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AbstratTo haraterize non-trivial boundary onditions of a liquid �owing pasta solid, the slip length is ommonly used as a measure. From the pro�leof a retrating liquid front as measured, e.g., with atomi fore mirosopy,the slip length as well as the apillary number an be extrated by the helpof the Stokes model for a thin liquid �lm dewetting from a solid substrate.Spei�ally, we use a lubriation model derived from the Stokes model forstrong slippage and linearize the �lm pro�le around the �at, unperturbed �lm,and, for small slip lengths a Taylor approximation of the linearisation for thefull Stokes model. Furthermore, from the apillary number and the knowledgeof the liquid front veloity and the surfae tension, we an obtain the visosityof the �uid �lm. We ompare theoretial and experimental results, test theonsisteny and the validity of the models/approximations, and give an easy-to-follow manual of how they an be used to analyze experiments.1 IntrodutionIn miro�uidi devies, the drag of a �uid is a substantial onern sine, fora given pumping power, it limits the miro�uidi hannel length that an be�lled. It therefore sets also the limits to, e.g., the number of possible analy-sis steps. Drag an be redued by dereasing the frition at the liquid/solidinterfae or, in other words, by inreasing the �uid veloity at the interfae.This results in a sliding of the �uid over the solid, and a non-zero bound-ary ondition for the interfae veloity. The amount of slippage is typiallyharaterized by the depth b below the solid-liquid interfae at whih the ex-trapolated veloity vanishes.To date, a number of methods exist to determine the slip length, most ofthem involving traer partiles [1, 2℄, �uoresene reovery after photobleah-ing [3, 4℄, olloidal probe mirosopy [5, 6℄, or surfae fores apparatus [7, 8℄.Detailed reviews an be found in reent artiles by Lauga et al. [9℄ or Neto etal. [10℄. In our previous studies [11, 12, 13℄, we have introdued a new methodto gain interfaial �ow properties, namely the analysis of the pro�le of a liquidfront. Spei�ally, we exploit that the amount of slippage has a signi�ant in-�uene on the deay of the pro�le onto the unperturbed �lms, where the modelequations an be linearized. A more omprehensive asymptoti analysis of theentire pro�le in the presene of large slippage, whih neessarily must onsiderall nonlinearities, is a separate diretion of (in part still ongoing) researh [14℄.For the purpose here, the information obtained from the linearized model(s)is su�ient to obtain the slip length by �tting the eigenvalues that govern thedeay of the pro�le to the experimentally measured �lm pro�les. The method1



works well for visous �uids dewetting from a solid surfae and is based ona lubriation model with a Navier-slip ondition for the �ow of a Newtonianliquid in the limit of strong e�etive slippage (large slip lengths).To test this model, we also disuss here the full two dimensional desrip-tion using the underlying Stokes model. We �nd that, while the strong sliplubriation model is valid in most of the interesting parameter regimes, i.e.where hanges in the slippage have a signi�ant impat on the �lm pro�le, thevalidity an be extended to smaller slip lengths by using a third order Taylorexpansion for the eigenvalue relation haraterizing the linearized �lm pro�le.The third order Taylor expansion of the Stokes model is able to extrat sliplength and apillary number quite aurately from experiments of dewetting�uids where the form of the pro�le is aessible, e.g., by atomi fore mi-rosopy (AFM). Via the apillary number, the visosity an be gained if thedewetting veloity and the surfae tension are known. In the following we willdevelop the theoretial approah, ompare numerial and experimental results,introdue the Stokes model and its approximations, test their validity in manyaspets, and give a reipe how they an be used to analyze experiments.2 FormulationReently we have shown that the dewetting proess of highly visous polystyrene(PS) melts on hydrophobized silion wafers is well desribed by a lubriationmodel in the regime of large slip lengths, [11, 13℄. For the situation onsideredhere, the �ow is very slow and non-Newtonian properties, suh as visoelas-tiity of the melt, an be negleted. For the same reason, inertial terms willnot play any role. For larity of presentation and as in our previous studies,we will onsider the e�etively two dimensional situation of a liquid ridge,whih is translationally invariant in the Y -diretion parallel to the �at andhomogeneous substrate. Hene, we begin our theoretial disussion with theStokes equations for an inompressible �uid layer on 0 ≤ Z ≤ H(X,T ) in twodimensions
−∇P + η∇2

