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Abstract

To characterize non-trivial boundary conditions of a liquid flowing past
a solid, the slip length is commonly used as a measure. From the profile
of a retracting liquid front as measured, e.g., with atomic force microscopy,
the slip length as well as the capillary number can be extracted by the help
of the Stokes model for a thin liquid film dewetting from a solid substrate.
Specifically, we use a lubrication model derived from the Stokes model for
strong slippage and linearize the film profile around the flat, unperturbed film,
and, for small slip lengths a Taylor approximation of the linearisation for the
full Stokes model. Furthermore, from the capillary number and the knowledge
of the liquid front velocity and the surface tension, we can obtain the viscosity
of the fluid film. We compare theoretical and experimental results, test the
consistency and the validity of the models/approximations, and give an easy-
to-follow manual of how they can be used to analyze experiments.

1 Introduction

In microfluidic devices, the drag of a fluid is a substantial concern since, for
a given pumping power, it limits the microfluidic channel length that can be
filled. It therefore sets also the limits to, e.g., the number of possible analy-
sis steps. Drag can be reduced by decreasing the friction at the liquid/solid
interface or, in other words, by increasing the fluid velocity at the interface.
This results in a sliding of the fluid over the solid, and a non-zero bound-
ary condition for the interface velocity. The amount of slippage is typically
characterized by the depth b below the solid-liquid interface at which the ex-
trapolated velocity vanishes.

To date, a number of methods exist to determine the slip length, most of
them involving tracer particles [1, 2|, fluorescence recovery after photobleach-
ing |3, 4], colloidal probe microscopy |5, 6], or surface forces apparatus |7, §|.
Detailed reviews can be found in recent articles by Lauga et al. [9] or Neto et
al. [10]. In our previous studies [11, 12, 13|, we have introduced a new method
to gain interfacial flow properties, namely the analysis of the profile of a liquid
front. Specifically, we exploit that the amount of slippage has a significant in-
fluence on the decay of the profile onto the unperturbed films, where the model
equations can be linearized. A more comprehensive asymptotic analysis of the
entire profile in the presence of large slippage, which necessarily must consider
all nonlinearities, is a separate direction of (in part still ongoing) research [14].
For the purpose here, the information obtained from the linearized model(s)
is sufficient to obtain the slip length by fitting the eigenvalues that govern the
decay of the profile to the experimentally measured film profiles. The method



works well for viscous fluids dewetting from a solid surface and is based on
a lubrication model with a Navier-slip condition for the flow of a Newtonian
liquid in the limit of strong effective slippage (large slip lengths).

To test this model, we also discuss here the full two dimensional descrip-
tion using the underlying Stokes model. We find that, while the strong slip
lubrication model is valid in most of the interesting parameter regimes, i.e.
where changes in the slippage have a significant impact on the film profile, the
validity can be extended to smaller slip lengths by using a third order Taylor
expansion for the eigenvalue relation characterizing the linearized film profile.
The third order Taylor expansion of the Stokes model is able to extract slip
length and capillary number quite accurately from experiments of dewetting
fluids where the form of the profile is accessible, e.g., by atomic force mi-
croscopy (AFM). Via the capillary number, the viscosity can be gained if the
dewetting velocity and the surface tension are known. In the following we will
develop the theoretical approach, compare numerical and experimental results,
introduce the Stokes model and its approximations, test their validity in many
aspects, and give a recipe how they can be used to analyze experiments.

2 Formulation

Recently we have shown that the dewetting process of highly viscous polystyrene
(PS) melts on hydrophobized silicon wafers is well described by a lubrication
model in the regime of large slip lengths, |11, 13]. For the situation considered
here, the flow is very slow and non-Newtonian properties, such as viscoelas-
ticity of the melt, can be neglected. For the same reason, inertial terms will
not play any role. For clarity of presentation and as in our previous studies,
we will consider the effectively two dimensional situation of a liquid ridge,
which is translationally invariant in the Y-direction parallel to the flat and
homogeneous substrate. Hence, we begin our theoretical discussion with the
Stokes equations for an incompressible fluid layer on 0 < Z < H(X,T) in two
dimensions

—VP+nV*U =0, V-U=0, (1)

together with appropriate boundary conditions (see below). Here, U = U(X, Z,T) éx+
W(X,Z,T)é&, denotes the velocity field, n the viscosity, and P = P(X, Z,T)
the pressure field.
At the free surface Z = H(X,T), we have the usual kinematic condition
for nonvolative fluids

