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Abstract

In this paper we revisit models for the description of the evolution of crys-
talline films with anisotropic surface energies. We prove equivalences of symme-
try properties of anisotropic surface energy models commonly used in the liter-
ature. Then we systematically develop a framework for the derivation of surface
diffusion models for the self-assembly of quantum dots during Stranski-Krastanov
growth that include surface energies also with large anisotropy as well as the ef-
fect of wetting energy, elastic energy and a randomly perturbed atomic deposition
flux.

A linear stability analysis for the resulting sixth-order semilinear evolution
equation for the thin film surface shows that that the new model allows for large
anisotropy and gives rise to the formation of anisotropic quantum dots. The non-
linear three-dimensional evolution is investigated via numerical solutions. These
suggest that increasing anisotropy stabilizes the faceted surfaces and may lead
to a dramatic slow-down of the coarsening of the dots.

1 Introduction

Modeling, analysis and numerical simulation of the self-assembly of thin nanostruc-
tured crystalline films is of enormous interest for many emerging applications in the
semiconductor industries, for the synthesis of multifunctional materials or in the de-
sign of next-generation solar cells. A fundamental understanding of the underlying
principles that control the formation of patterns as well as their evolution, forms the
basis for optimizing the properties of new materials, such as e.g. the positioning, size
and shape of superlattices of quantum dots to increase of conversion efficiencies of
thin-film solar cells, see e.g. [3].

One of the most prominent examples for the patterning of surfaces is the quantum
dot self-arrangement during epitaxial growth which has been studied in numerous
works. In particular, for heteroepitaxial growth of the systems Ge/Si and SiGe/Si there
exists a sizable body of literature that is concerned with a precise understanding of the
processes on the nanoscale. The review by Drucker [12] and many of the references
therein yield a detailed overview of the experimental works.

In order to capture and predict the long-time evolution of large scale three-dimensional
nanostructures continuum models have shown to be very useful. They involve the
coupling of the elasticity problems for the film and the underlying substrate with the
evolution of the film surface h(x,y, t) based on Mullins’ surface diffusion equation [31,
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39]

ht =
√

1+ |∇h|2D∇2
s µ, (1.1)

where | · | is the Euclidean norm, ∇2
s is the surface Laplacian, see e.g. [44], D is a

diffusion constant and
µ = Esed +Esur f , (1.2)

the chemical potential with contributions arising from the strain energy

Esed = 1/2∑
i, j

σi jεi j|z=h , (1.3)

evaluated at the surface, with the strain and stress tensor, (εi j)i j and (σi j)i j, respec-
tively, and the surface free energy Esur f . The derivation of the latter will be discussed
in detail in this study.

For the resulting free boundary problems, asymptotic methods leading via a small-
slope reduction of the system to a single high-order evolution equation for the film
profile, have previously been developed, see in particular the works by Spencer et al.
[37, 39]. Extensions of these studies that in addition account for effects of substrate-
film wetting or anisotropy, see e.g. [17, 24, 44], show that for such reduced models
large-scale numerical simulations of the formation of nanostructures are feasible and
can also be evolved on a long time-scale to yield information on their coarsening
behavior.

Further extensions of this approach are important for the implementations of superlat-
tices, such as for example the SiGe/Si system as has been studied by Sutter et al. [42]
or the similar Ge/Si system investigated by Chen et al. [6] to design and optimize ma-
terial systems relevant for photovoltaic applications, see also [20, 21] and the review
by Springholz and Holy [41]. To make progress using above approach, a thorough
understanding of the important physical effects and how to incorporate them system-
atically into a realistic model, even for the basic one-layer heteroepitaxial growth on a
substrate, is crucial.

In the first part of this study (Section 2) we revisit first the different formulations for
surface energy. In a purely surface energy driven system the chemical potential can
be derived from the functional derivative of the surface free energy via the surface
integral over the surface energy density γ ;

Esur f =
δ

δh

∫

γ dS . (1.4)

We discuss different formulations for γ that have been used in literature and show
equivalence of symmetry properties in particular, we show how the standard cubic
symmetry properties of a surface energy γ(n), expressed in terms of the normal n
pointing out of the film, relate to the gradient formulation γ(hx,hy), which is used for the
derivation of the thin film evolution equation. We systematically develop a framework
that incorporates the specific properties of the film-substrate system and naturally
extends to the case that includes strong anisotropy.
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The analysis and results are used in the following Section 3 for the derivation of a
new thin-film equation and leads, via asymptotic long-wave approximations, to a sixth-
order semi-linear equation for h(x,y, t) that accounts for an elastic field in the film
and in the substrate, wetting layer, strong surface energy anisotropy in the film and a
randomly perturbed atomic flux, extending the models by Tekalign and Spencer [44]
and Savina et al. [34].

In the final Section 4 we investigate the linear stability results for increasing anisotropy
of the surface energy and compare them to our numerical solution of the evolving pat-
terns of the two-dimensional surface h(x,y, t). For the numerical scheme used to ap-
proximate the solutions of the sixth-order semi-linear PDE we employ pseudo-spectral
methods using exponential time differencing (ETD) [11, 22], and a third order semi-
implicit backward differentiation (SBDF) scheme.

We discuss the impact of the corner energy on the faceting that appears as a sixth-
order Wilmore regularization in the model equation. We find that large anisotropy
coefficients lead to stabilized faceted arrays and a slow-down of the coarsening pro-
cess.

2 Surface energy density formulations

We first revisit the different surface energy formulations that have been used in the
literature for growing surfaces, discuss equivalence of symmetry characteristics of the
surface energies, followed by the derivation of general expressions for the constituent
terms for the chemical potential.

The first continuum models for epitaxial growth were actually rather concerned with
the elastic problem than the surface energy, neither intermolecular interactions be-
tween film and substrate nor anisotropy have been considered, see [37, 39, 40].
The surface energy was assumed to be isotropic together with surface diffusion and
stress fields [38, 47, 49, 50]. We denote this class of surface energy models by
SEI : γ = const. Consequently neither wetting layer connecting the nano-structures
nor faceting of the growing dots could be captured although this is a signature of the
Stranski-Krastanov growth mode.

