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Abstract

We propose transparent boundary conditions (TBCs) for the time
dependent Schrédinger equation on a circular computational domain.
First we derive the two dimensional discrete TBCs in conjunction with
a conservative Crank—Nicolson finite difference scheme. The presented
discrete initial boundary value problem is unconditionally stable and
completely reflection—free at the boundary. Then, since the discrete
TBCs for the Schrédinger equation with a spatially dependent poten-
tial include a convolution w.r.t. time with a weakly decaying kernel, we
construct approzimate discrete TBCs with a kernel having the form of
a finite sum of exponentials, which can be efficiently evaluated by re-
cursion. In numerical tests we finally illustrate the accuracy, stability,
and efficiency of the proposed method.



As a by-product we also present a new formulation of discrete TBCs
for the 1D Schrodinger equation, with convolution coefficients that
have better decay properties than those from the literature.
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1 Introduction

The Schrédinger equation. Consider in the circular geometry with
polar coordinates (r,#) the following Cauchy problem for the scaled
transient Schrodinger equation:

111 1
i¢t = _5 [; (r’l/}T’)T + r_2¢99 +V(7‘797t)¢7 r 2 07 0< 0 S 27T7 t > 07

(1.1a)
U(r,0,0) =l (r,0), r>0,0<6<2m, (1.1b)

We assume that the given 0-periodical potential V is constant outside
of the computational domain [0, R] x [0, 27]:

V(r,0,t) = Vg = const for r > R,

and that the sufficiently smooth 6-periodical initial data has a compact
support:
suppe! C [0, R) x [0, 2] (1.2)

Discussions of strategies to soften these restrictions could be found in
[18, 19, 28, 35].

In addition to quantum mechanics, equation (1.1a) has many im-
portant applications including electromagnetic wave propagation [29],
modelling of quantum devices [7], integrated optics (Fresnel equa-
tion) [34, 43|, plasma physics, seismic migration [14], and (underwater)
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Figure 1: A typical single-mode optical fiber, showing the different compo-
nent layers. Wave propagation mostly takes place in the relatively thin core
region.

acoustics due to the parazial approzimation of the wave equation in
the frequency domain |8, 42], etc.

One quite important application of the Schrédinger equation, espe-
cially in a circular geometry arises in the context of wave propagation
in optical fibers |26, 44|. A sketch of the structure of an optical fiber
with its different layers is shown in Fig. 1.

In modern communication networks optical fibers play a funda-
mental role and there it is often necessary to connect the fibers (e.g.
after a breakage or to extend a cable run) with low lost. Optical fibers
are connected by a fusion process called a thermal splicing and one
has to control this procedure and simulate how small disturbances in
the geometry of the (usually straight) fiber core effect the transported
light in the fiber. Doing so, one can predict the caused loss at these
joining positions of the fibers.

With the proposed transparent boundary conditions in this paper
one can reduce the computational domain significantly (e.g. to the
core region) and obtain a fast, accurate, and reliable simulation us-
ing the beam propagation method [24, 44|. Here, the time variable ¢
corresponds to the axial variable, i.e. the propagation direction. For
an adequate treatment of the density jump in the TBC between the
different layers we refer to [8].



Analytic transparent boundary conditions (TBCs). Let us
exemplify first analytic TBCs that can be derived for the Schrédinger
equation on a circular domain. The idea is to eliminate the problem
on the exterior domain » > R, and to replace it by a Dirichlet—to—
Neumann (DtN) map. First we briefly review the construction of the
analytic TBCs for the Schrodinger equation on a circular domain from
[5] and extend them to the case of a nonzero potential Vg at infinity
(cf. also |22, 25]). For a review paper about TBCs for linear and
nonlinear Schréodinger equations we refer the reader to |6].

We consider sufficiently smooth bounded periodical solutions to
(1.1a) on the exterior domain r > R and denote by ¢ = ¥(r,0,s)
the Laplace transform of ¢ w.r.t. time. The transformation of (1.1a)
reads:

1 - 1 - .
;(rz/;r)r + T—zz/}@g +2i(s+iVp)yp =0, r>R, 0<6<2m (1.3)

where we used the assumption (1.2). We use a Fourier series w.r.t. the
angle 6:

W(r, 0, s) Z Pm em?l >R (1.4)

meZ

Then, for each mode m € Z, the Fourier coefficient ﬁ(m) (r,s) satisfies
the ordinary differential equation

1 N N
L9 (2is =2V = 5 )d <0, rz R (1)

This is the Bessel equation for functions of order m. Hence, its solution
vanishing as r — oo is the m-th order Hankel function of the first kind
Hr(,%):

O (1, 5) = am(s)HWV (v/2is — 2Vg7T), 7> R, (1.6)
where au,(s) is an arbitrary multiplier. The radial derivative of ™)
is computed as

% B () 5) = am(s)y/2is — 2V HWY' (/215 — 2Va 1)

(1) :
V2is —2VgT) »
= \/ 2VR (1 ( i ) ¢(m)(R7 8)7
Hy,’ (v/2is —2Vr R)

where we have determined the value of the coefficient a,,(s) from (1.6)
by setting r = R. Finally, the TBCs are obtained by computing the

(1.7)




series (1.4), using the inverse Laplace transform and setting r = R:

oY B
O_(R’ 9’ t) -

y+ioco

Z / v/ 2is — 2VR 2is — 2V ) zﬁ(m)(R, s)est ds emo.
e \/223 —2VR R)

y—i00

27i
(1.8)

where I' = (v — 900,y + i00) is a vertical contour in the complex plane
chosen such that all singularities of the integrand are to the left of it.

The TBCs (1.8) are non—local both in time and in space. A strat-
egy to derive a spatially localized version of (1.8) by an asymptotic
expansion of the Hankel functions and their derivatives w.r.t. s can
be found in [5].

Because of the nonlocality of the TBCs (1.8), their immediate nu-
merical implementation requires to store the boundary data zﬁ(m) (R,.)
of all the past history and for all modes m € Z. Moreover, the dis-
cretization of the TBCs (1.8), even in one space dimension, is not
trivial at all and has attracted lots of attention. For the many pro-
posed discretization strategies of the TBCs (1.8) in 1D (as well as
semi discrete approaches), we refer the reader to [1, 4, 9, 11, 12, 17,
30, 31, 32, 33, 34, 35, 36, 45| and references therein. A numerically ef-
ficient treatment of the 2D TBCs (1.8) was recently proposed by Jiang
and Greengard in |25]. A family of absorbing boundary conditions for
the 3D case was recently introduced in |23].