OrH = —0x /OH U(X, Z)dZ (2)

and normal and tangential stress boundary conditions with constant surface
tension o

n-t-n—(P-®(H)=20k, and n-7-t=0, (3)

with the stress tensor
T=n[VU+(VU)'], (4)



and where ®'(H) = d®/dH denotes the contribution due to the effective
interface potential ®(H) (of Born/Van der Waals type), see e.g. [15] for details
of the potential. The normal and tangential unit vectors are given by

(coxHY) o (LOxH)

1+ (oxH)? J1+ (oxH)?

where the local mean curvature is Kk = V- n. At Z = 0, we assume imperme-
ability of the substrate and the Navier-slip boundary condition,

(5)

W =0 and U= BizU, (6)

with the Navier slip length B.
We non-dimensionalize the above system of equations using the following

scales
Z = Hz, X = Luz, H I_{h, B Hb,
U = Uu, W = Wuw, T g/—t, P Pp,
o = P¢.

(7)
The vertical length scale H is fixed by the average film thickness and the
lateral length scale L by the competition of the effective interface potential
and the surface tension, i.e., by the dispersive capillary length. The vertical
and horizontal velocity scale are linked via the incompressibility condition
U =L W /H. The choice of the pressure scale P and of the velocity scale U
together with the magnitude of b fixes the flow regime.

In [12] it is shown that also for large slip lengths, i.e., for b > 1, the scale
separation H /L = ¢ < 1 allows for the derivation of a simplified lubrication
model, where the flow field is essentially plug flow. This implies a balance of
the pressure gradient with the dominant viscosity contribution in the vertical
momentum equation, which yields the scaling

P
— ~ ¢
nU

=

We assume that surface tension and pressure balance in the normal stress
condition (and therefore surface tension does play a role in the dynamics of
the film), i.e.,

g -2
pEH "
so that _
_ U
0=2° and Ca=1" =¢ (8)
n o

In addition we assume b = 3/e2 with 3 = O(e®), i.e., that the slip length is
large as compared to the lateral length scale L. The non-dimensional problem
in the strong-slip scaling is therefore

—e20up+ 202+ 0*u = 0, 9)
~0:p+ e Fw+dw = 0, (10)
Ogu+ O,w = 0, (11)
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with boundary conditions at z = h(z,t),

oh—w+ud,h = 0, (12)
(0u + &% pw) (1 — €% (0zh)?) + 262 Oph (Dw — Oyu) 0, (13)
1 — &2 (0;h)?) O:w — Oyh (Ou + €2 D,w)
ot _9 ( T z T 4 T
p=¢h) 1+ 2 (9,h)2

92h
+ 32 O
(14 ¢e2(0,h)?)
(14)
and boundary conditions at z = 0,
w=0 and wu=0bd,u= gazu. (15)

As shown in detail in [12], assuming that u, w, p and h have the asymptotic
expansions

u(r,z,t;6) = wo(w,2,t) +e2up(z, 2,t) + O(*), (16)
w(z, 2, te) = wolx,z,t) + 2wz, 2,t) + O(e*), (17)
p(x,2,t:6) = polx,z,t) +e2pi(x, 2,t) + O(eh), (18)

h(z,t;e) = hol(z,t) +&*hi(x,t) + O(e?), (19)

and integrating the problem to O(g?) the lubrication model for strong slip is
found to be

Uuo

Bho

where the solution of the leading order problem implies that ug = ug(x,t).
The first term on the left side is proportional to the divergence of the total
longitudinal shear stress integrated over the film thickness. The second term
is the gradient of the pressure in the film. This equation, coupled with the
kinematic condition (2), i.e.

L Oulho Bug) + 0s (02ho — &' (ho)) — -2 =0, (20)

ho

Otho 4 0z (ho uo) = 0, (21)

gives a closed system for ug(z,t) and ho(z,t), which is called the strong slip
model |12].