Golovin et al. [17] extended the theory by including wetting effects. In later works
such as by Pang and Huang [32, 33] or Tekalign and Spencer [44, 45] such an ex-
tension has been incorporated by letting γ depend not only on the gradients of the
surface profile to model the anisotropy, but also on the surface height h itself. The
height-dependency has been be modeled in the framework boundary layer theory by
Spencer [35]. This constituted a fundamental result for modeling Stranski-Krastanov
systems and was followed by many further studies, e.g. [1, 5, 17, 32, 44, 45]. We
denote this class here by SEII : γ = γ(h).

Since crystalline materials are inherently anisotropic as a result of the regular struc-
ture defined by their bravais lattices, preferred orientations corresponding to lower free
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Figure 1: Polar plots (dashed lines) of the surface energy γ(θ) = 1+Gcos(4θ) and
the corresponding equilibrium shapes (white areas) constructed with the Wulff con-
struction for (a), the weak anisotropy strength G = 0.05, and (b) the strong anisotropy
G = 0.3. The latter leads to ’ears’ in the Wulff construction and corners in the equi-
librium shape. (c) shows the orientation dependency in one dimension expressed in
terms of the slope hx, the outward unit normal n or the facet angle θ .

energy states emerge during growth. For the heteroepitaxial case, cusped anisotropic
surface energies have been proposed by Eisenberg and Kandel [13, 14, 15], while
combinations of wetting and anisotropic surface energies were considered by Chiu
and Huang [9, 10]. For these situations the family of SEII can be extended by letting
the surface energy density also be a function of the gradients of the surface, denoted
here by SEIII: γ = γ(h,hx,hy).

Often the surface anisotropy is expressed in terms of angles or the outward unit nor-
mal as arguments, and as Figure 1 (c) indicates for the one-dimensional case, the
formulations are equivalent as long as the gradients of the surface stay away from
infinity. We will discuss these relations in more detail in the following paragraphs.

This family of surface energies has been shown to be very useful for the description of
a Stranski-Krastanov systems in a long-wave approximation, see e.g. [7, 8, 9, 10, 24,
48]. However, all of these models will eventually become ill-posed for large enough
anisotropy of the surface energy. This corresponds to the appearance of sharp edges
in the film surface, as can be seen in Figure 1, where the Wulff construction is applied
to obtain the equilibrium shapes (see [46] or [19]). In (a) the anisotropy is weak, which
means that the polar plot of γ(θ) = 1+Gcos(4θ) (dashed line) is convex for G =
0.05, which yields a smooth shape from the Wulff construction (white area). In (b)
the anisotropy strength is increased to G = 0.3 and while the polar plot becomes
nonconvex, the Wulff construction shows distinct “ears” while the equilibrium shape
has sharp corners.

An extension of the surface energy that include higher order gradients leads to the
so-called Wilmore regularization and was first introduced by Golovin et al. [16] in
connection with crystallization of Si from a melt. Further studies that are mainly con-
cerned with equilibrium shapes e.g. Spencer [36], analyze the influence of the corner
regularization onto the stationary geometry by using matched asymptotic expansions.
Savina et al. [34] proposed a model for the faceting of growing surfaces in the absence
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of elastic stresses that used this regularization. The model was further analyzed with
respect to its stationary states and existence of unique solutions in [25, 26, 27] and
it has been extended by Golovin et al. [18] who also considered wetting interactions
in the anisotropic surface energy. Both works are not related to growth based on the
Asaro-Tiller-Grinfeld instability since no elastic subproblem resulting from lattice mis-
match is considered.

The dependence of the surface energy on higher order gradients has further been
addressed by several other works in crystal growth theory, such as in [4, 34, 36]. In
what follows, we denote this family by SEIV : γ = γ(h,hx,hy,hxx,hxy,hyy). In particular
this includes models of the type γ = γ(n,κ), where n is the outward unit normal and κ
is the mean curvature of the growing film.

2.1 Symmetry and surface energy properties

We now show that the equivalences of the different formulations for the surface energy
and begin by proving how cubic symmetry relates an outward unit normal description
to an angle parametrization. Secondly we show in Proposition 2.3 that there is an
equivalent formulation in terms of the dependency on the surface gradients when
h is a regularly growing surface. Finally, we show how to incorporate such surface
energies in a surface diffusion equation.

The gradients of the evolving surface, hx and hy, serve as arguments for the families
of surface energies SEIII and SEIV . This dependency is used to model the anisotropy
of the surface energy. Typically, the outward unit normal n = (n1,n2,n3) is used as ar-
gument for γ . Then for crystals with e.g. cubic symmetry the regular structure implies

γ1(n1,n2,n3)=γ1(π(n1,n2,n3))=γ1(δ1n1,δ2n2,δ3n3),δi∈{±1} , (2.1)

for any permutation π of the three components, see e.g. McFadden [30]. It is a natural
idea to believe that these properties have an analogon in terms of a polar description
of the unit normal. Note, in polar coordinates θ1,θ2 the symmetry property

γ2(θ1,θ2) = γ2(θ1±π/2,θ2±π/2) = γ2(δ1θ1,δ2θ2),δi ∈ {±1} . (2.2)

appears natural. In the one-dimensional case, for the square symmetry γ(θ) = 1+
Gcos(4θ), one can easily check that the above statement holds (reduced by one
dimension). However, we will show that the symmetry properties of γ1 and γ2 are not
equivalent and that (2.2) follows from (2.1), but not vice versa.

For regular surfaces, where the outward unit normal is a function of hx and hy, the
surface energy can be written as γ3(hx,hy) = γ1(n(hx,hy)), then the symmetry defined
by (2.1) transforms to

γ3(hx,hy) = γ3(hy,hx) = γ3(δ1hx,δ2hy),δi ∈ {±1} . (2.3)

Symmetries in (2.1) and (2.3) are indeed equivalent for regular surfaces. However, we
first discuss the symmetries (2.1) and (2.2), therefore we state the following lemma:
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Lemma 2.1 Let H(a j) = Id−2a jaT
j , j = 1, . . . ,5, be Householder reflections with the

normalized cubic symmetry axes

a1 = e1, a2 = e2, a3 = e3,

a4 = (1,−1,0)/
√

2, a5 = (1,0,−1)/
√

2

where e j, j = 1,2,3 are the three Cartesian basis vectors, then symmetry properties
(2.1) are equivalent to γ(n) = γ(H(a j)n), j = 1, . . . ,5.

