
Geosci. Model Dev., 5, 1395–1405, 2012
www.geosci-model-dev.net/5/1395/2012/
doi:10.5194/gmd-5-1395-2012
© Author(s) 2012. CC Attribution 3.0 License.

Geoscientific
Model Development

Implementation of multirate time integration methods for air
pollution modelling

M. Schlegel1, O. Knoth1, M. Arnold 2, and R. Wolke1

1Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany
2Martin Luther University Halle-Wittenberg, Institute of Mathematics, 06099 Halle (Saale), Germany

Correspondence to:R. Wolke (wolke@tropos.de)

Received: 11 July 2011 – Published in Geosci. Model Dev. Discuss.: 15 November 2011
Revised: 5 September 2012 – Accepted: 9 October 2012 – Published: 12 November 2012

Abstract. Explicit time integration methods are charac-
terised by a small numerical effort per time step. In the appli-
cation to multiscale problems in atmospheric modelling, this
benefit is often more than compensated by stability problems
and step size restrictions resulting from stiff chemical reac-
tion terms and from a locally varying Courant-Friedrichs-
Lewy (CFL) condition for the advection terms. Splitting
methods may be applied to efficiently combine implicit and
explicit methods (IMEX splitting). Complementarily multi-
rate time integration schemes allow for a local adaptation of
the time step size to the grid size. In combination, these ap-
proaches lead to schemes which are efficient in terms of eval-
uations of the right-hand side. Special challenges arise when
these methods are to be implemented. For an efficient im-
plementation, it is crucial to locate and exploit redundancies.
Furthermore, the more complex programme flow may lead to
computational overhead which, in the worst case, more than
compensates the theoretical gain in efficiency. We present a
general splitting approach which allows both for IMEX split-
tings and for local time step adaptation. The main focus is on
an efficient implementation of this approach for parallel com-
putation on computer clusters.

1 Introduction

Atmospheric processes can be described using advection-
diffusion-reaction equations. The advection term describes
transport due to wind, diffusion describes turbulent mixing
on spatial scales below the cell size. Both of these terms
can efficiently be solved using explicit Runge-Kutta (RK)
methods. So called Runge-Kutta-Chebychev methods were

developed for the coupled treatment of advection-diffusion
problems (Verwer, 1996), (Verwer et al., 2004). Depend-
ing on the specific simulation, the reaction terms may de-
scribe microphysical processes or chemical reactions of pol-
lutants including source terms. These terms are usually stiff
as characteristic times of involved processes differ signifi-
cantly. Employing explicit methods is not efficient in this
case as stability requirements limit the time step size to un-
practically small values. Implicit methods have proven to be
much more efficient for the chemistry problem.

Implicit/explicit (IMEX) splittings have been developed
which allow for an efficient solution of advection-diffusion-
reaction equations. Complementarily since the 1980s ex-
plicit multirate methods have been developed (e.g.,Osher
and Sanders, 1983; Tang and Warnecke, 2005) which allow
for efficient solution of problems which can be split into non-
stiff sub-systems with differing characteristic times, for ex-
ample, advection on locally refined grids. Generally, multi-
rate schemes result only in a significant reduction of com-
putational costs if the amount to compute the part which re-
quires smaller time steps is low in comparison to the total
effort.

In the majority of current atmospheric models simple op-
erator splittings are employed while the usage of multirate
methods is rare. InSchlegel et al.(2009, 2012) we presented
a generic splitting approach which can be employed to con-
struct a multirate-IMEX scheme. The current paper is con-
cerned with the efficient implementation of this scheme in
the state-of-the-art Multiscale Atmospheric Chemistry and
Transport model COSMO-MUSCAT (Wolke et al., 2004;
Hinneburg et al., 2009) developed at the Institute for Tro-
pospheric Research in Leipzig.

Published by Copernicus Publications on behalf of the European Geosciences Union.



1396 M. Schlegel et al.: Implementation of splitting methods

The remainder of this paper is structured as follows. First,
we will mathematically outline a generic splitting scheme.
The subsequent section is concerned with the focus of this
paper, i.e., details of a practical implementation. We shall
present the programme flow, details on data exchange and
a balancing approach in separate subsections. Finally, we
present two scenarios and discuss the obtained reduction of
computational cost for each of them.

2 Mathematical preliminaries

In Schlegel et al.(2009) we presented a general splitting that
may be employed to generate multirate methods, calledre-
cursive flux splitting multirate(RFSMR). The approach is
based on an IMEX splitting presented byKnoth and Wolke
(1998a), which we briefly outline here. These schemes can be
seen as a higher-order generalisation of the popular source
splitting approach (Verwer et al., 2002). Consider an equa-
tion

w′
= F(w) + G(w).

In the context of this paperG represents advection with com-
paratively low Courant numbers. The other term,F , may rep-
resent diffusion-reaction or advection with higher Courant
numbers.

Denote the time substeps in the explicit method byτi =

t0 + 1tci with ci monotonically increasing withi. Then the
algorithm computing an approximate solutionw1 for time t1
from an approximate solutionw0 at time t0 can be outlined
as follows

W1 = w0, (1)

ri =

i−1∑
j=1

(
aij − ai−1,j

)
G
(
Wj

)
, (2)

vi (τi−1) = Wi−1, (3)
dvi

dτ
=

1

ci − ci−1
ri + F (vi) , (4)

τ ∈
[
τi−1,τi

]
, i = 2, ..., s + 1 ,

Wi = vi (τi) , (5)

w1 = Ws+1, (6)

with s denoting the number of stages of an explicit Runge-
Kutta (ERK) method with parameters(a,b,c) in standard
RK notation. Additionally ri denotes a source term cor-
related to the advection termG. For simplicity we define
as+1,j = bj , thus, avoiding a separate treatment of the sum-
mation stage. For stagesi with ci = ci−1 we replace (3),...,(5)
with a purely explicit step:

Wi = Wi−1 + 1tri

= Wi−1 + 1t

i−1∑
j=1

(
aij − ai−1,j

)
G
(
Wj

)
, (7)

which we will call acorrection step.

Defining F(v) ≡ 0 we obtain the underlying explicit
method, subsequently called theoutermethod. Generally we
requirew′

= G(w) to be non-stiff.
Solving theinner system Eq. (4) with an implicit integra-

tor leads to an IMEX splitting. The systemv′
= ri + F(v)

then may be stiff. To obtain an explicit multirate method the
inner system must be solved using an explicit Runge-Kutta
method. In the latter contextv′

= ri + F(v) is required to be
non-stiff, but it may impose stricter time step restrictions than
G. This situation arises e.g., when transport is simulated on
a locally refined grid. To make a distinction possible, we de-
note the parameters of the outer method with a superscript
“O” in contrast to the parameters of the inner method (em-
ployed for the solution of Eq. 4) denoted by a superscript
“I”. An explicit multirate method based on the above split-
ting then reads

W1 = w0, (8)

ri =

i−1∑
j=1

ãO
ijG

(
Wj

)
, (9)

Vi,1 = Wi−1, (10)

Vi,k = Vi,k−1 + 1tc̃O
i

k−1∑
j=1

ãI
kj

(
1

c̃O
i

ri + F
(
Vi,j

))
, (11)

i = 2, ..., sO
+ 1, k = 2, ..., sI

+ 1, (12)

Wi = Vi,sI+1. (13)

with the tilde parameters denoting the increments per RK
stage

ãij =

{
aij − ai−1,j if i < s + 1
bj − as,j if i = s + 1

,

c̃i =

{
ci − ci−1 if i < s + 1
1− cs if i = s + 1

,

for an explicit base method withs stages.
Note that the time step ratioR, i.e., the ratio of the

time step of the outer method (macro time step) to the
time step of the inner method (micro time step), depends
only on the nodescO

i of the outer method. Formally the
inner method is executedsO times with time step sizes of
(1t(cO

2 −cO
1 ),1t(cO

3 −cO
2 ), ...). This is no severe limitation,

however, as the inner method may for instance be replaced
by a composition ofn steps of size1t/n to obtain the de-
sired time step ratio, see Table1. Finally the splitting may be
applied recursively to obtain a multirate-IMEX splitting, see
Schlegel et al.(2012).