U = 0, ∇ · U = 0, (1)together with appropriate boundary onditions (see below). Here, U = U(X,Z, T ) êx+
W (X,Z, T ) êz denotes the veloity �eld, η the visosity, and P = P (X,Z, T )the pressure �eld.At the free surfae Z = H(X,T ), we have the usual kinemati onditionfor nonvolative �uids

∂TH = −∂X

∫ H

0

U(X,Z)dZ (2)and normal and tangential stress boundary onditions with onstant surfaetension σ
n · τ · n − (P − Φ′(H)) = 2σ κ, and n · τ · t = 0, (3)with the stress tensor

τ = η
[

∇U +
(

∇U
)T ]

, (4)2



and where Φ′(H) = dΦ/dH denotes the ontribution due to the e�etiveinterfae potential Φ(H) (of Born/Van der Waals type), see e.g. [15℄ for detailsof the potential. The normal and tangential unit vetors are given by
n =

(−∂XH, 1)
√

1 +
(

∂XH
)2

and t =
(1, ∂XH)

√

1 +
(

∂XH
)2
, (5)where the loal mean urvature is κ = ∇ · n. At Z = 0, we assume imperme-ability of the substrate and the Navier-slip boundary ondition,

W = 0 and U = B ∂ZU, (6)with the Navier slip length B.We non-dimensionalize the above system of equations using the followingsales
Z = H̄ z, X = L̄ x, H = H̄ h, B = H̄ b,

U = Ū u, W = W̄ w, T = H̄
W̄
t, P = P̄ p,

Φ′ = P̄ φ′. (7)The vertial length sale H̄ is �xed by the average �lm thikness and thelateral length sale L̄ by the ompetition of the e�etive interfae potentialand the surfae tension, i.e., by the dispersive apillary length. The vertialand horizontal veloity sale are linked via the inompressibility ondition
Ū = L̄ W̄ /H̄ . The hoie of the pressure sale P̄ and of the veloity sale Ūtogether with the magnitude of b �xes the �ow regime.In [12℄ it is shown that also for large slip lengths, i.e., for b≫ 1, the saleseparation H̄ /L̄ = ε ≪ 1 allows for the derivation of a simpli�ed lubriationmodel, where the �ow �eld is essentially plug �ow. This implies a balane ofthe pressure gradient with the dominant visosity ontribution in the vertialmomentum equation, whih yields the saling

P̄ H̄

η Ū
∼ ε.We assume that surfae tension and pressure balane in the normal stressondition (and therefore surfae tension does play a role in the dynamis ofthe �lm), i.e.,

σ

P̄ H̄
∼ ε−2,so that

Ū =
σ ε

η
and Ca =

η Ū

σ
= ε. (8)In addition we assume b = β/ε2 with β = O(ε0), i.e., that the slip length islarge as ompared to the lateral length sale L̄ . The non-dimensional problemin the strong-slip saling is therefore

−ε2 ∂xp+ ε2 ∂2
xu+ ∂2

zu = 0, (9)
−∂zp+ ε2 ∂2

xw + ∂2
zw = 0, (10)

∂xu+ ∂zw = 0, (11)3



with boundary onditions at z = h(x, t),
∂th−w + u∂xh = 0, (12)

(

∂zu+ ε2 ∂xw
) (

1 − ε2 (∂xh)
2
)

+ 2 ε2 ∂xh (∂zw − ∂xu) = 0, (13)
p− φ′(h) − 2

(

1 − ε2 (∂xh)
2
)

∂zw − ∂xh
(

∂zu+ ε2 ∂xw
)

