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Abstra
tTo 
hara
terize non-trivial boundary 
onditions of a liquid �owing pasta solid, the slip length is 
ommonly used as a measure. From the pro�leof a retra
ting liquid front as measured, e.g., with atomi
 for
e mi
ros
opy,the slip length as well as the 
apillary number 
an be extra
ted by the helpof the Stokes model for a thin liquid �lm dewetting from a solid substrate.Spe
i�
ally, we use a lubri
ation model derived from the Stokes model forstrong slippage and linearize the �lm pro�le around the �at, unperturbed �lm,and, for small slip lengths a Taylor approximation of the linearisation for thefull Stokes model. Furthermore, from the 
apillary number and the knowledgeof the liquid front velo
ity and the surfa
e tension, we 
an obtain the vis
osityof the �uid �lm. We 
ompare theoreti
al and experimental results, test the
onsisten
y and the validity of the models/approximations, and give an easy-to-follow manual of how they 
an be used to analyze experiments.1 Introdu
tionIn mi
ro�uidi
 devi
es, the drag of a �uid is a substantial 
on
ern sin
e, fora given pumping power, it limits the mi
ro�uidi
 
hannel length that 
an be�lled. It therefore sets also the limits to, e.g., the number of possible analy-sis steps. Drag 
an be redu
ed by de
reasing the fri
tion at the liquid/solidinterfa
e or, in other words, by in
reasing the �uid velo
ity at the interfa
e.This results in a sliding of the �uid over the solid, and a non-zero bound-ary 
ondition for the interfa
e velo
ity. The amount of slippage is typi
ally
hara
terized by the depth b below the solid-liquid interfa
e at whi
h the ex-trapolated velo
ity vanishes.To date, a number of methods exist to determine the slip length, most ofthem involving tra
er parti
les [1, 2℄, �uores
en
e re
overy after photoblea
h-ing [3, 4℄, 
olloidal probe mi
ros
opy [5, 6℄, or surfa
e for
es apparatus [7, 8℄.Detailed reviews 
an be found in re
ent arti
les by Lauga et al. [9℄ or Neto etal. [10℄. In our previous studies [11, 12, 13℄, we have introdu
ed a new methodto gain interfa
ial �ow properties, namely the analysis of the pro�le of a liquidfront. Spe
i�
ally, we exploit that the amount of slippage has a signi�
ant in-�uen
e on the de
ay of the pro�le onto the unperturbed �lms, where the modelequations 
an be linearized. A more 
omprehensive asymptoti
 analysis of theentire pro�le in the presen
e of large slippage, whi
h ne
essarily must 
onsiderall nonlinearities, is a separate dire
tion of (in part still ongoing) resear
h [14℄.For the purpose here, the information obtained from the linearized model(s)is su�
ient to obtain the slip length by �tting the eigenvalues that govern thede
ay of the pro�le to the experimentally measured �lm pro�les. The method1



works well for vis
ous �uids dewetting from a solid surfa
e and is based ona lubri
ation model with a Navier-slip 
ondition for the �ow of a Newtonianliquid in the limit of strong e�e
tive slippage (large slip lengths).To test this model, we also dis
uss here the full two dimensional des
rip-tion using the underlying Stokes model. We �nd that, while the strong sliplubri
ation model is valid in most of the interesting parameter regimes, i.e.where 
hanges in the slippage have a signi�
ant impa
t on the �lm pro�le, thevalidity 
an be extended to smaller slip lengths by using a third order Taylorexpansion for the eigenvalue relation 
hara
terizing the linearized �lm pro�le.The third order Taylor expansion of the Stokes model is able to extra
t sliplength and 
apillary number quite a

urately from experiments of dewetting�uids where the form of the pro�le is a

essible, e.g., by atomi
 for
e mi-
ros
opy (AFM). Via the 
apillary number, the vis
osity 
an be gained if thedewetting velo
ity and the surfa
e tension are known. In the following we willdevelop the theoreti
al approa
h, 
ompare numeri
al and experimental results,introdu
e the Stokes model and its approximations, test their validity in manyaspe
ts, and give a re
ipe how they 
an be used to analyze experiments.2 FormulationRe
ently we have shown that the dewetting pro
ess of highly vis
ous polystyrene(PS) melts on hydrophobized sili
on wafers is well des
ribed by a lubri
ationmodel in the regime of large slip lengths, [11, 13℄. For the situation 
onsideredhere, the �ow is very slow and non-Newtonian properties, su
h as vis
oelas-ti
ity of the melt, 
an be negle
ted. For the same reason, inertial terms willnot play any role. For 
larity of presentation and as in our previous studies,we will 
onsider the e�e
tively two dimensional situation of a liquid ridge,whi
h is translationally invariant in the Y -dire
tion parallel to the �at andhomogeneous substrate. Hen
e, we begin our theoreti
al dis
ussion with theStokes equations for an in
ompressible �uid layer on 0 ≤ Z ≤ H(X,T ) in twodimensions
−∇P + η∇2

