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As a by-produ
t we also present a new formulation of dis
rete TBCsfor the 1D S
hrödinger equation, with 
onvolution 
oe�
ients thathave better de
ay properties than those from the literature.A
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haftskolleg Dif-ferentialglei
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h CenterMatheon �Math-emati
s for key te
hnologies" in Berlin. The fourth author was alsosupported by RFBR-Grant No. 07-01-00476.1 Introdu
tionThe S
hrödinger equation. Consider in the 
ir
ular geometry withpolar 
oordinates (r, θ) the following Cau
hy problem for the s
aledtransient S
hrödinger equation:
iψt = −1

2

[

1

r
(rψr)r +

1

r2
ψθθ

]

+ V (r, θ, t)ψ, r ≥ 0, 0 < θ ≤ 2π, t > 0,(1.1a)
ψ(r, θ, 0) = ψI(r, θ), r ≥ 0, 0 < θ ≤ 2π, (1.1b)We assume that the given θ-periodi
al potential V is 
onstant outsideof the 
omputational domain [0, R] × [0, 2π]:

V (r, θ, t) = VR ≡ const for r ≥ R,and that the su�
iently smooth θ-periodi
al initial data has a 
ompa
tsupport:
suppψI ⊂ [0, R) × [0, 2π]. (1.2)Dis
ussions of strategies to soften these restri
tions 
ould be found in[18, 19, 28, 35℄.In addition to quantum me
hani
s, equation (1.1a) has many im-portant appli
ations in
luding ele
tromagneti
 wave propagation [29℄,modelling of quantum devi
es [7℄, integrated opti
s (Fresnel equa-tion) [34, 43℄, plasma physi
s, seismi
 migration [14℄, and (underwater)2
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Figure 1: A typi
al single�mode opti
al �ber, showing the di�erent 
ompo-nent layers. Wave propagation mostly takes pla
e in the relatively thin 
oreregion.a
ousti
s due to the paraxial approximation of the wave equation inthe frequen
y domain [8, 42℄, et
.One quite important appli
ation of the S
hrödinger equation, espe-
ially in a 
ir
ular geometry arises in the 
ontext of wave propagationin opti
al �bers [26, 44℄. A sket
h of the stru
ture of an opti
al �berwith its di�erent layers is shown in Fig. 1.In modern 
ommuni
ation networks opti
al �bers play a funda-mental role and there it is often ne
essary to 
onne
t the �bers (e.g.after a breakage or to extend a 
able run) with low lost. Opti
al �bersare 
onne
ted by a fusion pro
ess 
alled a thermal spli
ing and onehas to 
ontrol this pro
edure and simulate how small disturban
es inthe geometry of the (usually straight) �ber 
ore e�e
t the transportedlight in the �ber. Doing so, one 
an predi
t the 
aused loss at thesejoining positions of the �bers.With the proposed transparent boundary 
onditions in this paperone 
an redu
e the 
omputational domain signi�
antly (e.g. to the
ore region) and obtain a fast, a

urate, and reliable simulation us-ing the beam propagation method [24, 44℄. Here, the time variable t
orresponds to the axial variable, i.e. the propagation dire
tion. Foran adequate treatment of the density jump in the TBC between thedi�erent layers we refer to [8℄. 3



Analyti
 transparent boundary 
onditions (TBCs). Let usexemplify �rst analyti
 TBCs that 
an be derived for the S
hrödingerequation on a 
ir
ular domain. The idea is to eliminate the problemon the exterior domain r > R, and to repla
e it by a Diri
hlet�to�Neumann (DtN) map. First we brie�y review the 
onstru
tion of theanalyti
 TBCs for the S
hrödinger equation on a 
ir
ular domain from[5℄ and extend them to the 
ase of a nonzero potential VR at in�nity(
f. also [22, 25℄). For a review paper about TBCs for linear andnonlinear S
hrödinger equations we refer the reader to [6℄.We 
onsider su�
iently smooth bounded periodi
al solutions to(1.1a) on the exterior domain r > R and denote by ψ̂ = ψ̂(r, θ, s)the Lapla
e transform of ψ w.r.t. time. The transformation of (1.1a)reads:
1

r
(rψ̂r)r +

1

r2
ψ̂θθ + 2i(s + iVR)ψ̂ = 0, r ≥ R, 0 < θ ≤ 2π, (1.3)where we used the assumption (1.2). We use a Fourier series w.r.t. theangle θ:
ψ̂(r, θ, s) =

∑

m∈Z

ψ̂(m)(r, s) eimθ , r ≥ R. (1.4)Then, for ea
h mode m ∈ Z, the Fourier 
oe�
ient ψ̂(m)(r, s) satis�esthe ordinary di�erential equation
1

r
(rψ̂(m)

r )r +
(

2is − 2VR − m2

r2

)

ψ̂(m) = 0, r ≥ R. (1.5)This is the Bessel equation for fun
tions of order m. Hen
e, its solutionvanishing as r → ∞ is the m-th order Hankel fun
tion of the �rst kind
H

(1)
m :

ψ̂(m)(r, s) = αm(s)H(1)
m (
√

2is− 2VR r), r ≥ R, (1.6)where αm(s) is an arbitrary multiplier. The radial derivative of ψ̂(m)is 
omputed as
∂

∂r
ψ̂(m)(r, s) = αm(s)

√

2is− 2VRH
(1)′
m (

√

2is − 2VR r)

=
√

2is − 2VR
H

(1)′
m (

√
2is − 2VR r)

H
(1)
m (

√
2is− 2VR R)

ψ̂(m)(R, s),
(1.7)where we have determined the value of the 
oe�
ient αm(s) from (1.6)by setting r = R. Finally, the TBCs are obtained by 
omputing the4



series (1.4), using the inverse Lapla
e transform and setting r = R:
∂ψ

∂r
(R, θ, t) =

1

2πi

∑

m∈Z

γ+i∞
∫

γ−i∞

√

2is− 2VR
H

(1)′
m (

√
2is − 2VRR)

H
(1)
m (

√
2is − 2VRR)

ψ̂(m)(R, s)est ds eimθ,(1.8)where Γ = (γ− i∞, γ+ i∞) is a verti
al 
ontour in the 
omplex plane
hosen su
h that all singularities of the integrand are to the left of it.The TBCs (1.8) are non�lo
al both in time and in spa
e. A strat-egy to derive a spatially lo
alized version of (1.8) by an asymptoti
expansion of the Hankel fun
tions and their derivatives w.r.t. s 
anbe found in [5℄.Be
ause of the nonlo
ality of the TBCs (1.8), their immediate nu-meri
al implementation requires to store the boundary data ψ̂(m)(R, .)of all the past history and for all modes m ∈ Z. Moreover, the dis-
retization of the TBCs (1.8), even in one spa
e dimension, is nottrivial at all and has attra
ted lots of attention. For the many pro-posed dis
retization strategies of the TBCs (1.8) in 1D (as well assemi�dis
rete approa
hes), we refer the reader to [1, 4, 9, 11, 12, 17,30, 31, 32, 33, 34, 35, 36, 45℄ and referen
es therein. A numeri
ally ef-�
ient treatment of the 2D TBCs (1.8) was re
ently proposed by Jiangand Greengard in [25℄. A family of absorbing boundary 
onditions forthe 3D 
ase was re
ently introdu
ed in [23℄.We remark that inadequate dis
retizations may introdu
e strongnumeri
al re�e
tions at the boundary or render the dis
rete initialboundary value problem only 
onditionally stable, see [18℄ for a de-tailed dis
ussion.Di�eren
e equations. We 
onsider a Crank�Ni
olson �nite dif-feren
e s
heme, whi
h is one of the 
ommonly used dis
retization meth-ods for the S
hrödinger equation. Let us introdu
e a polar and tem-poral grid:
r−1 < r0 < r1 < · · · < rJ < . . . , r−1 = −r0; rJ−1/2 = R,

rj+1/2 = (rj+1 + rj)/2, ∆rj+1/2 = rj+1 − rj , ∆rj = rj+1/2 − rj−1/2,

θk = k∆θ, k = 0, 1, . . . ,K, ∆θ = 2π/K;

tn = n∆t, n = 0, 1, . . .5



We denote
ψ

(n)
j,k = ψ(rj , θk, tn), ψ

(n+1/2)
j,k =

(

ψ
(n+1)
j,k + ψ

(n)
j,k

)