1 + ε2 (∂xh)2

+
∂2

xh

(1 + ε2 (∂xh)2)
3/2

= 0, (14)and boundary onditions at z = 0,
w = 0 and u = b ∂zu =

β

ε2
∂zu. (15)As shown in detail in [12℄, assuming that u, w, p and h have the asymptotiexpansions

u(x, z, t; ε) = u0(x, z, t) + ε2 u1(x, z, t) +O(ε4), (16)
w(x, z, t; ε) = w0(x, z, t) + ε2 w1(x, z, t) +O(ε4), (17)
p(x, z, t; ε) = p0(x, z, t) + ε2 p1(x, z, t) +O(ε4), (18)
h(x, t; ε) = h0(x, t) + ε2 h1(x, t) +O(ε4), (19)and integrating the problem to O(ε2) the lubriation model for strong slip isfound to be
4

h0

∂x(h0 ∂xu0) + ∂x

(

∂2
xh0 − φ′(h0)

)

− u0

β h0

= 0, (20)where the solution of the leading order problem implies that u0 = u0(x, t).The �rst term on the left side is proportional to the divergene of the totallongitudinal shear stress integrated over the �lm thikness. The seond termis the gradient of the pressure in the �lm. This equation, oupled with thekinemati ondition (2), i.e.
∂th0 + ∂x(h0 u0) = 0, (21)gives a losed system for u0(x, t) and h0(x, t), whih is alled the strong slipmodel [12℄.3 Experiments and omparison with numer-ial resultsIn order to test the theoretial strong slip model we performed dewetting exper-iments with thin �lms of short-hained polystyrene (PS) on top of hydropho-bized silion wafers. We ahieved 130 nm thik �lms of atati PS (moleularweight 13.7 kg/mol, Mw/Mn = 1.03, PSS Mainz, Germany) by spinoating atoluene solution on mia, �oating the �lms on fresh MilliporeTM water and4
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Figure 1: a) Optial image of a hole in a 130 nm thik PS(13.7k) �lm, dewettedfrom OTS on Si at 120 ◦C. b) AFM image of a setion of the rim around the holeshown in a). A ross-setion taken in radial diretion (indiated by the white line)gives the rim pro�le whih will be ompared to the theory.transferring them onto the oated wafers. To hydrophobize the substrates, weoated silion wafers (2.1 nm native oxide layer, Waker, Burghausen, Ger-many) with two di�erent silane monolayers, otadeyltrihlorosilane (OTS)and the shorter dodeyltrihlorosilane (DTS) using standard tehniques [16℄.The rms roughness of both types of substrate as measured by atomi foremirosopy (AFM) at (1µm)2 san size is below 0.15 nm. The ontat angleof polystyrene droplets is 67(3)◦ on both oatings, as AFM sans revealed.In order to mobilize the �lms whih are glassy at room temperature, weheated the samples to di�erent temperatures (105 ◦C to 130 ◦C) above theglass transition of PS(13.7k), Tg = 97 ◦C. The dewetting proess sets in bynuleation of holes whih instantaneously start to grow [15, 17, 18℄. Sine wewill only analyze the shape of the dewetting rim around the hole, the atualnuleation mehanism (homogeneous or heterogeneous) is irrelevant here. Weobserved the growth of holes by optial mirosopy in order to determine thedewetting veloity. One the holes had a radius of 12 µm, we rapidly quenhedthe samples to room temperature and measured the pro�les of the holes withan atomi fore mirosope (AFM). See Fig. 1 for a typial image.Comparing the pro�les for PS �lms on OTS and DTS overed wafers atidential temperature, we �nd substantial di�erenes, as shown in Fig. 2a) for120 ◦C. Films on DTS exhibit a rim pro�le that deays monotonially towardsthe undisturbed �lm, whereas a �lm on the OTS layer exhibits an osillatorydeaying rim shape. To larify the di�erent rim morphologies, the inset toFig. 2a) depits |H(X)− H̄ | in a semi-logarithmi plot. Here, H̄ denotes theprepared �lm thikness.In Fig. 2b) rim pro�les alulated by the lubriation model (20) and (21)are shown for di�erent slip lengths. For details of the simulations we refer toRefs. [12, 19℄. Inreasing the slip length b, we an observe a transition fromosillatory to monotonially deaying rim pro�les.In order to understand this morphologial transition of rim shapes observed5
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Figure 2: a) Rim pro�les of holes of radius 12 µm in 130 nm thik PS(13.7k) �lms,dewetted at 120 ◦C. Depending on the substrate, OTS or DTS overed Si wafers, thepro�les show a osillatory or monotonially deaying rim towards the undisturbed�lm. b) Rim pro�les alulated from the lubriation model for di�erent slip lengths
b nondimensionalized with H̄ = 130 nm.

