshes T0 ⊂ . . . ⊂ TL for
the interpolation and then to choose appropriate values for the other discretization parameters.

Our starting point is an initial quasi-uniform triangulation T0 of the physical domain D. The first
step is to calculate a discrete solution EMS

M0,N0
[u0]. The parameters M0 and N0 have to be

guessed as not enough information is available on the initial level1. The next step involves the
calculation of some finite element error indicator η0 which we briefly describe.

One of the most common and simple a posteriori FE error estimation techniques is given by the
residual error estimator. We define the local error indicator ηh,T on some element T ∈ Th of
size hT subject to an approximation uh of the true solution u by

η2
h,T = h2

T ||f ||
2
L2(T ) +

∑
E∈E(T )

hT ||∇uh · nE||2L2(E) .(22)

Recall that the set of edges of Th is denoted Eh and the edges of some element T are denoted
E(T ). More details and a proper derivation can e.g. be found in [6] and the references therein.

Once a local error indicator ηh,T is readily available, a mesh refinement strategy can be chosen
which selects a set of elementsMh ⊂ Th such that an error reduction is achieved for the ap-
proximate solution on the finer mesh. A common choice is the so-called bulk or Dörfler marking
defined by ∑

T∈Mh

E[ηh,T ]2 ≥ θ
∑
T∈Th

E[ηh,T ]2 .(23)

We also employ this marking and refer to [10] for further details, in particular with regard to error
reduction properties.

As can be seen in (21), the estimator only covers the first term ||E[u]− E[u0]||L2(T ) and thus
the parameters M0 and N0 have to be chosen such that

hTη0,T �
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

+ |T | max
K∈N (T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
.

The reason for this is that the finite element solution is bounded by the interpolator but the
stochastic properties of the discrete solutions introduce oscillations of length h and amplitudes
as seen above. These can be unbounded in principle and artificially increase the finite element
error estimator. As refinement would not reduce these oscillations, we have to limit them by
means of the central limit theorem such that we can get reliable mesh refinements. In fact,
the stochastic error term from (21) for each element has to be smaller than the smallest error
estimator η`,T chosen for the refinement setM` (on refinement levels ` = 1, . . . , L) given by

min
T∈M`

η0,T > |T | max
K∈N`(T )

{
Var
[
uMh
]1/2

N
−1/2
K

}
+
∣∣∣∣Ih E[u]− E

[
uMh
]∣∣∣∣
L2(T )

.(24)

1the subscript denotes the refinement level for which the parameters or functions are considered



12

This constraint also includes the error of the approximation in the Euler scheme but it is deter-
ministic, smooth, and global with respect to the physical domainD. As a result, it alters the error
estimator only to some minor extent.

The derived refinement T1 of the initial mesh T0 is the basis for the next level and the process
is repeated. Heuristics based on educated guesses of the error components allow to balance
the parameters in actual computations. This however is only possible if there are at least three
meshes, that is L ≥ 3. Section 3.1 covers some approaches to this topic in more detail.

3.1. A Practical Parameter Selection Strategy. The error decomposition in (21) results in
three components that need to be balanced for guaranteed and optimal convergence. We hence
aim at finding good estimates for the convergence rates with respect to the relevant parameters
and then extrapolate the error estimates to the next level. With these, we can approximate
parameters that fulfill the balancing requirements. The first task is the approximation of the
convergence rate of the interpolation error subject to the current mesh and controlled through
the parameter α. Let h be the minimal inradius over all the triangles of the triangulation Th and
suppose we have some α > 0 such that

||E[u]− E[Ihu]||L2(D) . hα.

Standard finite element theory gives

||E[u]− E[Ihu]||L2(D) ∼ ||E[u]− E[uh]||L2(D) .

Thus, with some efficient and reliable error estimate hηh ∼ ||E[u]− E[uh]||L2(D), we get hηh ∼
hα. We exploit this property to gauge the parameter α as error estimators have smoothing prop-
erties and thus in practice exhibit a behavior closer to a monotonic convergence. For the esti-
mation αL of α, we carry out a linear regression over data points (log(h`), log(hη`))`=1,...,L.

Next, we estimate the expected spatial error on the next level L + 1. For this, the triangle
inequality for ` = 1, . . . , L yields

||E[u]− E[u`]||L2(D) ≤ ||E[u]− E[uL]||L2(D) + ||E[uL]− E[u`]||L2(D) .

The last term on the right-hand side is computable and it remains to estimate the error on level
L. We assume ||E[u]− E[uL]||L2(D) � ||E[uL]− E[u`]||L2(D) for the coarser levels ` < L and
thus conclude that

||E[u]− E[u`]||L2(D) ≈ ||E[uL]− E[u`]||L2(D)

for each level ` = 1, . . . , L− 1.

As we already have a good approximation of the expected convergence rate αL, we can now
find approximations of the error ||E[u]− E[uL]||L2(D) with the help of the errors on the coarser
levels by

||E[u]− E[u`]||L2(D) ∼ hα` and ||E[u]− E[uL]||L2(D) ∼ hαL.