Based on a partitioned Runge-Kutta (PRK) formulation
(see for instanceHairer et al., 1987) we have proven that
the methods constructed using the algorithm (1),...,(6) are
second order accurate in time if all of the employed base
methods are at least of second order accuracy (Schlegel et al.,
2012). Even third order accuracy can be obtained if the base
methods themselves satisfy third order conditions and one

Geosci. Model Dev., 5, 1395–1405, 2012 www.geosci-model-dev.net/5/1395/2012/



M. Schlegel et al.: Implementation of splitting methods 1397

Table 1.RFMSMR(RK2a) – an example for a 2nd order multirate scheme with time step ratioR = 2; redundant stages omitted.

0
1 1

1/2 1/2
(RK2a)

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4
outer base method inner base method

0
1/2 1/2
1/2 1/2 0
1 1 0 0
1 1 0 0 0

1/2 0 0 0 1/2

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2
1 1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4 0
“slow” part “fast” part

additional order condition is satisfied by the outer method,

sO∑
i=1

(
cO
i+1 − cO

i

) i−1∑
j=1

(
aO
i+1,j + aO

i,j

)
cO
j =

1

3
.

Third order accuracy in time has been documented by nu-
merical tests and has also been proven formally. Order condi-
tions for partitioned Runge-Kutta methods can be found for
instance inJackiewicz and Vermiglio(1998).

In order to apply this multirate approach to the advection
equation, the advection operator must be split. Commonly
a splitting by components is employed. Unfortunately the
methods generated via RFSMR generally have unequal sum-
mation weightsbfast

6= bslow (see Table1 for an example), so
that the methods do not preserve the linear invariants of the
system such as the total mass of pollutants. Mass conserva-
tion, however, is a strict requirement for atmospheric mod-
els. The solution of this problem is to employ a splitting by
fluxes. Applied to a decomposition of the domain into slow
and fast blocks, flux splitting means that every block com-
putes the fluxes leaving its cells. Thus, fast fluxes leaving
cells with a stricter local Courant-Friedrichs-Lewy (CFL) re-
striction are updated more frequently per macro time step
than slow fluxes. As the individual cell outfluxes are com-
puted exactly the same way and based on the same concen-
tration vector as the corresponding cell influxes, this kind of
splitting guarantees mass conservation independent from the
partitioned time integration scheme.

3 Implementation details

As the name already suggests the recursive flux splitting mul-
tirate algorithm is especially suitable for recursive imple-
mentation. This kind of implementation makes it simple to
exploit redundancies. The primary aim of multirate meth-
ods is to reduce computational cost, usually measured in
evaluations of the right-hand side. An objection obvious to

programmers is that the bottleneck in modern hardware is
memory access rather than the actual computations on the
CPU. This holds the more if a multi-node cluster is employed
and data has to be exchanged across the network. Fortunately
RFSMR can be implemented with only little memory over-
head; additionally communication workload is reduced.

The algorithm is implemented in themulti-scale atmo-
spheric chemistry and transport modelMUSCAT, (Wolke
and Knoth, 2000; Knoth and Wolke, 1998b) developed at
the Leibniz Institute for Tropospheric Research in Leipzig.
This model is used for scientific process studies as well as
online coupled with a meteorological model for several air
quality applications in local and regional areas. MUSCAT
describes the transport as well as chemical transformations
for several gas phase species and particle populations in the
atmosphere. The spatial discretisation of the mass balance
equations is performed by finite volume techniques on a hi-
erarchical grid structure. A second order IMEX scheme is
applied for the time integration. The step size control during
the implicit integration leads to load imbalances. Therefore,
a dynamic workload balancing is implemented (Wolke et al.,
2004). This is done using the ParMetis libraries (Karypis
et al., 2011; Karypis, 1999). The MUSCAT code is mainly
written in FORTRAN90/95 and uses a few additional C li-
braries.

This section is organised as follows: first, we shall explain
how data is organised in our model, then present the pro-
gramme flow of local computations and finally explain data
exchange strategies. Since the workload balancing gets more
complicated as the programme complexity increases, we will
also comment on this issue.

3.1 Data organization and spatial structure

In MUSCAT data is organised hierarchically: the three di-
mensional computational domain is decomposed statically
into rectangular blocks. This decomposition is applied in

www.geosci-model-dev.net/5/1395/2012/ Geosci. Model Dev., 5, 1395–1405, 2012



1398 M. Schlegel et al.: Implementation of splitting methods

4 M. Schlegel et al.: Implementation of splitting methods

Table 1. RFMSMR(RK2a) – an example for a 2nd order multirate scheme with time step ratio R =2; redundant stages omitted.

0
1 1

1/2 1/2
(RK2a)

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4
outer base method inner base method

0
1/2 1/2
1/2 1/2 0
1 1 0 0
1 1 0 0 0

1/2 0 0 0 1/2

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2
1 1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4 0
“slow” part “fast” part

naive cells

extended array including halo cells

halo

additional data structure for exchange with...

...northern neighbor

...southern neighbor

...eastern neighbor

...western neighbor

simulation domain

Fig. 1. Illustration of block structure for simulation domain as well as one generic block in MUSCAT.
Fig. 1. Illustration of block structure for simulation domain as well as one generic block in MUSCAT.

horizontal direction only so that every block ranges from
ground level through the top of the domain to simulate. An
important feature is that each block may have its own spatial
refinement level. Thus, selected regions may be examined in
more detail. The cell size always is the macro cell size di-
vided by an integer power of two. If two blocks are adjacent,
their spatial refinement level is allowed to differ by a factor
of two maximum. Cell size, adjacency to other blocks, tem-
poral refinement level, etc., form the block meta data. Even
for parallel processing meta data of all blocks is present on
all processors. The main part of the data consists of concen-
tration arrays and a number ofdifferencearrays associated
with the stage vectors of the employed explicit Runge-Kutta
method. Opposed to the meta data, the main data of the block
is present only on the processor the block is associated with.
Additional variables include geometric data per cell (volume,
extend per axis etc.) defined on initialisation and meteorolog-
ical data such as wind speed or density of air. The latter may
be provided by the COSMO model (Scḧattler et al., 2011;
Steppeler et al., 2003) of the German weather service via on-
line coupling or by a simple test driver.

The declaration of the concentration array is done in such
a way that cell local values, i.e., the concentrations of the
different tracers or species inside of a cell are directly ad-
jacent in physical memory. The cell data in turn is organ-
ised so that cells within one column (i.e., cells at the same
horizontal position) have minimal distance in memory. This
layout is advantageous for the computations executed most
frequently, i.e., cell local chemistry and column local (verti-
cal) diffusion. A number of fully coupled implicit chemistry
diffusion steps have to be performed per advection step. This
part contributes mainly to the overall computational cost. All
arrays have the same shape and dimension making vectorised
operations possible.

We employ anextended arraydeclaration for the individ-
ual blocks where the extended array includes both the ac-
tual cells of the block and the surrounding halo or ghost cells
which are needed for coupling with adjacent blocks. Thus,
all block local computations may be done on a logically
cartesian array. The extended arrays are only used where
necessary. For instance thedifferencearrays associated with
the stage vectors are only defined for the inner cells. Addi-
tional data structures for the exchange of mass fluxes with

Geosci. Model Dev., 5, 1395–1405, 2012 www.geosci-model-dev.net/5/1395/2012/



M. Schlegel et al.: Implementation of splitting methods 1399

neighbouring blocks are needed along the respective bound-
aries, see Fig.1. These data structures correspond to the
source termr occurring in Eqs. (4) and (11). Employing a
limited third order upwind spatial discretisation (Hundsdor-
fer and Verwer, 2003), the halo has to be one cell wide while
the additional data structures overlap with the halo cells and
the outermost row of actual cells.