6



in both the experiments and the simulations, we onentrate in the next setionon the region where the rim onnets to the undisturbed �lm and developtheoretial models to desribe rim pro�les.4 Linear stability analysis about the undis-turbed uniform �lmThe struture of the dewetting rim as it propagates into the undisturbed �lman be found via linearized analysis. Note that for later omparison withexperiments, the ontribution from the intermoleular potential an be ne-gleted. In the following, we analyze the shape of the rim lose to the resting�lm. There, the �lm thikness is still lose to the thikness of the �at resting�lm, whih will be the base state. We linearize about this base state withrespet to in�nitesimal perturbations of the �lm thikness, �ow veloity, et.,of size δ and obtain the shape of the leading edge of the rim.4.1 Lubriation modelThe base state of the strong slip model in Eqs. (20) and (21) is h(x, t) = 1 and
u(x, t) = 0 about whih we linearize with respet to in�nitesimal perturbationsof size δ,

h(x, t) ∼ 1 + δ h̃(x, t), u(x, t) ∼ δ ũ(x, t), δ ≪ 1, (22)and obtain the linearized equations
4 ∂2

xũ+ ∂3
xh̃− 1

β
ũ = 0, (23)

∂th̃+ ∂xũ = 0. (24)To desribe the advaning edge of the ridge, it is onvenient to shift into aframe of referene o-moving with the ridge, ξ = x − s(t), and seek quasi-stationary solutions in the form of travelling fronts, h̃ = h̃(ξ). Then, theontinuity equation (24) fores ũ = ṡh̃(ξ). Inserting this into the momentumequation (23) yields
4 ṡ ∂2

ξ h̃+ ∂3

ξ h̃− ṡ

β
h̃ = 0. (25)To understand the qualitative forms of the advaning ridge in this equation, wesolve it with the ansatz h̃(ξ) = ĥ exp(γ ξ), yielding the harateristi equation

χlub(γ;β, ṡ) = γ3 + 4 ṡ γ2 − ṡ

β
= 0. (26)Note that in this equation γ depends on t parametrially through s(t).For the transitions in the ridge struture we note that Desartes' law ofsigns shows that there is one positive real root and either two negative or twoomplex onjugate roots. Physially relevant solutions, with h̃(ξ → ∞) → 0,7



must have ℜ(γ) < 0. The hange of roots from real to omplex onjugateours when the disriminant vanishes, equivalently,
1 − 256

27
β ṡ2 = 0. (27)From (27), we obtain an estimate for the ritial ridge speed that separatereal-deaying pro�les (γ real) from osillatory pro�les (omplex onjugate γ)in terms of the slippage

ṡcrit ∼
√

3

β

3

16
. (28)4.2 Stokes modelIn order to show the range of validity and appliability of this result, it isinstrutive to go bak to the full Stokes model. We start with equations (9)�(15), i.e., the Stokes model in the strong-slip saling, but we keep all terms.In two dimensions it is onvenient to express the �ow veloities in termsof the stream funtion

∂zψ = u and − ∂xψ = w. (29)Then we an formulate the inompressible Stokes problem in Eqs. (9�11) ou-pled to the kinemati ondition in Eq. (12) in terms of ψ and h. For theinompressible Stokes equations (9�11) we get
∂4

zψ + 2 ε2 ∂2
x∂

2
zψ + ε4 ∂4

xψ = 0. (30)The boundary onditions at the �lm surfae z = h in Eqs. (12�14) beome
∂th+

d

dx
ψ(x, h, t) = 0, (31)

(

∂2
zψ − ε2 ∂2

xψ
) (

1 − ε2 (∂xh)
2
)

− 4 ε2 ∂xh∂x∂zψ = 0, (32)
ε2 ∂2

x∂zψ + ∂3
zψ −

(

ε4 ∂3
xψ + ε2 ∂x∂

2
zψ

)