U = 0, ∇ · U = 0, (1)together with appropriate boundary 
onditions (see below). Here, U = U(X,Z, T ) êx+
W (X,Z, T ) êz denotes the velo
ity �eld, η the vis
osity, and P = P (X,Z, T )the pressure �eld.At the free surfa
e Z = H(X,T ), we have the usual kinemati
 
onditionfor nonvolative �uids

∂TH = −∂X

∫ H

0

U(X,Z)dZ (2)and normal and tangential stress boundary 
onditions with 
onstant surfa
etension σ
n · τ · n − (P − Φ′(H)) = 2σ κ, and n · τ · t = 0, (3)with the stress tensor

τ = η
[

∇U +
(

∇U
)T ]

, (4)2



and where Φ′(H) = dΦ/dH denotes the 
ontribution due to the e�e
tiveinterfa
e potential Φ(H) (of Born/Van der Waals type), see e.g. [15℄ for detailsof the potential. The normal and tangential unit ve
tors are given by
n =

(−∂XH, 1)
√

1 +
(

∂XH
)2

and t =
(1, ∂XH)

√

1 +
(

∂XH
)2
, (5)where the lo
al mean 
urvature is κ = ∇ · n. At Z = 0, we assume imperme-ability of the substrate and the Navier-slip boundary 
ondition,

W = 0 and U = B ∂ZU, (6)with the Navier slip length B.We non-dimensionalize the above system of equations using the followings
ales
Z = H̄ z, X = L̄ x, H = H̄ h, B = H̄ b,

U = Ū u, W = W̄ w, T = H̄
W̄
t, P = P̄ p,

Φ′ = P̄ φ′. (7)The verti
al length s
ale H̄ is �xed by the average �lm thi
kness and thelateral length s
ale L̄ by the 
ompetition of the e�e
tive interfa
e potentialand the surfa
e tension, i.e., by the dispersive 
apillary length. The verti
aland horizontal velo
ity s
ale are linked via the in
ompressibility 
ondition
Ū = L̄ W̄ /H̄ . The 
hoi
e of the pressure s
ale P̄ and of the velo
ity s
ale Ūtogether with the magnitude of b �xes the �ow regime.In [12℄ it is shown that also for large slip lengths, i.e., for b≫ 1, the s
aleseparation H̄ /L̄ = ε ≪ 1 allows for the derivation of a simpli�ed lubri
ationmodel, where the �ow �eld is essentially plug �ow. This implies a balan
e ofthe pressure gradient with the dominant vis
osity 
ontribution in the verti
almomentum equation, whi
h yields the s
aling

P̄ H̄

η Ū
∼ ε.We assume that surfa
e tension and pressure balan
e in the normal stress
ondition (and therefore surfa
e tension does play a role in the dynami
s ofthe �lm), i.e.,

σ

P̄ H̄
∼ ε−2,so that

Ū =
σ ε

η
and Ca =

η Ū

σ
= ε. (8)In addition we assume b = β/ε2 with β = O(ε0), i.e., that the slip length islarge as 
ompared to the lateral length s
ale L̄ . The non-dimensional problemin the strong-slip s
aling is therefore

−ε2 ∂xp+ ε2 ∂2
xu+ ∂2

zu = 0, (9)
−∂zp+ ε2 ∂2

xw + ∂2
zw = 0, (10)

∂xu+ ∂zw = 0, (11)3



with boundary 
onditions at z = h(x, t),
∂th−w + u∂xh = 0, (12)

(

∂zu+ ε2 ∂xw
) (

1 − ε2 (∂xh)
2
)

+ 2 ε2 ∂xh (∂zw − ∂xu) = 0, (13)
p− φ′(h) − 2

(

1 − ε2 (∂xh)
2
)

∂zw − ∂xh
(

∂zu+ ε2 ∂xw
)

1 + ε2 (∂xh)2

+
∂2

xh

(1 + ε2 (∂xh)2)
3/2

= 0, (14)and boundary 
onditions at z = 0,
w = 0 and u = b ∂zu =

β

ε2
∂zu. (15)As shown in detail in [12℄, assuming that u, w, p and h have the asymptoti
expansions

u(x, z, t; ε) = u0(x, z, t) + ε2 u1(x, z, t) +O(ε4), (16)
w(x, z, t; ε) = w0(x, z, t) + ε2 w1(x, z, t) +O(ε4), (17)
p(x, z, t; ε) = p0(x, z, t) + ε2 p1(x, z, t) +O(ε4), (18)
h(x, t; ε) = h0(x, t) + ε2 h1(x, t) +O(ε4), (19)and integrating the problem to O(ε2) the lubri
ation model for strong slip isfound to be
4

h0

∂x(h0 ∂xu0) + ∂x

(

∂2
xh0 − φ′(h0)

)

