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As a by-produt we also present a new formulation of disrete TBCsfor the 1D Shrödinger equation, with onvolution oe�ients thathave better deay properties than those from the literature.AknowledgementA. A. aknowledges partial support from the Wissenshaftskolleg Dif-ferentialgleihungen of the FWF. The �rst two authors were partiallysupported by the DFG under Grant-No. AR 277/3-3. The last threeauthors were supported by the DFG Researh CenterMatheon �Math-ematis for key tehnologies" in Berlin. The fourth author was alsosupported by RFBR-Grant No. 07-01-00476.1 IntrodutionThe Shrödinger equation. Consider in the irular geometry withpolar oordinates (r, θ) the following Cauhy problem for the saledtransient Shrödinger equation:
iψt = −1

2

[

1

r
(rψr)r +

1

r2
ψθθ

]

+ V (r, θ, t)ψ, r ≥ 0, 0 < θ ≤ 2π, t > 0,(1.1a)
ψ(r, θ, 0) = ψI(r, θ), r ≥ 0, 0 < θ ≤ 2π, (1.1b)We assume that the given θ-periodial potential V is onstant outsideof the omputational domain [0, R] × [0, 2π]:

V (r, θ, t) = VR ≡ const for r ≥ R,and that the su�iently smooth θ-periodial initial data has a ompatsupport:
suppψI ⊂ [0, R) × [0, 2π]. (1.2)Disussions of strategies to soften these restritions ould be found in[18, 19, 28, 35℄.In addition to quantum mehanis, equation (1.1a) has many im-portant appliations inluding eletromagneti wave propagation [29℄,modelling of quantum devies [7℄, integrated optis (Fresnel equa-tion) [34, 43℄, plasma physis, seismi migration [14℄, and (underwater)2
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Figure 1: A typial single�mode optial �ber, showing the di�erent ompo-nent layers. Wave propagation mostly takes plae in the relatively thin oreregion.aoustis due to the paraxial approximation of the wave equation inthe frequeny domain [8, 42℄, et.One quite important appliation of the Shrödinger equation, espe-ially in a irular geometry arises in the ontext of wave propagationin optial �bers [26, 44℄. A sketh of the struture of an optial �berwith its di�erent layers is shown in Fig. 1.In modern ommuniation networks optial �bers play a funda-mental role and there it is often neessary to onnet the �bers (e.g.after a breakage or to extend a able run) with low lost. Optial �bersare onneted by a fusion proess alled a thermal spliing and onehas to ontrol this proedure and simulate how small disturbanes inthe geometry of the (usually straight) �ber ore e�et the transportedlight in the �ber. Doing so, one an predit the aused loss at thesejoining positions of the �bers.With the proposed transparent boundary onditions in this paperone an redue the omputational domain signi�antly (e.g. to theore region) and obtain a fast, aurate, and reliable simulation us-ing the beam propagation method [24, 44℄. Here, the time variable torresponds to the axial variable, i.e. the propagation diretion. Foran adequate treatment of the density jump in the TBC between thedi�erent layers we refer to [8℄. 3



Analyti transparent boundary onditions (TBCs). Let usexemplify �rst analyti TBCs that an be derived for the Shrödingerequation on a irular domain. The idea is to eliminate the problemon the exterior domain r > R, and to replae it by a Dirihlet�to�Neumann (DtN) map. First we brie�y review the onstrution of theanalyti TBCs for the Shrödinger equation on a irular domain from[5℄ and extend them to the ase of a nonzero potential VR at in�nity(f. also [22, 25℄). For a review paper about TBCs for linear andnonlinear Shrödinger equations we refer the reader to [6℄.We onsider su�iently smooth bounded periodial solutions to(1.1a) on the exterior domain r > R and denote by ψ̂ = ψ̂(r, θ, s)the Laplae transform of ψ w.r.t. time. The transformation of (1.1a)reads:
1

r
(rψ̂r)r +

1

r2
ψ̂θθ + 2i(s + iVR)ψ̂ = 0, r ≥ R, 0 < θ ≤ 2π, (1.3)where we used the assumption (1.2). We use a Fourier series w.r.t. theangle θ:
ψ̂(r, θ, s) =

∑

m∈Z

ψ̂(m)(r, s) eimθ , r ≥ R. (1.4)Then, for eah mode m ∈ Z, the Fourier oe�ient ψ̂(m)(r, s) satis�esthe ordinary di�erential equation
1

r
(rψ̂(m)

r )r +
(

2is − 2VR − m2

r2

)

ψ̂(m) = 0, r ≥ R. (1.5)This is the Bessel equation for funtions of order m. Hene, its solutionvanishing as r → ∞ is the m-th order Hankel funtion of the �rst kind
H

(1)
m :

ψ̂(m)(r, s) = αm(s)H(1)
m (
√

2is− 2VR r), r ≥ R, (1.6)where αm(s) is an arbitrary multiplier. The radial derivative of ψ̂(m)is omputed as
∂

∂r
ψ̂(m)(r, s) = αm(s)

√

2is− 2VRH
(1)′
m (

√

2is − 2VR r)

=
√

2is − 2VR
H

(1)′
m (

√
2is − 2VR r)

H
(1)
m (

√
2is− 2VR R)

ψ̂(m)(R, s),
(1.7)where we have determined the value of the oe�ient αm(s) from (1.6)by setting r = R. Finally, the TBCs are obtained by omputing the4



series (1.4), using the inverse Laplae transform and setting r = R:
∂ψ

∂r
(R, θ, t) =

1

2πi

∑

m∈Z

γ+i∞
∫

γ−i∞

√

2is− 2VR
H

(1)′
m (

√
2is − 2VRR)

H
(1)
m (

√
2is − 2VRR)

ψ̂(m)(R, s)est ds eimθ,(1.8)where Γ = (γ− i∞, γ+ i∞) is a vertial ontour in the omplex planehosen suh that all singularities of the integrand are to the left of it.The TBCs (1.8) are non�loal both in time and in spae. A strat-egy to derive a spatially loalized version of (1.8) by an asymptotiexpansion of the Hankel funtions and their derivatives w.r.t. s anbe found in [5℄.Beause of the nonloality of the TBCs (1.8), their immediate nu-merial implementation requires to store the boundary data ψ̂(m)(R, .)of all the past history and for all modes m ∈ Z. Moreover, the dis-retization of the TBCs (1.8), even in one spae dimension, is nottrivial at all and has attrated lots of attention. For the many pro-posed disretization strategies of the TBCs (1.8) in 1D (as well assemi�disrete approahes), we refer the reader to [1, 4, 9, 11, 12, 17,30, 31, 32, 33, 34, 35, 36, 45℄ and referenes therein. A numerially ef-�ient treatment of the 2D TBCs (1.8) was reently proposed by Jiangand Greengard in [25℄. A family of absorbing boundary onditions forthe 3D ase was reently introdued in [23℄.We remark that inadequate disretizations may introdue strongnumerial re�etions at the boundary or render the disrete initialboundary value problem only onditionally stable, see [18℄ for a de-tailed disussion.Di�erene equations. We onsider a Crank�Niolson �nite dif-ferene sheme, whih is one of the ommonly used disretization meth-ods for the Shrödinger equation. Let us introdue a polar and tem-poral grid:
r−1 < r0 < r1 < · · · < rJ < . . . , r−1 = −r0; rJ−1/2 = R,

rj+1/2 = (rj+1 + rj)/2, ∆rj+1/2 = rj+1 − rj , ∆rj = rj+1/2 − rj−1/2,

θk = k∆θ, k = 0, 1, . . . ,K, ∆θ = 2π/K;

tn = n∆t, n = 0, 1, . . .5



We denote
ψ

(n)
j,k = ψ(rj , θk, tn), ψ

(n+1/2)
j,k =

(

ψ
(n+1)
j,k + ψ

(n)
j,k

)