We remark that inadequate discretizations may introduce strong
numerical reflections at the boundary or render the discrete initial
boundary value problem only conditionally stable, see [18] for a de-
tailed discussion.

Difference equations. We consider a Crank Nicolson finite dif-
ference scheme, which is one of the commonly used discretization meth-
ods for the Schrédinger equation. Let us introduce a polar and tem-
poral grid:

raa<ro<nmn<---<ry<..., r—1=-ro TJ_l/QZR,

riv12 = (rjg1 +75)/2, Arjprye =i =1 Arj =Tt = i1,
O = kA, k=0,1,..., K, Af=21/K;
t, =nAt, n=0,1,...



We denote
¢] P— ¢(7"j, ek) tn)7 7;[)_5‘3:_1/2) = (w(n—i_l + 1/)_7 k )/2

and V(n+1/2) V(rj,0k,tpi1/2)- Then the Crank-Nicolson scheme
reads

<w<”“ )

At
n+1/2 n+1/2 n+1/2) n+1/2)
11 Tj+1/2(¢§+J£,k/ = %(',;: / )) (T/J( 2 T/’]( —’1—k/ )
Tj AT'] ATj+1/2 ATj—l/Z
n+1/2 n+1/2) n+1/2)
T/’g( k+1/ ) - 21/’](‘,k /2 "‘/’g(k 1/ n+1/2 (n+1/2
72 A§2 a ik
J
j=0,1,.; k=01,....K—-1 n=01,..
(1.9)

and the obvious periodic boundary conditions wj%) = zp]K, 1/1] 2=

¢]K 1
Remark (Treatment of singularity at the origin). We use a radial offset

grid here such that the coefficient of ¥ n+1/2) is zero.

The paper is organized as follows. In §2 we prove the discrete
mass conservation property of the Crank—Nicolson scheme and derive
discrete TBCs directly for the chosen numerical scheme using the Z
transform method. In contrast to the 1D and the rectangular 2D
cases, the convolution coefficients of the discrete TBCs have to be ob-
tained numerically here. Using their large-radius-limit (i.e. the planar
problem) as a starting point, they are computed by a recursion from
“infinity” back to the finite radius R. Next we prove the stability of
the recurrence formulas used to obtain the convolution coefficients of
the new discrete TBCs for a spatially dependent potential.

In §3 we discuss the approximation of the convolution coefficients
by a discrete sum of exponentials and present an efficient recursion for
evaluating these approximate discrete TBCs. Finally, the numerical
examples of §4 illustrate the accuracy, stability, and efficiency of the
proposed method.

In the Appendix we briefly revisit discrete TBCs for the 1D Schro-
dinger equation. We present a new formulation that leads to convo-
lutions coefficients with better decay properties than those from the
literature |7, 18|.



2 The discrete TBCs

First we generate transparent discrete boundary conditions using ezact
solutions to the difference scheme (1.9) in the exterior domain r > R.

Reduction to 1D—Problem. In order to reduce the problem to
the simpler 1D case, the discrete Fourier method is used in 6—direction.
Due to the periodic boundary conditions in angular direction we have

Wi =), jeNog,n>0, (2.1)

and hence, use the discrete Fourier transform of 1/)](72 in @ direction:

(m,n) 1 Kl (n) 2mikm
Y; = Z¢j7kexp = ) m=0,.... K —1. (2.2)

The scheme (1.9) in the exterior domain j > J — 1 then transforms
into:

SV R

At
_ 11 7”j+1/2(¢](~T’1n+1/2) - ¢§m’n+1/2))
Tj A?"j A?"j+1/2
m,n+1/2 m,n+1/2
_?“j_l/z(%(- 2 %('_1 /2 _gpm)ymnt1/2)
Arj—1/2 J J ’
2sin? (m)
(m) . _ K

(2.3)

The modes (™) m =0,...,K — 1 are independent of each other
in the exterior domain r > R since the potential V is constant there.
Therefore we can continue our analysis for each azimuth mode sepa-
rately.

Thus, by omitting in the sequel the superscript m in the notation,
we will consider in the exterior domain j > J —1 the following discrete



1D Schrodinger equation:

281587510172 (ng) (n)
— iR Y )

1 n+1/2) nt1/2
= g+1/2(1/1](+T » %( 12y
.7

A7”y+1/2

n+1/2 n+1/2 n—+1/2
RV we— S ("D — D)) 2A7’jA7’j+1/2V}'1/1](- 2,

J J

(2.4)

with the spatially dependent potential V; = Vi + 2sin?(Z2)/(r 2A92)

Mass conservation property. There are two important advan-
tages of this second order (in Ar and At) scheme (2.4): it is uncondi-
tionally stable, and it preserves the discrete L?-norm in time:

Lemma 2.1. For the scheme (2.4) (considered on j € Ng) it holds:

™3 = 3" Arglpi™ 2r (2.5)

J€No
18 a conserved quantity in time.

Proof. This conservation property can be seen by a discrete energy
estimate. First we multiply (2.4) by zﬁ§")r]

21 n+1) 7(n n
=R I = )
_ 1/;§n)D0(er01/)§n+l/2)) B 2‘/j¢§n+1/2)1/;§n)rj, j=0,1,..., (2.6a)
20 (ntl)2 7(n) ,(n+1)
Kt(wj | ¢ 7/) )rj

_ ¢§n+l)Do (TjDOT/J](-n+1/2 ) B 2Vﬂzy(}n-i—l/2)1/}](‘71—1—1)7,],7 7=0,1,...,
(Q.Gb)

with the abbreviation of the centered difference quotient

w;L+l/2 - 1/};‘2—1/2
AT]' ’

0 0 : 0,/
D” = D',,, Le. D)} =
2



Next we subtract (2.6a) from (2.6b)
21 n n
= (0 P= ),
_ T/J](-n+1)DO (TjDozz§n+l/2)) . &§n)DO (TjDO¢§»n+l/2))
_‘/}(|¢_§n+1)|2 - |¢](n)|2)7‘]7 .7 :0717a

multiply by Ar;, sum from j = 0 to oo, and apply summation by

parts:
. i |1/) ”+1 (n)|2)T-AT'
] J J
7=0
_ Z (Do&§n+1/2)) (Do%nﬂ))mAm _ (D()l/*}(_n%—i-lﬂ))w((]n—l-l)r_%
No+1
+ Nz—i_:l (Do¢§n+1/2)) (DO?Z](-n))TjATj + (Doq/)(_n%—i-lﬁ)) —(()n)r_%
0T3

= YV (R = [ Ry Ay
=0
(2.7)

Now, the boundary terms in (2.7) vanish since r_1 = 0, and hence

M

[e.9]

}j/ﬁ”“ — [ 2)r; A,
7=0
_ 7(n+1)2 7(n) 2
- _5 Z (ID°9;" "2 = Do [2)r Ay (2.8)
No+3
S 1 (1) (n)
+1
- Z VJ(W)]n |2 - |7/)]n |2)7"jA7‘j .
j=0
Finally, taking imaginary parts one obtains the desired result. ]

Discrete TBCs for a single azimuth mode. Discrete transpar-
ent boundary conditions for the 1D Schrédinger equation with constant
coefficients of the difference scheme in the exterior domain were intro-
duced by Arnold [7] (cf. the Appendix for an improved variant, which



is the bases of our presentation below). Here we derive discrete TBCs
for the scheme (2.4) with spatially varying coefficients. In analogy to
the continuous case of §1, the idea is to eliminate the exterior problem
7 > J and to replace it by a discrete DtN map.