3 Experiments and comparison with numer-
ical results

In order to test the theoretical strong slip model we performed dewetting exper-
iments with thin films of short-chained polystyrene (PS) on top of hydropho-
bized silicon wafers. We achieved 130 nm thick films of atactic PS (molecular
weight 13.7 kg/mol, M,,/M, = 1.03, PSS Mainz, Germany) by spincoating a

toluene solution on mica, floating the films on fresh Millipore’™ water and
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Figure 1: a) Optical image of a hole in a 130 nm thick PS(13.7k) film, dewetted
from OTS on Si at 120°C. b) AFM image of a section of the rim around the hole
shown in a). A cross-section taken in radial direction (indicated by the white line)
gives the rim profile which will be compared to the theory.

transferring them onto the coated wafers. To hydrophobize the substrates, we
coated silicon wafers (2.1 nm native oxide layer, Wacker, Burghausen, Ger-
many) with two different silane monolayers, octadecyltrichlorosilane (OTS)
and the shorter dodecyltrichlorosilane (DTS) using standard techniques [16].
The rms roughness of both types of substrate as measured by atomic force
microscopy (AFM) at (1 m)? scan size is below 0.15 nm. The contact angle
of polystyrene droplets is 67(3)° on both coatings, as AFM scans revealed.

In order to mobilize the films which are glassy at room temperature, we
heated the samples to different temperatures (105°C to 130°C) above the
glass transition of PS(13.7k), T, = 97°C. The dewetting process sets in by
nucleation of holes which instantaneously start to grow [15, 17, 18|. Since we
will only analyze the shape of the dewetting rim around the hole, the actual
nucleation mechanism (homogeneous or heterogeneous) is irrelevant here. We
observed the growth of holes by optical microscopy in order to determine the
dewetting velocity. Once the holes had a radius of 12 um, we rapidly quenched
the samples to room temperature and measured the profiles of the holes with
an atomic force microscope (AFM). See Fig. 1 for a typical image.

Comparing the profiles for PS films on OTS and DTS covered wafers at
identical temperature, we find substantial differences, as shown in Fig. 2a) for
120 °C. Films on DTS exhibit a rim profile that decays monotonically towards
the undisturbed film, whereas a film on the OTS layer exhibits an oscillatory
decaying rim shape. To clarify the different rim morphologies, the inset to
Fig. 2a) depicts |[H(X) — H | in a semi-logarithmic plot. Here, H denotes the
prepared film thickness.

In Fig. 2b) rim profiles calculated by the lubrication model (20) and (21)
are shown for different slip lengths. For details of the simulations we refer to
Refs. [12, 19]. Increasing the slip length b, we can observe a transition from
oscillatory to monotonically decaying rim profiles.

In order to understand this morphological transition of rim shapes observed
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Figure 2: a) Rim profiles of holes of radius 12 gm in 130 nm thick PS(13.7k) films,
dewetted at 120 °C. Depending on the substrate, OTS or DTS covered Si wafers, the
profiles show a oscillatory or monotonically decaying rim towards the undisturbed
film. b) Rim profiles calculated from the lubrication model for different slip lengths
b nondimensionalized with H = 130 nm.



in both the experiments and the simulations, we concentrate in the next section
on the region where the rim connects to the undisturbed film and develop
theoretical models to describe rim profiles.

4 Linear stability analysis about the undis-
turbed uniform film

The structure of the dewetting rim as it propagates into the undisturbed film
can be found via linearized analysis. Note that for later comparison with
experiments, the contribution from the intermolecular potential can be ne-
glected. In the following, we analyze the shape of the rim close to the resting
film. There, the film thickness is still close to the thickness of the flat resting
film, which will be the base state. We linearize about this base state with
respect to infinitesimal perturbations of the film thickness, flow velocity, etc.,
of size § and obtain the shape of the leading edge of the rim.

4.1 Lubrication model

The base state of the strong slip model in Egs. (20) and (21) is h(z,t) = 1 and
u(z,t) = 0 about which we linearize with respect to infinitesimal perturbations
of size 9,

h(z,t) ~1+6h(z,t),  u(z,t)~da(z,t), 61, (22)

and obtain the linearized equations

-1
400+ 03h—=a = 0, (23)

=)

Oh+ 0, = 0. (24)

To describe the advancing edge of the ridge, it is convenient to shift into a
frame of reference co-moving with the ridge, £ = x — s(t), and seek quasi-
stationary solutions in the form of travelling fronts, h = iz({) Then, the
continuity equation (24) forces @ = $h(€). Inserting this into the momentum
equation (23) yields

43020 +0h— 2 h =o. (25)

=

To understand the qualitative forms of the advancing ridge in this equation, we
solve it with the ansatz h(§) = h exp(v§), yielding the characteristic equation

Xub(7; 6, 8) = 7° + 4577 — 5=0 (26)