/2,and V
(n+1/2)
j,k = V (rj , θk, tn+1/2). Then the Crank�Niolson shemereads:

− 2i

∆t
(ψ

(n+1)
j,k − ψ

(n)
j,k )

=
1

rj

1

∆rj





rj+1/2(ψ
(n+1/2)
j+1,k − ψ

(n+1/2)
j,k )

∆rj+1/2
−
rj−1/2(ψ

(n+1/2)
j,k − ψ

(n+1/2)
j−1,k )

∆rj−1/2





+
1

r2j

ψ
(n+1/2)
j,k+1 − 2ψ

(n+1/2)
j,k + ψ

(n+1/2)
j,k−1

∆θ2
− 2V

(n+1/2)
j,k ψ

(n+1/2)
j,k ,

j = 0, 1, ...; k = 0, 1, ...,K − 1; n = 0, 1, ... (1.9)and the obvious periodi boundary onditions ψ(n)
j,0 = ψ

(n)
j,K , ψ(n)

j,−1 =

ψ
(n)
j,K−1.Remark (Treatment of singularity at the origin). We use a radial o�setgrid here suh that the oe�ient of ψ(n+1/2)

−1,k is zero.The paper is organized as follows. In �2 we prove the disretemass onservation property of the Crank�Niolson sheme and derivedisrete TBCs diretly for the hosen numerial sheme using the Z�transform method. In ontrast to the 1D and the retangular 2Dases, the onvolution oe�ients of the disrete TBCs have to be ob-tained numerially here. Using their large-radius-limit (i.e. the planarproblem) as a starting point, they are omputed by a reursion from�in�nity� bak to the �nite radius R. Next we prove the stability ofthe reurrene formulas used to obtain the onvolution oe�ients ofthe new disrete TBCs for a spatially dependent potential.In �3 we disuss the approximation of the onvolution oe�ientsby a disrete sum of exponentials and present an e�ient reursion forevaluating these approximate disrete TBCs. Finally, the numerialexamples of �4 illustrate the auray, stability, and e�ieny of theproposed method.In the Appendix we brie�y revisit disrete TBCs for the 1D Shrö-dinger equation. We present a new formulation that leads to onvo-lutions oe�ients with better deay properties than those from theliterature [7, 18℄. 6



2 The disrete TBCsFirst we generate transparent disrete boundary onditions using exatsolutions to the di�erene sheme (1.9) in the exterior domain r ≥ R.Redution to 1D�Problem. In order to redue the problem tothe simpler 1D ase, the disrete Fourier method is used in θ�diretion.Due to the periodi boundary onditions in angular diretion we have
ψ

(n)
j,0 = ψ

(n)
j,K, j ∈ N0, n ≥ 0, (2.1)and hene, use the disrete Fourier transform of ψ(n)

j,k in θ�diretion:
ψ

(m,n)
j :=

1

K

K−1
∑

k=0

ψ
(n)
j,k exp

(

2πikm

K

)

, m = 0, . . . ,K − 1. (2.2)The sheme (1.9) in the exterior domain j ≥ J − 1 then transformsinto:
− 2i

∆t
(ψ

(m,n+1)
j − ψ

(m,n)
j )

=
1

rj

1

∆rj

[

rj+1/2(ψ
(m,n+1/2)
j+1 − ψ

(m,n+1/2)
j )

∆rj+1/2

−
rj−1/2(ψ

(m,n+1/2)
j − ψ

(m,n+1/2)
j−1 )

∆rj−1/2

]

− 2V
(m)
j ψ

(m,n+1/2)
j ,

V
(m)
j := VR +

2 sin2
(

πm
K

)

r2j∆θ
2

, 0 ≤ m ≤ K − 1, n ≥ 0. (2.3)The modes ψ(m), m = 0, . . . ,K − 1 are independent of eah otherin the exterior domain r ≥ R sine the potential V is onstant there.Therefore we an ontinue our analysis for eah azimuth mode sepa-rately.Thus, by omitting in the sequel the supersript m in the notation,we will onsider in the exterior domain j ≥ J−1 the following disrete
7



1D�Shrödinger equation:
− i

2∆rj∆rj+1/2

∆t
(ψ

(n+1)
j − ψ

(n)
j )

=
1

rj

[

rj+1/2(ψ
(n+1/2)
j+1 − ψ

(n+1/2)
j )

− rj−1/2

∆rj+1/2

∆rj−1/2
(ψ

(n+1/2)
j − ψ

(n+1/2)
j−1 )

]

− 2∆rj∆rj+1/2Vjψ
(n+1/2)
j ,(2.4)with the spatially dependent potential Vj = VR + 2 sin2(πmK )/(r2j∆θ

2).Mass onservation property. There are two important advan-tages of this seond order (in ∆r and ∆t) sheme (2.4): it is unondi-tionally stable, and it preserves the disrete L2�norm in time:Lemma 2.1. For the sheme (2.4) (onsidered on j ∈ N0) it holds:
‖ψ(n)‖2

2 :=
∑

j∈N0

∆rj |ψ(n)
j |2rj (2.5)is a onserved quantity in time.Proof. This onservation property an be seen by a disrete energyestimate. First we multiply (2.4) by ψ̄(n)

j rj:
− 2i

∆t

(

ψ
(n+1)
j ψ̄

(n)
j − |ψ(n)

j |2
)

rj

= ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− 2Vjψ
(n+1/2)
j ψ̄

(n)
j rj , j = 0, 1, . . . , (2.6a)

2i

∆t

(

|ψ(n+1)
j |2 − ψ̄

(n)
j ψ

(n+1)
j

)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− 2Vjψ̄
(n+1/2)
j ψ

(n+1)
j rj , j = 0, 1, . . . ,(2.6b)with the abbreviation of the entered di�erene quotient

D0 = D0
∆rj

2

, i.e. D0ψnj =
ψnj+1/2 − ψnj−1/2

∆rj
.8



Next we subtrat (2.6a) from (2.6b)
2i

∆t

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj

= ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

− Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj , j = 0, 1, . . . ,multiply by ∆rj, sum from j = 0 to ∞, and apply summation byparts:
2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −
∞
∑

N0+ 1
2

(

D0ψ̄
(n+1/2)
j

)(

D0ψ
(n+1)
j

)

rj∆rj −
(

D0ψ̄
(n+1/2)

−
1
2

)

ψ
(n+1)
0 r

−
1
2

+

∞
∑

N0+
1
2

(

D0ψ
(n+1/2)
j

)(

D0ψ̄
(n)
j

)

rj∆rj +
(

D0ψ
(n+1/2)

−
1
2

)

ψ̄
(n)
0 r

−
1
2

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj . (2.7)Now, the boundary terms in (2.7) vanish sine r
−

1
2

= 0, and hene
2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj

= −1

2

∞
∑

N0+
1
2

(

|D0ψ̄
(n+1)
j |2 −D0ψ̄

(n)
j |2

)

rj∆rj

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2 − |ψ(n)

j |2
)

rj∆rj .