We use the Z transform of the sequence {ij(n)} n € Ny (with j
considered fixed) which is defined as the Laurent series, see |16]:

2{p\} = 1y(2) = ZW T, z€C, | >Ry, (29)

n=0

and R _denotes the convergence radius of the series. Now the trans-

formed ‘exterior scheme (2.4) reads

A 1%( )
. . Ar; .
= }j[mm (i1(2) = (=) =iy Ar;ri; 2 (95(2) = ()|

— 201 AT Vithi(2), G =T -1,
(2.10)

with the mesh ratio p; = 4A7‘]AT +1/2/At and the spatially dependent
potential V; = Vi + 2sin?(Z2)/(r 2A92) Note that we used here the

following assumption on ¢°:

=0, j>J-2. (2.11)

Thus we obtain a homogeneous second order difference equation with
varying coefficients of the form

ajthi1(2) + b ()05 (2) + ¢jibj_1(2) =0, j>J—1, (2.12)
where
= TJ”;}/{ (2.13a)
J
1 Arjiip1 0 z—1
b](Z) = —E ]+1/2+Tj 1/2m]+2p] Z+1 —2A7’jA7’j+1/2‘/}',
(2.13b)

T 19 AT
cj = -y a2 (2.13¢)
T‘j Arj—l/Q

10



Remark (uniform offset grid). In the special case of a uniform radial
offset grid r; = (j + %)Ar, j > J —1, we obtain

1 )
=210 =, (2.14a)
J+3 J+3
z—1 sin? (m)
bi(z) = -2+ —oArVp—4— K 2.14b

But such a uniform grid is not a requirement for the rest of this section.

For the formulation of the Z transformed discrete TBCs at j = J
we regard the ratio £;(z) of the decaying (as j — oo) fundamental
solution to (2.10) at two adjacent points:

; ¥;(2)
Li(z) = = ,
i(2) Tl

and get from (2.12) the following Riccati difference equation (cf. §1.6
in [27]) with variable coefficients:

j>, (2.15)

() (a3l () +05(2)) +¢5 =0, j = (2.16)

Suppose (for the moment) that the coefficients £;(z) are known.
Setting j = J 4+ 1 we get from (2.15):

; bz
ly41(2) = Yr(z) (2.17)
V()
Calculating the inverse Z transformation we obtain the discrete con-
volution

wﬁl = 6921 * wgn) ) (2.18)
and explicitly
n—1
7/{(17321 - gyl1¢5n) = fof’ip)wﬂp) ; (2.19)
p=1

by using the assumption (1.2)

=0, j>J. (2.20)

We remark that this discrete TBC is structurally different from
those introduced in the literature [7, 8, 18, 38]. There, the discrete

11



convolution is always placed at the outer of the two boundary grid
points. But in (2.18) it is implemented at the inner boundary point
j = J. This small modification yields a very different behavior of the
convolution coefficient £(™): Since they are oscillatory in [7, 8, 18, 38|,
it is necessary to rather use a linear combination of Kgn) and B(-n_l),
which is much “smoother” (considered as functions of n). In contrast,
the coefficients £ here decay like O(n=3/2) (cf. the Appendix for
details).

While the asymptotic behavior (for n large) of £(") was determined
from the explicit formulas in [18, 38|, this is unfeasible here. It can,
however, be deduced from the singularities of /;(z). First we consider
lso(2), the ratio in the boundary condition at infinity. Here and in the
sequel we make the assumption of an asymptotically equidistant grid

(i.e. Arj — Ar):

A pz—1

loo(2) =1— = — AV (2.21)

2

\/[(z—i- (1 + Ar2V,_) — %’(z )| — 412,

_z+1

Note that this formula coincides with the 1D case and the planar 2D
case (cf. the Appendix or |18, 10]). In (2.21) the branch of the square
root has to be chosen such that |[/s(2)| < 1 holds for z > 1 which
selects the decaying solution zﬁj(z). {+ has no pole at z = —1, but
two branch points on the complex unit circle, due to the quadratic
polynomial under the square root. For the special case V; = 0 that
we shall illustrate numerically, they are located at z; = 1, 29 = (p —
4i)/(p + 4i). These branch points manifest themselves as kinks of
Im /o (2), for z on the unit circle.

Next we discuss the singularities of @j(z) for j finite. Subsequent
{;(z)’s are related by the recursion (2.16). But since bj(z) is real on
the unit circle (as well as a;, ¢;), the kinks of Im @j(z) are still located
at z1 = 1, z0 = (p — 4i)/(p + 4i) for all j and for all modes m.

(n)

Now we turn to a discussion of the asymptotic behavior of £ for
n — 00. Since Kgn) are just the Fourier coefficients of the 2w—periodic
function éj(eiw) (cfA. (2.9)), its asymptotic behavior is determined by
the singularities of £;(z) on the unit circle. Hence, the two square root

singularities imply

KL(]n) ~ (e1 27 + ¢ 28y n 32, (2.22)

12



To compensate the oscillations with the higher frequency (determined
by zy) we define the following summed convolution coefficients

0) .__ 6(0)
sW = ,
JH ) (2.23)
s = ES@I — 29 591_1 ), n>1.