− u0

β h0

= 0, (20)where the solution of the leading order problem implies that u0 = u0(x, t).The �rst term on the left side is proportional to the divergen
e of the totallongitudinal shear stress integrated over the �lm thi
kness. The se
ond termis the gradient of the pressure in the �lm. This equation, 
oupled with thekinemati
 
ondition (2), i.e.
∂th0 + ∂x(h0 u0) = 0, (21)gives a 
losed system for u0(x, t) and h0(x, t), whi
h is 
alled the strong slipmodel [12℄.3 Experiments and 
omparison with numer-i
al resultsIn order to test the theoreti
al strong slip model we performed dewetting exper-iments with thin �lms of short-
hained polystyrene (PS) on top of hydropho-bized sili
on wafers. We a
hieved 130 nm thi
k �lms of ata
ti
 PS (mole
ularweight 13.7 kg/mol, Mw/Mn = 1.03, PSS Mainz, Germany) by spin
oating atoluene solution on mi
a, �oating the �lms on fresh MilliporeTM water and4
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Figure 1: a) Opti
al image of a hole in a 130 nm thi
k PS(13.7k) �lm, dewettedfrom OTS on Si at 120 ◦C. b) AFM image of a se
tion of the rim around the holeshown in a). A 
ross-se
tion taken in radial dire
tion (indi
ated by the white line)gives the rim pro�le whi
h will be 
ompared to the theory.transferring them onto the 
oated wafers. To hydrophobize the substrates, we
oated sili
on wafers (2.1 nm native oxide layer, Wa
ker, Burghausen, Ger-many) with two di�erent silane monolayers, o
tade
yltri
hlorosilane (OTS)and the shorter dode
yltri
hlorosilane (DTS) using standard te
hniques [16℄.The rms roughness of both types of substrate as measured by atomi
 for
emi
ros
opy (AFM) at (1µm)2 s
an size is below 0.15 nm. The 
onta
t angleof polystyrene droplets is 67(3)◦ on both 
oatings, as AFM s
ans revealed.In order to mobilize the �lms whi
h are glassy at room temperature, weheated the samples to di�erent temperatures (105 ◦C to 130 ◦C) above theglass transition of PS(13.7k), Tg = 97 ◦C. The dewetting pro
ess sets in bynu
leation of holes whi
h instantaneously start to grow [15, 17, 18℄. Sin
e wewill only analyze the shape of the dewetting rim around the hole, the a
tualnu
leation me
hanism (homogeneous or heterogeneous) is irrelevant here. Weobserved the growth of holes by opti
al mi
ros
opy in order to determine thedewetting velo
ity. On
e the holes had a radius of 12 µm, we rapidly quen
hedthe samples to room temperature and measured the pro�les of the holes withan atomi
 for
e mi
ros
ope (AFM). See Fig. 1 for a typi
al image.Comparing the pro�les for PS �lms on OTS and DTS 
overed wafers atidenti
al temperature, we �nd substantial di�eren
es, as shown in Fig. 2a) for120 ◦C. Films on DTS exhibit a rim pro�le that de
ays monotoni
ally towardsthe undisturbed �lm, whereas a �lm on the OTS layer exhibits an os
illatoryde
aying rim shape. To 
larify the di�erent rim morphologies, the inset toFig. 2a) depi
ts |H(X)− H̄ | in a semi-logarithmi
 plot. Here, H̄ denotes theprepared �lm thi
kness.In Fig. 2b) rim pro�les 
al
ulated by the lubri
ation model (20) and (21)are shown for di�erent slip lengths. For details of the simulations we refer toRefs. [12, 19℄. In
reasing the slip length b, we 
an observe a transition fromos
illatory to monotoni
ally de
aying rim pro�les.In order to understand this morphologi
al transition of rim shapes observed5
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Figure 2: a) Rim pro�les of holes of radius 12 µm in 130 nm thi
k PS(13.7k) �lms,dewetted at 120 ◦C. Depending on the substrate, OTS or DTS 
overed Si wafers, thepro�les show a os
illatory or monotoni
ally de
aying rim towards the undisturbed�lm. b) Rim pro�les 
al
ulated from the lubri
ation model for di�erent slip lengths
b nondimensionalized with H̄ = 130 nm.
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in both the experiments and the simulations, we 
on
entrate in the next se
tionon the region where the rim 
onne
ts to the undisturbed �lm and developtheoreti
al models to des
ribe rim pro�les.4 Linear stability analysis about the undis-turbed uniform �lmThe stru
ture of the dewetting rim as it propagates into the undisturbed �lm
an be found via linearized analysis. Note that for later 
omparison withexperiments, the 
ontribution from the intermole
ular potential 
an be ne-gle
ted. In the following, we analyze the shape of the rim 
lose to the resting�lm. There, the �lm thi
kness is still 
lose to the thi
kness of the �at resting�lm, whi
h will be the base state. We linearize about this base state withrespe
t to in�nitesimal perturbations of the �lm thi
kness, �ow velo
ity, et
.,of size δ and obtain the shape of the leading edge of the rim.4.1 Lubri
ation modelThe base state of the strong slip model in Eqs. (20) and (21) is h(x, t) = 1 and
u(x, t) = 0 about whi
h we linearize with respe
t to in�nitesimal perturbationsof size δ,

h(x, t) ∼ 1 + δ h̃(x, t), u(x, t) ∼ δ ũ(x, t), δ ≪ 1, (22)and obtain the linearized equations
4 ∂2

xũ+ ∂3
xh̃− 1

β
ũ = 0, (23)

∂th̃+ ∂xũ = 0. (24)To des
ribe the advan
ing edge of the ridge, it is 
onvenient to shift into aframe of referen
e 
o-moving with the ridge, ξ = x − s(t), and seek quasi-stationary solutions in the form of travelling fronts, h̃ = h̃(ξ). Then, the
ontinuity equation (24) for
es ũ = ṡh̃(ξ). Inserting this into the momentumequation (23) yields
4 ṡ ∂2