(2.8)
Finally, taking imaginary parts one obtains the desired result.Disrete TBCs for a single azimuth mode. Disrete transpar-ent boundary onditions for the 1D Shrödinger equation with onstantoe�ients of the di�erene sheme in the exterior domain were intro-dued by Arnold [7℄ (f. the Appendix for an improved variant, whih9



is the bases of our presentation below). Here we derive disrete TBCsfor the sheme (2.4) with spatially varying oe�ients. In analogy tothe ontinuous ase of �1, the idea is to eliminate the exterior problem
j > J and to replae it by a disrete DtN map.We use the Z�transform of the sequene {ψ(n)

j }, n ∈ N0 (with jonsidered �xed) whih is de�ned as the Laurent series, see [16℄:
Z{ψ(n)

j } = ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z ∈ C, |z| > Rψ̂j

, (2.9)and Rψ̂j
denotes the onvergene radius of the series. Now the trans-formed exterior sheme (2.4) reads

− iρj
z − 1

z + 1
ψ̂j(z)

=
1

rj

[

rj+1/2

(

ψ̂j+1(z) − ψ̂j(z)
)

− rj−1/2

∆rj+1/2

∆rj−1/2

(

ψ̂j(z) − ψ̂j−1(z)
)

]

− 2∆rj∆rj+1/2Vjψ̂j(z), j ≥ J − 1, (2.10)with the mesh ratio ρj = 4∆rj∆rj+1/2/∆t and the spatially dependentpotential Vj = VR + 2 sin2(πmK )/(r2j∆θ
2). Note that we used here thefollowing assumption on ψ0:

ψ0
j = 0, j ≥ J − 2. (2.11)Thus we obtain a homogeneous seond order di�erene equation withvarying oe�ients of the form

ajψ̂j+1(z) + bj(z)ψ̂j(z) + cjψ̂j−1(z) = 0, j ≥ J − 1, (2.12)where
aj =

rj+1/2

rj
, (2.13a)

bj(z) = − 1

rj

[

rj+1/2 + rj−1/2

∆rj+1/2

∆rj−1/2

]

+iρj
z − 1

z + 1
− 2∆rj∆rj+1/2Vj,(2.13b)

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2
. (2.13)10



Remark (uniform o�set grid). In the speial ase of a uniform radialo�set grid rj = (j + 1
2 )∆r, j ≥ J − 1, we obtain

aj =
j + 1

j + 1
2

, cj =
j

j + 1
2

, (2.14a)
bj(z) = −2 + iρ

z − 1

z + 1
− 2∆r2VR − 4

sin2
(

πm
K

)

(j + 1/2)2∆θ2
. (2.14b)But suh a uniform grid is not a requirement for the rest of this setion.For the formulation of the Z�transformed disrete TBCs at j = Jwe regard the ratio ℓ̂j(z) of the deaying (as j → ∞) fundamentalsolution to (2.10) at two adjaent points:

ℓ̂j(z) =
ψ̂j(z)

ψ̂j−1(z)
, j ≥ J, (2.15)and get from (2.12) the following Riati di�erene equation (f. �1.6in [27℄) with variable oe�ients:

ℓ̂j(z)
(

aj ℓ̂j+1(z) + bj(z)
)

+ cj = 0, j ≥ J. (2.16)Suppose (for the moment) that the oe�ients ℓ̂j(z) are known.Setting j = J + 1 we get from (2.15):
ℓ̂J+1(z) =

ψ̂J+1(z)

ψ̂J(z)
. (2.17)Calulating the inverse Z�transformation we obtain the disrete on-volution

ψ
(n)
J+1 = ℓ

(n)
J+1 ∗ ψ

(n)
J , (2.18)and expliitly

ψ
(n)
J+1 − ℓ

(0)
J+1ψ

(n)
J =

n−1
∑

p=1

ℓ
(n−p)
J+1 ψ

(p)
J , (2.19)by using the assumption (1.2)

ψ
(0)
j = 0, j ≥ J. (2.20)We remark that this disrete TBC is struturally di�erent fromthose introdued in the literature [7, 8, 18, 38℄. There, the disrete11



onvolution is always plaed at the outer of the two boundary gridpoints. But in (2.18) it is implemented at the inner boundary point
j = J . This small modi�ation yields a very di�erent behavior of theonvolution oe�ient ℓ(n): Sine they are osillatory in [7, 8, 18, 38℄,it is neessary to rather use a linear ombination of ℓ(n)

j and ℓ
(n−1)
j ,whih is muh �smoother� (onsidered as funtions of n). In ontrast,the oe�ients ℓ(n) here deay like O(n−3/2) (f. the Appendix fordetails).While the asymptoti behavior (for n large) of ℓ(n) was determinedfrom the expliit formulas in [18, 38℄, this is unfeasible here. It an,however, be dedued from the singularities of ℓ̂j(z). First we onsider

ℓ̂∞(z), the ratio in the boundary ondition at in�nity. Here and in thesequel we make the assumption of an asymptotially equidistant grid(i.e. ∆rj → ∆r):
ℓ̂∞(z) = 1 − iρ

2

z − 1

z + 1
+ ∆r2VJ∞ (2.21)

− 1

z + 1

√

[

(z + 1)(1 + ∆r2VJ∞) − iρ

2
(z − 1)

]2

− (z + 1)2 .Note that this formula oinides with the 1D ase and the planar 2Dase (f. the Appendix or [18, 10℄). In (2.21) the branh of the squareroot has to be hosen suh that |ℓ̂∞(z)| ≤ 1 holds for z ≥ 1 whihselets the deaying solution ψ̂j(z). ℓ̂∞ has no pole at z = −1, buttwo branh points on the omplex unit irle, due to the quadratipolynomial under the square root. For the speial ase VJ∞ = 0 thatwe shall illustrate numerially, they are loated at z1 = 1, z2 = (ρ −
4i)/(ρ + 4i). These branh points manifest themselves as kinks of
Im ℓ̂∞(z), for z on the unit irle.Next we disuss the singularities of ℓ̂j(z) for j �nite. Subsequent
ℓ̂j(z)'s are related by the reursion (2.16). But sine bj(z) is real onthe unit irle (as well as aj , cj), the kinks of Im ℓ̂j(z) are still loatedat z1 = 1, z2 = (ρ− 4i)/(ρ + 4i) for all j and for all modes m.Now we turn to a disussion of the asymptoti behavior of ℓ(n)

J for
n → ∞. Sine ℓ(n)

J are just the Fourier oe�ients of the 2π�periodifuntion ℓ̂J(eiϕ) (f. (2.9)), its asymptoti behavior is determined bythe singularities of ℓ̂J(z) on the unit irle. Hene, the two square rootsingularities imply
ℓ
(n)
J ∼ (c1 z

n
1 + c2 z

n
2 )n−3/2. (2.22)12



To ompensate the osillations with the higher frequeny (determinedby zn2 ) we de�ne the following summed onvolution oe�ients
s(0) := ℓ

(0)
J+1,

s(n) := ℓ
(n)
J+1 − z2 ℓ

(n−1)
J+1 , n ≥ 1.