The proofs of the lemma as well as the following propositions are given in the ap-
pendix. For the next proposition we let n ∈ S

2 (the unit sphere in R
3), then n can

be expressed as rotation of e3, the third Cartesian basis vector, in the (x,y)− and in
(x,z)−planes defined by the angles θ1 and θ2 and obtain

Proposition 2.2 For

γ2(θ1,θ2) = γ1(sin(θ2)cos(θ1),−sin(θ1)cos(θ2),cos(θ2))

(2.1) and (2.2) are not equivalent, but the implication (2.1)⇒(2.2) is true.

In Section 3 we will express the surface energy in terms of γ3, hence it is important
how this formula relates to the other formulations. Since the gradients of a regular
surface h are not infinite, the outward normal (or the angles θ j), cannot be chosen
arbitrarily. The next proposition states the equivalence of (2.1) and (2.3) for regular
surfaces.

Proposition 2.3 Let h : Ω → R,(x,y) 7→ h(x,y) be the smooth parameterization of a
connected surface M over a bounded domain Ω ⊂ R

2. Furthermore, let n : R2 →
S

2,(a,b) 7→ (−a,−b,1)/
√

1+a2+b2 be the outward unit normal function which maps
onto the unit sphere S

2. Then by defining γ3 : R2 →R,γ3 := γ1◦n the symmetries (2.1)
and (2.2) are equivalent.

Similar relations can be derived for other symmetry groups, here we focus on the sym-
metry properties of diamond cubic semiconductor materials, such as Si and Ge. In the
following the anisotropic surface energy for small surface gradients will be expressed
as

γ(hx,hy) =
∞

∑
k=0

k

∑
j=0

gk jh
j
xhk− j

y , (2.4)

where for practical use the first sum will be truncated to be finite. In general the
anisotropy coefficients gk j are given constants, e.g. supplied by experimental data.
The chemical potential part that stems from the surface energy (1.4) can now be
derived for the four energy types SEk,k ∈ {I, II, III, IV}. Under sufficient regularity
assumptions the following result holds:
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Proposition 2.4 (SE IV ) The variational derivative of the surface free energy based
on SEIV leads to the four term expression

Esur f = Eκ +Ewet +Eanis +Ehot , (2.5)

with

Eκ =−γκ , (2.6)

Ewet = n3∂hγ , (2.7)

Eanis =−2

(

hxhxx +hyhxy

N
∂hxγ +

hyhyy +hxhxy

N
∂hyγ

)

−N∂x∂hxγ −N∂y∂hyγ , (2.8)

Ehot = ∇2∇∆h(γN) , (2.9)

where
N =

√

1+h2
x +h2

y ,∇∇h = (∂hx , ∂hy)
T and ∇∆h = ∂hxx +∂hyy , (2.10)

so that

∇ ·∇∇h = ∂x∂hx +∂y∂hy and ∇2∇∆h = ∂xx∂hxx +∂xx∂hyy +∂yy∂hxx +∂yy∂hyy .

With the above notation one can easily check the following equalities:

Esur f =
δ

δh

∫

γ(h,hx,hy,hxx,hxy,hyy)Ndxdy

= N∂hγ −∇ ·∇∇h(γN)+∇2∇∆h(γN)

= N∂hγ −∂x(γ
hx

N
)−∂y(γ

hy

N
)−∂x(N∂hxγ)−∂y(N∂hyγ)+Ehot

= N∂hγ−
h2

x+h2
y

N
∂hγ−hxhxx+hyhxy

N
∂hxγ−hyhyy+hxhxy

N
∂hyγ

− γ
(

∂x(
hx

N
)+∂y(

hy

N
)

)

−∂x(N∂hxγ)−∂y(N∂hyγ)+Ehot

= (∂h γ)n3− γκ +Eanis +Ehot = Ewet +Eκ +Eanis +Ehot .

As SEIV is a generalization of the other energies we have established the results for
SEI - SEIII.

3 Strong anisotropic surface energy

Based on the analysis of the surface energy in the previous section we now derive a
new model for Stranski-Krastanov growth for surface energy type SEIV . It extends the
model derived by Korzec and Evans [24] in that it accounts for a randomly perturbed
flux and, more importantly, allows for large anisotropy coefficients. Here the surface
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energy transition between film and substrate is achieved by defining the overall sur-
face energy density as

γ =
1
2
(γ f + γs)+(γ f − γs)

1
π

arctan(
h
b
)+

1
2

νκ2. (3.1)

Such boundary-layer models have been used before [28, 35] as special case of a
class of models with appropriate smooth transition functions of the surface energy of
the substrate γs to the surface energy of the film γ f , where the transition takes place
on a small length scale b. As had been argued in [16], that near regions with sharp
corners, where the curvature varies rapidly, the surface energy also depends on the
surface curvature, leading to an additional contribution of 1/2νκ2, where the constant
ν is a measure of the corner energy. γ f and γs have been defined as constants in ear-
lier works, while we let γ f depend on the orientation of the film. In this way, preferred
facets have a smaller value than the forbidden orientations. We let

γ f (hx,hy) = γ0(1+W (hx,hy)) . (3.2)

The anisotropy will be written as a general polynomial in the slopes of the surface

W (hx,hy) =
N

∑
k=1

k

∑
j=0

gk jh
j
xhk− j

y , (3.3)

see e.g. [24]. The general form (3.3) allows for various anisotropies, however, we re-
strict the polynomials in that γ f →∞ for hx,hy →±∞. In this way large gradients, which
are not allowed to be preferred in any case when using a small slope approximation,
are punished. This behavior is also visible in the Wulff shape for the surface energy
density formula for a quadruple well that leads to faceted pyramidal quantum dots,
used in [24]. Setting N = 4, g20 = g02 = −2g, g40 = g04 = g and gk j = 0 for all other
index pairs (k, j). Then

W (hx,hy) = g(h4
x +h4

y −2(h2
x +h2

y)), g > 0 . (3.4)

The resulting surface energy formula (3.2) for the film is in fact a quadruple-well that
fulfills the symmetry properties (2.3), so that (2.1) is fulfilled with the normals of the
surface as argument. By using an angle-slope relation similar as in Figure 1 (c) we
obtain the equilibrium shapes by applying the Wulff construction in Figure 2 (compare
Figure 1 (a) and (b)). In (a) we see that the equilibrium shapes have rounded corners
at the regions of interest (left and right corners — the upper and lower ones result
from hx → ±∞). In (b) the anisotropy strength is increased from g = 0.15 to g = 0.3
and the previously smoothed out corners are now real kinks in the equilibrium shape,
as is the case for the corresponding polar plots from Figure 1.