∂xh+ ε2
d

dx

∂2
xh

(

1 + ε2 (∂xh)
2
)3/2

−2 ε2
d

dx

−
(

1 − ε2 (∂xh)
2
)

∂x∂zψ − ∂xh
(

∂2
zψ − ε2 ∂2

xψ
)

1 + ε2 (∂xh)
2

= 0, (33)respetively. Note that in order to be able to express the pressure in termsof ψ via Eqs. (9) and (10), Eq. (33) is the total derivative of Eq. (14) withrespet to x. At z = 0 we get from Eq. (15)
ψ = 0 and ∂zψ − b ∂2

zψ = 0. (34)As in the previous setion we now linearize about the undisturbed basestate h = 1 and ψ = 0, i.e., about the �at and resting �lm, by perturbing via
h = 1 + δ h̃ and ψ = δ ψ̃, (35)8



with δ ≪ 1. We then transform to the moving frame oordinate ξ = x− s(t)and make the ansatz
ψ̃(x, z, t) = ψ̂(z) exp(γ ξ) and h̃(x, t) = ĥ exp(γ ξ) (36)Keeping only the O(δ) terms we obtain the linearized problem for the fullStokes model in Eq. (30)

∂4
z ψ̂ + 2 (ε γ)2∂2

z ψ̂ + (ε γ)4ψ̂ = 0 (37)in 0 < z < 1, with boundary onditions at the �lm surfae at z = 1 (orre-sponding to Eqs. (32) and (33))
(ε γ)2ψ̂ − ∂2

z ψ̂ = 0 (38)
3 (ε γ)2∂zψ̂ +

(ε γ)3

ε ṡ
ψ̂ + ∂3

z ψ̂ = 0, (39)and at the substrate surfae at z = 0 (derived from Eq. (34))
ψ̂ = 0 and ∂zψ̂ − b ∂2

z ψ̂ = 0. (40)The general solution for the linear ordinary di�erential equation in Eq. (37)is
ψ̂(z) = c1 e

i ε γ z + c2 e
−i ε γ z + c3 z e

i ε γ z + c4 z e
−i ε γ z. (41)Inserting this into the boundary onditions (38)�(40) yields a system of linearhomogeneous equations for the oe�ients c1, . . . , c4. This system has a non-trivial solution, indiating an eigensolution of (37)�(40), if the determinant ofthis system is zero. The determinant one easily �nds to be (after multipliationwith ṡ b (ε γ)4/16)

χS(γ; b, ṡ) =

(

−ε2 ṡ γ +
1

4 b

)

sin(2 ε γ) +

(

ε ṡ

2 b
+
ε γ

2

)

cos(2 ε γ)

− 2

(

1 +
1

2 b

)

ε ṡ (ε γ)2 −
(

1

2
+

1

2 b

)

ε γ +
ε ṡ

2 b
. (42)For (42), we seek the solutions γ whih have a negative real part, sine werequire that the perturbed pro�le h̃(x, t) → 1 as x → ∞. Furthermore, wefous on the ase where the deay is onsistent with the basi assumption oflubriation theory, namely, that the length sale ratio, measured for exampleby the typial spatial derivative of the unsaled �lm thikness, is of order ǫ.For the sale variable h̃(x, t) given in (36), this an be satis�ed by requiringthat h̃x/h = γ is of order one.Thus, ǫγ is assumed to be small and we an approximate χS by its Taylorexpansion for ǫγ ≪ 1.

χT(γ; b, ṡ) =

(

1 +
1

3b

)

(εγ)3 + 4εṡ

(

1 +
1

2b

)

(εγ)2 − εṡ

b
= 0. (43)If we now reall b = β/ε2 for the strong slip regime, and take the limit ε→ 0keeping β = O(1) �xed, we obtain to leading order the harateristi equation