This strategy is different from [18, 10, 38| since the asymptotic behav-
ior of the coefficients ¢(™ is very different in both cases. These new
coefficients (™ are now less oscillatory than the 691_21. Hence, they are
a better starting point for computing approximate convolution coef-
ficients (see §3 below). The discrete TBC for a single azimuth mode

reads

n—1
Wi —sOuf) = 3T PP 1Y (229)
p=1

Calculation of convolution coefficients. In order to find a
solution to (2.16) we use the method of series. Let us consider the
Laurent series for £;(z):

~

Gy =00 + eVl > 1 (2.25)

We define the auxiliary functions

(.o bil?)
OZJ(Z) T Jaj )
aj = Zli)ngo a;(z), (2.26)
:
Bj = a—;
Then (2.16) reads
GE(la() +as(2)) + 8, =0, 2 (2.27)

Substituting (2.25) for (2.27) we get
(0) 1) ,-1 (n) ,—n
(67 + 672 T )
(A € ) ag(2) 5 =0, (2.28)

)

We shall now discuss the computation of the coefficients €§n for indi-

vidual indices n:

13



Coeflicient 40). Taking |z| — oo we have the following recurrence

equation for €§-O)

0) ( (0
(O, +ay) + ;=0 (2.29)
We shall solve this equation by “iteration from infinity”, i.e. starting
from a (large) index J., putting an initial value 65001 = E(()%), and

running the recursion from J to J + 1:

O

i = 0 ’
Gty +

j=Je —1,Je —2,...,J+ 1. (2.30)

Note that a very large index J,, corresponds to a very large radius
77... Therefore we can use the coefficient /() from the 1D case (cf.

(4.7), or the 2D plane case) as the starting value 09 1t is obtained
from (2.21) as ¢ = loo(z = 00).

Theorem 2.1. [stability of the recurrence relation|. Let |aj| >

) , i
2];%2, Bj < jjﬁ, and ML(IO)O\ < By . Then:

a) ‘£§0)‘ < p; < ]Jﬁ <1; and

b) the recurrence formula (2.30) is stable with respect to small per-

turbations.
Proof. Part (a) is proved by induction. Suppose ]55221! < Bjs1 < ]]ﬁ
Hence
© |0 i+y2 g
|€j+1+%| > |O‘J|_|€j+l| > 2 Trl G+l
Therefore 5
0 .
60| = —— <. (2.31)
|65 + o

To prove (b) and establish the stability we suppose that we have
a perturbation 4‘(-]121 + 041 instead of 4‘(-]121 with |9;41] < 1. Let us

consider the evolution of §; by comparing (2.30) with

_Bj

fg?gl +0j41 +ay

14



Evidently we obtain:

(0)
—B; B —Bj 5 —€j
fg?gl + 5j+1 + oy fg?gl + a; 4(—21 + 5j+1 + o

5; =

(0)
_ gj

+1 :
_ﬁj/£§0) + 5j+1

Therefore we get

147!
10 = 10j41 | —5———
18,6 = ;4]
477 G 1

<0541 . < 105412 ;

1Sl T B 1=l
and hence )
‘ )2

9] 4] < B <1, (2.32)

0541l B
for |6;41] < 1. Thus the recursion (2.30) is stable with respect to
small perturbations (e.g. for truncation errors or for an “incorrect”

initial guess EL(]O; = ESQ,)). O

Remark. The assumptions |a;| > 2jji{2 and 3; < J]? in the previous
theorem are valid for the definitions (2.14) (i.e. for a uniform offset

grid) and Vg > 0. Moreover |¢; | < (s, holds true for J large

enough, since f; 21 for an asymptotically equidistant grid.

Remark. The estimate (2.32) explains the fast convergence of the re-
(0)

cursion (2.30) to the correct value £ in spite of taking an “incorrect”

initial guess BSO) = eé?, see the numerical examples below. Indeed,

due to (2.32) we can hope for an exponential decay of |0;| with the
factor |€§0)|2/ﬁj ~ |€§0)|. For instance, the value |€§0)| is estimated
from the case of the “frozen” coefficients at J:

(0) 0
657 ~ Q] < 1,

where () = loo(z = 00) from (2.21).

15



Coefficient 41). Now we consider the calculation of €§-1). We have
from (2.26), (2.13):

aj(2) = — izt =22 ), (2.33)
with v; := a; — &;. From (2.28) and (2.33) we can write
(fgo) + Egl)z_l +0(z7?))-

(% + 67 402 + (0 =957 +0(2) ) +8; =0
(2.34)

Annihilating leading order terms by using (2.29) we collect terms of
order z71:

(00— (O 1 e 6 e =0, (2.35)
Therefore the recursion is defined by
29 () g( )
gV = 2 I L j=Jde—1Je—2,..,J+1, (2.36)
o0 + a;
j+1 J

with an initial value 6901 = ng) )

Coefficient Egn). The case of Egn) with n > 2 is considered simi-

larly by truncating terms of O(z~"~!) in (2.34). We get the following
recursion formula:

k n—
P2 (49 453 + (-t
4"):_ =0 5 s j=Jdeo—1,Ju—2, ..., J+1,
0+ a;
Jj+1 J

(2.37)
with an initial value 6( n) E( ") that can be taken from the 1D plane

case: ESOZ = Notlce that (2.36) is a particular case of (2.37) for
n=1.

Theorem 2.2. Under conditions of Theorem 2.1 the recurrence for-
mula (2.37) is stable with respect to small perturbations.

Proof. Let us write (2.37) as an iteration with respect to the index n:

04 = 2l + F () ), (2.38)
b1+ oy
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Jj =Jow—1,J —2,...,J + 1, where the function F' contains the
remaining terms with indexes n; < m. Suppose that the coefficients
{Bg-m)}, n=01,....n—1,j=Je—1,J06—2,...,J +1 are exact (or
known with good accuracy). Then the stability of (2.37) is determined
by the magnitude of the multiplier

(0)
5
5 .
€§‘421 + oy
We have from (2.31):
\4-0)! Bj J
< < B < = <1
0 0 J =
|€§‘421 +aj |€§‘421 +aj Jrl

O

Remark. The proof of Theorem 2.2 is made by induction with respect
ton =1,2,... under the assumption that the previous coefficients for
ny < n are (almost) correct. In practice, while calculating the coeffi-

cients €§. ) we must fix some value J,, and take an “incorrect” initial

value 652 = B(()Z). This could give a numerical instability. However,
Ego) converges sufficiently fast to its correct value and reaches a very

good approximation after, say, Jy steps of the recursion (2.30). Hence,

we can start the recursion for Bg-l) a little bit “later”, i.e. with the de-

layed initial index j = J — Jy. Similarly for €§2), the initial index can
be chosen as j = Jo —2Jp, etc. In our numerical tests practical values
for Jy satisfy 0 < Jy < 5.