Note that in this equation  depends on ¢ parametrically through s(t).
For the transitions in the ridge structure we note that Descartes’ law of
signs shows that there is one positive real root and either two negative or two
complex conjugate roots. Physically relevant solutions, with h(§ — oo) — 0,



must have R(vy) < 0. The change of roots from real to complex conjugate
occurs when the discriminant vanishes, equivalently,
256 _ .
1——p3s"=0. 27
0 0 27)
From (27), we obtain an estimate for the critical ridge speed that separate
real-decaying profiles (7 real) from oscillatory profiles (complex conjugate )

in terms of the slippage
33

1 (28)

Scrit ~~

4.2 Stokes model

In order to show the range of validity and applicability of this result, it is
instructive to go back to the full Stokes model. We start with equations (9)—
(15), i.e., the Stokes model in the strong-slip scaling, but we keep all terms.

In two dimensions it is convenient to express the flow velocities in terms
of the stream function

0, =u and —0;¢ =w. (29)

Then we can formulate the incompressible Stokes problem in Egs. (9 11) cou-
pled to the kinematic condition in Eq. (12) in terms of ¢ and h. For the
incompressible Stokes equations (9 11) we get

DM+ 22 020%) + 1 oy = 0. (30)

The boundary conditions at the film surface z = h in Eqs. (12-14) become

=

8th+ %¢($ahat) =
(82 — 2 0%4) (1 — €% (0uh)?) — 4% 8,0 9,00 = 0,

2
2020, + O — (40 + 2 0uP) b+
(14 22(0.0))
= (1 p (8xh)2) 0,010 — Dyh (02 — 22 20)
-2 62 —_— 2 = 07
dx 1 +¢e2(0.h)

respectively. Note that in order to be able to express the pressure in terms
of ¢ via Egs. (9) and (10), Eq. (33) is the total derivative of Eq. (14) with
respect to z. At z = 0 we get from Eq. (15)

=0 and 0. —bd*p =0. (34)

As in the previous section we now linearize about the undisturbed base
state h =1 and ¢ = 0, i.e., about the flat and resting film, by perturbing via

h=14+6d6h and =484, (35)

(33)



with § < 1. We then transform to the moving frame coordinate £ = = — s(t)
and make the ansatz

U(z,2,t) = ¥(2) exp(y€) and h(z,t) = h exp(y€) (36)

Keeping only the O(J) terms we obtain the linearized problem for the full
Stokes model in Eq. (30)

O +2(e)?02Y + (en) =0 (37)

in 0 < z < 1, with boundary conditions at the film surface at z = 1 (corre-
sponding to Eqs. (32) and (33))

(e9)% — 92 =0 (38)
3
3(e7)20.0 + %z&Jr@Z’zﬁ =0, (39)

and at the substrate surface at z = 0 (derived from Eq. (34))
Y =0 and 9,9 —bd*) =0. (40)

The general solution for the linear ordinary differential equation in Eq. (37)

is
zﬂ(z) =17 fege VY Loeg 2 et EVE f oy zetEN (41)
Inserting this into the boundary conditions (38) (40) yields a system of linear
homogeneous equations for the coefficients ¢y, ..., cq. This system has a non-
trivial solution, indicating an eigensolution of (37) (40), if the determinant of
this system is zero. The determinant one easily finds to be (after multiplication

with $b(ev)%/16)

. . 1 . €$ ey
, 2
xs(7y; b, $) —< %8y + 4b> sin(2e7y) + <2b + 5 > cos(2e7)

1\ ., (1 1 €s
- — — =+ = —. 42
2<1+2b> es(ey) <2+2b> ev+ 53 (42)

For (42), we seek the solutions v which have a negative real part, since we
require that the perturbed profile ﬁ(w,t) — 1 as * — oo. Furthermore, we
focus on the case where the decay is consistent with the basic assumption of
lubrication theory, namely, that the length scale ratio, measured for example
by the typical spatial derivative of the unscaled film thickness, is of order e.
For the scale variable h(xz,t) given in (36), this can be satisfied by requiring
that hy/h = 7 is of order one.

Thus, ey is assumed to be small and we can approximate yg by its Taylor

expansion for ey < 1.
(v; b, 3) 142 (e7)® + 4es 142 (ev)? € _0 (43)
;0,5) = — S — - —=0.
If we now recall b = (3/e? for the strong slip regime, and take the limit ¢ — 0

keeping = O(1) fixed, we obtain to leading order the characteristic equation
X1ub (73 B, ) for the strong-slip lubrication model, i.e., equation (26).