ξ h̃+ ∂3

ξ h̃− ṡ

β
h̃ = 0. (25)To understand the qualitative forms of the advan
ing ridge in this equation, wesolve it with the ansatz h̃(ξ) = ĥ exp(γ ξ), yielding the 
hara
teristi
 equation

χlub(γ;β, ṡ) = γ3 + 4 ṡ γ2 − ṡ

β
= 0. (26)Note that in this equation γ depends on t parametri
ally through s(t).For the transitions in the ridge stru
ture we note that Des
artes' law ofsigns shows that there is one positive real root and either two negative or two
omplex 
onjugate roots. Physi
ally relevant solutions, with h̃(ξ → ∞) → 0,7



must have ℜ(γ) < 0. The 
hange of roots from real to 
omplex 
onjugateo

urs when the dis
riminant vanishes, equivalently,
1 − 256

27
β ṡ2 = 0. (27)From (27), we obtain an estimate for the 
riti
al ridge speed that separatereal-de
aying pro�les (γ real) from os
illatory pro�les (
omplex 
onjugate γ)in terms of the slippage

ṡcrit ∼
√

3

β

3

16
. (28)4.2 Stokes modelIn order to show the range of validity and appli
ability of this result, it isinstru
tive to go ba
k to the full Stokes model. We start with equations (9)�(15), i.e., the Stokes model in the strong-slip s
aling, but we keep all terms.In two dimensions it is 
onvenient to express the �ow velo
ities in termsof the stream fun
tion

∂zψ = u and − ∂xψ = w. (29)Then we 
an formulate the in
ompressible Stokes problem in Eqs. (9�11) 
ou-pled to the kinemati
 
ondition in Eq. (12) in terms of ψ and h. For thein
ompressible Stokes equations (9�11) we get
∂4

zψ + 2 ε2 ∂2
x∂

2
zψ + ε4 ∂4

xψ = 0. (30)The boundary 
onditions at the �lm surfa
e z = h in Eqs. (12�14) be
ome
∂th+

d

dx
ψ(x, h, t) = 0, (31)

(

∂2
zψ − ε2 ∂2

xψ
) (

1 − ε2 (∂xh)
2
)

− 4 ε2 ∂xh∂x∂zψ = 0, (32)
ε2 ∂2

x∂zψ + ∂3
zψ −

(

ε4 ∂3
xψ + ε2 ∂x∂

2
zψ

)

∂xh+ ε2
d

dx

∂2
xh

(

1 + ε2 (∂xh)
2
)3/2

−2 ε2
d

dx

−
(

1 − ε2 (∂xh)
2
)

∂x∂zψ − ∂xh
(

∂2
zψ − ε2 ∂2

xψ
)

1 + ε2 (∂xh)
2

= 0, (33)respe
tively. Note that in order to be able to express the pressure in termsof ψ via Eqs. (9) and (10), Eq. (33) is the total derivative of Eq. (14) withrespe
t to x. At z = 0 we get from Eq. (15)
ψ = 0 and ∂zψ − b ∂2

zψ = 0. (34)As in the previous se
tion we now linearize about the undisturbed basestate h = 1 and ψ = 0, i.e., about the �at and resting �lm, by perturbing via
h = 1 + δ h̃ and ψ = δ ψ̃, (35)8



with δ ≪ 1. We then transform to the moving frame 
oordinate ξ = x− s(t)and make the ansatz
ψ̃(x, z, t) = ψ̂(z) exp(γ ξ) and h̃(x, t) = ĥ exp(γ ξ) (36)Keeping only the O(δ) terms we obtain the linearized problem for the fullStokes model in Eq. (30)

∂4
z ψ̂ + 2 (ε γ)2∂2

z ψ̂ + (ε γ)4ψ̂ = 0 (37)in 0 < z < 1, with boundary 
onditions at the �lm surfa
e at z = 1 (
orre-sponding to Eqs. (32) and (33))
(ε γ)2ψ̂ − ∂2

z ψ̂ = 0 (38)
3 (ε γ)2∂zψ̂ +

(ε γ)3

ε ṡ
ψ̂ + ∂3

z ψ̂ = 0, (39)and at the substrate surfa
e at z = 0 (derived from Eq. (34))
ψ̂ = 0 and ∂zψ̂ − b ∂2

z ψ̂ = 0. (40)The general solution for the linear ordinary di�erential equation in Eq. (37)is
ψ̂(z) = c1 e

i ε γ z + c2 e
−i ε γ z + c3 z e

i ε γ z + c4 z e
−i ε γ z. (41)Inserting this into the boundary 
onditions (38)�(40) yields a system of linearhomogeneous equations for the 
oe�
ients c1, . . . , c4. This system has a non-trivial solution, indi
ating an eigensolution of (37)�(40), if the determinant ofthis system is zero. The determinant one easily �nds to be (after multipli
ationwith ṡ b (ε γ)4/16)

χS(γ; b, ṡ) =

(

−ε2 ṡ γ +
1

4 b

)

sin(2 ε γ) +

(

ε ṡ

2 b
+
ε γ

2

)

cos(2 ε γ)

− 2

(

1 +
1

2 b

)