Sample calculations of the coefficients E}n). We demonstrate

the efficiency of the proposed algorithm for the following example.
For the radius we consider R = 1 and we discretize the circular do-
main [0, R] x [0,27] with the uniform step sizes Ar = 1/200 and
Af# = 27 /200. For the time step size we take At = 0.0003 and calcu-
late the convolution coefficients 65-") with (2.37) for the free Schrodinger
equation (i.e. V.= 0) for n = 0,...,60. In a first set of calculations
we run the algorithm with the choice Jo = 550 (which corresponds
to r = 3.75) and a retarding shift Jy = 5. Here we just discuss the
results for the mode m = 1, but all other modes behave similarly.
In Figure 2 we show the absolute values of the last seven coefficients
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-3 last 7 coefficients in external domain,mode m = 1
6 5x 10

6.41
6.31
6.21
6.1
o
I i TemTeT ——n=54|
' bttt bttt — = =55
L n:567
5.8 v
b s ek AR - + n=58|
B 5 5 R R X R X XX KK + n=59]
x  n=60
5'61 15 2 25
radius r
. . n
Figure 2: Absolute values of last seven coefficients E; ), n=>=54,...,60, Jo, =

550, Jo = 5;m = 1.

454), - 7£§60) as a function of r € [R,3.75]. We observe a good con-

vergence of the coefficients while approaching the artificial boundary
R = 1 from the exterior domain. An error estimate is provided by
a second calculation, where we compute convolution coefficients g
with Jo, = 1100 and the same discretization parameters as before. The
difference ]€§n) - gEn)‘ is plotted for n = 54,...,60 in Figure 3. With
values of the order O(1071*) near the artificial boundary this error is
about the rounding error of Matlab. The influence of the retarding
shift parameter Jy can be seen by comparing Figure 2 with Figure 4.
In the third run we determine the convolution coefficients (still with
the same discretization parameters and J,, = 550) but with Jy = 3.
The absolute values of these convolution coefficients are presented in
Figure 4. The oscillations in €§-n) due to the instability near J in this
plot are more obvious than in the coefficients computed with Jy = 5
shown in Figure 2. But also for the choice Jy = 3 the coefficients
converge well while approaching r = R.

2D discrete TBC. In the Fourier transformed space, i.e. in terms
of separate azimuthal modes, the discrete TBCs read (this is Eq. (2.24)
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o difference between main and control calculations, mode m = 1
T

10 T T T T
10*12 L i
10*13 i
107 i
——n=54
---n=55
107 n=56|
---n=57
+ n=58
* n=59
10_16 L L L L *_N=60
1 1.02 1.04 1.06 1.08 11 112

radius r

Figure 3: Absolute values of difference \ﬁgn) - gg")\ of last seven coefficients
calculated with J,, = 550 and J,, = 1100;m = 1.

x 107 last 7 coefficients in external domain,mode m = 1
6.5 T T T
6.41 4
6.31 1
6.21 4
S /\/\\/’\7,,\/\, ,,,,,,, _
6.1 q
6L ]
T BV AN P
5.9r + A
b T +++ ++++++*+++*+++ T —— n=54
- - n=55
5.81 n=56|
s K T e PRk - on=57
5.7 WX T b e L n=5g)|
e I =
* *_ n=60|
5.6 : ! :
1 15 2 25 3
radius r

Figure 4: Absolute values of last seven coefficients, J,, = 550, Jy = 3;m = 1.
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with recovered mode index m):

e — sy = Z g, (239)
=1

where m =0,..., K —1, n > 1. Note that (2.3) implies the following
(n) (n)

symmetry in the convolution coefficients: sp” = sp2 . In order to
obtain the discrete TBC in the physical space let us introduce the
diagonal K x K matrices

s?) = diag{s®)}, m=0,....,.K—-1;p=0,1,2,...,

and also matrices F and F~! of the direct and inverse Fourier trans-
form, respectively, acting in accordance with (2.2):

i =i
with the vectors
M= RSl g = (g

Then, multiplying (2.39) by F~! we get the following 2D discrete TBC

n—1
0 —FOF) = F ST st IR 4 g0 (2.40)
p=1

Here, we choose to formulate the discrete TBC (2.40) at the boundary
of the computational interval and one grid point in the ezterior domain.
In accordance with (2.20) we have assumed that the initial condition
satisfies T/)J(?k) =0,j>J;k=0,..., K —1.

The use of the formula (2.40) for calculations permits us to avoid
any boundary reflections and it renders the fully discrete scheme un-
conditionally stable (just like the underlying Crank—Nicolson scheme).
Note that we need to evaluate for each mode m just one convolution of
(2.40) at each time step (at the endpoint of the interval [0,¢,]). Since
the other points of this convolution are not needed, using an FFT is
not practical.
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3 Approximation by sums of exponen-
tials

An ad-hoc implementation of the discrete convolution
n—1
Z s(”_p)qbf]p)
p=1

in (2.24) with convolution coefficients s from (2.23) has still one dis-
advantage. The boundary conditions are non local both in time and
space and therefore computations are too expensive. As a remedy, to
get rid of the time non-locality, we proposed already in [10] the sum
of exponentials ansatz, i.e. to approximate the convolution coefficients
(2.23) by a finite sum (say L terms) of exponentials that decay with
respect to time. This approach allows for a fast (approximate) evalu-
ation of the discrete convolution (2.24) since the convolution can now
be evaluated with a simple recurrence formula for L auxiliary terms
and the numerical effort per time step now stays constant.

Let us note that such kind of trick has been proposed in [20] for the
heat equation, in [39] for the continuous TBC of the 3D wave equation,
in [25] for the TBC of the 2D Schridinger equation, and developed in
[2], 140], [41], [15], [21] for various hyperbolic problems.

In the sequel we will briefly review this ansatz [10]. In order to
derive a fast numerical method to calculate the discrete convolutions
in (2.39), we approximate the coefficients s by the following ansatz
(sum of exponentials):

(3.1)

where L,v € N are a fixed numbers. Evidently, the approximation
properties of 5§ depend on L, v, and the corresponding set {b;, ¢}
Thus, the choice of an (in some sense) optimal approximation of this
type is a difficult nonlinear problem. Below we propose a deterministic
method of finding {b;, ¢} for fixed L and v.

Remark. The “split” definition of {50} in (3.1) is motivated by the
fact that the implementation of the discrete TBCs (2.39) involves a
convolution sum with p ranging only from 1 to p = n — 1. Since the
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first coefficient s(9) does not appear in this convolution, it makes no
sense to include it in our sum of exponential approximation, which
aims at simplifying the evaluation of the convolution. Hence, one may
choose ¥ =1 in (3.1). The “special form” of 09 and ¢ given in 10|
suggests even to exclude s from this approximation and to choose
v =2in (3.1). We use this choice in our numerical implementation in
the example in §4.