9
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Figure 3: Comparison of the critical $(b), given by (45), at which the dominant
eigenvalues v that govern the spatial decay of the film profile change from complex
conjugate (for § < $..4(b)) to two real eigenvalues (for § > $..4(0)). The solid,
dashed, and dash-dotted lines are, respectively, the critical $..;;(b) for the eigenvalues
obtained from for full Stokes model, x = xgs, for third order Taylor approximation
of xs, i.e, x = xT, and for the strong slip lubrication model, where x = xup.

Before proceeding, let us note that rescaling the dewetting speed as § =
£25*, taking the limit ¢ — 0 keeping §* = O(1) and b = O(1) fixed (in contrast
to the scaling b = 3/e% with 8 = O(1) in the rest of the paper), one finds to
leading order in ¢ the characteristic equation for the weak-slip regime

3 §*

~ 5513 ~" (44)

Xweak (730, 8%) =

Next, we focus on the two dominant decaying modes v; and 7o for the
spatial decay of the film profile, for each of the three characteristic equations,
i.e., Xiub; Xs, and xp. These modes are given by y = 0 with Re(y) < 0 for
which the modulus of is smallest. They can be either two real negative or a
complex conjugate pair of values. Note that yT and 1, are cubic polynomials
with at most three zeros, while yg is a transcendental equation which can have
infinitely many solutions for xg = 0.

Inspection of these two dominant modes shows that for each of the three
X’s, the eigenvalues are complex conjugate for (b, $) below a certain line, and
real above it. The line is characterized by a merging of the two values to one
real double root of the equation, i.e., for those (b, $(b)) that satisfy

x(7;6,8) =0  and %x(v;b,é)zo- (45)

10



For g, these equations have to be solved numerically to obtain Eéfrit(b), while
for xT and xjup we obtain

v 3V3 b+1/3

crit — 16 (b+ 1/2)3/27

lub 3\/§b—1/2
16

crit —

£s (46)

; (47)

respectively. The comparison is done in Fig. 3 and shows that the result for
esl . yields a good approximation for the curve 53, (b) of the full model for

all values of b, while the approximation quality of the value ssgﬁ obtained

from strong slip lubrication model deteriorates for small b as expected.

5 Method to quantify slippage and its valid-
ity
5.1 Method

The process of determining the slip length from the shape of a moving rim es-
sentially reverses the above considerations: from the experimentally measured
rim shape the two dominant decaying spatial modes ~; and 79 are extracted.
Using these values, the slip length B as well as the capillary number Ca can
be determined from the characteristic equation y = 0. Since the full Stokes
model xg ends up in quite cumbersome expressions for B and Ca, we focus in
the following section on the strong slip lubrication model.

To get the values for 77 and 7, (or rather their dimensional form Py =
71/2/L) from the experimentally observed rim profiles, one has to fit the re-
spective function H(Z) = H + 6 H(Z) to the data in the region of small
perturbation of the undisturbed film of thickness H . Note that = = L ¢ de-
notes the dimensional form of the abscissa €. For the fitting procedure, we
used data points of the profiles up to a maximal height of about 120% of H . In
the case of oscillatory decaying profiles (i.e., when a local minimum of the film
height exhibits where the rim is connected to the undisturbed film, eventually
followed by a local maximum), I'y and I’y are a pair of two complex conjugate
numbers I'; 5 = I & ¢ T'; with negative I';. Here, an exponentially damped
oscillation § Hyse; = 0 Hy exp(T', Z) cos(I'; E4 ¢) (fit parameters are 8 Hy, Ty,
I',, and ¢) captures the decay towards the resting film thickness H in the
experimental data very well, cf. Fig. 4. From the fit we gain the inverse decay
length I, and the wave number I';, and thus Pyp=Ty+:l% In the case
of monotonically decaying rims, the data can be fitted by a superposition of
two exponentials & Hyono = 0 Hi exp(T'1 2) + 5 Hy exp(I'y ) (fit parameters
5ﬁ1/2 and I'y /o) with the inverse decay lengths I'y and T'a.