/2,and V
(n+1/2)
j,k = V (rj , θk, tn+1/2). Then the Crank�Ni
olson s
hemereads:

− 2i

∆t
(ψ

(n+1)
j,k − ψ

(n)
j,k )

=
1

rj

1

∆rj





rj+1/2(ψ
(n+1/2)
j+1,k − ψ

(n+1/2)
j,k )

∆rj+1/2
−
rj−1/2(ψ

(n+1/2)
j,k − ψ

(n+1/2)
j−1,k )

∆rj−1/2





+
1

r2j

ψ
(n+1/2)
j,k+1 − 2ψ

(n+1/2)
j,k + ψ

(n+1/2)
j,k−1

∆θ2
− 2V

(n+1/2)
j,k ψ

(n+1/2)
j,k ,

j = 0, 1, ...; k = 0, 1, ...,K − 1; n = 0, 1, ... (1.9)and the obvious periodi
 boundary 
onditions ψ(n)
j,0 = ψ

(n)
j,K , ψ(n)

j,−1 =

ψ
(n)
j,K−1.Remark (Treatment of singularity at the origin). We use a radial o�setgrid here su
h that the 
oe�
ient of ψ(n+1/2)

−1,k is zero.The paper is organized as follows. In �2 we prove the dis
retemass 
onservation property of the Crank�Ni
olson s
heme and derivedis
rete TBCs dire
tly for the 
hosen numeri
al s
heme using the Z�transform method. In 
ontrast to the 1D and the re
tangular 2D
ases, the 
onvolution 
oe�
ients of the dis
rete TBCs have to be ob-tained numeri
ally here. Using their large-radius-limit (i.e. the planarproblem) as a starting point, they are 
omputed by a re
ursion from�in�nity� ba
k to the �nite radius R. Next we prove the stability ofthe re
urren
e formulas used to obtain the 
onvolution 
oe�
ients ofthe new dis
rete TBCs for a spatially dependent potential.In �3 we dis
uss the approximation of the 
onvolution 
oe�
ientsby a dis
rete sum of exponentials and present an e�
ient re
ursion forevaluating these approximate dis
rete TBCs. Finally, the numeri
alexamples of �4 illustrate the a

ura
y, stability, and e�
ien
y of theproposed method.In the Appendix we brie�y revisit dis
rete TBCs for the 1D S
hrö-dinger equation. We present a new formulation that leads to 
onvo-lutions 
oe�
ients with better de
ay properties than those from theliterature [7, 18℄. 6



2 The dis
rete TBCsFirst we generate transparent dis
rete boundary 
onditions using exa
tsolutions to the di�eren
e s
heme (1.9) in the exterior domain r ≥ R.Redu
tion to 1D�Problem. In order to redu
e the problem tothe simpler 1D 
ase, the dis
rete Fourier method is used in θ�dire
tion.Due to the periodi
 boundary 
onditions in angular dire
tion we have
ψ

(n)
j,0 = ψ

(n)
j,K, j ∈ N0, n ≥ 0, (2.1)and hen
e, use the dis
rete Fourier transform of ψ(n)

j,k in θ�dire
tion:
ψ

(m,n)
j :=

1

K

K−1
∑

k=0

ψ
(n)
j,k exp

(

2πikm

K

)

, m = 0, . . . ,K − 1. (2.2)The s
heme (1.9) in the exterior domain j ≥ J − 1 then transformsinto:
− 2i

∆t
(ψ

(m,n+1)
j − ψ

(m,n)
j )

=
1

rj

1

∆rj

[

rj+1/2(ψ
(m,n+1/2)
j+1 − ψ

(m,n+1/2)
j )

∆rj+1/2

−
rj−1/2(ψ

(m,n+1/2)
j − ψ

(m,n+1/2)
j−1 )

∆rj−1/2

]

− 2V
(m)
j ψ

(m,n+1/2)
j ,

V
(m)
j := VR +

2 sin2
(

πm
K

)

r2j∆θ
2

, 0 ≤ m ≤ K − 1, n ≥ 0. (2.3)The modes ψ(m), m = 0, . . . ,K − 1 are independent of ea
h otherin the exterior domain r ≥ R sin
e the potential V is 
onstant there.Therefore we 
an 
ontinue our analysis for ea
h azimuth mode sepa-rately.Thus, by omitting in the sequel the supers
ript m in the notation,we will 
onsider in the exterior domain j ≥ J−1 the following dis
rete
7



1D�S
hrödinger equation:
− i

2∆rj∆rj+1/2

∆t
(ψ

(n+1)
j − ψ

(n)
j )

=
1

rj

[

rj+1/2(ψ
(n+1/2)
j+1 − ψ

(n+1/2)
j )

− rj−1/2

∆rj+1/2

∆rj−1/2
(ψ

(n+1/2)
j − ψ

(n+1/2)
j−1 )

]

− 2∆rj∆rj+1/2Vjψ
(n+1/2)
j ,(2.4)with the spatially dependent potential Vj = VR + 2 sin2(πmK )/(r2j∆θ

2).Mass 
onservation property. There are two important advan-tages of this se
ond order (in ∆r and ∆t) s
heme (2.4): it is un
ondi-tionally stable, and it preserves the dis
rete L2�norm in time:Lemma 2.1. For the s
heme (2.4) (
onsidered on j ∈ N0) it holds:
‖ψ(n)‖2

2 :=
∑

j∈N0

∆rj |ψ(n)
j |2rj (2.5)is a 
onserved quantity in time.Proof. This 
onservation property 
an be seen by a dis
rete energyestimate. First we multiply (2.4) by ψ̄(n)

j rj:
− 2i

∆t

(

ψ
(n+1)
j ψ̄

(n)
j − |ψ(n)

j |2
)

rj

= ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− 2Vjψ
(n+1/2)
j ψ̄

(n)
j rj , j = 0, 1, . . . , (2.6a)

2i

∆t

(

|ψ(n+1)
j |2 − ψ̄

(n)
j ψ

(n+1)
j

)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− 2Vjψ̄
(n+1/2)
j ψ

(n+1)
j rj , j = 0, 1, . . . ,(2.6b)with the abbreviation of the 
entered di�eren
e quotient

D0 = D0
∆rj

2

, i.e. D0ψnj =
ψnj+1/2 − ψnj−1/2

∆rj
.8



Next we subtra
t (2.6a) from (2.6b)
2i

∆t

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj , j = 0, 1, . . . ,multiply by ∆rj, sum from j = 0 to ∞, and apply summation byparts:
2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −
∞
∑

N0+ 1
2

(

D0ψ̄
(n+1/2)
j

)(

D0ψ
(n+1)
j

)

rj∆rj −
(

D0ψ̄
(n+1/2)

−
1
2

)

ψ
(n+1)
0 r

−
1
2

+

∞
∑

N0+
1
2

(

D0ψ
(n+1/2)
j

)(

D0ψ̄
(n)
j

)

rj∆rj +
(

D0ψ
(n+1/2)

−
1
2

)

ψ̄
(n)
0 r

−
1
2

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj . (2.7)Now, the boundary terms in (2.7) vanish sin
e r
−

1
2

= 0, and hen
e
2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −1

2

∞
∑

N0+
1
2

(

|D0ψ̄
(n+1)
j |2 −D0ψ̄

(n)
j |2

)

rj∆rj

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj .

(2.8)
Finally, taking imaginary parts one obtains the desired result.Dis
rete TBCs for a single azimuth mode. Dis
rete transpar-ent boundary 
onditions for the 1D S
hrödinger equation with 
onstant
oe�
ients of the di�eren
e s
heme in the exterior domain were intro-du
ed by Arnold [7℄ (
f. the Appendix for an improved variant, whi
h9



is the bases of our presentation below). Here we derive dis
rete TBCsfor the s
heme (2.4) with spatially varying 
oe�
ients. In analogy tothe 
ontinuous 
ase of �1, the idea is to eliminate the exterior problem
j > J and to repla
e it by a dis
rete DtN map.We use the Z�transform of the sequen
e {ψ(n)

j }, n ∈ N0 (with j
onsidered �xed) whi
h is de�ned as the Laurent series, see [16℄:
Z{ψ(n)

j } = ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z ∈ C, |z| > Rψ̂j

, (2.9)and Rψ̂j
denotes the 
onvergen
e radius of the series. Now the trans-formed exterior s
heme (2.4) reads

− iρj
z − 1

z + 1
ψ̂j(z)

=
1

rj

[

rj+1/2

(

ψ̂j+1(z) − ψ̂j(z)
)

− rj−1/2

∆rj+1/2

∆rj−1/2

(

ψ̂j(z) − ψ̂j−1(z)
)

]

− 2∆rj∆rj+1/2Vjψ̂j(z), j ≥ J − 1, (2.10)with the mesh ratio ρj = 4∆rj∆rj+1/2/∆t and the spatially dependentpotential Vj = VR + 2 sin2(πmK )/(r2j∆θ
2). Note that we used here thefollowing assumption on ψ0:

ψ0
j = 0, j ≥ J − 2. (2.11)Thus we obtain a homogeneous se
ond order di�eren
e equation withvarying 
oe�
ients of the form

ajψ̂j+1(z) + bj(z)ψ̂j(z) + cjψ̂j−1(z) = 0, j ≥ J − 1, (2.12)where
aj =

rj+1/2

rj
, (2.13a)

bj(z) = − 1

rj

[

rj+1/2 + rj−1/2

∆rj+1/2

∆rj−1/2

]

+iρj
z − 1

z + 1
− 2∆rj∆rj+1/2Vj,(2.13b)

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2
. (2.13
)10



Remark (uniform o�set grid). In the spe
ial 
ase of a uniform radialo�set grid rj = (j + 1
2 )∆r, j ≥ J − 1, we obtain

aj =
j + 1

j + 1
2

, cj =
j

j + 1
2

, (2.14a)
bj(z) = −2 + iρ

z − 1

z + 1
− 2∆r2VR − 4

sin2
(

πm
K

)

(j + 1/2)2∆θ2
. (2.14b)But su
h a uniform grid is not a requirement for the rest of this se
tion.For the formulation of the Z�transformed dis
rete TBCs at j = Jwe regard the ratio ℓ̂j(z) of the de
aying (as j → ∞) fundamentalsolution to (2.10) at two adja
ent points:

ℓ̂j(z) =
ψ̂j(z)

ψ̂j−1(z)
, j ≥ J, (2.15)and get from (2.12) the following Ri

ati di�eren
e equation (
f. �1.6in [27℄) with variable 
oe�
ients:

ℓ̂j(z)
(

aj ℓ̂j+1(z) + bj(z)
)

+ cj = 0, j ≥ J. (2.16)Suppose (for the moment) that the 
oe�
ients ℓ̂j(z) are known.Setting j = J + 1 we get from (2.15):
ℓ̂J+1(z) =

ψ̂J+1(z)

ψ̂J(z)
. (2.17)Cal
ulating the inverse Z�transformation we obtain the dis
rete 
on-volution

ψ
(n)
J+1 = ℓ

(n)
J+1 ∗ ψ

(n)
J , (2.18)and expli
itly

ψ
(n)
J+1 − ℓ

(0)
J+1ψ

(n)
J =

n−1
∑

p=1

ℓ
(n−p)
J+1 ψ

(p)
J , (2.19)by using the assumption (1.2)

ψ
(0)
j = 0, j ≥ J. (2.20)We remark that this dis
rete TBC is stru
turally di�erent fromthose introdu
ed in the literature [7, 8, 18, 38℄. There, the dis
rete11




onvolution is always pla
ed at the outer of the two boundary gridpoints. But in (2.18) it is implemented at the inner boundary point
j = J . This small modi�
ation yields a very di�erent behavior of the
onvolution 
oe�
ient ℓ(n): Sin
e they are os
illatory in [7, 8, 18, 38℄,it is ne
essary to rather use a linear 
ombination of ℓ(n)

j and ℓ
(n−1)
j ,whi
h is mu
h �smoother� (
onsidered as fun
tions of n). In 
ontrast,the 
oe�
ients ℓ(n) here de
ay like O(n−3/2) (
f. the Appendix fordetails).While the asymptoti
 behavior (for n large) of ℓ(n) was determinedfrom the expli
it formulas in [18, 38℄, this is unfeasible here. It 
an,however, be dedu
ed from the singularities of ℓ̂j(z). First we 
onsider

ℓ̂∞(z), the ratio in the boundary 
ondition at in�nity. Here and in thesequel we make the assumption of an asymptoti
ally equidistant grid(i.e. ∆rj → ∆r):
ℓ̂∞(z) = 1 − iρ

2

z − 1

z + 1
+ ∆r2VJ∞ (2.21)

− 1

z + 1

√

[

(z + 1)(1 + ∆r2VJ∞) − iρ

2
(z − 1)

]2

− (z + 1)2 .Note that this formula 
oin
ides with the 1D 
ase and the planar 2D
ase (
f. the Appendix or [18, 10℄). In (2.21) the bran
h of the squareroot has to be 
hosen su
h that |ℓ̂∞(z)| ≤ 1 holds for z ≥ 1 whi
hsele
ts the de
aying solution ψ̂j(z). ℓ̂∞ has no pole at z = −1, buttwo bran
h points on the 
omplex unit 
ir
le, due to the quadrati
polynomial under the square root. For the spe
ial 
ase VJ∞ = 0 thatwe shall illustrate numeri
ally, they are lo
ated at z1 = 1, z2 = (ρ −
4i)/(ρ + 4i). These bran
h points manifest themselves as kinks of
Im ℓ̂∞(z), for z on the unit 
ir
le.Next we dis
uss the singularities of ℓ̂j(z) for j �nite. Subsequent
ℓ̂j(z)'s are related by the re
ursion (2.16). But sin
e bj(z) is real onthe unit 
ir
le (as well as aj , cj), the kinks of Im ℓ̂j(z) are still lo
atedat z1 = 1, z2 = (ρ− 4i)/(ρ + 4i) for all j and for all modes m.Now we turn to a dis
ussion of the asymptoti
 behavior of ℓ(n)

J for
n → ∞. Sin
e ℓ(n)

J are just the Fourier 
oe�
ients of the 2π�periodi
fun
tion ℓ̂J(eiϕ) (
f. (2.9)), its asymptoti
 behavior is determined bythe singularities of ℓ̂J(z) on the unit 
ir
le. Hen
e, the two square rootsingularities imply
ℓ
(n)
J ∼ (c1 z

n
1 + c2 z

n
2 )n−3/2. (2.22)12



To 
ompensate the os
illations with the higher frequen
y (determinedby zn2 ) we de�ne the following summed 
onvolution 
oe�
ients
s(0) := ℓ

(0)
J+1,

s(n) := ℓ
(n)
J+1 − z2 ℓ

(n−1)
J+1 , n ≥ 1.