ε ṡ (ε γ)2 −
(

1

2
+

1

2 b

)

ε γ +
ε ṡ

2 b
. (42)For (42), we seek the solutions γ whi
h have a negative real part, sin
e werequire that the perturbed pro�le h̃(x, t) → 1 as x → ∞. Furthermore, wefo
us on the 
ase where the de
ay is 
onsistent with the basi
 assumption oflubri
ation theory, namely, that the length s
ale ratio, measured for exampleby the typi
al spatial derivative of the uns
aled �lm thi
kness, is of order ǫ.For the s
ale variable h̃(x, t) given in (36), this 
an be satis�ed by requiringthat h̃x/h = γ is of order one.Thus, ǫγ is assumed to be small and we 
an approximate χS by its Taylorexpansion for ǫγ ≪ 1.

χT(γ; b, ṡ) =

(

1 +
1

3b

)

(εγ)3 + 4εṡ

(

1 +
1

2b

)

(εγ)2 − εṡ

b
= 0. (43)If we now re
all b = β/ε2 for the strong slip regime, and take the limit ε→ 0keeping β = O(1) �xed, we obtain to leading order the 
hara
teristi
 equation

χlub(γ;β, ṡ) for the strong-slip lubri
ation model, i.e., equation (26).9
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Figure 3: Comparison of the 
riti
al ṡ(b), given by (45), at whi
h the dominanteigenvalues γ that govern the spatial de
ay of the �lm pro�le 
hange from 
omplex
onjugate (for ṡ < ṡcrit(b)) to two real eigenvalues (for ṡ > ṡcrit(b)). The solid,dashed, and dash-dotted lines are, respe
tively, the 
riti
al ṡcrit(b) for the eigenvaluesobtained from for full Stokes model, χ = χS, for third order Taylor approximationof χS, i.e, χ = χT, and for the strong slip lubri
ation model, where χ = χlub.Before pro
eeding, let us note that res
aling the dewetting speed as ṡ =
ε2ṡ∗, taking the limit ε→ 0 keeping ṡ∗ = O(1) and b = O(1) �xed (in 
ontrastto the s
aling b = β/ε2 with β = O(1) in the rest of the paper), one �nds toleading order in ε the 
hara
teristi
 equation for the weak-slip regime

χweak(γ; b, ṡ
∗) = γ3 − ṡ∗

b+ 1/3
= 0. (44)Next, we fo
us on the two dominant de
aying modes γ1 and γ2 for thespatial de
ay of the �lm pro�le, for ea
h of the three 
hara
teristi
 equations,i.e., χlub, χS, and χT. These modes are given by χ = 0 with Re(γ) < 0 forwhi
h the modulus of is smallest. They 
an be either two real negative or a
omplex 
onjugate pair of values. Note that χT and χlub are 
ubi
 polynomialswith at most three zeros, while χS is a trans
endental equation whi
h 
an havein�nitely many solutions for χS = 0.Inspe
tion of these two dominant modes shows that for ea
h of the three

χ's, the eigenvalues are 
omplex 
onjugate for (b, ṡ) below a 
ertain line, andreal above it. The line is 
hara
terized by a merging of the two values to onereal double root of the equation, i.e., for those (b, ṡ(b)) that satisfy
χ(γ; b, ṡ) = 0 and d

dγ
χ(γ; b, ṡ) = 0. (45)10



For χS, these equations have to be solved numeri
ally to obtain εṡS
crit

(b), whilefor χT and χlub we obtain
εṡT

crit =
3
√

3

16

b+ 1/3

(b+ 1/2)3/2
, (46)

εṡlub
crit =

3
√

3

16
b−1/2, (47)respe
tively. The 
omparison is done in Fig. 3 and shows that the result for

εṡT
crit

yields a good approximation for the 
urve εṡS
crit

(b) of the full model forall values of b, while the approximation quality of the value εṡlub
crit

obtainedfrom strong slip lubri
ation model deteriorates for small b as expe
ted.5 Method to quantify slippage and its valid-ity5.1 MethodThe pro
ess of determining the slip length from the shape of a moving rim es-sentially reverses the above 
onsiderations: from the experimentally measuredrim shape the two dominant de
aying spatial modes γ1 and γ2 are extra
ted.Using these values, the slip length B as well as the 
apillary number Ca 
anbe determined from the 
hara
teristi
 equation χ = 0. Sin
e the full Stokesmodel χS ends up in quite 
umbersome expressions for B and Ca, we fo
us inthe following se
tion on the strong slip lubri
ation model.To get the values for γ1 and γ2 (or rather their dimensional form Γ1/2 =
γ1/2/L̄ ) from the experimentally observed rim pro�les, one has to �t the re-spe
tive fun
tion H(Ξ) = H̄ + δ H̃(Ξ) to the data in the region of smallperturbation of the undisturbed �lm of thi
kness H̄ . Note that Ξ = L̄ ξ de-notes the dimensional form of the abs
issa ξ. For the �tting pro
edure, weused data points of the pro�les up to a maximal height of about 120% of H̄ . Inthe 
ase of os
illatory de
aying pro�les (i.e., when a lo
al minimum of the �lmheight exhibits where the rim is 
onne
ted to the undisturbed �lm, eventuallyfollowed by a lo
al maximum), Γ1 and Γ2 are a pair of two 
omplex 
onjugatenumbers Γ1/2 = Γr ± iΓi with negative Γr. Here, an exponentially dampedos
illation δ H̃osci = δ H̃0 exp(Γr Ξ) cos(Γi Ξ +φ) (�t parameters are δ H̃0, Γi,
Γr, and φ) 
aptures the de
ay towards the resting �lm thi
kness H̄ in theexperimental data very well, 
f. Fig. 4. From the �t we gain the inverse de
aylength Γr and the wave number Γi, and thus Γ1/2 = Γr ± iΓi. In the 
aseof monotoni
ally de
aying rims, the data 
an be �tted by a superposition oftwo exponentials δ H̃mono = δ H̃1 exp(Γ1 Ξ) + δ H̃2 exp(Γ2 Ξ) (�t parameters
δ H̃1/2 and Γ1/2) with the inverse de
ay lengths Γ1 and Γ2.Knowing Γ1 and Γ2, these values 
an now be used to determine the sliplength and the 
apillary number of the investigated system. For this purpose,we re
all the 
hara
teristi
 equation of the strong slip lubri
ation model indimensional form