Knowing I'; and T's, these values can now be used to determine the slip
length and the capillary number of the investigated system. For this purpose,
we recall the characteristic equation of the strong slip lubrication model in
dimensional form

Xub(T; B,Ca) = (H T)3 +4Ca (H I')? — Ca— = 0, (48)

|

11
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Figure 4: The profile of the rim shown in Fig. 1 is in the region where it decays
towards the undisturbed film, ie., for small perturbation, well fitted by an exponen-
tially decaying oscillation.

where the capillary number is Ca = 773/0’ with the characteristic speed of the
rim S = U 5. Knowing two roots I'y and I'y of Eq. (48) we get two equations
with the two unknowns B and Ca for which we can solve and get

1 T2 4TIy + 13
By = ——1 2, Capyp = —

H T3 +T4I +r§.
4H 213

— 49
4 I'+1 (49)

Additionally, the film viscosity n can be determined from the capillary num-
ber Ca, using the surface tension 0 = 30.8 mN/m and the observed dewetting
velocity S. We like to emphasize that in order to determine solely the slip
length, the knowledge of neither the dewetting velocity nor the viscosity is
required.

In order to check the consistency of the above explained analysis we per-
formed a couple of tests with the experimental data. Firstly, we determined
the viscosity from the extracted capillary number from profiles on OTS and
DTS at different temperatures. The viscosity was found to be in line with rheo-
metric data, cf. Fig. 5. A second test was the variation of the film thickness
which leads to different values for I'; /5 and S but which does not change the
slip length and the viscosity. Indeed, the extracted slip length was indepen-
dent of initial film thickness. In a third and last consistency check we analyzed
holes of various sizes. With growing hole diameter the rim gets larger. Since
friction forces increase with rim size, the dewetting velocity slows down. As a
consequence, a more pronounced oscillatory shape can be found, resulting in
a variation of the fitting parameters I'y and I's with hole size. However, the
slip lengths and viscosities obtained via Eq. (49) were independent of the hole
size as expected. For details we refer to Ref. [13].

12



100M |
é o QTS osci
D A DTS, osci
© 10ML * A DTS, mono
a, § * rheometer
—
1ML
*
100k | g
10k | . . ?
100 110 120 T[°C] 130

Figure 5: Viscosity as a function of temperature. The results of rim shape analysis
of PS films on OTS and DTS are compared with viscosity data from independent
rheometric measurements; ’osci’ and ‘'mono’ indicate the used fitting functions 5}~IOSCZ-
and 5}~Im0no, respectively.
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Figure 6: Slip length B for PS(13.7k) on OTS and DTS coatings as a function of
melt temperature. The data are extracted from rim profiles of holes of radius 12 pum
in 130 nm thick films.
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Figure 7: Capillary number Ca extracted from the rims analyzed in Fig. 6. Plotting
Ca versus the respective slip lengths, the data collapses on one curve. The solid line
indicates the result of simulations. The inset depicts a zoom to the region of slip
lengths below 1 pm.

5.2 Results and discussion

Since all tests show consistent results for both the viscosity and the slip length,
we can rely on the analysis method. In Fig. 6 the results for polystyrene films
of constant molecular weight (13.7 kg/mol) and constant initial film thickness
(130 nm) are summarized. All data shown here are extracted from rims of
the same volume. We find that the amount of slippage depends on both the
substrate underneath and the melt temperature. For polystyrene films on
the DTS coating, the slip length is about one order of magnitude larger than
on OTS. On both coatings, however, slippage decreases for increasing melt
temperature.

Plotting the capillary number obtained by rim shape analysis versus the
slip length, as shown in Fig. 7, we find that the data from different substrates
collapses on one curve. By varying the dewetting temperature or the type of
substrate underneath, we can change the amount of slippage and hence probe
this curve successively. As expected, the dewetting velocity S and with it the
capillary number Ca = nS/a increases for increasing slip length. But this
behavior is found to be clearly non-linear.

From the simulations shown in Fig. 2b, which were based on the lubrication
model in Egs. (20) and (21), we can in addition to the rim profile calculate
the dewetting velocity S at the stage when the rim size matches the one of
the experiments. Doing this for different numbers of the slip length, we gain
the capillary number as function of B. This curve is shown in Fig. 7 as the
solid line. The qualitative behavior is in good agreement to the experimental
data. However, a shift to lower capillary numbers can be observed. This may
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have various reasons. Firstly, the calculation was done for straight fronts,
whereas in the experiments the growth of circular holes is investigated. For
the analyzed experiments with hole radii 12 pm, however, the curvature of
the contact line is negligible compared to the curvature of the rim in radial
direction. Secondly, in the simulations only linear curvatures were taken into
account.