(2.23)This strategy is di�erent from [18, 10, 38℄ sin
e the asymptoti
 behav-ior of the 
oe�
ients ℓ(n) is very di�erent in both 
ases. These new
oe�
ients s(n) are now less os
illatory than the ℓ(n)
J+1. Hen
e, they area better starting point for 
omputing approximate 
onvolution 
oef-�
ients (see �3 below). The dis
rete TBC for a single azimuth modereads

ψ
(n)
J+1 − s(0)ψ

(n)
J =

n−1
∑

p=1

s(n−p)ψ
(p)
J + z2 ψ

(n−1)
J+1 . (2.24)Cal
ulation of 
onvolution 
oe�
ients. In order to �nd asolution to (2.16) we use the method of series. Let us 
onsider theLaurent series for ℓ̂j(z):

ℓ̂j(z) = ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . . , |z| ≥ 1. (2.25)We de�ne the auxiliary fun
tions

αj(z) :=
bj(z)

aj
,

αj := lim
z→∞

αj(z),

βj :=
cj
aj
.

(2.26)Then (2.16) reads
ℓ̂j(z)

(

ℓ̂j+1(z) + αj(z)
)

+ βj = 0, j ≥ J. (2.27)Substituting (2.25) for (2.27) we get
(

ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . .

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + · · · + ℓ
(n)
j+1z

−n + . . .
)

+ αj(z)
)

+ βj = 0. (2.28)We shall now dis
uss the 
omputation of the 
oe�
ients ℓ(n)
j for indi-vidual indi
es n: 13



Coe�
ient ℓ(0)
j . Taking |z| → ∞ we have the following re
urren
eequation for ℓ(0)j :

ℓ
(0)
j

(

ℓ
(0)
j+1 + αj

)

+ βj = 0. (2.29)We shall solve this equation by �iteration from in�nity�, i.e. startingfrom a (large) index J∞, putting an initial value ℓ(0)J∞ := ℓ
(0)
∞ , andrunning the re
ursion from J∞ to J + 1:

ℓ
(0)
j =

−βj
ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1. (2.30)Note that a very large index J∞ 
orresponds to a very large radius
rJ∞. Therefore we 
an use the 
oe�
ient ℓ(0) from the 1D 
ase (
f.(4.7), or the 2D plane 
ase) as the starting value ℓ(0)∞ . It is obtainedfrom (2.21) as ℓ(0)∞ = ℓ̂∞(z = ∞).Theorem 2.1. [stability of the re
urren
e relation℄. Let |αj | ≥
2 j+1/2
j+1 , βj ≤ j

j+1 , and |ℓ(0)J∞ | < βJ∞. Then:a) |ℓ(0)j | < βj ≤ j
j+1 < 1; andb) the re
urren
e formula (2.30) is stable with respe
t to small per-turbations.Proof. Part (a) is proved by indu
tion. Suppose |ℓ(0)j+1| < βj+1 ≤ j

j+1 .Hen
e
|ℓ(0)j+1 + αj | ≥ |αj | − |ℓ(0)j+1| > 2

j + 1/2

j + 1
− j

j + 1
= 1.Therefore

|ℓ(0)j | =
βj

|ℓ(0)j+1 + αj |
< βj . (2.31)To prove (b) and establish the stability we suppose that we havea perturbation ℓ

(0)
j+1 + δj+1 instead of ℓ(0)j+1 with |δj+1| < 1. Let us
onsider the evolution of δj by 
omparing (2.30) with

ℓ
(0)
j + δj =

−βj
ℓ
(0)
j+1 + δj+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1.

14



Evidently we obtain:
δj =

−βj
ℓ
(0)
j+1 + δj+1 + αj

− −βj
ℓ
(0)
j+1 + αj

= δj+1

−ℓ(0)j
ℓ
(0)
j+1 + δj+1 + αj

= δj+1

−ℓ(0)j
−βj/ℓ(0)j + δj+1

.Therefore we get
|δj | = |δj+1|

|ℓ(0)j |
|βj/ℓ(0)j − δj+1|

≤ |δj+1|
|ℓ(0)j |2

βj − |ℓ(0)j ||δj+1|
< |δj+1|

|ℓ(0)j |2

βj

1

1 − |δj+1|
,and hen
e

|δj |
|δj+1|

∼
|ℓ(0)j |2
βj

< βj < 1, (2.32)for |δj+1| ≪ 1. Thus the re
ursion (2.30) is stable with respe
t tosmall perturbations (e.g. for trun
ation errors or for an �in
orre
t�initial guess ℓ(0)J∞ := ℓ
(0)
∞ ).Remark. The assumptions |αj | ≥ 2 j+1/2

j+1 and βj ≤ j
j+1 in the previoustheorem are valid for the de�nitions (2.14) (i.e. for a uniform o�setgrid) and VR ≥ 0. Moreover |ℓJ∞ | < βJ∞ holds true for J∞ largeenough, sin
e βj j→∞−→ 1 for an asymptoti
ally equidistant grid.Remark. The estimate (2.32) explains the fast 
onvergen
e of the re-
ursion (2.30) to the 
orre
t value ℓ(0)J in spite of taking an �in
orre
t�initial guess ℓ(0)J∞ := ℓ

(0)
∞ , see the numeri
al examples below. Indeed,due to (2.32) we 
an hope for an exponential de
ay of |δj | with thefa
tor |ℓ(0)j |2/βj ∼ |ℓ(0)j |. For instan
e, the value |ℓ(0)j | is estimatedfrom the 
ase of the �frozen� 
oe�
ients at J∞:

|ℓ(0)j | ∼ |ℓ(0)
∞

| < 1,where ℓ(0)∞ = ℓ̂∞(z = ∞) from (2.21).15



Coe�
ient ℓ(1)
j . Now we 
onsider the 
al
ulation of ℓ(1)j . We havefrom (2.26), (2.13):

αj(z) := αj − γj(z
−1 − z−2 + z−3 − . . . ), (2.33)with γj := αj − ᾱj . From (2.28) and (2.33) we 
an write

(

ℓ
(0)
j + ℓ

(1)
j z−1 + O(z−2)

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + O(z−2)
)

+
(

αj − γjz
−1 + O(z−2)

)

)

+ βj = 0.(2.34)Annihilating leading order terms by using (2.29) we 
olle
t terms oforder z−1:
ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj + ℓ

(1)
j ℓ

(0)
j+1 + ℓ

(1)
j αj = 0. (2.35)Therefore the re
ursion is de�ned by

ℓ
(1)
j = −

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1, (2.36)with an initial value ℓ(1)J∞ := ℓ
(1)
∞ .Coe�
ient ℓ(n)

j . The 
ase of ℓ(n)
j with n ≥ 2 is 
onsidered simi-larly by trun
ating terms of O(z−n−1) in (2.34). We get the followingre
ursion formula:

ℓ
(n)
j = −

n−1
∑

k=0

ℓ
(k)
j

[

ℓ
(n−k)
j+1 + γj(−1)n−k

]

ℓ
(0)
j+1 + αj

, j = J∞−1, J∞−2, . . . , J+1,(2.37)with an initial value ℓ(n)
J∞

:= ℓ
(n)
∞ that 
an be taken from the 1D plane
ase: ℓ(n)

J∞
≡ ℓ

(n)
∞ . Noti
e that (2.36) is a parti
ular 
ase of (2.37) for

n = 1 .Theorem 2.2. Under 
onditions of Theorem 2.1 the re
urren
e for-mula (2.37) is stable with respe
t to small perturbations.Proof. Let us write (2.37) as an iteration with respe
t to the index n:
ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1 + αj

ℓ
(n)
j+1 + F

(

{ℓ(n1<n)
j }, {ℓ(n1<n)

j+1 }
)

