
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A one-dimensional symmetry result for solutions of an

integral equation of convolution type

François Hamel,1 Enrico Valdinoci 2,3

submitted: June 1, 2015

1 Aix Marseille Université
CNRS, Centrale Marseille
Institut de Mathématiques de Marseille
UMR 7373
13453 Marseille
France
E-mail: francois.hamel@univ-amu.fr

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: Enrico.Valdinoci@wias-berlin.de

3 Università di Milano
Dipartimento di Matematica Federigo Enriques
Via Cesare Saldini 5
20133 Milano
Italy
E-Mail: enrico@math.utexas.edu

No. 2115

Berlin 2015

2010 Mathematics Subject Classification. 45A05, 47G10, 47B34.

Key words and phrases. Integral operators, convolution kernels, one-dimensional symmetry, De Giorgi Conjecture.

This work has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033), of the A*MIDEX
project (ANR-11-IDEX-0001-02) and of the WIAS ERC-1 project. The research leading to these results has re-
ceived funding from the European Research Council Grant n. 321186 - ReaDi - “Reaction-Diffusion Equations,
Propagation and Modelling” and n. 277749 - EPSILON - “Elliptic Pde’s and Symmetry of Interfaces and Layers for
Odd Nonlinearities”, the PRIN Grant n. 201274FYK7 “Critical Point Theory and Perturbative Methods for Nonlinear
Differential Equations”, and the ANR “NONLOCAL"project (ANR-14-CE25-0013). Part of this work was carried out
during a visit by F. Hamel to the Weierstrass Institute, whose hospitality is thankfully acknowledged.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract
We consider an integral equation in the plane, in which the leading operator is

of convolution type, and we prove that monotone (or stable) solutions are necessarily
one-dimensiona.l

1 Introduction

In this paper, we consider solutions of an integral equation driven by the following nonlocal,
linear operator of convolution type:

Lu(x) :=

∫

Rn

(
u(x)− u(y)

)
k(x− y) dy. (1)

Here we suppose1 that k is an even, measurable kernel with normalization
∫

Rn

k(ζ) dζ = 1

and such that
m0χBr0

(ζ) ≤ k(ζ) ≤M0χBR0
(ζ) (2)

for any ζ ∈ Rn, for some fixed M0 ≥ m0 > 0 and R0 ≥ r0 > 0. Throughout the paper, Br

denotes the open Euclidean ball with radius r > 0 and centered at the origin.
We consider here solutions u of the semilinear equation

Lu(x) = f
(
u(x)

)
. (3)

In the past few years, there has been an intense activity in this type of equations, both
for its mathematical interest and for its relation with biological models, see, among the
others [17, 18, 20, 21]. In this case, the solution u is thought as the density of a biological
species and the nonlinearity f is often a logistic map, which prescribes the birth and death
rate of the population. In this framework, the nonlocal diffusion modeled by L is motivated
by the long-range interactions between the individuals of the species.

The goal of this paper is to study the symmetry properties of solutions of (3) in the light
of a famous conjecture of De Giorgi arising in elliptic partial differential equations, see [12].
The original problem consisted in the following question:

Conjecture 1. Let u be a bounded solution of

−∆u = u− u3

in the whole of Rn, with
∂xnu(x) > 0 for any x ∈ Rn.

Then, u is necessarily one-dimensional, i.e. there exist u? : R → R and ω ∈ Rn such
that u(x) = u?(ω · x), for any x ∈ Rn, at least when n ≤ 8.

1For the sake of completeness, we point out that assumptions more general than (2) may be taken into
account with the same methods as the ones used in this paper. For instance, one could follow assump-
tions (H1)–(H4) in [11] with g ≥ α for some α > 0. We focus on the simpler case of assumption (2) for
simplicity.
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The literature has presented several variations of Conjecture 1: in particular, a weak
form of it has been investigated when the additional assumption

lim
xn→±∞

u(x1, . . . , xn) = ±1 (4)

is added to the hypotheses.
When the limit in (4) is uniform in the variables (x1, . . . , xn−1) ∈ Rn−1, the version of

Conjecture 1 obtained in this way is due to Gibbons and is related to problems in cosmology.
In spite of the intense activity of the problem, Conjecture 1 is still open in its generality.

Up to now, Conjecture 1 is known to have a positive answer in dimension 2 and 3 (see [2, 19]
and also [1, 5]) and a negative answer in dimension 9 and higher (see [14]).

Also, the weak form of Conjecture 1 under the limit assumption in (4) was proved (up
to the optimal dimension 8) in [23], and the version of Conjecture 1 under a uniform limit
assumption in (4) holds true in any dimension (see [3, 6, 15]).

Since it is almost impossible to keep track in this short introduction of all the research
developed on this important topic, we refer to [16] for further details and motivations.