Furthermore, we include an atomic flux f a = ( f1, f2, f3) in the model. We note that
the natural fluctuations that occur during deposition can be described via a Gaussian
noise that perturbs a vertically impinging flux. Neglecting evaporation, the atoms are
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oriented downwards, f3 < 0, the variations in x and y directions have the same prob-
ability and the flux at one space point at different time points is not correlated. If we
denote the strength of the flux f a by the prescribed flux rate F , one can, out of these
properties, deduce the expression

f a =− w
|w|F with w = (r(0,σ1),r(0,σ1),r(1,σ2)) , (3.5)

where r(µ̃ , σ̃) denotes a Gaussian random number with expectation µ̃ and standard
deviation σ̃ . We use the expectations 0,0 and 1 and that standard deviations in the z
direction σ1 may be different than for both horizontal directions, σ2. The exact values
do not have a significant influence on the surface evolution in the simulations. For
simplicity we use the abbreviations r1 = r(0,σ1),r2 = r(0,σ1) and r3 = r(1,σ2). For
the governing equations we obtain

ht =
F
|w|(−r1hx − r2hy + r3)+

√

1+ |∇h|2D∇2
s µ , (x,y, t) ∈ [0,L]2× [0,T ] ,

µ = Esed +Eκ +Eanis +Ewet +Ehot ,

Esed =
1
2

3

∑
i, j=1

σi jεi j|z=h ,

Eκ =−γκ ,

Eanis =−2

(

hxhxx +hyhxy

N
∂hxγ +

hyhyy +hxhxy

N
∂hyγ

)

−N∂x∂hxγ −N∂y∂hyγ ,

Ewet = (∂hγ)/N ,

Ehot = [∂xx∂hxx +∂xx∂hyy +∂yy∂hxx +∂yy∂hyy](γN) ,

γ =
1
2
(γ f (hx,hy)+γs)+(γ f (hx,hy)−γs)

1
π

arctan(
h
b
)+

1
2

νκ2 ,

γ f = γ0(1+
N

∑
k=2

k

∑
j=0

gk jh
j
xhk− j

y ) ,

where we note that the terms ∂hxγ and ∂hyγ appearing in the chemical potential (2.8)
are given as derivatives of the anisotropy function W , for now left in its general form
(3.3).

∇∇hγ =

(

∂hx

∂hy

)

γ = γ0Ψ(b,h)∇∇hW , (3.6)

scaled by the transition function

Ψ(b,h) =
1
2
+

1
π

arctan(h/b) . (3.7)

The derivative is

∇∇hW =







∑N
k=2 ∑k

j=1 gk j jh j−1
x hk− j

y

∑N
k=2 ∑k−1

j=0 gk j(k− j)h j
xhk− j−1

y






. (3.8)
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Figure 2: Wulff shape constructions based on the anisotropy formula (3.4) in one
dimension for two different anisotropy strengths. The dashed lines denote the polar
plot of the surface energy density. (a): Weak anisotropy, g < 0.25 leading to rounded
shapes near hx = 0; (b) strong anisotropy, g>0.25 leading to corners in the equilibrium
shapes.

Furthermore note, that the elastic strain energy density Esed for a dislocation free in-
terface, the stresses in film and substrate are due to lattice mismatch ε . It can be
described in terms of linear elasticity, if the mismatch between the two materials is
sufficiently small. In combination with Hooke’s law and the fact that mechanical equi-
librium is reached much faster than thermodynamic equilibrium, the elastic subprob-
lem is given by the Navier-Cauchy equations

(1−2ν f /s)∇2u f /s +∇(∇ ·u f /s) = 0,

for the displacements u f /s in film and substrate, and the corresponding Poisson’s ratio
ν f /s. Additionally one treats the boundary conditions σ · n = 0 at z = h, us

i → 0 for z

far below the substrate’s surface, u f
i = us

i + ε(x,y,0)T and continuity of the normal
component of the stress at the substrate-film interface z = 0, ε = (a f −as)/as, a f and
as being the lattice mismatch and the lattice spacings, respectively. Also periodicity in
the horizontal directions can be assumed. It has been discussed in [44] how to obtain
reduced expressions for the strain energy density out of this problem setting.

3.1 Thin film model

A scaling under the thin-film assumption is [24, 44]

h = H0H = αLH, z = αLZ, (x,y) = (LX ,LY ), t = τT, ui(x,y,z) = LUi(X ,Y,Z), i = 1,2,3.

where α = H0/L � 1. Furthermore the transition thickness is chosen orders of mag-
nitude smaller, it is scaled by b = Lα3b̄, so that the leading order of the wetting term
Ewet will be of the same order as the surface energy term Eκ . To guarantee that the
overall reduced model reflects the anisotropic behavior anticipated, orientation depen-
dent variations have to be reflected in the leading order term of Eanis. To capture the
anisotropy in a reduced formula, all corresponding surface energy terms have to be
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incorporated in the evolution equation. Therefore these terms have to be of the same
order, which is only the case when

gk j = Gk jα−k+2, Gk j = O(1) . (3.9)

In this way the slope polynomial becomes W = α2W with W defined by

W (HX ,HY ) =
N

∑
k=1

k

∑
j=0

Gk jH
j

XHk− j
Y . (3.10)

From the nondimensionalization of the chemical potential

µ =
γ0

L
µ̄ , µ̄ = Ēsed + Ēκ + Ēanis + Ēwet + Ēhot ,

and from the natural scalings

σi j = E
base

sed σ̄i j, κ =
1
L

κ̄ , γ = γ0γ̄, ∇2
s =

1
L2∇̄2

s ,

one can derive the characteristic length and time scales

L =
γ0

E base
sed

and τ =
L4

Dγ0
. (3.11)

Note, the nondimensionalization is achieved by using the expression E base
sed = ε2E f /(1−

ν f ) that is derived for a biaxially strained film on an undeformed substrate covering a
half-space, where E f is Young’s modulus and ν f is Poisson’s ratio of the film material.