Though the grid of the block is logically cartesian, its geo-
metrical interpretation may be different. First of all, the sim-
ulation domain usually represents a volume above a spheri-
cal surface. Furthermore, perpendicularly to the interface the
ghost cells have the extent of the actual cells they overlap
with, see Fig.2. The possible relations between actual cells
and ghost cells representing the same physical volume are
also marked in Fig.2. The respective volume may be repre-
sented by:

a. one inner cell and one ghost cell,

b. two inner cells and one ghost cell of a coarser neigh-
bour,

c. one inner cell and two ghost cells of a finer neighbour
or

d. inner cell(s) and ghost cell(s) for each of two neigh-
bours.

Case (d) only occurs at block corners and may be compli-
cated for neighbour blocks with different spatial refinement
levels. These different possible relations have to be taken into
account when data is exchanged between blocks.

Keep in mind that the domain is decomposed in the hori-
zontal direction only, so that all of the above holds not only
for cells in one vertical layer, but also for the columns, rang-
ing from the bottom through the top of the simulation do-
main.

3.2 Programme flow

In this section we shall discuss the MUSCAT programme
flow. For simplicity we shall concentrate on the main inte-
gration loop, omitting initialisation, finalisation and output
routines. Algorithm (1),...,(6) translates directly into an im-
plementation. The following pseudo code evolves all blocks
on the given time level fromt0 to t0 + 1t . Here and subse-
quently we will employ the terms “time level” and “temporal
refinement level” synonymously. In the pseudo code we also
shortly write “level”. The macro time step is equivalent to the
lowest level.

M. Schlegel et al.: Implementation of splitting methods 5

Table 2. Examples of two stage, second order explicit Runge-Kutta
methods.

0
1 1

1/2 1/2

0
1/2 1/2

0 1
(RK2a) (RK2b)

a) d)

c)

b)

Fig. 2. Geometrical cell structure of adjacent blocks. Halo cells
depicted with thinner contours. Connectors between blocks indicate
multiple representations of the same physical volume.

stage vectors are only defined for the inner cells. Additional
data structures for the exchange of mass fluxes with neigh-
bor blocks are needed along the respective boundaries, see
Fig. 1. These data structures correspond to the source term r
occurring in Eq. (4) and (11). Employing a limited third or-
der upwind spatial discretization (Hundsdorfer and Verwer,
2003) the halo has to be one cell wide while the additional
data structures overlap with the halo cells and the outermost
row of actual cells.

Though the grid of the block is logically cartesian, its geo-
metrical interpretation may be different. First of all the sim-
ulation domain usually represents a volume above a spheri-
cal surface. Furthermore perpendicularly to the interface the
ghost cells have the extent of the actual cells they overlap
with, see Fig. 2. The possible relations between actual cells
and ghost cells representing the same physical volume are
also marked in Fig. 2 . The respective volume may be repre-
sented by:

a) one inner cell and one ghost cell,

b) two inner cells and one ghost cell of a coarser neighbor,

c) one inner cell and two ghost cells of a finer neighbor or

d) inner cell(s) and ghost cell(s) for each of two neighbors.

Case d) only occurs at block corners and may be complicated
for neighbor blocks with different spatial refinement levels.
These different possible relations have to be taken into ac-
count when data is exchanged between blocks.

Keep in mind that the domain is decomposed in the hori-
zontal direction only, so that all of the above holds not only
for cells in one vertical layer but also for the columns, rang-
ing from the bottom through the top of the simulation do-
main.

3.2 Program flow

In this section we shall discuss the MUSCAT program
flow. For simplicity we shall concentrate on the main
integration loop, omitting initialization, finalization and
output routines. Algorithm (1),...,(6) translates directly into
an implementation. The following pseudo code evolves all
blocks on the given time level from t0 to t0 +∆t. Here and
subsequently we will employ the terms “time level” and
“temporal refinement level” synonymously. In the pseudo
code we also shortly write “level”. The macro time step is
equivalent to the lowest level.

1: procedure RFSMR (t0,∆t,level)
2: for i= 2,...,s+1 .Loop over Runge-Kutta stages
3: for all Processor-local blocks k do
4: if [timelevel of Block k]= level then
5: Compute local advective fluxes fi−1

6: r :=
∑i−1

j=1(aij−ai−1,j)fj

7: r := r+r(slow) ·(ci−ci−1)
8: exchange fluxes with neighbor blocks

on same level r(equal) := rneighbor

9: r := r+r(equal)

10: end if
11: end for

At this point all advective fluxes on time level level are
computed and known on all blocks containing the corre-
sponding cell boundary. Note that for exchanges we write
the variables without superscript if the variable is block local
and with a superscript “neighbor” if the variable belongs to
another block. The source term r (see line 7) correspond to
the source term ri as mathematically defined in Eq. (2). Since
source terms computed during earlier explicit stages are not
needed anymore we employ a single variable. Source terms
r(slow) computed on a lower time level are defined before
the routine is called. Now a case distinction has to be made,
whether or not the forward step in time associated with the
current Runge–Kutta stage ∆t(ci−ci−1) is greater than zero.

Fig. 2. Geometrical cell structure of adjacent blocks. Halo cells de-
picted with thinner contours. Connectors between blocks indicate
multiple representations of the same physical volume.

1: procedureRFSMR (t0,1t, level)
2: for i = 2, ..., s + 1 FLoop over Runge-Kutta stages
3: for all Processor-local blocksk do
4: if [timelevel of Blockk]= level then
5: Compute local advective fluxesfi−1

6: r :=
∑i−1

j=1(aij − ai−1,j )fj

7: r := r + r(slow) · (ci − ci−1)

8: exchangefluxes with neighbour blocks
on same levelr(equal) := rneighbour

9: r := r + r(equal)
10: end if
11: end for

At this point, all advective fluxes on time levellevel are
computed and known on all blocks containing the corre-
sponding cell boundary. Note that for exchanges we write
the variables without superscript if the variable is block lo-
cal and with a superscript “neighbour” if the variable belongs
to another block. The source termr (see line7) corresponds
to the source termri as mathematically defined in Eq. (2).
Since source terms computed during earlier explicit stages
are not needed anymore, we employ a single variable. Source
termsr(slow) computed on a lower time level are defined be-
fore the routine is called. Now a case distinction has to be
made, whether or not the forward step in time associated with
the current Runge-Kutta stage1t(ci − ci−1) is greater than
zero.

www.geosci-model-dev.net/5/1395/2012/ Geosci. Model Dev., 5, 1395–1405, 2012



1400 M. Schlegel et al.: Implementation of splitting methods

12: if ci > ci−1 then
13: if there are blocks on a higher levelthen
14: substeps: = d2(ci − ci−1)e

15: sendweighted boundary fluxes to neighbours

on higher level:rneighbour
(slow) := r/(ci − ci−1)

16: for l = 1, ...,substepsdo
17: RFSMR(t0 + 1t · ci−1+

(l − 1) · 1t · (ci − ci−1)/substeps,
1t · (ci − ci−1)/substeps,
level+1)

18: end for
19: end if
20: for all Processor-local blocksk do
21: if [timelevel of Blockk]= levelthen
22: DIFFREACT(Y,r, t0 + 1t · ci−1,

1t · (ci − ci−1))

23: exchangeboundary concentration with
neighbours on same level

24: end if
25: end for
26: else ifci ≤ ci−1 then
27: for all Processor-local blocksk do
28: if [timelevel of Blockk]= level then
29: Y = Y + 1t · r

30: exchangeboundary concentration with
neighbours on same level

31: sendboundary concentration to
neighbours on lower level

32: end if
33: end for
34: end if
35: end for F Loop over Runge-Kutta stages
36: endprocedure

In this pseudo code we assume that DIFFRE-
ACT(Y,r,τ0,1τ ) solves the initial value problem given
by

c (τ0) = Y,

d

dτ
c = r + F (c,τ ) ,

τ ∈ [τ0,τ0 + 1τ ] ,

with F representing a time dependent diffusion-reaction term
and stores the resultc(τ0 + 1τ) in the variableY .