Results for the weak slip model with linearized curvature and with nonlin-
ear curvature in the expression for the surface tension suggest that the former
tend to underestimate the dewetting rate |20, 19]. This is consistent with
the observation that higher contact angles are typically associated with higher
dewetting rates [19, 21, 17, 22|, and inclusion of nonlinear curvature generally
leads to higher contact angles: The static contact angle ¢ for the nonlinear
curvature case is given by

1
1—(1+tan?0g)~ 1% = - mhin o(h),

or
1.
1—cosfg = — min o(h), (50)

see for example [15], and from this we obtain for the linearized curvature case
(tanfg < 1):

L can? s = L in o(h). (51)
2 o h

One easily finds that for 0 < g < 7/2, the expression (51) results in larger
contact angles than (50). Note also the steeper fronts in the dewetting profiles
for the nonlinear curvature models in [20]. All these facts may explain the
shift in capillary number shown in Fig. 7.

Let us for a moment focus on a special region in the Ca(B) plot. There is
a specific regime near the transition from oscillatory to monotonic rims where
the fitting procedure is not straight forward. Note that the ‘'monotonic’ fitting
function §Hpone = 0H, exp(I'1E) + 6H, exp(I'yE), which is the solution for
real I'y and 'y, exhibits a local minimum and approximates zero from negative
values, if one of the coefficients 6H; or 6Hs is negative. Hence, for profiles
showing a local minimum between the rim and the undisturbed film but which
do not show a clearly pronounced second maximum, both functions 8H ,s0; and
5ﬁm0no may capture the data. We have fitted both functions to a number of
profiles in that regime and extracted the slip lengths as well as the respective
capillary numbers. The results for B shown in Fig. 8 correspond to a growing
hole in a 130 nm thick PS film dewetting from OTS at 110°C as captured by
in situ AFM. For small holes, the function 5ﬁm0no captures the monotonic
profiles very well, and the results for the slip length are reasonable. For radii
between about 1.5 and 5 pm the rim profile exhibits a local minimum. The
function 5ﬁmom still captures the rim shapes when choosing one negative
coefficient 5ﬁ1/2, however, the extracted slip lengths are not independent of
R. The identical rim profiles fitted by 5ﬁosci result in a constant slip length.
For holes of radii larger than 5 pym the function 5ﬁm0no does not capture the
oscillatory rim profiles at all. The described consistency check for various rim
sizes provides a general argument that excludes the case of negative coefficients
5ﬁ1/2 in the fitting function 6 H,pone for real [y o

15



mono- |

2000+ tonic 1 milnoi(r:T?lIJm oscillatory profile 1
i |
profile !
1500 | 4
€
L ®  MONo
@ 1000} o osGi -

;

) H. 0% 306 60 b

0 1 1 1
0 2000 4000 6000 8000
hole radius R [nm]

R O

Figure 8: Near the transition between monotonically and oscillatorily decaying rims,
profiles with a clear minimum can be fitted by both functions 5Hmono or 5Hom
Using the function for real I'y /s, 5Hmono, the results for B are much larger than for

fitting the profiles by 5}~IOSCZ-. The data correspond to a 130 nm thick PS(13.7k) film
dewetting from OTS at 110°C, as captured by in situ AFM.

5.3 Limitation of validity

For the rim analysis as described above we need two inverse decay lengths I'y
or I'y. However, in the case of extremely large slip lengths and asymmetric
rims, the second inverse decay length is to large to be observed experimentally.
As a consequence, it is not possible to determine neither the capillary number
nor the slip length solely from the rim profile. However, if the capillary number
is measured independently, one of the inverse decay lengths is sufficient to de-
termine the slip length. In our experiments, the described situation occurs for
130 nm thick PS(13.7k) films on the DTS coating, dewetting at 105°C. By us-
ing independently measured viscosity and velocity data, the capillary number
can be determined. From the fit to the rim profile we have I'y. Inserting now
Ca and I'y in the characteristic equation (48), the slip length in this situation
is found to be about 5 um, which corresponds to the ratio b = B/H =~ 40. The
same experiment at 110 °C exhibits a slip length of about 3 um, hence b ~ 20.
This turns out to be about the limit up to which both inverse decay lengths I'y
and I's can be extracted from the measured rim profile. For polystyrene films
of higher molecular weight (above 100 kg/mol), the rim gets more and more
asymmetric |23], indicating an increasing slip length. Hence, in most cases the
slip length is expected to exceed the upper limit of b ~ 20.