, (2.38)16



j = J∞ − 1, J∞ − 2, . . . , J + 1, where the fun
tion F 
ontains theremaining terms with indexes n1 < n. Suppose that the 
oe�
ients
{ℓ(n1)
j }, n1 = 0, 1, . . . , n−1, j = J∞−1, J∞−2, . . . , J+1 are exa
t (orknown with good a

ura
y). Then the stability of (2.37) is determinedby the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1 + αj

.We have from (2.31):
|ℓ(0)j |

|ℓ(0)j+1 + αj|
<

βj

|ℓ(0)j+1 + αj|
< βj ≤

j

j + 1
< 1.Remark. The proof of Theorem 2.2 is made by indu
tion with respe
tto n = 1, 2, . . . under the assumption that the previous 
oe�
ients for

n1 < n are (almost) 
orre
t. In pra
ti
e, while 
al
ulating the 
oe�-
ients ℓ(n)
j we must �x some value J∞ and take an �in
orre
t� initialvalue ℓ(n)
J∞

:= ℓ
(n)
∞ . This 
ould give a numeri
al instability. However,

ℓ
(0)
j 
onverges su�
iently fast to its 
orre
t value and rea
hes a verygood approximation after, say, J0 steps of the re
ursion (2.30). Hen
e,we 
an start the re
ursion for ℓ(1)j a little bit �later�, i.e. with the de-layed initial index j = J∞−J0. Similarly for ℓ(2)j , the initial index 
anbe 
hosen as j = J∞−2J0, et
. In our numeri
al tests pra
ti
al valuesfor J0 satisfy 0 ≤ J0 ≤ 5.Sample 
al
ulations of the 
oe�
ients ℓ(n)

j
. We demonstratethe e�
ien
y of the proposed algorithm for the following example.For the radius we 
onsider R = 1 and we dis
retize the 
ir
ular do-main [0, R] × [0, 2π] with the uniform step sizes ∆r = 1/200 and

∆θ = 2π/200. For the time step size we take ∆t = 0.0003 and 
al
u-late the 
onvolution 
oe�
ients ℓ(n)
j with (2.37) for the free S
hrödingerequation (i.e. V = 0) for n = 0, . . . , 60. In a �rst set of 
al
ulationswe run the algorithm with the 
hoi
e J∞ = 550 (whi
h 
orrespondsto r = 3.75) and a retarding shift J0 = 5. Here we just dis
uss theresults for the mode m = 1, but all other modes behave similarly.In Figure 2 we show the absolute values of the last seven 
oe�
ients17
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n=54
n=55
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n=58
n=59
n=60Figure 2: Absolute values of last seven 
oe�
ients ℓ(n)

j , n = 54, . . . , 60, J∞ =
550, J0 = 5;m = 1.

ℓ
(54)
j , . . . , ℓ

(60)
j as a fun
tion of r ∈ [R, 3.75]. We observe a good 
on-vergen
e of the 
oe�
ients while approa
hing the arti�
ial boundary

R = 1 from the exterior domain. An error estimate is provided bya se
ond 
al
ulation, where we 
ompute 
onvolution 
oe�
ients ℓ̃(n)
jwith J∞ = 1100 and the same dis
retization parameters as before. Thedi�eren
e |ℓ(n)

j − ℓ̃
(n)
j | is plotted for n = 54, . . . , 60 in Figure 3. Withvalues of the order O(10−14) near the arti�
ial boundary this error isabout the rounding error of Matlab. The in�uen
e of the retardingshift parameter J0 
an be seen by 
omparing Figure 2 with Figure 4.In the third run we determine the 
onvolution 
oe�
ients (still withthe same dis
retization parameters and J∞ = 550) but with J0 = 3.The absolute values of these 
onvolution 
oe�
ients are presented inFigure 4. The os
illations in ℓ(n)

j due to the instability near J∞ in thisplot are more obvious than in the 
oe�
ients 
omputed with J0 = 5shown in Figure 2. But also for the 
hoi
e J0 = 3 the 
oe�
ients
onverge well while approa
hing r = R.2D dis
rete TBC. In the Fourier transformed spa
e, i.e. in termsof separate azimuthal modes, the dis
rete TBCs read (this is Eq. (2.24)18
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ients
al
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with re
overed mode index m):
ψ

(m,n)
J+1 − s(0)m ψ

(m,n)
J =

n−1
∑

p=1

s(n−p)m ψ
(m,p)
J + z2ψ

(m,n−1)
J+1 , (2.39)where m = 0, . . . ,K − 1, n ≥ 1. Note that (2.3) implies the followingsymmetry in the 
onvolution 
oe�
ients: s(n)

m = s
(n)
K−m. In order toobtain the dis
rete TBC in the physi
al spa
e let us introdu
e thediagonal K ×K matri
es

s
(p) = diag{s(p)m }, m = 0, . . . ,K − 1; p = 0, 1, 2, . . . ,and also matri
es F and F

−1 of the dire
t and inverse Fourier trans-form, respe
tively, a
ting in a

ordan
e with (2.2):
ψ̂

(n)
j = Fψ̃

(n)
j ,with the ve
tors

ψ̂
(n)
j = {ψ(m,n)

j }K−1
m=0, ψ̃

(n)
j = {ψ(n)

j,k }K−1
k=0 .Then, multiplying (2.39) by F

−1 we get the following 2D dis
rete TBC
ψ̃

(n)
J+1 − F

−1
s
(0)

Fψ̃
(n)
J = F

−1

n−1
∑

p=1

s
(n−p)

Fψ̃
(p)
J + z2ψ̃

(n−1)
J+1 . (2.40)Here, we 
hoose to formulate the dis
rete TBC (2.40) at the boundaryof the 
omputational interval and one grid point in the exterior domain.In a

ordan
e with (2.20) we have assumed that the initial 
onditionsatis�es ψ(0)

j,k = 0, j ≥ J ; k = 0, . . . ,K − 1.The use of the formula (2.40) for 
al
ulations permits us to avoidany boundary re�e
tions and it renders the fully dis
rete s
heme un-
onditionally stable (just like the underlying Crank�Ni
olson s
heme).Note that we need to evaluate for ea
h mode m just one 
onvolution of(2.40) at ea
h time step (at the endpoint of the interval [0, tn]). Sin
ethe other points of this 
onvolution are not needed, using an FFT isnot pra
ti
al.
20



3 Approximation by sums of exponen-tialsAn ad-ho
 implementation of the dis
rete 
onvolution
n−1
∑

p=1

s(n−p)ψ
(p)
Jin (2.24) with 
onvolution 
oe�
ients s(n) from (2.23) has still one dis-advantage. The boundary 
onditions are non�lo
al both in time andspa
e and therefore 
omputations are too expensive. As a remedy, toget rid of the time non�lo
ality, we proposed already in [10℄ the sumof exponentials ansatz, i.e. to approximate the 
onvolution 
oe�
ients(2.23) by a �nite sum (say L terms) of exponentials that de
ay withrespe
t to time. This approa
h allows for a fast (approximate) evalu-ation of the dis
rete 
onvolution (2.24) sin
e the 
onvolution 
an nowbe evaluated with a simple re
urren
e formula for L auxiliary termsand the numeri
al e�ort per time step now stays 
onstant.Let us note that su
h kind of tri
k has been proposed in [20℄ for theheat equation, in [39℄ for the 
ontinuous TBC of the 3D wave equation,in [25℄ for the TBC of the 2D S
hrödinger equation, and developed in[2℄, [40℄, [41℄, [15℄, [21℄ for various hyperboli
 problems.In the sequel we will brie�y review this ansatz [10℄. In order toderive a fast numeri
al method to 
al
ulate the dis
rete 
onvolutionsin (2.39), we approximate the 
oe�
ients s(n) by the following ansatz(sum of exponentials):

s(n) ≈ s̃(n) :=















s(n), n = 0, 1, . . . , ν − 1
L
∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . ,