(2.23)This strategy is di�erent from [18, 10, 38℄ sine the asymptoti behav-ior of the oe�ients ℓ(n) is very di�erent in both ases. These newoe�ients s(n) are now less osillatory than the ℓ(n)
J+1. Hene, they area better starting point for omputing approximate onvolution oef-�ients (see �3 below). The disrete TBC for a single azimuth modereads

ψ
(n)
J+1 − s(0)ψ

(n)
J =

n−1
∑

p=1

s(n−p)ψ
(p)
J + z2 ψ

(n−1)
J+1 . (2.24)Calulation of onvolution oe�ients. In order to �nd asolution to (2.16) we use the method of series. Let us onsider theLaurent series for ℓ̂j(z):

ℓ̂j(z) = ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . . , |z| ≥ 1. (2.25)We de�ne the auxiliary funtions

αj(z) :=
bj(z)

aj
,

αj := lim
z→∞

αj(z),

βj :=
cj
aj
.

(2.26)Then (2.16) reads
ℓ̂j(z)

(

ℓ̂j+1(z) + αj(z)
)

+ βj = 0, j ≥ J. (2.27)Substituting (2.25) for (2.27) we get
(

ℓ
(0)
j + ℓ

(1)
j z−1 + · · · + ℓ

(n)
j z−n + . . .

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + · · · + ℓ
(n)
j+1z

−n + . . .
)

+ αj(z)
)

+ βj = 0. (2.28)We shall now disuss the omputation of the oe�ients ℓ(n)
j for indi-vidual indies n: 13



Coe�ient ℓ(0)
j . Taking |z| → ∞ we have the following reurreneequation for ℓ(0)j :

ℓ
(0)
j

(

ℓ
(0)
j+1 + αj

)

+ βj = 0. (2.29)We shall solve this equation by �iteration from in�nity�, i.e. startingfrom a (large) index J∞, putting an initial value ℓ(0)J∞ := ℓ
(0)
∞ , andrunning the reursion from J∞ to J + 1:

ℓ
(0)
j =

−βj
ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1. (2.30)Note that a very large index J∞ orresponds to a very large radius
rJ∞. Therefore we an use the oe�ient ℓ(0) from the 1D ase (f.(4.7), or the 2D plane ase) as the starting value ℓ(0)∞ . It is obtainedfrom (2.21) as ℓ(0)∞ = ℓ̂∞(z = ∞).Theorem 2.1. [stability of the reurrene relation℄. Let |αj | ≥
2 j+1/2
j+1 , βj ≤ j

j+1 , and |ℓ(0)J∞ | < βJ∞. Then:a) |ℓ(0)j | < βj ≤ j
j+1 < 1; andb) the reurrene formula (2.30) is stable with respet to small per-turbations.Proof. Part (a) is proved by indution. Suppose |ℓ(0)j+1| < βj+1 ≤ j

j+1 .Hene
|ℓ(0)j+1 + αj | ≥ |αj | − |ℓ(0)j+1| > 2

j + 1/2

j + 1
− j

j + 1
= 1.Therefore

|ℓ(0)j | =
βj

|ℓ(0)j+1 + αj |
< βj . (2.31)To prove (b) and establish the stability we suppose that we havea perturbation ℓ

(0)
j+1 + δj+1 instead of ℓ(0)j+1 with |δj+1| < 1. Let usonsider the evolution of δj by omparing (2.30) with

ℓ
(0)
j + δj =

−βj
ℓ
(0)
j+1 + δj+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1.

14



Evidently we obtain:
δj =

−βj
ℓ
(0)
j+1 + δj+1 + αj

− −βj
ℓ
(0)
j+1 + αj

= δj+1

−ℓ(0)j
ℓ
(0)
j+1 + δj+1 + αj

= δj+1

−ℓ(0)j
−βj/ℓ(0)j + δj+1

.Therefore we get
|δj | = |δj+1|

|ℓ(0)j |
|βj/ℓ(0)j − δj+1|

≤ |δj+1|
|ℓ(0)j |2

βj − |ℓ(0)j ||δj+1|
< |δj+1|

|ℓ(0)j |2

βj

1

1 − |δj+1|
,and hene

|δj |
|δj+1|

∼
|ℓ(0)j |2
βj

< βj < 1, (2.32)for |δj+1| ≪ 1. Thus the reursion (2.30) is stable with respet tosmall perturbations (e.g. for trunation errors or for an �inorret�initial guess ℓ(0)J∞ := ℓ
(0)
∞ ).Remark. The assumptions |αj | ≥ 2 j+1/2

j+1 and βj ≤ j
j+1 in the previoustheorem are valid for the de�nitions (2.14) (i.e. for a uniform o�setgrid) and VR ≥ 0. Moreover |ℓJ∞ | < βJ∞ holds true for J∞ largeenough, sine βj j→∞−→ 1 for an asymptotially equidistant grid.Remark. The estimate (2.32) explains the fast onvergene of the re-ursion (2.30) to the orret value ℓ(0)J in spite of taking an �inorret�initial guess ℓ(0)J∞ := ℓ

(0)
∞ , see the numerial examples below. Indeed,due to (2.32) we an hope for an exponential deay of |δj | with thefator |ℓ(0)j |2/βj ∼ |ℓ(0)j |. For instane, the value |ℓ(0)j | is estimatedfrom the ase of the �frozen� oe�ients at J∞:

|ℓ(0)j | ∼ |ℓ(0)
∞

| < 1,where ℓ(0)∞ = ℓ̂∞(z = ∞) from (2.21).15



Coe�ient ℓ(1)
j . Now we onsider the alulation of ℓ(1)j . We havefrom (2.26), (2.13):

αj(z) := αj − γj(z
−1 − z−2 + z−3 − . . . ), (2.33)with γj := αj − ᾱj . From (2.28) and (2.33) we an write

(

ℓ
(0)
j + ℓ

(1)
j z−1 + O(z−2)

)

·

·
(

(

ℓ
(0)
j+1 + ℓ

(1)
j+1z

−1 + O(z−2)
)

+
(

αj − γjz
−1 + O(z−2)

)

)

+ βj = 0.(2.34)Annihilating leading order terms by using (2.29) we ollet terms oforder z−1:
ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj + ℓ