The goal of this paper is to investigate whether results in the spirit of Conjecture 1 hold
true when the Laplace operator is replaced by the nonlocal, integral operator in (1). We
remark that symmetry results in nonlocal settings have been obtained in [7, 8, 9, 10, 13, 24],
but all these works dealt with fractional operators with a regularizing effect. Namely, the
integral kernel considered there is not integrable, therefore the solutions of the associated
equation enjoy additional regularity and rigidity properties. Also, some of the problems
considered in the previous works rely on an extension property of the operator that bring the
problem into a local (though higher dimensional and either singular or degenerate) problem.

In this sense, as far as we know, this paper is the first one to take into account integrable
kernels, for which the above regularization techniques do not hold and for which equivalent
local problems are not available.

In this note, we prove the following one-dimensional result in dimension 2:

Theorem 2. Let u be a solution of (3) in the whole of R2, with ‖u‖C1(R2) < +∞ and f ∈
C1(R). Assume that

∂x2u(x) > 0 for any x ∈ R2. (5)

Then, u is necessarily one-dimensional.

The proof of Theorem 2 relies on a technique introduced by [5] and refined in [2], which
reduced the symmetry property to a Liouville type property for an associated equation (of
course, differently from the classical case, we will have to deal with equations, and in fact
inequalities, of integral type, in which the appropriate simplifications are more involved).

For the existence of one-dimensional solutions of (3) under quite general conditions, see
Theorem 3.1(b) in [4].

The rest of the paper is devoted to the proof of Theorem 2.

2



2 Proof of Theorem 2

We observe that, for any f ∈ L∞(R2) and g ∈ L1(R2),

2

∫

R2

Lf(x) g(x) dx = 2

∫

R2

[∫

R2

(
f(x)− f(y)

)
k(x− y) dy

]
g(x) dx

=

∫

R2

[∫

R2

(
f(x)− f(y)

)
k(x− y) dy

]
g(x) dx

+

∫

R2

[∫

R2

(
f(y)− f(x)

)
k(x− y) dx

]
g(y) dy

=

∫

R2

∫

R2

(
f(x)− f(y)

) (
g(x)− g(y)

)
k(x− y) dx dy.

(6)

Now we let ui := ∂xi
u, for i ∈ {1, 2}. In light of (5), we can define

v(x) :=
u1(x)

u2(x)
. (7)

Also, fixed R > 1 (to be taken as large as we wish in the sequel), we consider a cut-off
function τ := τR ∈ C∞0 (B2R), such that 0 ≤ τ ≤ 1 in R2, τ = 1 in BR and

|∇τ | ≤ CR−1, (8)

for some C > 0 independent of R > 1. Throughout the proof, C will denote a positive
constant which may change from a line to another, but which is independent of R > 1.

By (3), we have that

f ′
(
u(x)

)
ui(x) = ∂xi

(
f
(
u(x)

))

= ∂xi

(
Lu(x)

)
= ∂xi

(∫

R2

(
u(x)− u(x− ζ)

)
k(ζ) dζ

)

=

∫

R2

(
ui(x)− ui(x− ζ)

)
k(ζ) dζ =

∫

R2

(
ui(x)− ui(y)

)
k(x− y) dy

= Lui(x).

(9)

Accordingly,

f ′(u)u1u2 =
(
Lu1

)
u2

and f ′(u)u1u2 =
(
Lu2

)
u1.

By subtracting these two identities and using (7), we obtain

0 =
(
Lu1

)
u2 −

(
Lu2

)
u1 =

(
L(vu2)

)
u2 −

(
Lu2

)
(vu2).

Now, we multiply the previous equality by 2τ 2v and we integrate over R2. Recalling (6), we
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conclude that

0 = 2

∫

R2

L(vu2)(x) (τ 2vu2)(x) dx− 2

∫

R2

Lu2(x) (τ 2v2u2)(x) dx

=

∫

R2

∫

R2

(
vu2(x)− vu2(y)

) (
τ 2vu2(x)− τ 2vu2(y)

)
k(x− y) dx dy

−
∫

R2

∫

R2

(
u2(x)− u2(y)

) (
τ 2v2u2(x)− τ 2v2u2(y)

)
k(x− y) dx dy

=: I1 − I2.

(10)

By writing

vu2(x)− vu2(y) =
(
u2(x)− u2(y)

)
v(x) +

(
v(x)− v(y)

)
u2(y),

we see that

I1 =

∫

R2

∫

R2

(
u2(x)− u2(y)

) (
τ 2vu2(x)− τ 2vu2(y)

)
v(x) k(x− y) dx dy

+

∫

R2

∫

R2

(
v(x)− v(y)

) (
τ 2vu2(x)− τ 2vu2(y)

)
u2(y) k(x− y) dx dy..