(3.1)where L, ν ∈ N are a �xed numbers. Evidently, the approximationproperties of s̃(n) depend on L, ν, and the 
orresponding set {bl, ql}.Thus, the 
hoi
e of an (in some sense) optimal approximation of thistype is a di�
ult nonlinear problem. Below we propose a deterministi
method of �nding {bl, ql} for �xed L and ν.Remark. The �split� de�nition of {s̃(n)} in (3.1) is motivated by thefa
t that the implementation of the dis
rete TBCs (2.39) involves a
onvolution sum with p ranging only from 1 to p = n − 1. Sin
e the21



�rst 
oe�
ient s(0) does not appear in this 
onvolution, it makes nosense to in
lude it in our sum of exponential approximation, whi
haims at simplifying the evaluation of the 
onvolution. Hen
e, one may
hoose ν = 1 in (3.1). The �spe
ial form� of ℓ(0)∞ and ℓ(1)∞ given in [10℄suggests even to ex
lude s(1) from this approximation and to 
hoose
ν = 2 in (3.1). We use this 
hoi
e in our numeri
al implementation inthe example in �4.Also, there is an additional motivation for 
hoosing ν = 2: Withthe 
hoi
e ν = 0 (or ν = 1) we typi
ally obtain (for ea
h mode)two (or, resp., one) 
oe�
ient pairs (bl, ql) of big magnitude. These�outlier� values re�e
t the di�erent nature of the �rst two 
oe�
ients.In
luding them into our dis
rete sum of exponentials would then yieldless a

urate approximation results.Let us �x L and 
onsider the formal power series:

g(x) := s(ν) + s(ν+1)x+ s(ν+2)x2 + . . . , |x| ≤ 1. (3.2)If there exists the [L− 1|L] Padé approximation
g̃(x) :=

PL−1(x)

QL(x)of (3.2), then its Taylor series
g̃(x) = s̃(ν) + s̃(ν+1)x+ s̃(ν+2)x2 + . . .satis�es the 
onditions

s̃(n) = s(n), n = ν, ν + 1, . . . , 2L+ ν − 1, (3.3)due to the de�nition of the Padé approximation rule.Theorem 3.1 ([10℄). Let QL(x) have L simple roots ql with |ql| >
1, l = 1, . . . , L. Then

s̃(n) =
L
∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . , (3.4)where

bl := −PL−1(ql)

Q′

L(ql)
ql 6= 0, l = 1, . . . , L. (3.5)22



Remark. We remark that the assumption in Theorem 3.1 on the rootsof QL(x) to be simple is not essential. For multiple roots one onlyhas to reformulate Theorem 3.1. All our pra
ti
al 
al
ulations 
on�rmthat this assumption holds for any desired L, although we 
annot provethis.Evidently, the approximation to the 
onvolution 
oe�
ients s(n) bythe representation (3.1) using a [L − 1|L] Padé approximant to (3.2)behaves as follows: the �rst 2L 
oe�
ients are reprodu
ed exa
tly, see(3.3). However, the asymptoti
s of s(n) and s̃(n) (as n → ∞) di�erstrongly � algebrai
 versus exponential de
ay. Typi
ally the di�eren
e
|s(n)
m − s̃

(n)
m | de
reases exponentially w.r.t. L (uniformly for all modes

m).Fast Evaluation of the Dis
rete Convolution. Let us 
onsiderthe approximation (3.1) of the dis
rete 
onvolution kernel appearingin the dis
rete TBC (2.39). With these �exponential� 
oe�
ients theapproximated 
onvolution
C̃

(n−1)
J :=

n−1
∑

p=1

s̃(n−p)ψ
(p)
J+1, s̃(n) =

L
∑

l=1

bl q
−n
l , |ql| > 1, (3.6)of the dis
rete fun
tion ψ

(p)
J+1, p = 1, 2, . . . with the 
oe�
ients s̃(n)
an be 
al
ulated by re
urren
e formulas, and this will redu
e thenumeri
al e�ort signi�
antly.A straightforward 
al
ulation (
f. [10℄) yields:

C̃
(n−1)
J =

L
∑

l=1

C̃
(n−1)
J,l , n ≥ 2, (3.7)where

C̃
(0)
l ≡ 0,

C̃
(n−1)
J,l = q−1

l C̃
(n−2)
J,l + bl q

−1
l ψ

(n−2)
J+1 , (3.8)

n = 2, 3, . . . , l = 1, . . . , L. Finally we summarize the approa
h by thefollowing algorithm. For ea
h azimuth mode m = 0, ...,K − 1:1. Cal
ulate ℓ(n)
J+1, n = 0, . . . ,N − 1, with formulas (2.37) with aboundary value ℓ(n)

J∞
:= ℓ

(n)
∞ that 
an be taken from the 1D plane
ase ℓ(n)

∞ ≡ ℓ(n) from [10℄, and use (2.23) to �nd s(n).23



2. Cal
ulate s̃(n) via the Padé�algorithm.3. The 
orresponding 
oe�
ients bl, ql are used for the e�
ient 
al-
ulation of the dis
rete 
onvolutions.Remark. The sum-of-exponentials approximation of the dis
rete TBCsredu
es the numeri
al e�ort drasti
ally. The e�ort for the evalua-tion of the 
onvolution sum ∑n−1
p=1 s

(n−p)
m ψ

(m,p)
J is of quadrati
al order

O(Kn2). With the proposed approximation of the dis
rete TBCs this
an be redu
ed to linear e�ort O(KLn), where L denotes the numberof terms in the sum-of-exponentials (3.4). For using the exa
t dis
reteTBCs the 
onvolution 
oe�
ients s(n)
m (
f. (2.23)) have to be 
al
u-lated on
e in a set�up before the time-stepping for all modes m and alltime levels p = 0, . . . , n. As a further advantage of the approximateddis
rete TBCs, the 
oe�
ients (2.23) only need to be 
al
ulated for

p = 0, . . . , 2L+ ν − 1 (
f. (3.3)).4 Numeri
al resultsIn this se
tion we present some numeri
al examples 
on
erning theexa
t dis
rete TBCs and the approximated dis
rete TBCs. For furtherexamples we refer the reader to [37℄.4.1 Exa
t dis
rete TBCsHere we shall illustrate that our algorithm 
an 
ompute the 
onvolu-tion 
oe�
ients of the TBC with almost ma
hine a

ura
y. Hen
e,the (numeri
ally 
omputed) TBC in the 
ir
ular 
ase is essentially asa

urate as in the re
tangular 
ase [10℄, where the TBCs are obtainedanalyti
ally.We re
all the Example 2 from [22℄, i.e. we 
onsider (1.1) with thevanishing potential V ≡ 0 and the angle-dependent initial data
ψI(r, θ) =

e
2ikxr cos θ+2ikyr sin θ− (r cos θ)2

2αx
−

(r sin θ)2

2αy

√
αxαy

. (4.1)Then the exa
t solution to (1.1a) for t > 0 is given by the Gaussian
24



beam
ψ(r, θ, t) =

e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)−

(r cos θ−2kxt)2

2(αx+it)
−

(r sin θ−2kyt)2

2(αy+it)

√
αx + it

√

αy + it
.(4.2)We set αx = αy = 0.04, let kx = 1, ky = −1 and 
al
ulate a solution