(1)
j ℓ

(0)
j+1 + ℓ

(1)
j αj = 0. (2.35)Therefore the reursion is de�ned by

ℓ
(1)
j = −

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J + 1, (2.36)with an initial value ℓ(1)J∞ := ℓ
(1)
∞ .Coe�ient ℓ(n)

j . The ase of ℓ(n)
j with n ≥ 2 is onsidered simi-larly by trunating terms of O(z−n−1) in (2.34). We get the followingreursion formula:

ℓ
(n)
j = −

n−1
∑

k=0

ℓ
(k)
j

[

ℓ
(n−k)
j+1 + γj(−1)n−k

]

ℓ
(0)
j+1 + αj

, j = J∞−1, J∞−2, . . . , J+1,(2.37)with an initial value ℓ(n)
J∞

:= ℓ
(n)
∞ that an be taken from the 1D planease: ℓ(n)

J∞
≡ ℓ

(n)
∞ . Notie that (2.36) is a partiular ase of (2.37) for

n = 1 .Theorem 2.2. Under onditions of Theorem 2.1 the reurrene for-mula (2.37) is stable with respet to small perturbations.Proof. Let us write (2.37) as an iteration with respet to the index n:
ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1 + αj

ℓ
(n)
j+1 + F

(

{ℓ(n1<n)
j }, {ℓ(n1<n)

j+1 }
)

, (2.38)16



j = J∞ − 1, J∞ − 2, . . . , J + 1, where the funtion F ontains theremaining terms with indexes n1 < n. Suppose that the oe�ients
{ℓ(n1)
j }, n1 = 0, 1, . . . , n−1, j = J∞−1, J∞−2, . . . , J+1 are exat (orknown with good auray). Then the stability of (2.37) is determinedby the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1 + αj

.We have from (2.31):
|ℓ(0)j |

|ℓ(0)j+1 + αj|
<

βj

|ℓ(0)j+1 + αj|
< βj ≤

j

j + 1
< 1.Remark. The proof of Theorem 2.2 is made by indution with respetto n = 1, 2, . . . under the assumption that the previous oe�ients for

n1 < n are (almost) orret. In pratie, while alulating the oe�-ients ℓ(n)
j we must �x some value J∞ and take an �inorret� initialvalue ℓ(n)
J∞

:= ℓ
(n)
∞ . This ould give a numerial instability. However,

ℓ
(0)
j onverges su�iently fast to its orret value and reahes a verygood approximation after, say, J0 steps of the reursion (2.30). Hene,we an start the reursion for ℓ(1)j a little bit �later�, i.e. with the de-layed initial index j = J∞−J0. Similarly for ℓ(2)j , the initial index anbe hosen as j = J∞−2J0, et. In our numerial tests pratial valuesfor J0 satisfy 0 ≤ J0 ≤ 5.Sample alulations of the oe�ients ℓ(n)

j
. We demonstratethe e�ieny of the proposed algorithm for the following example.For the radius we onsider R = 1 and we disretize the irular do-main [0, R] × [0, 2π] with the uniform step sizes ∆r = 1/200 and

∆θ = 2π/200. For the time step size we take ∆t = 0.0003 and alu-late the onvolution oe�ients ℓ(n)
j with (2.37) for the free Shrödingerequation (i.e. V = 0) for n = 0, . . . , 60. In a �rst set of alulationswe run the algorithm with the hoie J∞ = 550 (whih orrespondsto r = 3.75) and a retarding shift J0 = 5. Here we just disuss theresults for the mode m = 1, but all other modes behave similarly.In Figure 2 we show the absolute values of the last seven oe�ients17
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n=54
n=55
n=56
n=57
n=58
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n=60Figure 2: Absolute values of last seven oe�ients ℓ(n)

j , n = 54, . . . , 60, J∞ =
550, J0 = 5;m = 1.

ℓ
(54)
j , . . . , ℓ

(60)
j as a funtion of r ∈ [R, 3.75]. We observe a good on-vergene of the oe�ients while approahing the arti�ial boundary

R = 1 from the exterior domain. An error estimate is provided bya seond alulation, where we ompute onvolution oe�ients ℓ̃(n)
jwith J∞ = 1100 and the same disretization parameters as before. Thedi�erene |ℓ(n)

j − ℓ̃
(n)
j | is plotted for n = 54, . . . , 60 in Figure 3. Withvalues of the order O(10−14) near the arti�ial boundary this error isabout the rounding error of Matlab. The in�uene of the retardingshift parameter J0 an be seen by omparing Figure 2 with Figure 4.In the third run we determine the onvolution oe�ients (still withthe same disretization parameters and J∞ = 550) but with J0 = 3.The absolute values of these onvolution oe�ients are presented inFigure 4. The osillations in ℓ(n)

j due to the instability near J∞ in thisplot are more obvious than in the oe�ients omputed with J0 = 5shown in Figure 2. But also for the hoie J0 = 3 the oe�ientsonverge well while approahing r = R.2D disrete TBC. In the Fourier transformed spae, i.e. in termsof separate azimuthal modes, the disrete TBCs read (this is Eq. (2.24)18
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with reovered mode index m):
ψ

(m,n)
J+1 − s(0)m ψ

(m,n)
J =

n−1
∑

p=1

s(n−p)m ψ
(m,p)
J + z2ψ

(m,n−1)
J+1 , (2.39)where m = 0, . . . ,K − 1, n ≥ 1. Note that (2.3) implies the followingsymmetry in the onvolution oe�ients: s(n)

m = s
(n)
K−m. In order toobtain the disrete TBC in the physial spae let us introdue thediagonal K ×K matries

s
(p) = diag{s(p)m }, m = 0, . . . ,K − 1; p = 0, 1, 2, . . . ,and also matries F and F

−1 of the diret and inverse Fourier trans-form, respetively, ating in aordane with (2.2):
ψ̂

(n)
j = Fψ̃

(n)
j ,with the vetors

ψ̂
(n)
j = {ψ(m,n)

j }K−1
m=0, ψ̃

(n)
j = {ψ(n)

j,k }K−1
k=0 .Then, multiplying (2.39) by F

−1 we get the following 2D disrete TBC
ψ̃

(n)
J+1 − F

−1
s
(0)

Fψ̃
(n)
J = F

−1

n−1
∑

p=1

s
(n−p)

Fψ̃
(p)
J + z2ψ̃

(n−1)
J+1 . (2.40)Here, we hoose to formulate the disrete TBC (2.40) at the boundaryof the omputational interval and one grid point in the exterior domain.In aordane with (2.20) we have assumed that the initial onditionsatis�es ψ(0)

j,k = 0, j ≥ J ; k = 0, . . . ,K − 1.The use of the formula (2.40) for alulations permits us to avoidany boundary re�etions and it renders the fully disrete sheme un-onditionally stable (just like the underlying Crank�Niolson sheme).Note that we need to evaluate for eah mode m just one onvolution of(2.40) at eah time step (at the endpoint of the interval [0, tn]). Sinethe other points of this onvolution are not needed, using an FFT isnot pratial.
20