χlub(γ;β, ṡ) for the strong-slip lubriation model, i.e., equation (26).9
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Figure 3: Comparison of the ritial ṡ(b), given by (45), at whih the dominanteigenvalues γ that govern the spatial deay of the �lm pro�le hange from omplexonjugate (for ṡ < ṡcrit(b)) to two real eigenvalues (for ṡ > ṡcrit(b)). The solid,dashed, and dash-dotted lines are, respetively, the ritial ṡcrit(b) for the eigenvaluesobtained from for full Stokes model, χ = χS, for third order Taylor approximationof χS, i.e, χ = χT, and for the strong slip lubriation model, where χ = χlub.Before proeeding, let us note that resaling the dewetting speed as ṡ =
ε2ṡ∗, taking the limit ε→ 0 keeping ṡ∗ = O(1) and b = O(1) �xed (in ontrastto the saling b = β/ε2 with β = O(1) in the rest of the paper), one �nds toleading order in ε the harateristi equation for the weak-slip regime

χweak(γ; b, ṡ
∗) = γ3 − ṡ∗

b+ 1/3
= 0. (44)Next, we fous on the two dominant deaying modes γ1 and γ2 for thespatial deay of the �lm pro�le, for eah of the three harateristi equations,i.e., χlub, χS, and χT. These modes are given by χ = 0 with Re(γ) < 0 forwhih the modulus of is smallest. They an be either two real negative or aomplex onjugate pair of values. Note that χT and χlub are ubi polynomialswith at most three zeros, while χS is a transendental equation whih an havein�nitely many solutions for χS = 0.Inspetion of these two dominant modes shows that for eah of the three

χ's, the eigenvalues are omplex onjugate for (b, ṡ) below a ertain line, andreal above it. The line is haraterized by a merging of the two values to onereal double root of the equation, i.e., for those (b, ṡ(b)) that satisfy
χ(γ; b, ṡ) = 0 and d

dγ
χ(γ; b, ṡ) = 0. (45)10



For χS, these equations have to be solved numerially to obtain εṡS
crit

(b), whilefor χT and χlub we obtain
εṡT

crit =
3
√

3

16

b+ 1/3

(b+ 1/2)3/2
, (46)

εṡlub
crit =

3
√

3

16
b−1/2, (47)respetively. The omparison is done in Fig. 3 and shows that the result for

εṡT
crit

yields a good approximation for the urve εṡS
crit

(b) of the full model forall values of b, while the approximation quality of the value εṡlub
crit

obtainedfrom strong slip lubriation model deteriorates for small b as expeted.5 Method to quantify slippage and its valid-ity5.1 MethodThe proess of determining the slip length from the shape of a moving rim es-sentially reverses the above onsiderations: from the experimentally measuredrim shape the two dominant deaying spatial modes γ1 and γ2 are extrated.Using these values, the slip length B as well as the apillary number Ca anbe determined from the harateristi equation χ = 0. Sine the full Stokesmodel χS ends up in quite umbersome expressions for B and Ca, we fous inthe following setion on the strong slip lubriation model.To get the values for γ1 and γ2 (or rather their dimensional form Γ1/2 =
γ1/2/L̄ ) from the experimentally observed rim pro�les, one has to �t the re-spetive funtion H(Ξ) = H̄ + δ H̃(Ξ) to the data in the region of smallperturbation of the undisturbed �lm of thikness H̄ . Note that Ξ = L̄ ξ de-notes the dimensional form of the absissa ξ. For the �tting proedure, weused data points of the pro�les up to a maximal height of about 120% of H̄ . Inthe ase of osillatory deaying pro�les (i.e., when a loal minimum of the �lmheight exhibits where the rim is onneted to the undisturbed �lm, eventuallyfollowed by a loal maximum), Γ1 and Γ2 are a pair of two omplex onjugatenumbers Γ1/2 = Γr ± iΓi with negative Γr. Here, an exponentially dampedosillation δ H̃osci = δ H̃0 exp(Γr Ξ) cos(Γi Ξ +φ) (�t parameters are δ H̃0, Γi,
Γr, and φ) aptures the deay towards the resting �lm thikness H̄ in theexperimental data very well, f. Fig. 4. From the �t we gain the inverse deaylength Γr and the wave number Γi, and thus Γ1/2 = Γr ± iΓi. In the aseof monotonially deaying rims, the data an be �tted by a superposition oftwo exponentials δ H̃mono = δ H̃1 exp(Γ1 Ξ) + δ H̃2 exp(Γ2 Ξ) (�t parameters
δ H̃1/2 and Γ1/2) with the inverse deay lengths Γ1 and Γ2.Knowing Γ1 and Γ2, these values an now be used to determine the sliplength and the apillary number of the investigated system. For this purpose,we reall the harateristi equation of the strong slip lubriation model indimensional form