The number of substeps to be taken on the next higher
time level can be chosen dynamically in line14. This allows
us to use a different base method in the next level to ensure
a time step ratio of 2 between successive time levels. For
the method (RK2a) given in Table2 two substeps will be
employed between the first and second stage, while no step
will be taken between the second stage and the summation
stage; this is equivalent to the formal construction as shown
in Table1. For (RK2b) one step on the next temporal level
will be done both for the second stage and the summation
stage, again leading to a time step ratio of two. Generally

Table 2.Examples of two stage, second order explicit Runge-Kutta
methods.

0
1 1

1/2 1/2

0
1/2 1/2

0 1
(RK2a) (RK2b)

this time step ratio is possible for any explicit Runge-Kutta
method with monotonically increasing nodesc such that

∀i : ci ∈ {0,1/2,1} .

The above synopsis of the actual implementation already
shows that due to the recursive calls the programme flow will
naturally be structured into multiple phases corresponding
to the different time levels. This fact significantly compli-
cates balancing. Furthermore, there are different kinds of ex-
changes which shall be discussed in the following section.

3.3 Data exchange

In the above listed pseudo code, the following data exchanges
are mentioned. Exchanges of fluxes have to be performed be-
tween blocks on one level (line8) or from a lower to a higher
time level (line15). Exchanges of concentrations have to be
performed between blocks on a single level (line23, 30) or
from a higher to a lower level (line31). While the expres-
sion “exchange of fluxes” is illustrative it is not exact. Stored
and exchanged are not the advective fluxes across cell bound-
aries, but the time derivatives of the concentrations per cell
computed from the net fluxes. If the boundary fluxes are cast
asfi±1/2,j andfi,j±1/2 with spatial indexesi,j and cell vol-
umeVi,j , then the concentration tendency due to advection
reads

d

dt
ci,j = −

fi+1/2,j − fi−1/2,j + fi,j+1/2 − fi,j−1/2

Vi,j

.

Due to the data structure, i.e., the data available for a block
and the algorithm employed for the calculation of block lo-
cal fluxes, each boundary flux is computed exactly once and
sent to the neighbouring block. It is convenient to store the
received time derivatives in an additional variable allowing
for a distinction between fluxes given by neighbours on the
same and on a lower temporal refinement level.

Exchange of concentrations always overwrites the previ-
ous concentration of the receiving cell. While flux exchange
always involves both the outermost actual cells and the halo
cells, exchange of concentrations may occur in different
ways. If concentrations are exchanged on a single time level,
the exchange is a copy from the outermost actual cells of the
sender to the halo cells of the receiver, possibly complicated
by inter process communication. If on the other hand concen-
trations are sent to a block on a different time level concen-
tration from both ghost cells and outermost actual cells are

Geosci. Model Dev., 5, 1395–1405, 2012 www.geosci-model-dev.net/5/1395/2012/



M. Schlegel et al.: Implementation of splitting methods 1401
M. Schlegel et al.: Implementation of splitting methods 7

fluxconc. time level 0

time level 1

flux

flux

conc.

conc. conc.

Block 1

Block 2

Block 3

B1

B2

B3

physical domain decomposition

cI
1 cI

3cI
2 cI

4 cI
5

cO
1 cO

2 cO
3

cO
1 cO

2 cO
3

Fig. 3. Exchanges in course of a macro time step for method based
on RK2a, see also Table 1. The cO

i and cI
i denote the nodes of the

inner and outer base method.

Considering the geometrical aspects of the various ex-
changes it is important to ensure that multiple representations
of the same physical volume contain equivalent data. As all
exchanged quantities are either cell average values or time
derivatives of cell average values this can be accomplished
by averaging and constant interpolation of these quantities.
We interpret the cell volumes V ⊂Ω as subsets of the simu-
lation domain Ω. Further we denote the original quantity and
the original volume as given by the sending block with a su-
perscript “S” and the copied quantity of the receiving block
and the correlated volume with a superscript “R”. The ex-
changes for a generic quantity q for different configurations
then read:

V S =V R ⇒ qR := qS,

V S
1 ∪V S

2 =V R ⇒ qR :=
1

2

(
qS1 +qS2

)
,

V S =V R
1 ∪V R

2 ⇒ qR1 = qR2 := qS,

corresponding to the cell relations (a), (b) and (c) as illus-
trated in Fig. 2. More complicated relations hold for diago-
nal exchanges. For a better understanding see Fig. 4. There
a flux across a specific cell boundary is computed from data
present in the upper left block. This flux in turn is repre-
sented by a source term marked “+” and a sink term marked
“–”. As the same physical region is represented 4 times these
source and sink terms have to be exchanged to the other

Fig. 4. Multiple representation of the same physical region (marked
by red rectangles) and source/sink terms caused by a specific advec-
tive flux.

blocks shown. The exchange is complicated by the fact that
the source term influences “half a ghost cell” of the lower
right block. For this specific configuration this problem can
be solved by adding half of the source term to the ghost cell.
If as in our implementation the spatial resolution of directly
(i.e. not diagonally) adjacent blocks is allowed to differ by a
factor of two maximum, nine different configurations of di-
agonal overlaps have to be distinguished. Note that diagonal
exchanges are obsolete if all blocks have the same temporal
refinement level, i.e. a classical time integration scheme is
employed.

For efficient parallel execution it is desirable to minimize
communication cost. Generally it is more efficient to ex-
change one big chunk of data instead of several small chunks
of equal cumulative size. For this reason inter process ex-
change is implemented as a gathering or packing of data, ex-
change using MPI routines and finally unpacking of data. As
meta data regarding all blocks including adjacency informa-
tion is present on all processors every participant of an ex-
change knows a priori which data to send and/or to receive.
To reduce the amount of data to be exchanged interpolation
and averaging is done in such a way that as little data as pos-
sible is to be transferred. This means that averaging is done
before packing while interpolation is done after unpacking.

3.4 Balancing

If a simulation is to be distributed on multiple cores of one
processor, multiple processors or even multiple nodes of a
computing cluster, the simulation has to be split in several
parts. In the context of air pollution modeling this means
a decomposition of the simulation domain into blocks. The
available computing elements are then to be assigned to these
blocks such that idle times are minimized. For classical time

Fig. 3. Exchanges in course of a macro time step for method based
on RK2a, see also Table1. ThecO

i
andcI

i
denote the nodes of the

inner and outer base method.

updated from their geometrical counterparts. The rationale
for this is that the halo cells of the sending block contain a
better approximation than the receiving block’s outer cells.
An illustration of the exchanges in the course of one macro
time step is given in Fig.3. The last exchange is necessary to
update the higher level block’s outer cells and halo with the
result of the correction stage performed on the macro time
level.

Considering the geometrical aspects of the various ex-
changes, it is important to ensure that multiple representa-
tions of the same physical volume contain equivalent data. As
all exchanged quantities are either cell average values or time
derivatives of cell average values, this can be accomplished
by averaging and constant interpolation of these quantities.
We interpret the cell volumesV ⊂ � as subsets of the simu-
lation domain�. Further we denote the original quantity and
the original volume as given by the sending block with a su-
perscript “S” and the copied quantity of the receiving block
and the correlated volume with a superscript “R”. The ex-
changes for a generic quantityq for different configurations
then read:

M. Schlegel et al.: Implementation of splitting methods 7

fluxconc. time level 0

time level 1

flux

flux

conc.

conc. conc.

Block 1

Block 2

Block 3

B1

B2

B3

physical domain decomposition

cI
1 cI

3cI
2 cI

4 cI
5

cO
1 cO

2 cO
3

cO
1 cO

2 cO
3

Fig. 3. Exchanges in course of a macro time step for method based
on RK2a, see also Table 1. The cO

i and cI
i denote the nodes of the

inner and outer base method.