Also, there is an additional motivation for choosing v = 2: With
the choice v = 0 (or v = 1) we typically obtain (for each mode)
two (or, resp., one) coefficient pairs (b;, q;) of big magnitude. These
“outlier” values reflect the different nature of the first two coefficients.
Including them into our discrete sum of exponentials would then yield
less accurate approximation results.

Let us fix L and consider the formal power series:
g(x) == W) 4 s 4 2002 4z < 1. (3.2)
If there exists the [L — 1|L] Padé approzimation

. Pr(x)
Q@W—Qj—y

(x
of (3.2), then its Taylor series
(@) = 8¥) 4 gt 4 50422
satisfies the conditions
s =5 p=ypv4+1,...,20+v—1, (3.3)
due to the definition of the Padé approximation rule.

Theorem 3.1 ([10]). Let Qr(z) have L simple roots q; with |q| >
1, I=1,...,L. Then

L
5(”):Zblql_", n=v,v+1,..., (3.4)
=1
where
Pr_i(q)
b= — L g 1, L 3.5
[ Q/L(ql) q; 7é ( )
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Remark. We remark that the assumption in Theorem 3.1 on the roots
of Qr(x) to be simple is not essential. For multiple roots one only
has to reformulate Theorem 3.1. All our practical calculations confirm
that this assumption holds for any desired L, although we cannot prove
this.

Evidently, the approximation to the convolution coefficients s by
the representation (3.1) using a [L — 1|L] Padé approximant to (3.2)
behaves as follows: the first 2L coefficients are reproduced exactly, see
(3.3). However, the asymptotics of s and 5 (as n — oco) differ
strongly — algebraic versus exponential decay. Typically the difference
\37(77;”) - 552)] decreases exponentially w.r.t. L (uniformly for all modes
m).

Fast Evaluation of the Discrete Convolution. Let us consider
the approximation (3.1) of the discrete convolution kernel appearing
in the discrete TBC (2.39). With these “exponential” coefficients the
approzrimated convolution

n—1
G =N sy ®) g < Zblql, il > 1, (3.6)
p=1

of the discrete function ¢J+1, p = 1,2,... with the coefficients 5§
can be calculated by recurrence formulas, and this will reduce the
numerical effort significantly.

A straightforward calculation (cf. [10]) yields:

L
~(n—1 ~(n—1
e V=3¢l nx2 (3.7)
=1
where 3
Cl(o) =0,
~(n—1 _ 2 _ 2)
05711 = 10% '+ big q 1¢§11 ; (3.8)
n=23,...,1=1,..., L. Finally we summarize the approach by the

following algorithm. For each azimuth mode m =0,..., K — 1:

1. Calculate £%) . n = 0,...,N — 1, with formulas (2.37) with a

J+1°
boundary value 682 = eé’;‘)

case (&) = ¢ from [10], and use (2.23) to find (™).

that can be taken from the 1D plane
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2. Calculate 5™ via the Padé algorithm.

3. The corresponding coefficients by, q; are used for the efficient cal-
culation of the discrete convolutions.

Remark. The sum-of-exponentials approximation of the discrete TBCs
reduces the numerical effort drastically. The effort for the evalua-
tion of the convolution sum Zg;ll s,(ﬁ_ )ngm’p) is of quadratical order
O(Kn?). With the proposed approximation of the discrete TBCs this
can be reduced to linear effort O(K Ln), where L denotes the number

of terms in the sum-of-exponentials (3.4). For using the exact discrete

TBCs the convolution coefficients s\ (cf. (2.23)) have to be calcu-
lated once in a set up before the time-stepping for all modes m and all
time levels p = 0,...,n. As a further advantage of the approximated
discrete TBCs, the coefficients (2.23) only need to be calculated for
p=0,...,2L+v—1 (cf. (3.3)).

4 Numerical results

In this section we present some numerical examples concerning the
exact discrete TBCs and the approximated discrete TBCs. For further
examples we refer the reader to |37].

4.1 Exact discrete TBCs

Here we shall illustrate that our algorithm can compute the convolu-
tion coefficients of the TBC with almost machine accuracy. Hence,
the (numerically computed) TBC in the circular case is essentially as
accurate as in the rectangular case [10], where the TBCs are obtained
analytically.

We recall the Example 2 from [22], i.e. we consider (1.1) with the
vanishing potential V' = 0 and the angle-dependent initial data

2 o2
e2ikzr cos 0+2tkyr sin 60— % — %

Ir = . .
v'(r.6) Norr (4.1

Then the exact solution to (1.1a) for ¢ > 0 is given by the Gaussian
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beam

. ; . 0—2kgt)2  (rsin0—2kyt)?
2tk (r cos O0—kqt)+2iky (7 sm@—kyt)—(rcg(sazﬂs > _ TS;?ay+ity) )

e
vin6.0) = Vg +ity/ay + it
(4.2)
We set o, = oy = 0.04, let k; = 1, by = —1 and calculate a solution
1 to (1.9) with an equidistant discretization on the circular domain
Q = [0, R] x [0,27] with R =1 and J + 2 grid points in r-direction
and K in 6-direction for the time interval 0 < ¢ < 0.5. In order to
satisfy the assumption that the initial data is compactly supported in
0 (cf. §2) we use a small numerical cut-off close to R, !(r,0) = 0
for r > R — Ar for all angles #, i.e. in discrete notation 1/1?7k = 0 for
j>J k=0,..., K —1. We remark that this assumption of com-
pactly supported initial data is not essential; strategies to overcome
this restriction can be found in [18]. Since we use an offset grid, dis-
crete TBCs are implemented as described before (cf. (2.39) (2.40)) at
r = R — Ar/2, using the grid points R and R — Ar. A reference solu-
tion 19 is calculated on the domain Q9 = [0,2R] x [0, 27] with discrete
TBCs at r = 2R — Ar/2. To determine the error due to the PDE-
scheme (1.9) we compare the numerical solution 9 with the exact one
1 on ©q: The relative L?-error

2

(( 2. Tj|7/)2(rj,9katn)_Q/J(ijek7t”)|2>

75,0,)EQ

LQ1 (¢2) Q;Z)7 tn) =

1
2
max ( > Tj|7/)(rj’9katn)|2)
n (rj,0k)€

(4.3)
is based on the norm defined in (2.5). This test includes also the error
due to the cut-off of the initial function. The effects of the boundary
should be negligible here, because the “main wave” of 1o does not cross
the boundary 2R during the considered time interval.

In order to distinguish between the error due to the difference
scheme and the error due to the discrete TBCs, we compare the numer-
ical solution 11 with the numerical reference solution 19 and calculate
the relative error Lq, (12,11,t,) due to the boundary condition.