χlub(Γ;B,Ca) = (H̄ Γ)3 + 4Ca (H̄ Γ)2 − Ca H̄
B

= 0, (48)11
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Blub =

1

4H̄

Γ2
1 + Γ1Γ2 + Γ2

2

Γ2
1
Γ2

2

, Calub = −H̄
4

Γ2
1 + Γ1Γ2 + Γ2

2

Γ1 + Γ2

. (49)Additionally, the �lm visosity η an be determined from the apillary num-ber Ca, using the surfae tension σ = 30.8 mN/m and the observed dewettingveloity Ṡ. We like to emphasize that in order to determine solely the sliplength, the knowledge of neither the dewetting veloity nor the visosity isrequired.In order to hek the onsisteny of the above explained analysis we per-formed a ouple of tests with the experimental data. Firstly, we determinedthe visosity from the extrated apillary number from pro�les on OTS andDTS at di�erent temperatures. The visosity was found to be in line with rheo-metri data, f. Fig. 5. A seond test was the variation of the �lm thiknesswhih leads to di�erent values for Γ1/2 and Ṡ but whih does not hange theslip length and the visosity. Indeed, the extrated slip length was indepen-dent of initial �lm thikness. In a third and last onsisteny hek we analyzedholes of various sizes. With growing hole diameter the rim gets larger. Sinefrition fores inrease with rim size, the dewetting veloity slows down. As aonsequene, a more pronouned osillatory shape an be found, resulting ina variation of the �tting parameters Γ1 and Γ2 with hole size. However, theslip lengths and visosities obtained via Eq. (49) were independent of the holesize as expeted. For details we refer to Ref. [13℄.
12
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have various reasons. Firstly, the alulation was done for straight fronts,whereas in the experiments the growth of irular holes is investigated. Forthe analyzed experiments with hole radii 12 µm, however, the urvature ofthe ontat line is negligible ompared to the urvature of the rim in radialdiretion. Seondly, in the simulations only linear urvatures were taken intoaount.Results for the weak slip model with linearized urvature and with nonlin-ear urvature in the expression for the surfae tension suggest that the formertend to underestimate the dewetting rate [20, 19℄. This is onsistent withthe observation that higher ontat angles are typially assoiated with higherdewetting rates [19, 21, 17, 22℄, and inlusion of nonlinear urvature generallyleads to higher ontat angles: The stati ontat angle θS for the nonlinearurvature ase is given by
1 − (1 + tan2 θS)−1/2 = − 1

σ
min

h
φ(h),or

1 − cos θS = − 1

σ
min

h
φ(h), (50)see for example [15℄, and from this we obtain for the linearized urvature ase(tan θS ≪ 1):

1

2
tan2 θS = − 1

σ
min

h
φ(h). (51)One easily �nds that for 0 ≤ θS ≤ π/2, the expression (51) results in largerontat angles than (50). Note also the steeper fronts in the dewetting pro�lesfor the nonlinear urvature models in [20℄. All these fats may explain theshift in apillary number shown in Fig. 7.Let us for a moment fous on a speial region in the Ca(B) plot. There isa spei� regime near the transition from osillatory to monotoni rims wherethe �tting proedure is not straight forward. Note that the 'monotoni' �ttingfuntion δH̃mono = δH̃1 exp(Γ1Ξ) + δH̃2 exp(Γ2Ξ), whih is the solution forreal Γ1 and Γ2, exhibits a loal minimum and approximates zero from negativevalues, if one of the oe�ients δH̃1 or δH̃2 is negative. Hene, for pro�lesshowing a loal minimum between the rim and the undisturbed �lm but whihdo not show a learly pronouned seond maximum, both funtions δH̃osci and