χlub(Γ;B,Ca) = (H̄ Γ)3 + 4Ca (H̄ Γ)2 − Ca H̄
B

= 0, (48)11
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aystowards the undisturbed �lm, ie., for small perturbation, well �tted by an exponen-tially de
aying os
illation.where the 
apillary number is Ca = η Ṡ/σ with the 
hara
teristi
 speed of therim Ṡ = Ū ṡ. Knowing two roots Γ1 and Γ2 of Eq. (48) we get two equationswith the two unknowns B and Ca for whi
h we 
an solve and get
Blub =

1

4H̄

Γ2
1 + Γ1Γ2 + Γ2

2

Γ2
1
Γ2

2

, Calub = −H̄
4

Γ2
1 + Γ1Γ2 + Γ2

2

Γ1 + Γ2

. (49)Additionally, the �lm vis
osity η 
an be determined from the 
apillary num-ber Ca, using the surfa
e tension σ = 30.8 mN/m and the observed dewettingvelo
ity Ṡ. We like to emphasize that in order to determine solely the sliplength, the knowledge of neither the dewetting velo
ity nor the vis
osity isrequired.In order to 
he
k the 
onsisten
y of the above explained analysis we per-formed a 
ouple of tests with the experimental data. Firstly, we determinedthe vis
osity from the extra
ted 
apillary number from pro�les on OTS andDTS at di�erent temperatures. The vis
osity was found to be in line with rheo-metri
 data, 
f. Fig. 5. A se
ond test was the variation of the �lm thi
knesswhi
h leads to di�erent values for Γ1/2 and Ṡ but whi
h does not 
hange theslip length and the vis
osity. Indeed, the extra
ted slip length was indepen-dent of initial �lm thi
kness. In a third and last 
onsisten
y 
he
k we analyzedholes of various sizes. With growing hole diameter the rim gets larger. Sin
efri
tion for
es in
rease with rim size, the dewetting velo
ity slows down. As a
onsequen
e, a more pronoun
ed os
illatory shape 
an be found, resulting ina variation of the �tting parameters Γ1 and Γ2 with hole size. However, theslip lengths and vis
osities obtained via Eq. (49) were independent of the holesize as expe
ted. For details we refer to Ref. [13℄.
12
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tive slip lengths, the data 
ollapses on one 
urve. The solid lineindi
ates the result of simulations. The inset depi
ts a zoom to the region of sliplengths below 1 µm.5.2 Results and dis
ussionSin
e all tests show 
onsistent results for both the vis
osity and the slip length,we 
an rely on the analysis method. In Fig. 6 the results for polystyrene �lmsof 
onstant mole
ular weight (13.7 kg/mol) and 
onstant initial �lm thi
kness(130 nm) are summarized. All data shown here are extra
ted from rims ofthe same volume. We �nd that the amount of slippage depends on both thesubstrate underneath and the melt temperature. For polystyrene �lms onthe DTS 
oating, the slip length is about one order of magnitude larger thanon OTS. On both 
oatings, however, slippage de
reases for in
reasing melttemperature.Plotting the 
apillary number obtained by rim shape analysis versus theslip length, as shown in Fig. 7, we �nd that the data from di�erent substrates
ollapses on one 
urve. By varying the dewetting temperature or the type ofsubstrate underneath, we 
an 
hange the amount of slippage and hen
e probethis 
urve su

essively. As expe
ted, the dewetting velo
ity Ṡ and with it the
apillary number Ca = η Ṡ/σ in
reases for in
reasing slip length. But thisbehavior is found to be 
learly non-linear.From the simulations shown in Fig. 2b, whi
h were based on the lubri
ationmodel in Eqs. (20) and (21), we 
an in addition to the rim pro�le 
al
ulatethe dewetting velo
ity Ṡ at the stage when the rim size mat
hes the one ofthe experiments. Doing this for di�erent numbers of the slip length, we gainthe 
apillary number as fun
tion of B. This 
urve is shown in Fig. 7 as thesolid line. The qualitative behavior is in good agreement to the experimentaldata. However, a shift to lower 
apillary numbers 
an be observed. This may14