The evolution equation in nondimensional form becomes

HT =
√

1+α2(H2
X +H2

Y )
1
α
(∇̄2

s (Ēsed + Ēκ + Ēwet + Ēanis + Ēhot)+ f̄ ),

with the constituent potential terms

Ēsed =
1
2∑

i, j
σ̄i jεi j ,

Ēκ =−γ̄ κ̄ ,

Ēwet =
(γ f − γs)α b̄

γ0π(α4b̄2+H2)
√

1+α2|∇H|2
, (3.12)

Ēanis=−2α
(HXHXX+HXHXY)∂HXW +(HYHYY+HYHXY)∂HYW

(1+α2(H2
X +H2

Y ))
1/2

− 1
α
(1+α2(H2

X +H2
Y ))

1/2(∂X [Ψ∂HX W ]+∂Y [Ψ∂HY W ]) (3.13)

Ēhot =
1
α

∇2[∂HXX +∂HYY ](
1
2

ν̄ κ̄2(1+α2(H2
X +H2

Y ))
1/2) , (3.14)
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where in the last expression ν̄ = ν/(γ0L2) and in the anisotropy term Eanis the tran-
sition function with rescaled arguments Ψ = Ψ(Lα3b̄,H0H) has been used. The flux
term is

f̄ = F̃
−αr1HX −αr2HY + r3

|w|

with the dimensionless deposition number

F̃ =
FL3

Dγ0
. (3.15)

Here, the randomly perturbed vector is w = (r1,r2,r3)
T , defined as in equation (3.5).

Now, all terms are expanded with respect to the small parameter α . In particular, the
leading order terms of the nondimensionalized chemical potential

µ̄ = µ̄(0)+αµ̄(1)+O(α2)

and the flux
f̄ = f̄ (0)+α f̄ (1)

will be determined. Derivative operators such as the nabla operator ∇ = (∂X ,∂Y )
T or

the Laplacian ∇2 are now defined in the (X ,Y) variables. The surface Laplacian ∇̄2
s

can be expanded to a standard Laplacian plus higher order perturbations, so that to
order α the evolution equation can be written as

HT = ∇2
(

1
α

µ̄(0)+ µ̄(1)
)

+
1
α

f̄ (0)+ f̄ (1). (3.16)

The leading order terms of the chemical potential have already been already derived
in [24, 44], giving the terms Esed,Eκ ,Ewet ,Eanis: The strain energy density expansion is

Ēsed = Ē
(0)
sed +αĒ

(1)
sed +O(α2) .

with
Ē

(0)
sed = 1 and Ē

(1)
sed = F

−1[−ẽkF [H]] . (3.17)

and the material constant

ẽ =
2µ f (1+ν f )(1−νs)

(1−ν f )µs , (3.18)

which relates the elastic state of the substrate to the state of the film. Here µ f ,s is the
shear modulus and ν f ,s is Poisson’s ratio of the film and the substrate, respectively,

and k =
√

k2
1+ k2

2 is the length of the vector of two wave numbers (k1,k2) that appear

in the two dimensional Fourier transform F and its inverse F−1.

12



From the constant part of the surface energy and the wetting layer one obtains the
expansions

Ēκ = Ē
(0)
κ +αĒ

(1)
κ +O(α2) with Ē

(0)
κ = 0 and Ē

(1)
κ =−∇2H . (3.19)

Ēwet = Ē
(0)
wet +αĒ

(1)
wet +O(α2) with Ē

(0)
wet = 0 and Ē

(1)
wet =− γ̃

H2 , (3.20)

where γ̃ = b̄(γs−γ0)/(γ0π). Usually γ̃ > 0, when a film covering the substrate is favor-
able.

The anisotropy results in

Ēanis = Ē
(0)

anis +αĒ
(1)

anis +O(α2) .

With the choice of the coefficients in W as in (3.9) we have

γ̄ = γ/γ0 = 1+α2W (HX ,HY )+
α2

2
ν̄(∇2H)2+O(α3) ,

and W is as in (3.10). Then the leading order expression is

Ē
(1)

anis=− 1
α2 ∇ ·∇∇HW (HX ,HY )=−∇ ·∇∇HW (HX ,HY ) . (3.21)

For the higher order regularization term

Ēhot = Ē
(0)
hot +αĒ

(1)
hot +O(α2)

we set ν̄ = α2ν̃ to guarantee that the leading order term corresponds to the leading
orders of the other surface energy terms. Then we obtain by expanding the terms in
(3.14)

Ēhot = α∇2[∂HXX +∂HYY ](
1
2

ν̃∇2H(1+O(α2)) = ν̃α∇4H +O(α3) ,

and note the leading order terms

Ē
(0)

hot = 0, Ē
(1)
hot = ν̃α∇4H . (3.22)

Finally the deposition terms can be read off from

f̄ = F̃
−αr1HX −αr2HY + r3

|w| =
F̃r3

|w| −α
F̃
|w|(r1HX + r2HY ) ,

giving

f̄ (0) =
F̃r3

|w| and f̄ (1) =− F̃
|w|(r1HX + r2HY ) . (3.23)

Recall that we choose the flux such that it models a perturbed beam of atoms which
is oriented in the (0,0,−1) direction.