In the examples described above, we used the strong slip model in order
to extract the capillary number and the slip length out of the rim profiles.
However, this model is only valid for slip lengths larger than the film thickness.
The smallest B observed in our experiments for PS(13.7) films on OTS at
130°C was in the order of H. For systems with much smaller slip lengths
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Figure 9: Comparison of slip parameters that yield the same two (real or complex)
spatially decaying modes using either the strong slip model x1,, (open circles), the
third Taylor expansion of the Stokes model xr (stars), or the full Stokes model yg
(solid line). The data correspond to the rim profiles analyzed in Fig. 6.

the strong slip model will produce systematic errors. As shown in Fig. 3,
the critical dewetting velocity $..;+(b) as obtained from the strong slip model
deviates from the actual value obtained from the full Stokes model significantly
for small b.

The validity and accuracy of the strong slip lubrication approximation
can be assessed by comparison with the result for the full Stokes model.
Fig. 9 shows slip parameters determined by the lubrication model X1y, biup =
Blub/ﬁ, in comparison to results using the Stokes model xg, bg = BS/ET.
There are quite strong deviations for weak slippage, i.e., for b < 1. For rim
shape analysis in practise, however, it is not convenient to use the full Stokes
model yg, since the expressions for Bg and Cag are rather longish and cum-
bersome. So we use the (apparently quite accurate) Taylor approximation
instead. The respective characteristic equation (43) in dimensional form is
given by

Y\ AN\, .., |
. — - — —Ca— =0. (52
x1([; B, Ca) <1+3B> (HT) +4Ca<1+2B>(HF) CaB 0. (52)
Knowing two roots I'; and I'y of Eq. (52) from rim shape analysis, we get two
equations with the two unknowns B and Ca for which we can solve and obtain

1 4T +T35 H

- H _H? TS HTi+Thp+T3
- 4H 2132 2’ '

ar = —
6 I''+T1y 4 I'h+1

(53)

Note that the expression for By in (53) differs from the lubrication result

By in (49) by exactly H /2. Note also that Eq. (52) is also valid for small

values of B, i.e., for the regime in which one would use the weak slip lubrication

T
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model which leads to Eq. (44). However, using the characteristic equation (44)
one cannot determine both Ca and B from the rim shape.

The results for by = BT/ET are shown in Fig. 9 in comparison to the
values by, and bg. Using the strong slip lubrication model xp,;, instead of the
full Stokes model xg, the relative error for the extracted slip length increases
significantly for decreasing slippage. However, when using yT, the deviation
of the calculated slip length is quite small, even for weak slippage. Since no
limitation for small slip lengths is given for the third Taylor expansion of the
full Stokes model, the respective Eq. (53) is recommended to be used for the
determination of slippage by rim shape analysis.

6 Conclusions and outlook

In this article, we have shown both experimentally and theoretically that slip-
page significantly affects the rim shape of dewetting thin liquid films: slowly
moving fronts with no or weak slip at the solid/liquid interface develop an os-
cillatory decaying rim - i.e., complex eigenvalues of the characteristic equation
x of linear stability analysis in a co-moving frame - whereas strong slippage
and faster dewetting result in a monotonically decaying shape, corresponding
to real negative roots of x. The critical line between complex and real solu-
tions, i.e., where this morphological transition of the rim shape occurs, could
be very accurately predicted by a new model applied: instead of using a lubri-
cation model xp,, that only accounts for large slip lengths, we calculated the
third order Taylor expansion yT of the characteristic equation obtained from
the full Stokes model, xg. The analytical solution for the transition line using
xT compares very well to the numerical solution obtained from the Stokes
model, even for weak slippage.

Moreover, we developed a method for extracting the slip lengths of dewet-
ting liquid films using rim shape analysis. For short-chained polystyrene films
on the DTS coating we found slip lengths about one order of magnitude larger
than for the same films on OTS. Additionally, on both coatings, the slip length
decreases for increasing melt temperature. As already seen for the critical line
of morphology transition, the results for the slip length gained from the lu-
brication model xj,, are a rather good approximation in the regime of strong
slippage. More accurate results for the whole range of slip lengths, however,
can be obtained by using xr, the third order Taylor expansion of the full
Stokes model.
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