3 Approximation by sums of exponen-tialsAn ad-ho implementation of the disrete onvolution
n−1
∑

p=1

s(n−p)ψ
(p)
Jin (2.24) with onvolution oe�ients s(n) from (2.23) has still one dis-advantage. The boundary onditions are non�loal both in time andspae and therefore omputations are too expensive. As a remedy, toget rid of the time non�loality, we proposed already in [10℄ the sumof exponentials ansatz, i.e. to approximate the onvolution oe�ients(2.23) by a �nite sum (say L terms) of exponentials that deay withrespet to time. This approah allows for a fast (approximate) evalu-ation of the disrete onvolution (2.24) sine the onvolution an nowbe evaluated with a simple reurrene formula for L auxiliary termsand the numerial e�ort per time step now stays onstant.Let us note that suh kind of trik has been proposed in [20℄ for theheat equation, in [39℄ for the ontinuous TBC of the 3D wave equation,in [25℄ for the TBC of the 2D Shrödinger equation, and developed in[2℄, [40℄, [41℄, [15℄, [21℄ for various hyperboli problems.In the sequel we will brie�y review this ansatz [10℄. In order toderive a fast numerial method to alulate the disrete onvolutionsin (2.39), we approximate the oe�ients s(n) by the following ansatz(sum of exponentials):

s(n) ≈ s̃(n) :=















s(n), n = 0, 1, . . . , ν − 1
L
∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . ,

(3.1)where L, ν ∈ N are a �xed numbers. Evidently, the approximationproperties of s̃(n) depend on L, ν, and the orresponding set {bl, ql}.Thus, the hoie of an (in some sense) optimal approximation of thistype is a di�ult nonlinear problem. Below we propose a deterministimethod of �nding {bl, ql} for �xed L and ν.Remark. The �split� de�nition of {s̃(n)} in (3.1) is motivated by thefat that the implementation of the disrete TBCs (2.39) involves aonvolution sum with p ranging only from 1 to p = n − 1. Sine the21



�rst oe�ient s(0) does not appear in this onvolution, it makes nosense to inlude it in our sum of exponential approximation, whihaims at simplifying the evaluation of the onvolution. Hene, one mayhoose ν = 1 in (3.1). The �speial form� of ℓ(0)∞ and ℓ(1)∞ given in [10℄suggests even to exlude s(1) from this approximation and to hoose
ν = 2 in (3.1). We use this hoie in our numerial implementation inthe example in �4.Also, there is an additional motivation for hoosing ν = 2: Withthe hoie ν = 0 (or ν = 1) we typially obtain (for eah mode)two (or, resp., one) oe�ient pairs (bl, ql) of big magnitude. These�outlier� values re�et the di�erent nature of the �rst two oe�ients.Inluding them into our disrete sum of exponentials would then yieldless aurate approximation results.Let us �x L and onsider the formal power series:

g(x) := s(ν) + s(ν+1)x+ s(ν+2)x2 + . . . , |x| ≤ 1. (3.2)If there exists the [L− 1|L] Padé approximation
g̃(x) :=

PL−1(x)

QL(x)of (3.2), then its Taylor series
g̃(x) = s̃(ν) + s̃(ν+1)x+ s̃(ν+2)x2 + . . .satis�es the onditions

s̃(n) = s(n), n = ν, ν + 1, . . . , 2L+ ν − 1, (3.3)due to the de�nition of the Padé approximation rule.Theorem 3.1 ([10℄). Let QL(x) have L simple roots ql with |ql| >
1, l = 1, . . . , L. Then

s̃(n) =
L
∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . , (3.4)where

bl := −PL−1(ql)

Q′

L(ql)
ql 6= 0, l = 1, . . . , L. (3.5)22



Remark. We remark that the assumption in Theorem 3.1 on the rootsof QL(x) to be simple is not essential. For multiple roots one onlyhas to reformulate Theorem 3.1. All our pratial alulations on�rmthat this assumption holds for any desired L, although we annot provethis.Evidently, the approximation to the onvolution oe�ients s(n) bythe representation (3.1) using a [L − 1|L] Padé approximant to (3.2)behaves as follows: the �rst 2L oe�ients are reprodued exatly, see(3.3). However, the asymptotis of s(n) and s̃(n) (as n → ∞) di�erstrongly � algebrai versus exponential deay. Typially the di�erene
|s(n)
m − s̃

(n)
m | dereases exponentially w.r.t. L (uniformly for all modes

m).Fast Evaluation of the Disrete Convolution. Let us onsiderthe approximation (3.1) of the disrete onvolution kernel appearingin the disrete TBC (2.39). With these �exponential� oe�ients theapproximated onvolution
C̃

(n−1)
J :=

n−1
∑

p=1

s̃(n−p)ψ
(p)
J+1, s̃(n) =

L
∑

l=1

bl q
−n
l , |ql| > 1, (3.6)of the disrete funtion ψ

(p)
J+1, p = 1, 2, . . . with the oe�ients s̃(n)an be alulated by reurrene formulas, and this will redue thenumerial e�ort signi�antly.A straightforward alulation (f. [10℄) yields:

C̃
(n−1)
J =

L
∑

l=1

C̃
(n−1)
J,l , n ≥ 2, (3.7)where

C̃
(0)
l ≡ 0,

C̃
(n−1)
J,l = q−1

l C̃
(n−2)
J,l + bl q

−1
l ψ

(n−2)
J+1 , (3.8)

n = 2, 3, . . . , l = 1, . . . , L. Finally we summarize the approah by thefollowing algorithm. For eah azimuth mode m = 0, ...,K − 1:1. Calulate ℓ(n)
J+1, n = 0, . . . ,N − 1, with formulas (2.37) with aboundary value ℓ(n)

J∞
:= ℓ

(n)
∞ that an be taken from the 1D planease ℓ(n)

∞ ≡ ℓ(n) from [10℄, and use (2.23) to �nd s(n).23



2. Calulate s̃(n) via the Padé�algorithm.3. The orresponding oe�ients bl, ql are used for the e�ient al-ulation of the disrete onvolutions.Remark. The sum-of-exponentials approximation of the disrete TBCsredues the numerial e�ort drastially. The e�ort for the evalua-tion of the onvolution sum ∑n−1
p=1 s

(n−p)
m ψ

(m,p)
J is of quadratial order

O(Kn2). With the proposed approximation of the disrete TBCs thisan be redued to linear e�ort O(KLn), where L denotes the numberof terms in the sum-of-exponentials (3.4). For using the exat disreteTBCs the onvolution oe�ients s(n)
m (f. (2.23)) have to be alu-lated one in a set�up before the time-stepping for all modes m and alltime levels p = 0, . . . , n. As a further advantage of the approximateddisrete TBCs, the oe�ients (2.23) only need to be alulated for

p = 0, . . . , 2L+ ν − 1 (f. (3.3)).4 Numerial resultsIn this setion we present some numerial examples onerning theexat disrete TBCs and the approximated disrete TBCs. For furtherexamples we refer the reader to [37℄.4.1 Exat disrete TBCsHere we shall illustrate that our algorithm an ompute the onvolu-tion oe�ients of the TBC with almost mahine auray. Hene,the (numerially omputed) TBC in the irular ase is essentially asaurate as in the retangular ase [10℄, where the TBCs are obtainedanalytially.We reall the Example 2 from [22℄, i.e. we onsider (1.1) with thevanishing potential V ≡ 0 and the angle-dependent initial data
ψI(r, θ) =

e
2ikxr cos θ+2ikyr sin θ− (r cos θ)2

2αx
−

(r sin θ)2

2αy

√
αxαy

. (4.1)Then the exat solution to (1.1a) for t > 0 is given by the Gaussian
24



beam
ψ(r, θ, t) =

e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)−

(r cos θ−2kxt)2

2(αx+it)
−

(r sin θ−2kyt)2

2(αy+it)