13



Using ∇2µ(0) = 0 the evolution equation (3.16) becomes

HT = ∇2(Ē
(1)
sed + Ē

(1)
κ + Ē

(1)
wet + Ē

(1)
anis)+ f̄ (0)/α + f̄ (1) . (3.24)

Insertion of the derived terms (3.17), (3.19-3.23) into (3.24) results in the final evolu-
tion equation

HT = ∇2[ν̃∇4H −∇2H − γ̃/H2+F
−1[−ẽkF [H]]

−∇ ·∇∇HW (HX ,HY )]+
F̌r3

|w| −
F̃
|w|(r1HX + r2HY ) , (3.25)

where now

F̌ =
FL4

Dγ0H0
. (3.26)

This thin model is stabilized by the linear sixth order term in comparison to the weak
equation (where ν̃ = 0). Furthermore, although the linear fourth order term has a
stabilizing sign and may suggest that the regularization is not necessary, this is not
true in general, as the overall stability depends on the polynomial W .

4 Impact of strong anisotropy and deposition flux on
faceting patterns

We focus first on the linear stability analysis of flat films to infinitesimal perturbations
of amplitude δ̌ � 1 for which a normal mode ansatz

H = H̄ + δ̌ eσt+ik1X+ik2Y , (4.1)

yields the dispersion relation for equation (3.25) for F = 0

σ =−ν̃k6− k4+ ẽk3− 2γ̃
H̄3k2−2k2(G20k2

2+G21k1k2+G22k2
1). (4.2)

For the case of materials with cubic symmetry the anisotropy constants in the X and Y
directions are equal and that the crystal is aligned with those axes, G20= G22 =−2G
and G21 = 0. With this choice of coefficients the relation simplifies to

σ =−ν̃k6+(4G−1)k4+ ẽk3− 2γ̃
H̄3k2 . (4.3)

Here we see most clearly, that for a strong anisotropy coefficient G the fourth order
term becomes positive, leading to unstable behavior in case without the regularizing
sixth order term. As noted before in [24] increased anisotropy leads to maxima at
higher wave numbers in the dispersion relation and moreover above a critical value
(here G=1/4) it has a completely destabilizing effect. As we observe now, the cor-
ner energy may drastically change the picture if allowed to increase. Figure 3 shows
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Figure 3: Dispersion relation for the weak evolution equation (ν = 0) and for the strong
equation (ν > 0) for an anisotropy value below the threshold G = 0.2< Gc = 0.25and
above, G = 0.3> Gc.

dispersion relations for two different anisotropy strengths and varying values of the
regularization coefficient ν̃ . It is visible that as ν̃ → 0 the dispersion curve tends to the
weak case ν̃ = 0. As G > 0.25 this limit yields an ill-posed problem.

While a recent study linear stability of thin solid films with strongly anisotropic surface
energy and wetting interactions has been carried out by Khenner et al. [23], a more
detailed discussion of the effects of strong anisotropy and corner regularization can
best be found in Liu and Metiu [29], but also Cahn and Taylor [43]. Our results basi-
cally confirm their analysis and extension of Mullins’ equation by including anisotropy
and corner energy. Moreover, it is found that the coarsening mechanism will also be
influenced by effects of anisotropy and corner energy. We will next explore further the
nonlinear effect via our numerical methods that enable us to follow the patterns over
a long time range, and devote our attention to the influence of the coefficients G and
ν̃ together with deposition flux F .

4.1 Numerical simulations

Our numerical simulations for equation (3.25) are based on a pseudospectral method,
where we use a third order semi-implicit backward differentiation formula (SBDF) time-
stepping procedure and an exponential time-differencing (ETD) method with a fourth
order Runge-Kutta (RK4) time-integration. Both are described in detail in the appendix
A.2, while here we present and discuss the results from our simulations. The linear
stability analysis shows that a flat state above a certain critical thickness is unstable to
perturbations (by choosing H̄ small the unstable intervals seen in Figure 3 shrink until
they vanish at a critical height dependent on the other parameters). Hence a random
perturbation of a sufficiently large and constant initial condition shows the anticipated
instability. First we made simulations for the case without deposition (F = 0) to see
and understand the interplay between the anisotropy strength G and the regularization
coefficient ν̃ .
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Figure 4: Evolution based on equation (3.25) with F = 0,G = 0.5, ν̃ = 0.2, starting
with a flat surface above the critical height that is perturbed by white noise with a
small amplitude.

No deposition In Figure 4 we see a typical evolution that is very similar to the case
ν̃ = 0,G < 1/4, discussed in [24], for which we use the same wetting and elastic
parameters as in this reference, γ̃ = 0.05, ẽ = 1.2778, respectively, calculated for the
Ge/Si system, but a strong anisotropy G = 0.5 and ν̃ = 0.2. The flat film above the
critical thickness develops a wrinkle pattern that evolves into faceted pyramids that
are separated by a wetting layer. After long time of evolution as seen in Figure 5 that
the pyramidal shape is very pronounced as faceting gets more preferred.

Figure 5: Pyramidally shaped quantum dots after long-time evolution of equation
(3.25) without deposition, F = 0, simulated with the SBDF method.

When G is chosen larger, the anisotropy dominates the evolution. We observe in
Figure 6 that a very strong anisotropy in fact stabilizes the faceted structures. Between
T = 10 and T = 480not much difference can be seen in the shapes and coarsening
seems to come to a halt. This is in sharp contrast to the cases, where ν̃ = 0,G < 0.25,
where coarsening always takes place.

To study the influence of the pair (G, ν̃), which varies for different materials, on station-
ary states, we made computations on a small domain [0,10]2 for different such pairs.
Starting the simulations with a Gaussian hump h(x,y,0) = 2exp(−((x−5)/2)2−((y−
5)/2)2) we continued the time-stepping until a the relative change of two consecu-
tive iterates falls below a small threshold. The results are plotted in Figure 7. While
weak anisotropy with large regularization leads to a nearly isotropic dot, the other
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Figure 6: Two time-points for the evolution with very strong anisotropy, G = 1.

limit, strong anisotropy and small ν̃ , gives a completely faceted array of islands. The
initial hump is decomposed smaller, faceted structures. With the regularizing term we
indeed obtain, at least numerically, stabilized morphological structures, different from
a single, stable pyramid, that is obtained in the weakly anisotropic case.