(11)

In the same way, if we write

τ 2v2u2(x)− τ 2v2u2(y) =
(
τ 2vu2(x)− τ 2vu2(y)

)
v(x) +

(
v(x)− v(y)

)
τ 2vu2(y),

we get that

I2 =

∫

R2

∫

R2

(
u2(x)− u2(y)

) (
τ 2vu2(x)− τ 2vu2(y)

)
v(x) k(x− y) dx dy

+

∫

R2

∫

R2

(
u2(x)− u2(y)

) (
v(x)− v(y)

)
τ 2vu2(y) k(x− y) dx dy.

(12)

By (11) and (12), after a simplification we obtain that

I1 − I2 =

∫

R2

∫

R2

(
v(x)− v(y)

) (
τ 2vu2(x)− τ 2vu2(y)

)
u2(y) k(x− y) dx dy

−
∫

R2

∫

R2

(
u2(x)− u2(y)

) (
v(x)− v(y)

)
τ 2vu2(y) k(x− y) dx dy.

Now we notice that

τ 2vu2(x)− τ 2vu2(y)

=
(
v(x)− v(y)

)
τ 2(x)u2(x) +

(
τ 2(x)− τ 2(y)

)
u2(x) v(y) +

(
u2(x)− u2(y)

)
τ 2(y) v(y),

and so

I1 − I2 =

∫

R2

∫

R2

(
v(x)− v(y)

)2
τ 2(x)u2(x)u2(y) k(x− y) dx dy

+

∫

R2

∫

R2

(
v(x)− v(y)

) (
τ 2(x)− τ 2(y)

)
v(y)u2(x)u2(y) k(x− y) dx dy.
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Thus, using this and (10), and recalling (2), (5) and the support properties of τ , we deduce
that

0 ≤ J1 :=

∫

R2

∫

R2

(
v(x)− v(y)

)2
τ 2(x)u2(x)u2(y) k(x− y) dx dy

≤
∫∫

RR

∣∣v(x)−v(y)
∣∣ ∣∣τ(x)−τ(y)

∣∣ ∣∣τ(x)+τ(y)
∣∣ |v(y)|u2(x)u2(y) k(x−y) dx dy

=: J2,

(13)

where

RR := {(x, y) ∈ R2 × R2 s.t. |x− y| ≤ R0} ∩ SR

and SR :=
(

(B2R ×B2R) \ (BR ×BR)
)
∪
(
B2R × (R2 \B2R)

)
∪
(

(R2 \B2R)×B2R

)
.

We use the symmetry in the (x, y) variables and the substitution ζ := x− y to see that the
Lebesgue measure |RR| of the set RR is bounded by

|RR| ≤
∣∣{|x− y| ≤ R0} ∩ {|x|, |y| ≤ 2R}

∣∣+ 2
∣∣{|x− y| ≤ R0} ∩ {|x| ≤ 2R ≤ |y|}

∣∣

≤ 3

∫

B2R

[∫

BR0

dζ

]
dx

≤ CR2,

(14)

for some C > 0, possibly depending on R0, but independent of R > 1.
Moreover, making use of the Cauchy-Schwarz Inequality, we see that

J2
2 ≤

∫∫

RR

(
v(x)− v(y)

)2 (
τ(x) + τ(y)

)2
u2(x)u2(y) k(x− y) dx dy

·
∫∫

RR

(
τ(x)− τ(y)

)2
v2(y)u2(x)u2(y) k(x− y) dx dy.

(15)

Now we claim that
u2(x) ≤ C u2(y) (16)

for any (x, y) ∈ RR, for a suitable C > 0, possibly depending on R0 but independent of R > 1
and (x, y) ∈ RR. For this, fix x and let Ω := BR0(x) = x + BR0 . Then we use the Harnack
Inequality for integral equations (recall (2), (5) and (9), and see Corollary 1.7 in [11]), to
obtain that

u2(x) ≤ sup
Ω
u2 ≤ C inf

Ω
u2 ≤ C u2(y)

for any y ∈ BR0(x), where C > 0 is independent of R > 1 and (x, y) ∈ RR. This esta-
blishes (16).

From (7), (8) and (16), we obtain that, for any (x, y) ∈ RR,

(
τ(x)− τ(y)

)2
v2(y)u2(x)u2(y) ≤ CR−2 v2(y)u2

2(y) = CR−2 u2
1(y) ≤ CR−2,
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for some C > 0 independent of R > 1. Hence, by (2) and (14),

∫∫

RR

(
τ(x)− τ(y)

)2
v2(y)u2(x)u2(y) k(x− y) dx dy ≤ C,

for some C > 0. Therefore, recalling (15),

J2
2 ≤ C

∫∫

RR

(
v(x)− v(y)

)2 (
τ(x) + τ(y)

)2
u2(x)u2(y) k(x− y) dx dy. (17)

Hence, since

(
τ(x) + τ(y)