√
αx + it

√

αy + it
.(4.2)We set αx = αy = 0.04, let kx = 1, ky = −1 and alulate a solution

ψ1 to (1.9) with an equidistant disretization on the irular domain
Ω1 = [0, R] × [0, 2π] with R = 1 and J + 2 grid points in r-diretionand K in θ-diretion for the time interval 0 < t ≤ 0.5. In order tosatisfy the assumption that the initial data is ompatly supported in
Ω1 (f. �2) we use a small numerial ut-o� lose to R, ψI(r, θ) = 0for r ≥ R − ∆r for all angles θ, i.e. in disrete notation ψ0

j,k = 0 for
j ≥ J, k = 0, . . . ,K − 1. We remark that this assumption of om-patly supported initial data is not essential; strategies to overomethis restrition an be found in [18℄. Sine we use an o�set grid, dis-rete TBCs are implemented as desribed before (f. (2.39)�(2.40)) at
r = R−∆r/2, using the grid points R and R−∆r. A referene solu-tion ψ2 is alulated on the domain Ω2 = [0, 2R]× [0, 2π] with disreteTBCs at r = 2R − ∆r/2. To determine the error due to the PDE�sheme (1.9) we ompare the numerial solution ψ2 with the exat one
ψ on Ω1: The relative L2-error

LΩ1(ψ2, ψ, tn) =

(

∑

(rj ,θk)∈Ω1

rj |ψ2(rj , θk, tn) − ψ(rj , θk, tn)|2
)

1
2

max
tn







(

∑

(rj ,θk)∈Ω1

rj |ψ(rj , θk, tn)|2
)

1
2







,(4.3)is based on the norm de�ned in (2.5). This test inludes also the errordue to the ut-o� of the initial funtion. The e�ets of the boundaryshould be negligible here, beause the �main wave� of ψ2 does not rossthe boundary 2R during the onsidered time interval.In order to distinguish between the error due to the di�erenesheme and the error due to the disrete TBCs, we ompare the numer-ial solution ψ1 with the numerial referene solution ψ2 and alulatethe relative error LΩ1(ψ2, ψ1, tn) due to the boundary ondition.Disretization and Results. The solutions ψ1 and ψ2 are al-ulated for three parameter sets. First we let J = K = 64, i.e. ∆r =
1/64, ∆θ = 2π/64 and ∆t = 1/64, then ∆r = ∆t = 1/128, ∆θ =25
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(f) t = 0.5Figure 5: Absolute value (as normal/ontour plots) of the initial funtion((4.1) with ut-o�) and the alulated solution ψ1 of the sheme (1.9) on theomputational domain Ω1 with ∆r = ∆t = 1/256, ∆θ = 2π/256, αx = αy =
0.04, and the wave numbers kx = −1, ky = 1. v = 0; a disrete TBC isimplemented at r = 1 − ∆r/2: No re�etions are visible.26
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2π/128, and �nally ∆r = ∆t = 1/256, ∆θ = 2π/256. These dis-retization parameters are taken from [22℄. The relative error of theinitial funtion due to the ut�o� is aboutO(10−6), O(10−7), O(10−7),respetively. We present in Figure 5 the absolute value of the initialfuntion (4.1) and of the evolution of the numerial solution ψ1 on theomputational domain Ω1 until t = 0.5 for the last set of disretiza-tion parameters and the potential V = 0. The Gaussian beam hasan initial momentum spei�ed by kx = 1, ky = −1. As expeted,the beam leaves the omputational domain without any unphysialre�etions at the arti�ial boundary. The observable broadening ofthe beam (as t grows) is due to dispersive e�ets, whih are equallypresent in the exat solution (4.2). Figure 6(a) shows the relative er-ror LΩ1(ψ2, ψ, tn) of the numerial solution ψ2 w.r.t. the exat solutionrestrited on Ω1 for the three sets of parameters: The sheme is se-ond order in ∆r, ∆θ, ∆t. The relative error LΩ1(ψ1, ψ2, tn) due to theboundary ondition is presented in Figure 6(b) also for all sets; withvalues around O(10−13) it approximately amounts to the roundingerror of Matlab.Remark. Note that the error due to the boundary ondition may in-rease with �ner t-disretizations (see Figure 6(b)), sine longer dis-rete onvolutions have to be omputed in this ase.Note that the error of our disrete TBC is negligible ompared tothe error of the �nite di�erene sheme in the interior. In [22℄, how-ever, the trunated TBCs introdue an additional error, whih seemsto be larger than the disretization error (f. Fig. 10 in [22℄).Our next test onerns the long�time behavior of the relative er-ror due to the disrete TBCs. Therefore we alulate the numerialsolutions ψ1, ψ2 of (1.9) for the initial data (4.1) for kx = ky = 0,
αx = αy = 0.5 on the irular domains Ω1 = [0, R]× [0, 2π] and, resp.,
Ω2 = [0, 2R] × [0, 2π] with R = 2.5 until t = 4. Sine kx = ky = 0,the beam does not travel and only spreads due to dispersion. We usethe three sets of disretization parameters ∆r = R/64, ∆θ = 2π/64;
∆r = R/128, ∆θ = 2π/128; and ∆r = R/256, ∆θ = 2π/256. Forall alulations we let ∆t = 0.01. In Figure 7 we show the relativeerror LΩ1(ψ1, ψ2, tn) due to the boundary onditions for this long-timetest. Observe that in this long-time alulations the error due to thedisrete TBCs grows only sublinearly and is still only around O(10−13).In a separate numerial test (presented in [37℄) we also applied our28
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J=K=128
J=K=256Figure 7: Relative error LΩ1(ψ1, ψ2, tn) due to the boundary ondition forthe time evolution of initial funtion (4.1) with kx = ky = 0, αx = αy = 0.5for the three parameter sets with 64 (solid line), 128 (dashed line), and 256grid points (dashed-dotted line). The time step size equals ∆t = 0.01.disrete TBC-approah to the example of [5℄ (again ψI from (4.1), butwith modi�ed parameters kx, ky, αx, αy). Sine the authors of [5℄ onlyuse (approximate) absorbing boundary onditions, their relative erroris larger than with our disrete TBC�approah.4.2 Approximated disrete TBCsTo illustrate the sum-of-exponential ansatz we onsider again the ini-tial funtion (4.1) with the parameters αx = αy = 0.04 and kx =