Considering the geometrical aspects of the various ex-
changes it is important to ensure that multiple representations
of the same physical volume contain equivalent data. As all
exchanged quantities are either cell average values or time
derivatives of cell average values this can be accomplished
by averaging and constant interpolation of these quantities.
We interpret the cell volumes V ⊂Ω as subsets of the simu-
lation domain Ω. Further we denote the original quantity and
the original volume as given by the sending block with a su-
perscript “S” and the copied quantity of the receiving block
and the correlated volume with a superscript “R”. The ex-
changes for a generic quantity q for different configurations
then read:

V S =V R ⇒ qR := qS,

V S
1 ∪V S

2 =V R ⇒ qR :=
1

2

(
qS1 +qS2

)
,

V S =V R
1 ∪V R

2 ⇒ qR1 = qR2 := qS,

corresponding to the cell relations (a), (b) and (c) as illus-
trated in Fig. 2. More complicated relations hold for diago-
nal exchanges. For a better understanding see Fig. 4. There
a flux across a specific cell boundary is computed from data
present in the upper left block. This flux in turn is repre-
sented by a source term marked “+” and a sink term marked
“–”. As the same physical region is represented 4 times these
source and sink terms have to be exchanged to the other

Fig. 4. Multiple representation of the same physical region (marked
by red rectangles) and source/sink terms caused by a specific advec-
tive flux.

blocks shown. The exchange is complicated by the fact that
the source term influences “half a ghost cell” of the lower
right block. For this specific configuration this problem can
be solved by adding half of the source term to the ghost cell.
If as in our implementation the spatial resolution of directly
(i.e. not diagonally) adjacent blocks is allowed to differ by a
factor of two maximum, nine different configurations of di-
agonal overlaps have to be distinguished. Note that diagonal
exchanges are obsolete if all blocks have the same temporal
refinement level, i.e. a classical time integration scheme is
employed.

For efficient parallel execution it is desirable to minimize
communication cost. Generally it is more efficient to ex-
change one big chunk of data instead of several small chunks
of equal cumulative size. For this reason inter process ex-
change is implemented as a gathering or packing of data, ex-
change using MPI routines and finally unpacking of data. As
meta data regarding all blocks including adjacency informa-
tion is present on all processors every participant of an ex-
change knows a priori which data to send and/or to receive.
To reduce the amount of data to be exchanged interpolation
and averaging is done in such a way that as little data as pos-
sible is to be transferred. This means that averaging is done
before packing while interpolation is done after unpacking.

3.4 Balancing

If a simulation is to be distributed on multiple cores of one
processor, multiple processors or even multiple nodes of a
computing cluster, the simulation has to be split in several
parts. In the context of air pollution modeling this means
a decomposition of the simulation domain into blocks. The
available computing elements are then to be assigned to these
blocks such that idle times are minimized. For classical time

Fig. 4.Multiple representation of the same physical region (marked
by red rectangles) and source/sink terms caused by a specific advec-
tive flux.

V S
= V R

⇒ qR
:= qS,

V S
1 ∪ V S

2 = V R
⇒ qR

:=
1

2

(
qS

1 + qS
2

)
,

V S
= V R

1 ∪ V R
2 ⇒ qR

1 = qR
2 := qS,

corresponding to the cell relations (a), (b) and (c) as illus-
trated in Fig.2. More complicated relations hold for diago-
nal exchanges. For a better understanding see Fig.4. A flux
across a specific cell boundary is computed from data present
in the upper left block. This flux in turn is represented by a
source term marked “+” and a sink term marked “–”. As the
same physical region is represented 4 times, these source and
sink terms have to be exchanged to the other blocks shown.
The exchange is complicated by the fact that the source term
influences “half a ghost cell” of the lower right block. For this
specific configuration, this problem can be solved by adding
half of the source term to the ghost cell. If as in our imple-
mentation the spatial resolution of directly (i.e., not diago-
nally) adjacent blocks is allowed to differ by a factor of two
maximum, nine different configurations of diagonal over-
laps have to be distinguished. Note that diagonal exchanges
are obsolete if all blocks have the same temporal refinement
level, i.e., a classical time integration scheme is employed.

For efficient parallel execution it is desirable to min-
imise communication cost. Generally it is more efficient to
exchange one big chunk of data instead of several small
chunks of equal cumulative size. For this reason inter process

www.geosci-model-dev.net/5/1395/2012/ Geosci. Model Dev., 5, 1395–1405, 2012



1402 M. Schlegel et al.: Implementation of splitting methods

exchange is implemented as a gathering or packing of data,
exchange using MPI routines and finally unpacking of data.
As meta data regarding all blocks including adjacency infor-
mation is present on all processors every participant of an ex-
change knows a priori which data to send and/or to receive.
To reduce the amount of data to be exchanged interpolation
and averaging is done in such a way that as little data as pos-
sible is to be transferred. This means that averaging is done
before packing while interpolation is done after unpacking.

3.4 Balancing

If a simulation is to be distributed on multiple cores of one
processor, multiple processors or even multiple nodes of a
computing cluster, the simulation has to be split in several
parts. In the context of air pollution modelling this means
a decomposition of the simulation domain into blocks. The
available computing elements are then to be assigned to these
blocks such that idle times are minimised. For classical time
integration schemes, this can easily be implemented by per-
forming workload balancing. Thus, it can be provided that
every processor has approximately the same amount of work
to do.

The Metis/ParMetis libraries (Karypis et al., 2011) provide
sophisticated balancing algorithms. Balancing problems are
interpreted as a class of graph theoretical problems which
may be subsumed as “minimise the edge cut without violat-
ing node balancing constraints”. Blocks of the decomposed
simulation domain are mapped to nodes of the graph, nec-
essary data exchanges are mapped to the edges connecting
these nodes. Consequently minimising the edge cut is equiv-
alent to minimising the communication between partitions or
processors.

The more complex programme flow in the multirate con-
text calls for a more sophisticated approach to balancing.
Naive workload balancing is not sufficient to minimise idle
times, as the programme flow is structured in multiple phases
due to recursive calls, see Fig.5 for an example. Assuming
that the same computational cost is associated with all four
mentioned blocks, both presented block distributions are op-
timal in the sense of workload balancing. However, the worst
case distribution will lead to an unnecessarily high amount
of idle times.

Optimally not only the overall workload is balanced, but
also the workload for each phase, i.e., for each temporal re-
finement level. The Metis/ParMetis libraries offer the possi-
bility of multi constraint balancing, (Karypis, 1999). Classi-
cal balancing (single constraint) considers one scalar weight
per node and aims at an even distribution of this scalar
weight within a margin of tolerance. Opposed to this multi-
constraint balancing considers a vector of weights for each
node and aims at an even distribution for each vector dimen-
sion. For our algorithm that naively means that the weight
vectorw for a block reads

8 M. Schlegel et al.: Implementation of splitting methods

Setup:

– Blocks #1 and #2 on temporal refinement level 0

– Blocks #3 and #4 on temporal refinement level 1.

– Equal workload per block.

bl
oc

k
1

bl
oc

k
2

bl
oc

k
4

processor 1

processor 2

[idle] [idle]

[idle][idle]

time level 0 1 2,... 1 0

...

...

a) Worst case block distribution:

processor 1

processor 2

time level 0 1 1 0
b) Best case block distribution:

bl
oc

k
3

bl
oc

k
4

bl
oc

k
3

bl
oc

k
1

bl
oc

k
2

2,...

...

...

bl
oc

k
1

bl
oc

k
1

bl
oc

k
2

bl
oc

k
2

bl
oc

k
3

bl
oc

k
3

bl
oc

k
4

bl
oc

k
4

Fig. 5. Parallel program flow for different distributions of four
blocks on two processors. Thick lines indicate exchanges.

integration schemes this can easily be implemented by per-
forming workload balancing. Thus it can be provided that
every processor has approximately the same amount of work
to do.

The Metis/ParMetis libraries (Karypis et al., 2003) provide
sophisticated balancing algorithms. Balancing problems are
interpreted as a class of graph theoretical problems which
may be subsumed as “minimize the edge cut without violat-
ing node balancing constraints”. Blocks of the decomposed
simulation domain are mapped to nodes of the graph, nec-
essary data exchanges are mapped to the edges connecting
these nodes. Consequently minimizing the edge cut is equiv-
alent to minimizing the communication between partitions or
processors.