)2
= τ 2(x) + τ 2(y) + 2τ(x) τ(y) ≤ 2τ 2(x) + 2τ 2(y),

we can use the symmetric role played by x and y in (17) and obtain that

J2
2 ≤ C

∫∫

RR

(
v(x)− v(y)

)2
τ 2(x) u2(x)u2(y) k(x− y) dx dy,

up to renaming C > 0. So, we insert this information into (13) and we conclude that

[∫∫

R2×R2

(
v(x)− v(y)

)2
τ 2(x)u2(x)u2(y) k(x− y) dx dy

]2

= J2
1

≤ J2
2 ≤ C

∫∫

RR

(
v(x)− v(y)

)2
τ 2(x) u2(x)u2(y) k(x− y) dx dy,

(18)

for some C > 0.
Since RR ⊆ R2 ×R2 and u2 and k are nonnegative, we can simplify the estimate in (18)

by writing ∫∫

R2×R2

(
v(x)− v(y)

)2
τ 2(x)u2(x)u2(y) k(x− y) dx dy ≤ C.

In particular, since τ = 1 in BR,

∫∫

BR×BR

(
v(x)− v(y)

)2
u2(x)u2(y) k(x− y) dx dy ≤ C.

Since C is independent of R, we can send R → +∞ in this estimate and obtain that the
map

R2 × R2 3 (x, y) 7→
(
v(x)− v(y)

)2
u2(x)u2(y) k(x− y)

belongs to L1(R2 × R2).
Using this and the fact that RR approaches the empty set as R → +∞, we conclude

from Lebesgue’s dominated convergence theorem that

lim
R→+∞

∫∫

RR

(
v(x)− v(y)

)2
u2(x)u2(y) k(x− y) dx dy = 0.

6



Therefore, going back to (18) and recalling the properties of τ = τR,

[∫∫

R2×R2

(
v(x)− v(y)

)2
u2(x)u2(y) k(x− y) dx dy

]2

= lim
R→+∞

[∫∫

R2×R2

(
v(x)− v(y)

)2
τ 2(x)u2(x)u2(y) k(x− y) dx dy

]2

≤ lim
R→+∞

C

∫∫

RR

(
v(x)− v(y)

)2
τ 2(x) u2(x)u2(y) k(x− y) dx dy.

= 0.

This and (5) imply that
(
v(x) − v(y)

)2
k(x − y) = 0 for any (x, y) ∈ R2 × R2. Hence,

recalling (2), we have that v(x) = v(y) for any x ∈ R2 and any y ∈ Br0(x).
As a consequence, the set {y ∈ R2 s.t. v(y) = v(0)} is open and closed in R2, and so,

by connectedness, we obtain that v is constant, say v(x) = a for some a ∈ R. So we

define ω := (a,1)√
a2+1

and we observe that

∇u(x) = u2(x) (v(x), 1) = u2(x)
√
a2 + 1 ω.

Thus, if ω · y = 0 then

u(x+ y)− u(x) =

∫ 1

0

∇u(x+ ty) · y dt =

∫ 1

0

u2(x+ ty)
√
a2 + 1 ω · y dt = 0.

Therefore, if we set u?(t) := u(tω) for any t ∈ R, and we write any x ∈ R2 as

x = (ω · x)ω + yx

with ω · yx = 0, we conclude that

u(x) = u ((ω · x)ω + yx) = u ((ω · x)ω) = u? (ω · x) .

This completes the proof of Theorem 2. �

For completeness, we observe that a more general version of Theorem 2 holds true, namely
if we replace assumption (5) with a “stability assumption” in the sense of [2]: the precise
statement goes as follows:

Theorem 3. Let u be a solution of (3) in the whole of R2, with ‖u‖C1(R2) < +∞ and f ∈
C1(R). Assume that there exists ψ > 0 which solves

Lψ(x) = f ′
(
u(x)

)
ψ(x) for any x ∈ R2.

Then, u is necessarily one-dimensional.

Notice that, in this setting, Theorem 2 is a particular case of Theorem 3, choosing ψ :=
u2 = ∂x2u and recalling (9).
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The proof of Theorem 3 is like the one of Theorem 2, with only a technical difference:
instead of (7), one has to define, for i ∈ {1, 2},

v(x) :=
ui(x)

ψ(x)
.

Then the proof of Theorem 2 goes through (replacing u2 with ψ when necessary) and implies
that v is constant, i.e. ui = aiψ, for some ai ∈ R. This gives that ∇u(x) = ψ(x) (a1, a2),
which in turn implies the one-dimensional symmetry of u.

Also, we think that it is an interesting open problem to investigate if symmetry results
in the spirit of Theorems 2 and 3 hold true in higher dimension.

Additional note. Once our paper was completed, we heard that related results have been
obtained simultaneously and independently in [22].
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