Deposition flux F > 0 When the flux of incoming atoms is nonzero, F > 0, we ob-
serve coarsening as in Figure 8. Here we simulated coarsening process with three
different values of F and each column in the figure depicts the dimensionless time
point, where the same amount of material has been deposited onto an initially flat
surface. In all cases we see the typical coarsening events, smaller dots are eaten in
expense of the bigger ones, however, with increased deposition rate, the number of
islands remains higher, while the sizes of these dots are smaller. The additional in-
come of atoms lets small pyramids survive longer. The high island density leads to
more covering of the wetting region. This can also be read off from the coarsening
diagram in Figure 9.

The diagram shows that the decrease in fact happens polynomially fast. The amount
of deposited germanium atoms is plotted against the number of islands in a doubly
logarithmic plot for three different flux rates. It is very well visible that more dots survive
after the initial instability when the flux rate is higher.

5 Summary and discussion

In this study we have reviewed classes of surface energy formulations that have been
proposed in models for epitaxial growth and developed a systematic framework to
derive the surface energy for heteroepitaxial growth of a thin crystalline film. We pre-
sented a new model, where the surface energies also also take account of large
anisotropy as well as the effect of wetting energy, elastic energy of the film and sub-
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Figure 7: Numerically calculated stationary states for different values of ν̃ (= nu) and
G.

strate and a randomly perturbed atomic deposition flux. We then derived a corre-
sponding thin film model and developed a numerical code that enables to capture the
pattern evolution of the coarsening quantum dots.

We have shown that our pseudospectral method, is sufficiently fast to simulate arrays
of quantum dots for materials with strong anisotropy. The implicit-explicit schemes we
tested had the drawback that high order schemes have unfavorable time-step restric-
tions, making simulations very slow. We found that the ETDRK4 method is well suited
if one wants to obtain very accurate results on one hand, while relaxing the time-step
restrictions.

When the anisotropy parameters of the surface energy density are chosen very large,
the dots are stabilized against coarsening. The energy wells of the preferred facets
are so large, that this prevents the surface from fast ripening. Then the wetting ef-
fect becomes negligible and the evolution reminds more of perfectly faceted surfaces.
We see from our numerical experiment on stationary states that dependent on γ the
qualitative and quantitative differences of the morphology are immense, ranging from
isotropically shaped stationary states to small-scale faceted arrays. It hence is an
important task to use a realistic surface energy formula with properly determined
anisotropy and regularization coefficients.

The numerical results suggest also analytical studies on existence and investigations
into the ω-limit set, both are not known. Such results may depend strongly on the
anisotropy and regularization parameters. The existence of stationary patterns of the
nanostructures is in particular interesting for applications. Analytical results would be
useful to confirm the numerical findings.

We believe that our model represents a realistic setting that can be used for compar-
ison to experiment. Apart from investigating the impact of anisotropy on stability and
coarsening behavior, it will be necessary to obtain knowledge about the strength of
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Figure 8: Evolution of the thin films for G = 0.4, ν̃ = 0.1 for three different flux rates.
Each picture in a column corresponds to the same amount of deposited film material
and the flux is increased from one row to the next.

Figure 9: Coarsening diagrams for G = 0.4, ν̃ = 0.1 and different flux rates. The num-
ber of atoms deposited is plotted against the normalized island density for three dif-
ferent fluxes.

the corner energy. For material systems of large anisotropy (above the critical value
of G), assuming a slow coarsening, a measure of the pattern size that corresponds
to the theoretical most preferred wavelength, would indirectly imply or at least narrow
the range for the strength of the corner energy.

19



A Appendix

A.1 Proofs for Subsection 2.1

A.1.1 Proof of Lemma 2.1

For the proof we need to show that the Householder matrices change the signs of the
components of n, and fulfill one of the 3! = 6 possible permutations.
Sign switch, j ∈ {1,2,3}: With the Kronecker delta δi j we get

H(a j)n =





1−2δ1 j 0 0
0 1−2δ2 j 0
0 0 1−2δ3 j









n1
n2

n3



=





(1−2δ1 j)n1
(1−2δ2 j)n2

(1−2δ3 j)n3





which is just one sign swith at position j of the 3-vector. The equality γ(n)= γ(H(a j)n)
allows for repeated application to get several sign switches at once. Now we need to
take care of the permutations.

Permutations: j = 4:

H(a4)n = Id−





1 −1 0
−1 1 0
0 0 0









n1

n2
n3



=





0 1 0
1 0 0
0 0 1









n1

n2
n3



=





n2

n1
n3



.

j = 5:

H(a5)n = Id−





1 0 −1
0 0 0
−1 0 1









n1
n2

n3



=





0 0 1
0 1 0
1 0 0









n1
n2

n3



=





n3
n2

n1



.

The concatenation of these Householder matrices yields all possible permutations.

A.1.2 Proof of Proposition 2.2

Any n∈ S
2 has a polar representation, n=(n1,n2,n3)

T =(sin(θ2)cos(θ1),−sin(θ1)cos(θ2),cos(θ2))
T .

Then a sign switch of one of the angles or the addition or subtraction of π/2 can be
represented by two Givens rotations R1(θ̃1)R2(θ̃2), where

R1(θ̃1) =





c(θ̃1) s(θ̃1) 0
−s(θ̃1) c(θ̃1) 0

0 0 1



 andR2(θ̃1) =





c(θ̃2) 0 s(θ̃2)
0 1 0

−s(θ̃2) 0 c(θ̃2)



 (A.1)

and we abbreviate c = cosand s = sin. However, we have seen that the symmetry
(2.1) can be expressed in terms of Householder transformations. As det(H(a j)) =−1
there cannot exist any rotation giving the same result, since det(R1R2)=det(R1)det(R2)=
1.
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Although the equivalence does not hold, we have an implication. As two reflections
H1,H2 fulfill det(H1H2) = 1, the previous argument cannot be reversed.

For δ ∈ {±1} it is s(θ) = δ s(δθ) and c(θ) = c(δθ), hence we get for any δ j ∈
{±1}, j = 1,2,

γ2(θ1,θ2) = γ1(n1,n2,n3) = γ1(δ2n1,δ1n2,n3)

= γ1(δ2s(θ2)c(θ1),−δ1s(θ1)c(θ2),c(θ2))

= γ1(s(δ2θ2)c(δ1θ1),−s(δ1θ1)c(δ2θ2),c(δ2θ2)) = γ2(δ1θ1,δ2θ2).