Discretization and Results. The solutions 17 and 9 are cal-
culated for three parameter sets. First we let J = K = 64, i.e. Ar =
1/64, A0 = 27w /64 and At = 1/64, then Ar = At = 1/128, Af =
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initial function on Q, = [0,11x{0,2rd, A = 1/256, 46 = 2r1/256

solution on Q, = [0,1)x(0,2rd at time t= 0.125, At = Ar = 1/256, A0 = 211/256

(c) t =0.125

solution on Q, = [0,1]x[0,2rf at time t= 0.25, At = Ar = 1/256, A0 = 21/256

solution on @, = [0,1]x(0,2r] at time t= 0.0625, At = Ar = 1/256, 40 = 21/256
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(b) t = 0.0625

solution on ©, = [0,1)x(0,2r] at time t= 0.125, At = Ar = 1/256, A = 211/256

(d) t =0.125

solution on Q = [0,11[0,2r] at time t= 0.5, At = Ar = 1/256, A0 = 21/256

Figure 5: Absolute value (as normal/contour plots) of the initial function
((4.1) with cut-off) and the calculated solution v of the scheme (1.9) on the

computational domain ©; with Ar = At = 1/256, A0 = 27/256, «,
1, k,

0.04, and the wave numbers k,

= ay
1. v = 0; a discrete TBC is

implemented at » = 1 — Ar/2: No reflections are visible.



relative L?-error due to the scheme
10 T T T T T T T
— J=K=64, At=1/64
— — —J=K=128, At=1/128
— - — - J=K=256, At=1/256

10° I I I I I I I I I

(a) error due to the scheme

™ relative L?-error due to the DTBC

— J=K=64, At=1/64
— — —J=K=128, At=1/128

— - — J=K=256, At=1/256
107 I I I I I I I T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

(b) error due to the boundary condition

Figure 6: (a): Relative error Lq, (2,%,t,) due to the scheme and (b): rela-
tive error Lg, ({1, 19, t,,) due to the boundary conditions. Both errors are cal-
culated for the time evolution of initial function (4.1) for the three parameter
sets with 64 (solid line), 128 (dashed line) and 256 grid points (dashed-dotted
line).
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27/128, and finally Ar = At = 1/256, A0 = 271/256. These dis-
cretization parameters are taken from [22]. The relative error of the
initial function due to the cut off is about ©(107%), ©(10~7), O(1077),
respectively. We present in Figure 5 the absolute value of the initial
function (4.1) and of the evolution of the numerical solution ; on the
computational domain €y until ¢ = 0.5 for the last set of discretiza-
tion parameters and the potential V = 0. The Gaussian beam has
an initial momentum specified by k, = 1, b, = —1. As expected,
the beam leaves the computational domain without any unphysical
reflections at the artificial boundary. The observable broadening of
the beam (as t grows) is due to dispersive effects, which are equally
present in the exact solution (4.2). Figure 6(a) shows the relative er-
ror Lo, (12,1, t,) of the numerical solution 1y w.r.t. the exact solution
restricted on €1 for the three sets of parameters: The scheme is sec-
ond order in Ar, Af, At. The relative error Lq, (11,2, t,) due to the
boundary condition is presented in Figure 6(b) also for all sets; with
values around O(107!3) it approximately amounts to the rounding
error of Matlab.

Remark. Note that the error due to the boundary condition may in-
crease with finer ¢-discretizations (see Figure 6(b)), since longer dis-
crete convolutions have to be computed in this case.

Note that the error of our discrete TBC is negligible compared to
the error of the finite difference scheme in the interior. In [22]|, how-
ever, the truncated TBCs introduce an additional error, which seems
to be larger than the discretization error (cf. Fig. 10 in [22]).

Our next test concerns the long time behavior of the relative er-
ror due to the discrete TBCs. Therefore we calculate the numerical
solutions 11, ¥y of (1.9) for the initial data (4.1) for k, = ky, = 0,
ay = ay = 0.5 on the circular domains Q; = [0, R] x [0, 27] and, resp.,
Qy = [0,2R] x [0,27] with R = 2.5 until t = 4. Since k; = k, = 0,
the beam does not travel and only spreads due to dispersion. We use
the three sets of discretization parameters Ar = R/64, Af = 27/64;
Ar = R/128, A§ = 27/128; and Ar = R/256, A8 = 27/256. For
all calculations we let At = 0.01. In Figure 7 we show the relative
error Lo, (1,2, t,,) due to the boundary conditions for this long-time
test. Observe that in this long-time calculations the error due to the
discrete TBCs grows only sublinearly and is still only around O(10713).

In a separate numerical test (presented in [37]) we also applied our
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relative L2 error due to the DTBC

102

— J=K=64

— — —J=K=128

— - — - J=K=256
T

Figure 7: Relative error Lq, (11, s,t,) due to the boundary condition for
the time evolution of initial function (4.1) with k, =k, =0, oy = ay = 0.5
for the three parameter sets with 64 (solid line), 128 (dashed line), and 256
grid points (dashed-dotted line). The time step size equals At = 0.01,

discrete TBC-approach to the example of [5] (again ¢! from (4.1), but
with modified parameters k;, ky, oy, o). Since the authors of [5] only
use (approximate) absorbing boundary conditions, their relative error
is larger than with our discrete TBC approach.

4.2 Approximated discrete TBCs

To illustrate the sum-of-exponential ansatz we consider again the ini-
tial function (4.1) with the parameters a, = o, = 0.04 and k, =
—ky = 1. We consider the initial data (4.1) with a cut-off at R — Ar,
which causes a relative error of the order O(107%). With this ini-
tial data a solution 11 of (1.9) is calculated on the circular domain
Q= [0, R] x [0,27] with the radius R = 1. For the discrete TBCs
we use the approximation (3.6). As a numerical reference solution we
take b9, which is obtained with the exact discrete TBCs (2.40) on the
larger domain [0, 2] x [0, 27].