The more complex program flow in the multirate context
calls for a more sophisticated approach to balancing. Naive
workload balancing is not sufficient to minimize idle times,
as the program flow is structured in multiple phases due to
recursive calls, see Fig. 5 for an example. Assuming that
the same computational cost is associated with all four men-
tioned blocks, both presented block distributions are optimal
in the sense of workload balancing. However the worst case
distribution will lead to an unnecessarily high amount of idle
times.

Optimally not only the overall workload is balanced but
also the workload for each phase, i.e. for each temporal re-
finement level. The Metis/ParMetis libraries offer the possi-
bility of multi constraint balancing, (Karypis, 1999). Classi-
cal balancing (single constraint) considers one scalar weight
per node and aims at an even distribution of this scalar weight
within a margin of tolerance. Opposed to this multi con-

straint balancing considers a vector of weights for each node
and aims at an even distribution for each vector dimension.
For our algorithm that naively means that the weight vector
w for a block reads

w∈RN , wk =

{
C if k=L
0 otherwise

,

with N denoting the number of time levels throughout the
simulation, L the block’s time level and C the number of
columns within the block. Choosing this approach will prob-
ably not lead to satisfactory results as the constraints leave
only little margin for optimization. As a compromise we
employ three constraints correlated to the highest temporal
refinement level Lmax, the second highest temporal refine-
ment level and the remaining levels. The rationale for this
is that in most setups the two highest refinement levels will
cause the bigger part of computational cost. Consequently
balancing blocks on these levels will lead to an acceptable
tradeoff between constraints and idle times. We define the
three dimensional weight vector as follows:

w=

 (C,0,0) if L=Lmax

(0,C,0) if L=Lmax−1(
0,0,2LC

)
otherwise

.

The factor 2L in the third case is needed to consider the
relative computational cost of blocks on potentially differ-
ent time levels. The scaling for the first two components of
the weighting vector is not necessary, as only their relative
weights are taken into account by the ParMetis library. To
prioritize balancing of the highest temporal refinement levels
over the remaining levels, a smaller and thus stricter margin
of tolerance is provided for the first component of the weight
vector.

Computational tests with realistic scenarios show ambiva-
lent results. While multi constraint balancing is suitable to
minimize idle times during computation, it generally leads to
higher communication cost, as the optimization of commu-
nication is hindered by more constraints. Thus it is generally
recommendable for such simulations in which local compu-
tations take significantly more time than data exchange, e.g.
simulations involving computationally expensive chemistry
or microphysics. If in contrast to that a simulation is commu-
nication dominated, relatively little parallelization speedup
can be expected even for optimal distribution of blocks on
different processors.

4 Results

The implementation described above was tested with aca-
demic and realistic scenarios. Results show good agreement
of the solutions obtained with the multirate splitting and clas-
sical time integration. We shall present two test cases. The
first test is designed to make optimal use of the multirate ap-
proach by employing a grid with a small region of interest

Fig. 5. Parallel programme flow for different distributions of four
blocks on two processors. Thick lines indicate exchanges.

w ∈ RN , wk =

{
C if k = L

0 otherwise
,

with N denoting the number of time levels throughout the
simulation,L the block’s time level andC the number of
columns within the block. Choosing this approach will prob-
ably not lead to satisfactory results as the constraints leave
only little margin for optimisation. As a compromise we em-
ploy three constraints correlated to the highest temporal re-
finement levelLmax, the second highest temporal refinement
level and the remaining levels. The rationale for this is that
in most setups the two highest refinement levels will cause
the bigger part of computational cost. Consequently balanc-
ing blocks on these levels will lead to an acceptable tradeoff
between constraints and idle times. We define the three di-
mensional weight vector as follows:

w =


(C,0,0) if L = Lmax
(0,C,0) if L = Lmax− 1(
0,0,2LC

)
otherwise

.

The factor 2L in the third case is needed to consider the
relative computational cost of blocks on potentially differ-
ent time levels. The scaling for the first two components of
the weighting vector is not necessary, as only their relative
weights are taken into account by the ParMetis library. To
prioritise balancing of the highest temporal refinement levels
over the remaining levels, a smaller and, thus, stricter margin
of tolerance is provided for the first component of the weight
vector.

Geosci. Model Dev., 5, 1395–1405, 2012 www.geosci-model-dev.net/5/1395/2012/



M. Schlegel et al.: Implementation of splitting methods 1403

M. Schlegel et al.: Implementation of splitting methods 9

and a homogeneous, diagonal wind field. The other test case
is taken from an earlier study, with a realistic wind field pro-
vided by the COSMO model (Hinneburg et al., 2009). Re-
sults of the latter case shall demonstrate the potential of mul-
tirate schemes for realistic scenarios as well as show remain-
ing deficiencies.

4.1 Academic test case

An important characteristic of parallel programs is the
speedup1 when solving the problem on multiple proces-
sors. For the scenario discussed here we observed not quite
an ideal (i.e. linear) speedup, but the overhead is small
enough to justify parallel execution. Furthermore due to a
sophisticated balancing approach making use of ParMetis’
multi-constraint partitioning capabilities, the parallelization
speedup is comparable to the one obtained for the much sim-
pler case of singlerate time integration.

The domain is quadratic in horizontal direction. A com-
paratively small region is refined, see Table 3 and Fig. 6.
Sources are located within the region most finely resolved.

horizontal relative area number of fraction of
cell size columns cells total

4km ≈69% 3584 ≈18%
2km ≈20% 4096 ≈21%
1km ≈10% 8192 ≈41%

500m ≈1% 4096 ≈21%

Table 3. Synopsis of spatial structure for academic test case.

Fig. 6. Illustration of the spatial structure for academic test run.
Hatchings correspond to different grid sizes.

1Not to be confused with the cost reduction due to application
of a multirate scheme.

1/16

1/8

1/4

1/2

1

1 2 4 8 16

si
m

ul
at

io
n

tim
e

/A
U

number of processors

average cost reduction: 48%

singlerate advection
multirate advection

singlerate adv.-diff.-react.
multirate adv.-diff.-react.

Fig. 7. Computational cost for academic test case. The displayed
simulation time was normalized such that the singlerate setup on
one processor corresponds to unit. Actual computational cost of the
pure advection setup is about 1% of the full setup.

In this domain we tested two kinds of model equations:
a pure advection with a uniform wind field and advection-
diffusion-reaction with the same wind field, vertical diffu-
sion and a chemistry model involving point sources in the
finest region and 258 different chemical reactions of 98 re-
actants. The overall computational cost of the full system is
about a factor of 100 larger than that of the pure advection
case. These tests are run on different numbers of processors
each. We compare the computational cost of the multirate
approach to the computational cost without temporal refine-
ment, denoted singlerate. Results are shown in Fig. 7.

As the time step is chosen to be directly proportional to
the grid size, the naive cost reduction is approximately 52%.
For a pure advection problem we achieve an average multi-
rate cost reduction of 59%. Here the exceeding of the naive
cost reduction can be explained by reduced communication.
The behavior for the full advection-diffusion reaction system
however is not intuitive. In the latter case the multirate ap-
proach is applied only to the advection operator whose eval-
uation contributes about 1 % to the total computational cost.
However there still is a significant cost reduction of about
36 %. The reason for this is the behavior of the term solved
implicitly depending on the source term r, see Eq. (4). Each
update of this source term introduces a discontinuity in the
right hand side of the equation. In combination with the
error control of the second order implicit solver this causes
smaller implicit steps or even makes expensive restarts nec-
essary (Knoth and Wolke, 1998a). Fewer updates take place
if the outer system is solved using a larger time step, thus
indirectly improving the efficiency of the implicit solving.

4.2 Realistic test case

The following test case is taken from a earlier study per-
formed by Hinneburg et al. (2009), examining the effects of

Fig. 6. Illustration of the spatial structure for academic test run.
Hatchings correspond to different grid sizes.