Now we prove the π/2 rotation invariance. We show only what happens when θ2 →
θ2+π/2, the other cases follow analogously. A π/2 increase of θ2 means an additional
Givens rotation for the normal (n → ñ = (n3,n2,n1)

T ), we get

γ2(θ1,θ2) = γ1(





n1
n2

n3



= γ1(





n3
n2

−n1



) = γ1(





0 0 1
0 1 0
−1 0 0



n)

= γ1(





c(π/2) 0 s(π/2)
0 1 0

−s(π/2) 0 c(π/2)



n) = γ2(θ1,θ2+π/2).

A.1.3 Proof of Proposition 2.3

Since the surface is smoothly parametrized, the third component of n is always bigger
than or equal to zero, n3(a,b)≥ 0,∀(a,b)∈Ω, and hence δ3 = +1 in (2.1). Furthermore
the 3-permutation π =(π(1),π(2),π(3)) is only permitted if nπ(3)≥0. Let δ1,δ2∈{±1}
be arbitrary.
”⇒” Let (2.1) hold and π(n) = (n2,n1,n3), then

γ3(hx,hy) = γ1◦n(hx,hy) = γ1(n1,n2,n3)

=

{

γ1(δ1n1,δ2n2,n3) = γ1◦n(δ1hx,δ2hy) = γ3(δ1hx,δ2hy)
γ1(π(n1,n2,n3)) = γ1(n2,n1,n3) = γ3(hy,hx)

.

”⇐” Let (2.2) hold, then as before γ1(n1,n2,n3)= γ3(hx,hy)= γ3(δ1hx,δ2hy)= γ1(δ1n1,δ2n2,n3).
There is nothing to show for the interchange of the first two normal components since
one can directly calculate γ1(n1,n2,n3) = γ3(hy,hx) = γ1(n2,n1,n3).

Let n3 permute with one of the other components (consider π(n) = (n3,n2,n1), the
other case can be treated analogously). Since n1 > 0, there exist (a,b) ∈ R

2 such
that (n3,n2,n1) = (−a,−b,1)/

√
1+a2+b2. Since (n1,n2,n3) = (−hx,−hy,1)/N, one

obtains the identity

(1,−hy,−hx)/
√

1+h2
x+h2

y = (−a,−b,1)/
√

1+a2+b2 , (A.2)

which gives b =−hy/hx and a = 1/hx. Hence

γ1(π(n1,n2,n3))=γ1(n3,n2,n1)=γ3(a,b)=γ1(n1,n2,n3)

because of (A.2).
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A.2 The numerical schemes

We solved evolution equation (3.25) for the case without deposition, F = 0, with a
pseudospectral method, by transforming the two spatial variables into Fourier space
and using a time-stepping scheme discussed by Ascher, Ruuth and Wetton [2]. For
the case with deposition, F > 0, we used an extended scheme (in terms of accuracy
and stability), an exponential time differencing (ETD) type method introduced by Cox
and Matthews [11] and improved by Kassam and Trefethen [22]. The first method is a
third order semi-implicit backward differentiation (SBDF) scheme. For an equation

ut = Lu+N(u) , (A.3)

with a linear part Lu and the nonlinearity N(u), it is defined as

11
6

un+1−3un +
3
2

un−1− 1
3

un−2 = dt[3N(un)−3N(un−1)+N(un−2)+Lun+1],

where one calculates the new iterate un+1 from the three previous steps u j, j = n,n−
1,n−2. It can be applied to our evolution equation, since in Fourier space, discretized,
with the DFT u = F (H) it becomes just (A.3) with the diagonal linearity

L =−ν̃k6− k4+ ēk3 , (A.4)

and the nonlinear part

N = k2(ik1F [Ψ1]+ ik2F [Ψ2]+ γ̃F [
1

H2 ]) ,

where
Ψ j = G([F−1(ik ju)]

3− ik ju), j = 1,2

for the special case of the quadruple-well anisotropy (3.4). It could be replaced by
other anisotropic expressions to model different materials. The shown figures were
calculated with 1282 wave number pairs and time-step size dt = 1e−4.

For the stationary islands discussed in the last Section (i.e. Figure 7) we evolved the
surface until the updated iterate, the shape h+, fulfills

‖h+−h‖2/‖h‖2 < dtε

for some small tolerance ε .

For the case with deposition we used the same linearity (A.4) and added the flux
terms to the nonlinearity, so that now

N =k2(ik1F [Ψ1]+ ik2F [Ψ2]+ γ̃F [
1

H2 ])+F(F [r3/|w|]− (α(ik1F [r1/|w|]+ ik2F [r2/|w|]))u),

with the same Ψ j as before. We could have defined the deposition as part of the
linearity, however, this would not work well with the ETD method. It writes

un+1 = eLdtun +α1N(un, tn)+α2(N(an, tn+dt/2)+N(bn, tn+dt/2))+α3N(cn, tn+dt)
(A.5)
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with the variable coefficients

an = eLdt/2un +L−1(eLdt/2− I)N(un, tn)

bn = eLdt/2un +L−1(eLdt/2− I)N(an, tn+dt/2)

cn = eLdt/2an

+L−1(eLdt/2− I)(2N(bn, tn+dt/2)−N(un, tn))

and the cancellation error prone coefficients

α1 = dt−2L−3[−4−Ldt + eLdt(4−3Ldt +(Ldt)2)]

α2 = 2dt−2L−3[2+Ldt + eLdt(−2+Ldt)]

α3 = dt−2L−3[−4−3Ldt − (Ldt)2+ eLdt(4−Ldt)]

that we evaluate with help of a Cauchy integral as it has been proposed in [22]. If the
linearity would be time-dependent (by adding depositio), the coefficients would have
to be calculated in each time step, making the calculations costly. The method seems
more efficient than high order SBDF schemes. Additionally to high accuracy the ETD
method has a better time-step restriction.
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