have various reasons. Firstly, the 
al
ulation was done for straight fronts,whereas in the experiments the growth of 
ir
ular holes is investigated. Forthe analyzed experiments with hole radii 12 µm, however, the 
urvature ofthe 
onta
t line is negligible 
ompared to the 
urvature of the rim in radialdire
tion. Se
ondly, in the simulations only linear 
urvatures were taken intoa

ount.Results for the weak slip model with linearized 
urvature and with nonlin-ear 
urvature in the expression for the surfa
e tension suggest that the formertend to underestimate the dewetting rate [20, 19℄. This is 
onsistent withthe observation that higher 
onta
t angles are typi
ally asso
iated with higherdewetting rates [19, 21, 17, 22℄, and in
lusion of nonlinear 
urvature generallyleads to higher 
onta
t angles: The stati
 
onta
t angle θS for the nonlinear
urvature 
ase is given by
1 − (1 + tan2 θS)−1/2 = − 1

σ
min

h
φ(h),or

1 − cos θS = − 1

σ
min

h
φ(h), (50)see for example [15℄, and from this we obtain for the linearized 
urvature 
ase(tan θS ≪ 1):

1

2
tan2 θS = − 1

σ
min

h
φ(h). (51)One easily �nds that for 0 ≤ θS ≤ π/2, the expression (51) results in larger
onta
t angles than (50). Note also the steeper fronts in the dewetting pro�lesfor the nonlinear 
urvature models in [20℄. All these fa
ts may explain theshift in 
apillary number shown in Fig. 7.Let us for a moment fo
us on a spe
ial region in the Ca(B) plot. There isa spe
i�
 regime near the transition from os
illatory to monotoni
 rims wherethe �tting pro
edure is not straight forward. Note that the 'monotoni
' �ttingfun
tion δH̃mono = δH̃1 exp(Γ1Ξ) + δH̃2 exp(Γ2Ξ), whi
h is the solution forreal Γ1 and Γ2, exhibits a lo
al minimum and approximates zero from negativevalues, if one of the 
oe�
ients δH̃1 or δH̃2 is negative. Hen
e, for pro�lesshowing a lo
al minimum between the rim and the undisturbed �lm but whi
hdo not show a 
learly pronoun
ed se
ond maximum, both fun
tions δH̃osci and

δH̃mono may 
apture the data. We have �tted both fun
tions to a number ofpro�les in that regime and extra
ted the slip lengths as well as the respe
tive
apillary numbers. The results for B shown in Fig. 8 
orrespond to a growinghole in a 130 nm thi
k PS �lm dewetting from OTS at 110 ◦C as 
aptured byin situ AFM. For small holes, the fun
tion δH̃mono 
aptures the monotoni
pro�les very well, and the results for the slip length are reasonable. For radiibetween about 1.5 and 5 µm the rim pro�le exhibits a lo
al minimum. Thefun
tion δH̃mono still 
aptures the rim shapes when 
hoosing one negative
oe�
ient δH̃1/2, however, the extra
ted slip lengths are not independent of
R. The identi
al rim pro�les �tted by δH̃osci result in a 
onstant slip length.For holes of radii larger than 5 µm the fun
tion δH̃mono does not 
apture theos
illatory rim pro�les at all. The des
ribed 
onsisten
y 
he
k for various rimsizes provides a general argument that ex
ludes the 
ase of negative 
oe�
ients
δH̃1/2 in the �tting fun
tion δH̃mono for real Γ1/2.15
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Figure 8: Near the transition between monotoni
ally and os
illatorily de
aying rims,pro�les with a 
lear minimum 
an be �tted by both fun
tions δH̃mono or δH̃osci.Using the fun
tion for real Γ1/2, δH̃mono, the results for B are mu
h larger than for�tting the pro�les by δH̃osci. The data 
orrespond to a 130 nm thi
k PS(13.7k) �lmdewetting from OTS at 110 ◦C, as 
aptured by in situ AFM.5.3 Limitation of validityFor the rim analysis as des
ribed above we need two inverse de
ay lengths Γ1or Γ2. However, in the 
ase of extremely large slip lengths and asymmetri
rims, the se
ond inverse de
ay length is to large to be observed experimentally.As a 
onsequen
e, it is not possible to determine neither the 
apillary numbernor the slip length solely from the rim pro�le. However, if the 
apillary numberis measured independently, one of the inverse de
ay lengths is su�
ient to de-termine the slip length. In our experiments, the des
ribed situation o