For each ` = 1, . . . , L− 1, this asymptotically yields the identity

||E[u]− E[uL]||L2(D)

||E[u]− E[u`]||L2(D)

=
hαL
hα`
.
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Hence, we can construct the approximation

||E[u]− E[uL]||L2(D) ≈
hαL
hα`
||E[uL]− E[u`]||L2(D) .

We now define the estimate ẽL for the error ||E[u]− E[uL]||L2(D) on level L as the arithmetic
mean of the different extrapolations from the coarser levels ` = 1, . . . , L− 1 by

ẽL :=
1

L− 1

L−1∑
`=1

hαL
hα`
||E[uL]− E[u`]||L2(D) .

The same technique is used to gauge the expected error on level L + 1. The finer mesh TL+1

on level ` = L + 1 is obtained from a local refinement (23). Thus, the parameter hL+1 can be
used to generate the extrapolation ėL+1 with the same levels L = 1, . . . , L− 1,

ėL+1 :=
1

L− 1

L−1∑
`=1

hαL+1

hα`
||E[uL]− E[u`]||L2(D) .

The next step is to balance the expected Monte Carlo error with the extrapolated spatial er-
ror. For the refinement scheme (23), it is crucial to keep the Monte Carlo error well below the
spatial error as otherwise this error gets picked up by the estimator which results in wrong re-
finement and thus unstable behavior and suboptimal convergence or even in no convergence
at all. Hence, we introduce the balancing factor δ which describes the desired relation between
the two errors in (20) by

δ2 =

(
E[u]− E

[
uMh
])2

N−1 Var[uMh ]
.(25)

A choice of δ = 1 would lead to equality. For some constant c`N for each level ` = 1, . . . , L,

we set the numbers of samples in the verticesN` = (νi`)
|N`|
i=1 as

N i
` := c`N Var

[
uM` (νi`)

]
for i = 1, . . . , |N`| .(26)

The next task is to choose cL+1
N wisely so that (25) will be fulfilled for h = hL+1. In fact,

applying (26) to (25) results in

E[u]− E
[
uML
]

= δ
(
cLN Var

[
uML
])−1/2

Var
[
uML
]1/2

.

We assume Var
[
uM`
]
≈ Var

[
uM
]

for ` = 1, . . . , L is a sufficient approximation since only a
rough estimate of the variance is needed. Taking the L2 norm of the last equation and applying
the variance approximation yields

cLN =
|D|2

δ2

∣∣∣∣E[uML ]− E[u]
∣∣∣∣−2

L2(D)
.

With the extrapolated estimate ėL+1 ≈
∣∣∣∣E[u]− E

[
uML+1

]∣∣∣∣, we get an estimate for the constant

cL+1
N as ċL+1

N = |D|2
δ2
ė−2
L+1. The numbers of samples for level L + 1 are now set according

to (26) by

N i
L+1 := ċL+1

N Var
[
uML (νiL+1)

]
for i = 1, . . . , |NL+1| .(27)
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Remark 3.1. It is imperative to ensure a minimum number of samples for eachN i
L in (27) since

on each level a sufficient approximation of the variance Var
[
uM`
]

has to be available. This is
important since otherwise the algorithm might become unstable through severe undersampling
in single points. This would result in a bad spatial error estimation in (24) and thus suboptimal
mesh refinement with reduced convergence rate or even lack of convergence.

To alleviate this issue, a simple solution is to choose some Nmin independent of all parameters
and especially independent of the level `. The practical application requires some crude esti-
mate of the variance which can be computed alongside the expected value and thus set the
numbers of samples on level L+ 1 as

Ṅ i
L+1 := max

{
ċL+1
N VarMC

M,N

[
uML (νiL+1)

]
, Nmin

}
for i = 1, . . . , |NL+1| .(28)

Finally, it remains to choose the parameter ∆t on each level. The influence of this parameter on
the error is given in the last term of (21). Since we assume linear pointwise convergence with
respect to ∆t, we choose the relation h ∼ ∆t. In Algorithm 3.1, the overall adaptive algorithm
is sketched. The computation of EMS

M,N [u`] is depicted in Algorithm 2.1.

Instead of the variance based adaptive local number of samples for each vertex, one can choose
a common number of samples based on the variance Var

[
uML
]
.

Remark 3.2. In the numerical calculations one has to impose (24) well enough, such that the
algorithm becomes stable. This can be achieved by choosing δ < 1. In the experiments in
Section 4, we choose δ = 0.2. This allows for a stable algorithm that only imposes a slight
impact on performance.

In : T0, N init, ∆t0
Out: solution EMS

M,N [uL]

for ` = 1, . . . , L do
if ` ≥ 2 then

compute N ` according to (28)
else

set N ` to N 0

set ∆t according to h
compute EMS

M,N`
[u`] and VarMS

M,N`
[u`] with Algorithm 2.1

if ` = L then
break

compute η`
refine T` with η` to get T`+1

return EMS
M,N [uL]

Algorithm 3.1. Adaptive Algorithm for the stochastic representation.
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Figure 2. The mean (left) and the variance (right) of the solution for the numer-
ical example.