δH̃mono may apture the data. We have �tted both funtions to a number ofpro�les in that regime and extrated the slip lengths as well as the respetiveapillary numbers. The results for B shown in Fig. 8 orrespond to a growinghole in a 130 nm thik PS �lm dewetting from OTS at 110 ◦C as aptured byin situ AFM. For small holes, the funtion δH̃mono aptures the monotonipro�les very well, and the results for the slip length are reasonable. For radiibetween about 1.5 and 5 µm the rim pro�le exhibits a loal minimum. Thefuntion δH̃mono still aptures the rim shapes when hoosing one negativeoe�ient δH̃1/2, however, the extrated slip lengths are not independent of
R. The idential rim pro�les �tted by δH̃osci result in a onstant slip length.For holes of radii larger than 5 µm the funtion δH̃mono does not apture theosillatory rim pro�les at all. The desribed onsisteny hek for various rimsizes provides a general argument that exludes the ase of negative oe�ients
δH̃1/2 in the �tting funtion δH̃mono for real Γ1/2.15
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χT(Γ;B,Ca) =

(

1 +
H̄

3B

)

(H̄ Γ)3+4Ca(

1 +
H̄

2B

)

(H̄ Γ)2−CaH̄
B

= 0. (52)Knowing two roots Γ1 and Γ2 of Eq. (52) from rim shape analysis, we get twoequations with the two unknowns B and Ca for whih we an solve and obtain
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.(53)Note that the expression for BT in (53) di�ers from the lubriation result
Blub in (49) by exatly H̄ /2. Note also that Eq. (52) is also valid for smallvalues of B, i.e., for the regime in whih one would use the weak slip lubriation17



model whih leads to Eq. (44). However, using the harateristi equation (44)one annot determine both Ca and B from the rim shape.The results for bT = BT /H̄ are shown in Fig. 9 in omparison to thevalues blub and bS . Using the strong slip lubriation model χlub instead of thefull Stokes model χS, the relative error for the extrated slip length inreasessigni�antly for dereasing slippage. However, when using χT, the deviationof the alulated slip length is quite small, even for weak slippage. Sine nolimitation for small slip lengths is given for the third Taylor expansion of thefull Stokes model, the respetive Eq. (53) is reommended to be used for thedetermination of slippage by rim shape analysis.6 Conlusions and outlookIn this artile, we have shown both experimentally and theoretially that slip-page signi�antly a�ets the rim shape of dewetting thin liquid �lms: slowlymoving fronts with no or weak slip at the solid/liquid interfae develop an os-illatory deaying rim - i.e., omplex eigenvalues of the harateristi equation
χ of linear stability analysis in a o-moving frame - whereas strong slippageand faster dewetting result in a monotonially deaying shape, orrespondingto real negative roots of χ. The ritial line between omplex and real solu-tions, i.e., where this morphologial transition of the rim shape ours, ouldbe very aurately predited by a new model applied: instead of using a lubri-ation model χlub that only aounts for large slip lengths, we alulated thethird order Taylor expansion χT of the harateristi equation obtained fromthe full Stokes model, χS. The analytial solution for the transition line using
χT ompares very well to the numerial solution obtained from the Stokesmodel, even for weak slippage.Moreover, we developed a method for extrating the slip lengths of dewet-ting liquid �lms using rim shape analysis. For short-hained polystyrene �lmson the DTS oating we found slip lengths about one order of magnitude largerthan for the same �lms on OTS. Additionally, on both oatings, the slip lengthdereases for inreasing melt temperature. As already seen for the ritial lineof morphology transition, the results for the slip length gained from the lu-briation model χlub are a rather good approximation in the regime of strongslippage. More aurate results for the whole range of slip lengths, however,an be obtained by using χT, the third order Taylor expansion of the fullStokes model.7 AknowledgmentsThe authors thank O. Bäumhen for helpful disussions. This work was sup-ported in part by the Heisenberg-sholarship DFG Grant MU 1626/3 (AM),the DFG Researh Center Matheon Berlin (AM and BW), the DFG GrantsMU 1626/5 (AM and BW), RA 1061/2 (MR), and Ja 905/3 (KJ) within thepriority program SPP 1164, and the European Graduate Shool GRK 532(RF). RF and KJ aknowledge generous support of Si wafers by Siltroni AG,18
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