urs for130 nm thi
k PS(13.7k) �lms on the DTS 
oating, dewetting at 105 ◦C. By us-ing independently measured vis
osity and velo
ity data, the 
apillary number
an be determined. From the �t to the rim pro�le we have Γ1. Inserting nowCa and Γ1 in the 
hara
teristi
 equation (48), the slip length in this situationis found to be about 5 µm, whi
h 
orresponds to the ratio b = B/H̄ ≈ 40. Thesame experiment at 110 ◦C exhibits a slip length of about 3 µm, hen
e b ≈ 20.This turns out to be about the limit up to whi
h both inverse de
ay lengths Γ1and Γ2 
an be extra
ted from the measured rim pro�le. For polystyrene �lmsof higher mole
ular weight (above 100 kg/mol), the rim gets more and moreasymmetri
 [23℄, indi
ating an in
reasing slip length. Hen
e, in most 
ases theslip length is expe
ted to ex
eed the upper limit of b ≈ 20.In the examples des
ribed above, we used the strong slip model in orderto extra
t the 
apillary number and the slip length out of the rim pro�les.However, this model is only valid for slip lengths larger than the �lm thi
kness.The smallest B observed in our experiments for PS(13.7) �lms on OTS at130 ◦C was in the order of H̄ . For systems with mu
h smaller slip lengths16
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omplex)spatially de
aying modes using either the strong slip model χlub (open 
ir
les), thethird Taylor expansion of the Stokes model χT (stars), or the full Stokes model χS(solid line). The data 
orrespond to the rim pro�les analyzed in Fig. 6.the strong slip model will produ
e systemati
 errors. As shown in Fig. 3,the 
riti
al dewetting velo
ity ṡcrit(b) as obtained from the strong slip modeldeviates from the a
tual value obtained from the full Stokes model signi�
antlyfor small b.The validity and a

ura
y of the strong slip lubri
ation approximation
an be assessed by 
omparison with the result for the full Stokes model.Fig. 9 shows slip parameters determined by the lubri
ation model χlub, blub =
Blub/H̄ , in 
omparison to results using the Stokes model χS, bS = BS/H̄ .There are quite strong deviations for weak slippage, i.e., for b < 1. For rimshape analysis in pra
tise, however, it is not 
onvenient to use the full Stokesmodel χS, sin
e the expressions for BS and CaS are rather longish and 
um-bersome. So we use the (apparently quite a

urate) Taylor approximationinstead. The respe
tive 
hara
teristi
 equation (43) in dimensional form isgiven by
χT(Γ;B,Ca) =

(

1 +
H̄

3B

)

(H̄ Γ)3+4Ca(

1 +
H̄

2B

)

(H̄ Γ)2−CaH̄
B

= 0. (52)Knowing two roots Γ1 and Γ2 of Eq. (52) from rim shape analysis, we get twoequations with the two unknowns B and Ca for whi
h we 
an solve and obtain
BT =

1

4H̄

Γ2
1 + Γ1Γ2 + Γ2

2

Γ2
1
Γ2

2

−H̄
2
, CaT =

H̄ 3

6

Γ2
1Γ

2
2

Γ1 + Γ2

−H̄
4

Γ2
1 + Γ1Γ2 + Γ2

2

Γ1 + Γ2

.(53)Note that the expression for BT in (53) di�ers from the lubri
ation result
Blub in (49) by exa
tly H̄ /2. Note also that Eq. (52) is also valid for smallvalues of B, i.e., for the regime in whi
h one would use the weak slip lubri
ation17



model whi
h leads to Eq. (44). However, using the 
hara
teristi
 equation (44)one 
annot determine both Ca and B from the rim shape.The results for bT = BT /H̄ are shown in Fig. 9 in 
omparison to thevalues blub and bS . Using the strong slip lubri
ation model χlub instead of thefull Stokes model χS, the relative error for the extra
ted slip length in
reasessigni�
antly for de
reasing slippage. However, when using χT, the deviationof the 
al
ulated slip length is quite small, even for weak slippage. Sin
e nolimitation for small slip lengths is given for the third Taylor expansion of thefull Stokes model, the respe
tive Eq. (53) is re
ommended to be used for thedetermination of slippage by rim shape analysis.6 Con
lusions and outlookIn this arti
le, we have shown both experimentally and theoreti
ally that slip-page signi�
antly a�e
ts the rim shape of dewetting thin liquid �lms: slowlymoving fronts with no or weak slip at the solid/liquid interfa
e develop an os-
illatory de
aying rim - i.e., 
omplex eigenvalues of the 
hara
teristi
 equation
χ of linear stability analysis in a 
o-moving frame - whereas strong slippageand faster dewetting result in a monotoni
ally de
aying shape, 
orrespondingto real negative roots of χ. The 
riti
al line between 
omplex and real solu-tions, i.e., where this morphologi
al transition of the rim shape o

urs, 
ouldbe very a

urately predi
ted by a new model applied: instead of using a lubri-
ation model χlub that only a

ounts for large slip lengths, we 
al
ulated thethird order Taylor expansion χT of the 
hara
teristi
 equation obtained fromthe full Stokes model, χS. The analyti
al solution for the transition line using
χT 
ompares very well to the numeri
al solution obtained from the Stokesmodel, even for weak slippage.Moreover, we developed a method for extra
ting the slip lengths of dewet-ting liquid �lms using rim shape analysis. For short-
hained polystyrene �lmson the DTS 
oating we found slip lengths about one order of magnitude largerthan for the same �lms on OTS. Additionally, on both 
oatings, the slip lengthde
reases for in
reasing melt temperature. As already seen for the 
riti
al lineof morphology transition, the results for the slip length gained from the lu-bri
ation model χlub are a rather good approximation in the regime of strongslippage. More a

urate results for the whole range of slip lengths, however,
an be obtained by using χT, the third order Taylor expansion of the fullStokes model.7 A
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