Discretization and Results. For the discretization parameters
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At = 0.002, Ar = 1/64, A8 = 27/64 we evolve the solution up to
t = 0.5. In the sum-of-exponentials we choose v = 2 in the three dif-
ferent calculations, L = 10, 20, and 40. We obtain the first 2L 4+ v — 1
convolution coefficients exactly by the recursion formula (2.37) with an

initial value 692 m = eg’.})m taken from the 1D plane case eg’.})m = 6%)
from [10] for each mode m =0, ..., K —1 and sum them according to

(2.23). The sets {b;m, @ m}, [ =1,..., L needed for the calculation of
the approximated convolution coefficients §7(77~Z), n>2L 4+ v —1 for all
modes m are obtained by the Padé algorithm described in §3. We re-
alized these calculations by a Maple code, within which we try to find
L roots g, of the polynomial Qr(x) as it is described in Theorem 3.1
(separately for each mode). Due to a “nearly breakdown” by ill condi-
tioned steps in the Lanczos algorithm (cf. [13]) it is not always possible
to find L roots of Qr,, fulfilling the condition |g | > 1,1 =1,...,L
for each mode m = 0,..., K — 1. Consequently, the Maple code au-
tomatically chooses smaller and smaller values (L — 1,L —2,...) to
guarantee that all roots have an absolute value larger than 1. E.g.,
with the initial choice L = 40 you will find values for L fulfilling the
above condition that vary from 18 to 32 for the different modes. The
number of summands L is hence just an initial guess for the final num-
ber of summands in the sum-of-exponentials.

In Figure 8 we present the contour plots of the absolute value of the
solution ; at time ¢ = 0.5, calculated with the approximated discrete
TBCs with L = 10 and L = 40 terms in the sum-of-exponentials. For
L = 10 there are strong unphysical reflections (see Figure 8(a)), for
larger values of L these reflections become significantly smaller (see
Figure 8(b)).

The relative L?-error due to the approximated discrete TBCs is
shown in Figure 9. For different initial choices of the number of coeffi-
cients L in the sum-of-exponentials we present the error L, (Y1, 2, t,)

(cf. (4.3)) there. Although the coefficients s,(ﬁ), 5" have different
asymptotic behaviors (algebraic vs. exponential decay) the error grows
only sublinearly in time. In order to show, that long time calculations
with the approximated discrete TBCs are stable we evolve the initial
data (4.1) with o = ay = 0.04 and k, = k, = 0 for discretization
parameters At = 0.002, Ar = 1/64, Af = 27/64 for different initial
choices of the number of summands L up to ¢ = 20. The norm of the
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solution on ©, =[0,1]x[0,2r] at ime t= 05, At = 0.002, & = 1/64, 40 = 21/64 solution on 0, =[0,1]x[0,2r] at ime t= 0.5, At = 0.002, & = 1/64, 40 = 21/64

Figure 8: Contour plots of the absolute value of the calculated solution ¢, of
(1.9) at ¢ = 0.5 with the initial function (4.1) on the computational domain
2;. We use approximated discrete TBCs with (a) L = 10 and (b) L = 40.

solution decays in time, as it is shown in Figure 10.

In [37] we applied the sum-of-exponentials approximation to an-
other numerical example and compared it to the example from [25]
(again 9! from (4.1), but with modified parameters k,, ky, oz, ay).
In [25] the authors presented a different sum-of-exponentials approxi-
mation for the convolution kernel of the TBC for the 2D Schrédinger
equation.

We remark that the sum-of-exponentials approach for discrete TBCs
of the 1D Schrédinger equation (including the Maple code) is presented
at http://www.dtbc.de.vu.
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relative L?~error due to the DTBCs, At =0.002, Ar = 1/64, A6 = 211/64

10 T T T T T T T

— approximated DTBCs with L=10

10 — — — approximated DTBCs with L=20 |{

— - — approximated DTBCs with L=40
exact DTBCs

~20 I I I I I T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 9: Relative error Lgq, (11,19,t,) due to the approximated discrete
TBCs as a function of ¢,, € [0, 0.5] for the time evolution of the initial function
(4.1) for different initial choices of the number L in the sum-of-exponentials,
10 (solid line), 20 (dashed line), and 40 grid points (dashed-dotted line). The
relative error due to the exact discrete TBCs for this problem is plotted in
the dotted line.
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Figure 10: L*-norm for the long time evolution of the initial function (4.1)
with o = ayy = 0.04 and k, = k, = 0 again for different initial choices of the
number L in the sum-of-exponentials, 10 (solid line), 20 (dashed line) and
40 grid points (dashed-dotted line). We choose the discretization parameters
Ar =1/64, A0 =27 /64, At = 0.002.
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Appendix: new discrete TBCs for the 1D
Schrodinger equation

With a uniform spatial discretization, the Crank Nicolson finite dif-
ference scheme for the Schrédinger equation with constant potential

V reads:

(n+3) _

: < (n+1) >) Vit ora)
4t ¢n _w‘n _
At J J

(n+3)
2¢j 2+ 1/1]-_1 % (n+%)

j E€Z,n € Ny.

Let the index interval j = 0,...,J denote the computational do-
main, and abbreviate the mesh ratio by p := 4Ax?/At. Using the
Z transform method of §2 (or |7]) one first derives the discrete TBC
for the Z—transformed variable:

hy(2) = U(z) Ps-1(2), (4.4)

with é(z) given by (2.21), if replacing there Vi by V. As before, we
choose the branch of the square root such that [¢(z)] < 1 for z > 1.
An inverse Z—transformation of (4.4) yields (similarly to |18, §3.2]):

P = ) s (4.5)

or explicitly (when assuming ¢](0) =0,7>J-1)

n—1
i — Oy, =3l ) (4.6)
p=1

Here, the convolution coefficients are given by

60 = 1432 4 )00 = ip(—1)" + 5 /(62 + o)) [ + (7 + 4] €712,

e {)\Pn(u) + Po_1(p)+7
(4.7)

with k = VAt/2, 0 = pk, § the Kronecker delta, P, the Legendre
polynomials, and P_; = 0. Here we used the following abbreviations

— 4K — pK? + 2i 2 : 2 2
_ PR ilor +2) =e'?, Withgpzarctani(pﬁ—i_ )

A .
\/(1 + &2)[p2 + (prk + 4)?] p — 4k — pr?
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Moreover
p(1+ K?) + 4k
\/(1 + K2)[p? + (pr + 4)?]

€ (—1,1),

4
T = p e R.

\/(1 + K2)[p? + (pr + 4)?]

Note that the convolution in (4.5) is implemented at the grid point
J — 1, i.e. at the interior of the two boundary grid points J — 1, J.
This is in contrast to the discrete TBC in [7|, which uses a convolution
on the ezterior boundary grid point:

B G0 4y,

There, the convolution coefficients ¢ are defined with the opposite
sign in front of the fourth root of (4.7).

This slight reformulation of the discrete TBCs has an important
practical consequence: While the coefficients () are oscillatory ([7(") ~
2ip(—1)", f. [18, $3.3]), the coefficients £ decay like n=3/2. Hence,
this new formulation (4.5) does not require to introduce the “summed
convolution coefficients” of [7, 18].

A more refined asymptotic of the coefficients (") is given in (2.22).
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