−ky = 1. We onsider the initial data (4.1) with a ut-o� at R− ∆r,whih auses a relative error of the order O(10−6). With this ini-tial data a solution ψ1 of (1.9) is alulated on the irular domain
Ω1 = [0, R] × [0, 2π] with the radius R = 1. For the disrete TBCswe use the approximation (3.6). As a numerial referene solution wetake ψ2, whih is obtained with the exat disrete TBCs (2.40) on thelarger domain [0, 2] × [0, 2π].Disretization and Results. For the disretization parameters29



∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64 we evolve the solution up to
t = 0.5. In the sum-of-exponentials we hoose ν = 2 in the three dif-ferent alulations, L = 10, 20, and 40. We obtain the �rst 2L+ ν− 1onvolution oe�ients exatly by the reursion formula (2.37) with aninitial value ℓ(n)

J∞,m := ℓ
(n)
∞,m taken from the 1D plane ase ℓ(n)

∞,m ≡ ℓ
(n)
mfrom [10℄ for eah mode m = 0, . . . ,K − 1 and sum them aording to(2.23). The sets {bl,m, ql,m}, l = 1, . . . , L needed for the alulation ofthe approximated onvolution oe�ients s̃(n)

m , n > 2L+ ν − 1 for allmodes m are obtained by the Padé algorithm desribed in �3. We re-alized these alulations by a Maple ode, within whih we try to �nd
L roots ql,m of the polynomial QL(x) as it is desribed in Theorem 3.1(separately for eah mode). Due to a �nearly breakdown� by ill ondi-tioned steps in the Lanzos algorithm (f. [13℄) it is not always possibleto �nd L roots of QL,m ful�lling the ondition |ql,m| > 1, l = 1, . . . , Lfor eah mode m = 0, . . . ,K − 1. Consequently, the Maple ode au-tomatially hooses smaller and smaller values (L − 1, L − 2, . . . ) toguarantee that all roots have an absolute value larger than 1. E.g.,with the initial hoie L = 40 you will �nd values for L ful�lling theabove ondition that vary from 18 to 32 for the di�erent modes. Thenumber of summands L is hene just an initial guess for the �nal num-ber of summands in the sum-of-exponentials.In Figure 8 we present the ontour plots of the absolute value of thesolution ψ1 at time t = 0.5, alulated with the approximated disreteTBCs with L = 10 and L = 40 terms in the sum-of-exponentials. For
L = 10 there are strong unphysial re�etions (see Figure 8(a)), forlarger values of L these re�etions beome signi�antly smaller (seeFigure 8(b)).The relative L2-error due to the approximated disrete TBCs isshown in Figure 9. For di�erent initial hoies of the number of oe�-ients L in the sum-of-exponentials we present the error LΩ1(ψ1, ψ2, tn)(f. (4.3)) there. Although the oe�ients s(n)

m , s̃
(n)
m have di�erentasymptoti behaviors (algebrai vs. exponential deay) the error growsonly sublinearly in time. In order to show, that long time alulationswith the approximated disrete TBCs are stable we evolve the initialdata (4.1) with αx = αy = 0.04 and kx = ky = 0 for disretizationparameters ∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64 for di�erent initialhoies of the number of summands L up to t = 20. The norm of the30
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(b) L = 40Figure 8: Contour plots of the absolute value of the alulated solution ψ1 of(1.9) at t = 0.5 with the initial funtion (4.1) on the omputational domain
Ω1. We use approximated disrete TBCs with (a) L = 10 and (b) L = 40.solution deays in time, as it is shown in Figure 10.In [37℄ we applied the sum-of-exponentials approximation to an-other numerial example and ompared it to the example from [25℄(again ψI from (4.1), but with modi�ed parameters kx, ky, αx, αy).In [25℄ the authors presented a di�erent sum-of-exponentials approxi-mation for the onvolution kernel of the TBC for the 2D Shrödingerequation.We remark that the sum-of-exponentials approah for disrete TBCsof the 1D Shrödinger equation (inluding the Maple ode) is presentedat http://www.dtb.de.vu.
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Appendix: new disrete TBCs for the 1DShrödinger equationWith a uniform spatial disretization, the Crank�Niolson �nite dif-ferene sheme for the Shrödinger equation with onstant potential
V reads:
− 2i

∆t

(

ψ
(n+1)
j − ψ

(n)
j

)

=
ψ

(n+ 1
2
)

j+1 − 2ψ
(n+ 1

2
)

j + ψ
(n+ 1

2
)

j−1

∆x2
− 2V ψ

(n+ 1
2
)

j ,

j ∈ Z, n ∈ N0.Let the index interval j = 0, . . . , J denote the omputational do-main, and abbreviate the mesh ratio by ρ := 4∆x2/∆t. Using the
Z�transform method of �2 (or [7℄) one �rst derives the disrete TBCfor the Z�transformed variable:

ψ̂J(z) = ℓ̂(z) ψ̂J−1(z), (4.4)with ℓ̂(z) given by (2.21), if replaing there VR by V . As before, wehoose the branh of the square root suh that |ℓ(z)| ≤ 1 for z ≥ 1.An inverse Z�transformation of (4.4) yields (similarly to [18, �3.2℄):
ψ

(n)
J = ℓ(n) ∗ ψ(n)

J−1. (4.5)or expliitly (when assuming ψ(0)
j = 0, j ≥ J − 1)

ψ
(n)
J − ℓ(0)ψ

(n)
J−1 =

n−1
∑

p=1

ℓ(n−p) ∗ ψ(p)
J−1. (4.6)Here, the onvolution oe�ients are given by

ℓ(n) =
[

1 + i
ρ

2
+
σ

2

]

δ0n − iρ(−1)n +
i

2
4

√

(ρ2 + σ2)
[

ρ2 + (σ + 4)2
]

e−iϕ/2·

· e−inϕ
{

λPn(µ) + Pn−1(µ) + τ

n−1
∑

k=0

(−λ)n−kPk(µ)

}

, (4.7)with κ = V∆t/2, σ = ρκ, δ the Kroneker delta, Pn the Legendrepolynomials, and P−1 ≡ 0. Here we used the following abbreviations
λ :=

ρ− 4κ− ρκ2 + 2i(ρκ+ 2)
√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

= eiϕ, with ϕ = arctan
2(ρκ + 2)

ρ− 4κ− ρκ2
.34



Moreover
µ :=

ρ(1 + κ2) + 4κ
√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

∈ (−1, 1),

τ :=
4ρ

√

(1 + κ2)
[

ρ2 + (ρκ+ 4)2
]

∈ R.Note that the onvolution in (4.5) is implemented at the grid point
J − 1, i.e. at the interior of the two boundary grid points J − 1, J .This is in ontrast to the disrete TBC in [7℄, whih uses a onvolutionon the exterior boundary grid point:

ψ
(n)
J−1 = ℓ̃(n) ∗ ψ(n)

J .There, the onvolution oe�ients ℓ̃(n) are de�ned with the oppositesign in front of the fourth root of (4.7).This slight reformulation of the disrete TBCs has an importantpratial onsequene: While the oe�ients ℓ̃(n) are osillatory (ℓ̃(n) ≈
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