Table 3.Synopsis of spatial structure for academic test case.

horizontal relative area number of fraction of
cell size columns cells total

4 km ≈69 % 3584 ≈18 %
2 km ≈20 % 4096 ≈21 %
1 km ≈10 % 8192 ≈41 %

500 m ≈1 % 4096 ≈21 %

Computational tests with realistic scenarios show ambiva-
lent results. While multi-constraint balancing is suitable to
minimise idle times during computation, it generally leads to
higher communication cost, as the optimisation of communi-
cation is hindered by more constraints. Thus, it is generally
recommendable for such simulations in which local compu-
tations take significantly more time than data exchange, e.g.,
simulations involving computationally expensive chemistry
or microphysics. If in contrast to that a simulation is commu-
nication dominated, relatively little parallelisation speedup
can be expected even for optimal distribution of blocks on
different processors.

4 Results

The implementation described above was tested with aca-
demic and realistic scenarios. Results show good agreement
of the solutions obtained with the multirate splitting and clas-
sical time integration. We shall present two test cases. The
first test is designed to make optimal use of the multirate ap-
proach by employing a grid with a small region of interest
and a homogeneous, diagonal wind field. The other test case

M. Schlegel et al.: Implementation of splitting methods 9

and a homogeneous, diagonal wind field. The other test case
is taken from an earlier study, with a realistic wind field pro-
vided by the COSMO model (Hinneburg et al., 2009). Re-
sults of the latter case shall demonstrate the potential of mul-
tirate schemes for realistic scenarios as well as show remain-
ing deficiencies.

4.1 Academic test case

An important characteristic of parallel programs is the
speedup1 when solving the problem on multiple proces-
sors. For the scenario discussed here we observed not quite
an ideal (i.e. linear) speedup, but the overhead is small
enough to justify parallel execution. Furthermore due to a
sophisticated balancing approach making use of ParMetis’
multi-constraint partitioning capabilities, the parallelization
speedup is comparable to the one obtained for the much sim-
pler case of singlerate time integration.

The domain is quadratic in horizontal direction. A com-
paratively small region is refined, see Table 3 and Fig. 6.
Sources are located within the region most finely resolved.

horizontal relative area number of fraction of
cell size columns cells total

4km ≈69% 3584 ≈18%
2km ≈20% 4096 ≈21%
1km ≈10% 8192 ≈41%

500m ≈1% 4096 ≈21%

Table 3. Synopsis of spatial structure for academic test case.

Fig. 6. Illustration of the spatial structure for academic test run.
Hatchings correspond to different grid sizes.

1Not to be confused with the cost reduction due to application
of a multirate scheme.

1/16

1/8

1/4

1/2

1

1 2 4 8 16

si
m

ul
at

io
n

tim
e

/A
U

number of processors

average cost reduction: 48%

singlerate advection
multirate advection

singlerate adv.-diff.-react.
multirate adv.-diff.-react.

Fig. 7. Computational cost for academic test case. The displayed
simulation time was normalized such that the singlerate setup on
one processor corresponds to unit. Actual computational cost of the
pure advection setup is about 1% of the full setup.

In this domain we tested two kinds of model equations:
a pure advection with a uniform wind field and advection-
diffusion-reaction with the same wind field, vertical diffu-
sion and a chemistry model involving point sources in the
finest region and 258 different chemical reactions of 98 re-
actants. The overall computational cost of the full system is
about a factor of 100 larger than that of the pure advection
case. These tests are run on different numbers of processors
each. We compare the computational cost of the multirate
approach to the computational cost without temporal refine-
ment, denoted singlerate. Results are shown in Fig. 7.

As the time step is chosen to be directly proportional to
the grid size, the naive cost reduction is approximately 52%.
For a pure advection problem we achieve an average multi-
rate cost reduction of 59%. Here the exceeding of the naive
cost reduction can be explained by reduced communication.
The behavior for the full advection-diffusion reaction system
however is not intuitive. In the latter case the multirate ap-
proach is applied only to the advection operator whose eval-
uation contributes about 1 % to the total computational cost.
However there still is a significant cost reduction of about
36 %. The reason for this is the behavior of the term solved
implicitly depending on the source term r, see Eq. (4). Each
update of this source term introduces a discontinuity in the
right hand side of the equation. In combination with the
error control of the second order implicit solver this causes
smaller implicit steps or even makes expensive restarts nec-
essary (Knoth and Wolke, 1998a). Fewer updates take place
if the outer system is solved using a larger time step, thus
indirectly improving the efficiency of the implicit solving.

4.2 Realistic test case

The following test case is taken from a earlier study per-
formed by Hinneburg et al. (2009), examining the effects of

Fig. 7. Computational cost for academic test case. The displayed
simulation time was normalised such that the single-rate setup on
one processor corresponds to unit. Actual computational cost of the
pure advection setup is about 1 % of the full setup.

is taken from an earlier study, with a realistic wind field pro-
vided by the COSMO model (Hinneburg et al., 2009). Re-
sults of the latter case shall demonstrate the potential of mul-
tirate schemes for realistic scenarios as well as show remain-
ing deficiencies.

4.1 Academic test case

An important characteristic of parallel programmes is the
speedup1 when solving the problem on multiple proces-
sors. For the scenario discussed here we observed not quite
an ideal (i.e., linear) speedup, but the overhead is small
enough to justify parallel execution. Furthermore, due to a
sophisticated balancing approach making use of ParMetis’
multi-constraint partitioning capabilities, the parallelisation
speedup is comparable to the one obtained for the much sim-
pler case of single-rate time integration.

The domain is quadratic in horizontal direction. A compar-
atively small region is refined, see Table3 and Fig.6. Sources
are located within the region most finely resolved.

In this domain, we tested two kinds of model equations:
a pure advection with a uniform wind field and advection-
diffusion-reaction with the same wind field, vertical diffu-
sion and a chemistry model involving point sources in the
finest region and 258 different chemical reactions of 98 re-
actants. The overall computational cost of the full system is
about a factor of 100 larger than that of the pure advection
case. These tests are run on different numbers of processors
each. We compare the computational cost of the multirate
approach to the computational cost without temporal refine-
ment, denotedsingle-rate. Results are shown in Fig.7.

As the time step is chosen to be directly proportional to
the grid size, the naive cost reduction is approximately 52 %.

1Not to be confused with the cost reduction due to application
of a multirate scheme.

www.geosci-model-dev.net/5/1395/2012/ Geosci. Model Dev., 5, 1395–1405, 2012



1404 M. Schlegel et al.: Implementation of splitting methods

10 M. Schlegel et al.: Implementation of splitting methods

emissions of two power plants in Germany. One plant is lo-
cated near Lippendorf, the other near Boxberg, both in the
federal country Saxony. Emissions are modeled by point
sources which for the larger part represent the chimneys of
the power plants, and area sources representing the emissions
according to land usage. Meteorological data is provided by
the COSMO model via online coupling.

horizontal relative area number of fraction of
cell size columns cells total
2.8km ≈41.0% 1748 ≈7.3%
1.4km ≈41.0% 6992 ≈29.2%
700m ≈16.6% 11312 ≈47.2%
350m ≈1.4% 3904 ≈16.3%

Table 4. Synopsis of spatial structure for realistic test case.

Fig. 8. Illustration of the spatial structure for realistic test run.
Hatchings correspond to different grid sizes.

1/8

1/4

1/2

1

1 2 4 8 16

si
m

ul
at

io
n

tim
e

/A
U

number of processors

average cost reduction: 29%

singlerate
multirate

Fig. 9. Computational cost for realistic test case. The displayed
simulation time was normalized such that the singlerate setup on
one processor corresponds to unit.

Again we employ a grid with four levels of refinement with
small, highly resolved regions around the power plants, to-
talling about 1 % of the overall area, see Table 4 and Fig. 8.
The high resolution in this context is chosen to ensure an
accurate description of the near field chemistry around the

power plants by reducing numerical diffusion. Exactly equal
parts of the total area are on the coarsest and second coarsest
refinement level. Chemical reactions are modeled as in the
more complex of the academic test cases with 258 different
chemical reactions of 98 reactants.