ψ1 to (1.9) with an equidistant dis
retization on the 
ir
ular domain
Ω1 = [0, R] × [0, 2π] with R = 1 and J + 2 grid points in r-dire
tionand K in θ-dire
tion for the time interval 0 < t ≤ 0.5. In order tosatisfy the assumption that the initial data is 
ompa
tly supported in
Ω1 (
f. �2) we use a small numeri
al 
ut-o� 
lose to R, ψI(r, θ) = 0for r ≥ R − ∆r for all angles θ, i.e. in dis
rete notation ψ0

j,k = 0 for
j ≥ J, k = 0, . . . ,K − 1. We remark that this assumption of 
om-pa
tly supported initial data is not essential; strategies to over
omethis restri
tion 
an be found in [18℄. Sin
e we use an o�set grid, dis-
rete TBCs are implemented as des
ribed before (
f. (2.39)�(2.40)) at
r = R−∆r/2, using the grid points R and R−∆r. A referen
e solu-tion ψ2 is 
al
ulated on the domain Ω2 = [0, 2R]× [0, 2π] with dis
reteTBCs at r = 2R − ∆r/2. To determine the error due to the PDE�s
heme (1.9) we 
ompare the numeri
al solution ψ2 with the exa
t one
ψ on Ω1: The relative L2-error

LΩ1(ψ2, ψ, tn) =

(

∑

(rj ,θk)∈Ω1

rj |ψ2(rj , θk, tn) − ψ(rj , θk, tn)|2
)

1
2

max
tn







(

∑

(rj ,θk)∈Ω1

rj |ψ(rj , θk, tn)|2
)

1
2







,(4.3)is based on the norm de�ned in (2.5). This test in
ludes also the errordue to the 
ut-o� of the initial fun
tion. The e�e
ts of the boundaryshould be negligible here, be
ause the �main wave� of ψ2 does not 
rossthe boundary 2R during the 
onsidered time interval.In order to distinguish between the error due to the di�eren
es
heme and the error due to the dis
rete TBCs, we 
ompare the numer-i
al solution ψ1 with the numeri
al referen
e solution ψ2 and 
al
ulatethe relative error LΩ1(ψ2, ψ1, tn) due to the boundary 
ondition.Dis
retization and Results. The solutions ψ1 and ψ2 are 
al-
ulated for three parameter sets. First we let J = K = 64, i.e. ∆r =
1/64, ∆θ = 2π/64 and ∆t = 1/64, then ∆r = ∆t = 1/128, ∆θ =25
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(f) t = 0.5Figure 5: Absolute value (as normal/
ontour plots) of the initial fun
tion((4.1) with 
ut-o�) and the 
al
ulated solution ψ1 of the s
heme (1.9) on the
omputational domain Ω1 with ∆r = ∆t = 1/256, ∆θ = 2π/256, αx = αy =
0.04, and the wave numbers kx = −1, ky = 1. v = 0; a dis
rete TBC isimplemented at r = 1 − ∆r/2: No re�e
tions are visible.26
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onditionFigure 6: (a): Relative error LΩ1(ψ2, ψ, tn) due to the s
heme and (b): rela-tive error LΩ1(ψ1, ψ2, tn) due to the boundary 
onditions. Both errors are 
al-
ulated for the time evolution of initial fun
tion (4.1) for the three parametersets with 64 (solid line), 128 (dashed line) and 256 grid points (dashed-dottedline). 27



2π/128, and �nally ∆r = ∆t = 1/256, ∆θ = 2π/256. These dis-
retization parameters are taken from [22℄. The relative error of theinitial fun
tion due to the 
ut�o� is aboutO(10−6), O(10−7), O(10−7),respe
tively. We present in Figure 5 the absolute value of the initialfun
tion (4.1) and of the evolution of the numeri
al solution ψ1 on the
omputational domain Ω1 until t = 0.5 for the last set of dis
retiza-tion parameters and the potential V = 0. The Gaussian beam hasan initial momentum spe
i�ed by kx = 1, ky = −1. As expe
ted,the beam leaves the 
omputational domain without any unphysi
alre�e
tions at the arti�
ial boundary. The observable broadening ofthe beam (as t grows) is due to dispersive e�e
ts, whi
h are equallypresent in the exa
t solution (4.2). Figure 6(a) shows the relative er-ror LΩ1(ψ2, ψ, tn) of the numeri
al solution ψ2 w.r.t. the exa
t solutionrestri
ted on Ω1 for the three sets of parameters: The s
heme is se
-ond order in ∆r, ∆θ, ∆t. The relative error LΩ1(ψ1, ψ2, tn) due to theboundary 
ondition is presented in Figure 6(b) also for all sets; withvalues around O(10−13) it approximately amounts to the roundingerror of Matlab.Remark. Note that the error due to the boundary 
ondition may in-
rease with �ner t-dis
retizations (see Figure 6(b)), sin
e longer dis-
rete 
onvolutions have to be 
omputed in this 
ase.Note that the error of our dis
rete TBC is negligible 
ompared tothe error of the �nite di�eren
e s
heme in the interior. In [22℄, how-ever, the trun
ated TBCs introdu
e an additional error, whi
h seemsto be larger than the dis
retization error (
f. Fig. 10 in [22℄).Our next test 
on
erns the long�time behavior of the relative er-ror due to the dis
rete TBCs. Therefore we 
al
ulate the numeri
alsolutions ψ1, ψ2 of (1.9) for the initial data (4.1) for kx = ky = 0,
αx = αy = 0.5 on the 
ir
ular domains Ω1 = [0, R]× [0, 2π] and, resp.,
Ω2 = [0, 2R] × [0, 2π] with R = 2.5 until t = 4. Sin
e kx = ky = 0,the beam does not travel and only spreads due to dispersion. We usethe three sets of dis
retization parameters ∆r = R/64, ∆θ = 2π/64;
∆r = R/128, ∆θ = 2π/128; and ∆r = R/256, ∆θ = 2π/256. Forall 
al
ulations we let ∆t = 0.01. In Figure 7 we show the relativeerror LΩ1(ψ1, ψ2, tn) due to the boundary 
onditions for this long-timetest. Observe that in this long-time 
al
ulations the error due to thedis
rete TBCs grows only sublinearly and is still only around O(10−13).In a separate numeri
al test (presented in [37℄) we also applied our28
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J=K=256Figure 7: Relative error LΩ1(ψ1, ψ2, tn) due to the boundary 
ondition forthe time evolution of initial fun
tion (4.1) with kx = ky = 0, αx = αy = 0.5for the three parameter sets with 64 (solid line), 128 (dashed line), and 256grid points (dashed-dotted line). The time step size equals ∆t = 0.01.dis
rete TBC-approa
h to the example of [5℄ (again ψI from (4.1), butwith modi�ed parameters kx, ky, αx, αy). Sin
e the authors of [5℄ onlyuse (approximate) absorbing boundary 
onditions, their relative erroris larger than with our dis
rete TBC�approa
h.4.2 Approximated dis
rete TBCsTo illustrate the sum-of-exponential ansatz we 
onsider again the ini-tial fun
tion (4.1) with the parameters αx = αy = 0.04 and kx =

−ky = 1. We 
onsider the initial data (4.1) with a 
ut-o� at R− ∆r,whi
h 
auses a relative error of the order O(10−6). With this ini-tial data a solution ψ1 of (1.9) is 
al
ulated on the 
ir
ular domain
Ω1 = [0, R] × [0, 2π] with the radius R = 1. For the dis
rete TBCswe use the approximation (3.6). As a numeri
al referen
e solution wetake ψ2, whi
h is obtained with the exa
t dis
rete TBCs (2.40) on thelarger domain [0, 2] × [0, 2π].Dis
retization and Results. For the dis
retization parameters29



∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64 we evolve the solution up to
t = 0.5. In the sum-of-exponentials we 
hoose ν = 2 in the three dif-ferent 
al
ulations, L = 10, 20, and 40. We obtain the �rst 2L+ ν− 1
onvolution 
oe�
ients exa
tly by the re
ursion formula (2.37) with aninitial value ℓ(n)

J∞,m := ℓ
(n)
∞,m taken from the 1D plane 
ase ℓ(n)