4. NUMERICAL EXPERIMENTS

This section is concerned with the illustration of the presented adaptive sampling method based
on some numerical benchmark problems. The visualizations show properties of the unique fea-
ture of this approach, namely its proper separation of the physical and stochastic domain. This
allows to choose the number of samples locally based on the variance in any part of the physi-
cal domain as well as to exploit sparsity with respect to the sampling locations. For comparison
purposes we compute the solution for the experiments with a fixed number of samples for all
the points in the domain using uniform and adaptive meshes and we use different numbers of
samples for the same meshes.

Consider the input data f = ∆u∗ with

u∗ = 5x2(1− x)2(e10x2 − 1)y2(1− y)2(e10y2 − 1)

together with the random field

κ(x) =
ca
αmin

(
ta∑
m=1

am(x)ϕm + αmin

)
+ εa.

Here, the ϕm are uniformly distributed independent random variables. The parameters ca, εa >
0 and the truncation length ta ∈ N control the properties of the random field. The coefficients
am are defined for m = 1, 2, ... for the parameters σα > 1 and 0 < Aα < 1/ζ(σα) with the
Riemann zeta function ζ as follows

am(x) = αm cos(2πβ1(m)x1) cos(2πβ2(m)x2), αm = Aαm
−σα ,

β1(m) = m− k(m)(k(m) + 1)/2, β2(m) = k(m)− β1(m),

k(m) = b−1/2 +
√

1/4 + 2mc.

In our experiment we choose the setting σα = 2, Aα = 0.6, cκ = 1, εα = 0.5 · 10−3 and
tα = 5. Together with the prescribed right-hand side f this results in strong oscillations in the
corner (1, 1) of the unit square together with a high variance in the same region. The resulting
mean E[u] and variance Var[u] are depicted in Figure 2 as computed by a standard Monte
Carlo finite element method.
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The algorithm chooses the number of samples locally and applies mesh adaptivity at the same
time. Plotting the numbers of samples for each vertex of the mesh as a P1 projection thus gives
a false impression of the distribution of the computational effort in the physical domain. Hence,
we define the additional quantity

CT =
1

3 |T |

3∑
i=1

Ni(29)

which gives the average number of samples used for each element weighted by the size of that
element as a measure for the computational error per area.

In the experiments we set the minimum number of samples Nmin for each vertex as 100. We
continue the algorithm until our error heuristic drops below the prescribed value

∣∣∣∣eMS
∣∣∣∣
H1 =∣∣∣∣E[u]− EMS

M,N [uh]
∣∣∣∣
H1 ≤ 2 · 103. We consider four experiments. The first uses a fixed number

of samples for each level and uniform meshes, the second one applies adaptive meshes, the
third experiment combines uniform meshes with locally chosen numbers of samples, and the
fourths experiment uses both adaptive meshes and local sample adaptivity.
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Figure 3. The number of samples for each vertex for different methods.

The resulting numbers of samples are plotted in Figure 3. Note, that already a computational
advantage is visible for the adaptive sampling variants whereas both uniform sampling experi-
ments falsely appear to be similar in effort. This changes if one considers the plots of CT shown
in Figure 4. The adaptive mesh reduces the amount of vertices in the smooth regions of the
solution whereas the local sample number reduces the number of samples for vertices with a
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Figure 4. The weighted computational effort CT from (29) for each element
T ∈ T for different methods.

small variance. In the optimal case of the combined method, the adaptivity eliminates a lot of
expensive vertices with a high number of samples and the local sampling reduces the number
of samples in area with a highly oscillating mean.

The maximum computational effort is in the same order of magnitude for all four experiments
but the computational effort CT drops dramatically away from the (1, 1)-corner in all but the first
experiment. This effect is more pronounced for the two experiments with mesh adaptivity. The
last experiment improves this even further as fewer samples are used for the small triangles
which are closer to (0.5, 1) and (1, 0.5).

The above observations correspond with the convergence in the H1 norm with respect to the
measured processor time as presented in Figure 5. The slowest method uses uniform meshes
and applies a constant number of samples for all vertices in the domain. Local numbers of
samples reduce the time almost nine-fold whereas the mesh adaptivity gives an improvement
factor of 80. The combination of the two methods gives the fastest algorithm with an increase in
speed of almost two orders of magnitude.

In Figure 6 the convergence of the error in the L2 norm is plotted with respect to the same
computational effort. Here again, the uniform meshes with constant sample numbers results in
the slowest method. Contrary to the last graph, all other methods perform very closely to each
other with an approximate improvement of 8-10 compared to the slowest approach.
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Figure 5. Convergence in the H1 norm for the different methods. The abbrevi-
ations are aFEM for finite element adaptivity and aV for the localized adaptive
number of samples.
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Figure 6. Convergence in the L2 norm for the different methods. The abbrevi-
ations are aFEM for finite element adaptivity and aV for the localized adaptive
number of samples.
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