∞,m ≡ ℓ
(n)
mfrom [10℄ for ea
h mode m = 0, . . . ,K − 1 and sum them a

ording to(2.23). The sets {bl,m, ql,m}, l = 1, . . . , L needed for the 
al
ulation ofthe approximated 
onvolution 
oe�
ients s̃(n)

m , n > 2L+ ν − 1 for allmodes m are obtained by the Padé algorithm des
ribed in �3. We re-alized these 
al
ulations by a Maple 
ode, within whi
h we try to �nd
L roots ql,m of the polynomial QL(x) as it is des
ribed in Theorem 3.1(separately for ea
h mode). Due to a �nearly breakdown� by ill 
ondi-tioned steps in the Lan
zos algorithm (
f. [13℄) it is not always possibleto �nd L roots of QL,m ful�lling the 
ondition |ql,m| > 1, l = 1, . . . , Lfor ea
h mode m = 0, . . . ,K − 1. Consequently, the Maple 
ode au-tomati
ally 
hooses smaller and smaller values (L − 1, L − 2, . . . ) toguarantee that all roots have an absolute value larger than 1. E.g.,with the initial 
hoi
e L = 40 you will �nd values for L ful�lling theabove 
ondition that vary from 18 to 32 for the di�erent modes. Thenumber of summands L is hen
e just an initial guess for the �nal num-ber of summands in the sum-of-exponentials.In Figure 8 we present the 
ontour plots of the absolute value of thesolution ψ1 at time t = 0.5, 
al
ulated with the approximated dis
reteTBCs with L = 10 and L = 40 terms in the sum-of-exponentials. For
L = 10 there are strong unphysi
al re�e
tions (see Figure 8(a)), forlarger values of L these re�e
tions be
ome signi�
antly smaller (seeFigure 8(b)).The relative L2-error due to the approximated dis
rete TBCs isshown in Figure 9. For di�erent initial 
hoi
es of the number of 
oe�-
ients L in the sum-of-exponentials we present the error LΩ1(ψ1, ψ2, tn)(
f. (4.3)) there. Although the 
oe�
ients s(n)

m , s̃
(n)
m have di�erentasymptoti
 behaviors (algebrai
 vs. exponential de
ay) the error growsonly sublinearly in time. In order to show, that long time 
al
ulationswith the approximated dis
rete TBCs are stable we evolve the initialdata (4.1) with αx = αy = 0.04 and kx = ky = 0 for dis
retizationparameters ∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64 for di�erent initial
hoi
es of the number of summands L up to t = 20. The norm of the30
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(a) L = 10
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(b) L = 40Figure 8: Contour plots of the absolute value of the 
al
ulated solution ψ1 of(1.9) at t = 0.5 with the initial fun
tion (4.1) on the 
omputational domain
Ω1. We use approximated dis
rete TBCs with (a) L = 10 and (b) L = 40.solution de
ays in time, as it is shown in Figure 10.In [37℄ we applied the sum-of-exponentials approximation to an-other numeri
al example and 
ompared it to the example from [25℄(again ψI from (4.1), but with modi�ed parameters kx, ky, αx, αy).In [25℄ the authors presented a di�erent sum-of-exponentials approxi-mation for the 
onvolution kernel of the TBC for the 2D S
hrödingerequation.We remark that the sum-of-exponentials approa
h for dis
rete TBCsof the 1D S
hrödinger equation (in
luding the Maple 
ode) is presentedat http://www.dtb
.de.vu.
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exact DTBCsFigure 9: Relative error LΩ1(ψ1, ψ2, tn) due to the approximated dis
reteTBCs as a fun
tion of tn ∈ [0, 0.5] for the time evolution of the initial fun
tion(4.1) for di�erent initial 
hoi
es of the number L in the sum-of-exponentials,

10 (solid line), 20 (dashed line), and 40 grid points (dashed-dotted line). Therelative error due to the exa
t dis
rete TBCs for this problem is plotted inthe dotted line.
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Figure 10: L2-norm for the long time evolution of the initial fun
tion (4.1)with αx = αy = 0.04 and kx = ky = 0 again for di�erent initial 
hoi
es of thenumber L in the sum-of-exponentials, 10 (solid line), 20 (dashed line) and
40 grid points (dashed-dotted line). We 
hoose the dis
retization parameters
∆r = 1/64, ∆θ = 2π/64, ∆t = 0.002.
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Appendix: new dis
rete TBCs for the 1DS
hrödinger equationWith a uniform spatial dis
retization, the Crank�Ni
olson �nite dif-feren
e s
heme for the S
hrödinger equation with 
onstant potential
V reads:
− 2i

∆t

(

ψ
(n+1)
j − ψ

(n)
j

)

=
ψ

(n+ 1
2
)

j+1 − 2ψ
(n+ 1

2
)

j + ψ
(n+ 1

2
)

j−1

∆x2
− 2V ψ

(n+ 1
2
)

j ,

j ∈ Z, n ∈ N0.Let the index interval j = 0, . . . , J denote the 
omputational do-main, and abbreviate the mesh ratio by ρ := 4∆x2/∆t. Using the
Z�transform method of �2 (or [7℄) one �rst derives the dis
rete TBCfor the Z�transformed variable:

ψ̂J(z) = ℓ̂(z) ψ̂J−1(z), (4.4)with ℓ̂(z) given by (2.21), if repla
ing there VR by V . As before, we
hoose the bran
h of the square root su
h that |ℓ(z)| ≤ 1 for z ≥ 1.An inverse Z�transformation of (4.4) yields (similarly to [18, �3.2℄):
ψ

(n)
J = ℓ(n) ∗ ψ(n)

J−1. (4.5)or expli
itly (when assuming ψ(0)
j = 0, j ≥ J − 1)

ψ
(n)
J − ℓ(0)ψ

(n)
J−1 =

n−1
∑

p=1

ℓ(n−p) ∗ ψ(p)
J−1. (4.6)Here, the 
onvolution 
oe�
ients are given by

ℓ(n) =
[

1 + i
ρ

2
+
σ

2

]

δ0n − iρ(−1)n +
i

2
4

√

(ρ2 + σ2)
[

ρ2 + (σ + 4)2
]

e−iϕ/2·

· e−inϕ
{

λPn(µ) + Pn−1(µ) + τ

n−1
∑

k=0

(−λ)n−kPk(µ)

}

, (4.7)with κ = V∆t/2, σ = ρκ, δ the Krone
ker delta, Pn the Legendrepolynomials, and P−1 ≡ 0. Here we used the following abbreviations
λ :=

ρ− 4κ− ρκ2 + 2i(ρκ+ 2)
√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

= eiϕ, with ϕ = arctan
2(ρκ + 2)

ρ− 4κ− ρκ2
.34



Moreover
µ :=

ρ(1 + κ2) + 4κ
√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

∈ (−1, 1),

τ :=
4ρ

√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

∈ R.Note that the 
onvolution in (4.5) is implemented at the grid point
J − 1, i.e. at the interior of the two boundary grid points J − 1, J .This is in 
ontrast to the dis
rete TBC in [7℄, whi
h uses a 
onvolutionon the exterior boundary grid point:

ψ
(n)
J−1 = ℓ̃(n) ∗ ψ(n)

J .There, the 
onvolution 
oe�
ients ℓ̃(n) are de�ned with the oppositesign in front of the fourth root of (4.7).This slight reformulation of the dis
rete TBCs has an importantpra
ti
al 
onsequen
e: While the 
oe�
ients ℓ̃(n) are os
illatory (ℓ̃(n) ≈
2iρ(−1)n, 
f. [18, S3.3℄), the 
oe�
ients ℓ(n) de
ay like n−3/2. Hen
e,this new formulation (4.5) does not require to introdu
e the �summed
onvolution 
oe�
ients� of [7, 18℄.A more re�ned asymptoti
 of the 
oe�
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