Assuming a homogeneous wind field we would expect a
slightly higher reduction of computational cost as for the
academic test case with equal diffusion-reaction setup, as
a smaller fraction of cells is on the finest refinement level.
The actually obtained cost reduction is lower, see also Fig. 9.
This results from the fact that the wind fields provided by
the COSMO model exhibit strong variability in all of the
computational domain. A more sophisticated time step se-
lection based on the characteristic times of the individual
blocks rather than based solely on the spatial resolution can
be constructed with relative ease. Complications arise for
parallel execution – if the temporal refinement level of a
block is changed, a redistribution of the blocks is necessary.
This holds for either of the balancing approaches discussed
in Sect. 3.4.

A further defect concerns the parallelization speedup:
while the problem scales well for up to eight processors, em-
ploying sixteen processors yields only very little improve-
ment. At least in part this results from inhomogeneities due
to the distribution of the point sources. The strongest point
sources are inhomogeneously distributed on the blocks with
the highest temporal and spatial refinement level. Each of
the point sources induces significantly increased cost for the
chemistry solver. For up to eight processors the blocks con-
taining the point sources are distributed evenly on all proces-
sors; for more processors this is not the case. This problem is
even more complicated due to the temporally varying wind
field. Due to higher concentrations the speed of chemical re-
actions inside of the plume is significantly higher than in free
air. If the plume is transported into a previously empty cell,
computational cost of this cell is increased for the next time
step. This effect can not easily be taken into consideration
a priori. However employing dynamic repartitioning based
on the measured workload per block seems to be a promising
way to tackle this problem.

Since the correction of both of the mentioned defects in-
volves the implementation of a complex repartitioning rou-
tine it seems recommendable to implement a conjunctive so-
lution.

5 Conclusions

In this paper we presented details on an efficient implemen-
tation of a general splitting approach. This approach is em-
ployed to obtain a multirate-IMEX splitting, i.e. advection
for different physical domains is solved with different ex-
plicit time steps depending on the grid size while diffusion-
reaction equations are solved implicitly. We have shown that
the presented implementation is efficient in the sense that

Fig. 8. Illustration of the spatial structure for realistic test run.
Hatchings correspond to different grid sizes.

For a pure advection problem, we achieve an average multi-
rate cost reduction of 59 %. Here the exceeding of the naive
cost reduction can be explained by reduced communication.
The behaviour for the full advection-diffusion reaction sys-
tem, however, is not intuitive. In the latter case, the multirate
approach is applied only to the advection operator whose
evaluation contributes about 1 % to the total computational
cost. However, there still is a significant cost reduction of
about 36 %. The reason for this is the behaviour of the term
solved implicitly depending on the source termr, see Eq. (4).
Each update of this source term introduces a discontinuity in
the right-hand side of the equation. In combination with the
error control of the second order implicit solver this causes
smaller implicit steps or even makes expensive restarts nec-
essary (Knoth and Wolke, 1998a). Fewer updates take place
if the outer system is solved using a larger time step, thus,
indirectly improving the efficiency of the implicit solving.

4.2 Realistic test case

The following test case is taken from a earlier study per-
formed byHinneburg et al.(2009), examining the effects of
emissions of two power plants in Germany. One plant is lo-
cated near Lippendorf, the other near Boxberg, both in the
federal country Saxony. Emissions are modelled by point
sources which for the larger part represent the chimneys of
the power plants, and area sources representing the emissions
according to land usage. Meteorological data is provided by
the COSMO model via online coupling.

Again we employ a grid with four levels of refinement with
small, highly resolved regions around the power plants, to-
talling about 1 % of the overall area, see Table4 and Fig.8.
The high resolution in this context is chosen to ensure an
accurate description of the near field chemistry around the
power plants by reducing numerical diffusion. Exactly equal
parts of the total area are on the coarsest and second coarsest

Table 4.Synopsis of spatial structure for realistic test case.

horizontal relative area number of fraction of
cell size columns cells total

2.8 km ≈41.0 % 1748 ≈7.3 %
1.4 km ≈41.0 % 6992 ≈29.2 %
700 m ≈16.6 % 11312 ≈47.2 %
350 m ≈1.4 % 3904 ≈16.3 %

10 M. Schlegel et al.: Implementation of splitting methods

emissions of two power plants in Germany. One plant is lo-
cated near Lippendorf, the other near Boxberg, both in the
federal country Saxony. Emissions are modeled by point
sources which for the larger part represent the chimneys of
the power plants, and area sources representing the emissions
according to land usage. Meteorological data is provided by
the COSMO model via online coupling.

horizontal relative area number of fraction of
cell size columns cells total
2.8km ≈41.0% 1748 ≈7.3%
1.4km ≈41.0% 6992 ≈29.2%
700m ≈16.6% 11312 ≈47.2%
350m ≈1.4% 3904 ≈16.3%

Table 4. Synopsis of spatial structure for realistic test case.

Fig. 8. Illustration of the spatial structure for realistic test run.
Hatchings correspond to different grid sizes.

1/8

1/4

1/2

1

1 2 4 8 16
si

m
ul

at
io

n
tim

e
/A

U

number of processors

average cost reduction: 29%

singlerate
multirate

Fig. 9. Computational cost for realistic test case. The displayed
simulation time was normalized such that the singlerate setup on
one processor corresponds to unit.

Again we employ a grid with four levels of refinement with
small, highly resolved regions around the power plants, to-
talling about 1 % of the overall area, see Table 4 and Fig. 8.
The high resolution in this context is chosen to ensure an
accurate description of the near field chemistry around the

power plants by reducing numerical diffusion. Exactly equal
parts of the total area are on the coarsest and second coarsest
refinement level. Chemical reactions are modeled as in the
more complex of the academic test cases with 258 different
chemical reactions of 98 reactants.

Assuming a homogeneous wind field we would expect a
slightly higher reduction of computational cost as for the
academic test case with equal diffusion-reaction setup, as
a smaller fraction of cells is on the finest refinement level.
The actually obtained cost reduction is lower, see also Fig. 9.
This results from the fact that the wind fields provided by
the COSMO model exhibit strong variability in all of the
computational domain. A more sophisticated time step se-
lection based on the characteristic times of the individual
blocks rather than based solely on the spatial resolution can
be constructed with relative ease. Complications arise for
parallel execution – if the temporal refinement level of a
block is changed, a redistribution of the blocks is necessary.
This holds for either of the balancing approaches discussed
in Sect. 3.4.

A further defect concerns the parallelization speedup:
while the problem scales well for up to eight processors, em-
ploying sixteen processors yields only very little improve-
ment. At least in part this results from inhomogeneities due
to the distribution of the point sources. The strongest point
sources are inhomogeneously distributed on the blocks with
the highest temporal and spatial refinement level. Each of
the point sources induces significantly increased cost for the
chemistry solver. For up to eight processors the blocks con-
taining the point sources are distributed evenly on all proces-
sors; for more processors this is not the case. This problem is
even more complicated due to the temporally varying wind
field. Due to higher concentrations the speed of chemical re-
actions inside of the plume is significantly higher than in free
air. If the plume is transported into a previously empty cell,
computational cost of this cell is increased for the next time
step. This effect can not easily be taken into consideration
a priori. However employing dynamic repartitioning based
on the measured workload per block seems to be a promising
way to tackle this problem.

Since the correction of both of the mentioned defects in-
volves the implementation of a complex repartitioning rou-
tine it seems recommendable to implement a conjunctive so-
lution.

5 Conclusions

In this paper we presented details on an efficient implemen-
tation of a general splitting approach. This approach is em-
ployed to obtain a multirate-IMEX splitting, i.e. advection
for different physical domains is solved with different ex-
plicit time steps depending on the grid size while diffusion-
reaction equations are solved implicitly. We have shown that
the presented implementation is efficient in the sense that

Fig. 9.Computational cost for realistic test case. The displayed sim-
ulation time was normalised such that the single-rate setup on one
processor corresponds to unit.

refinement level. Chemical reactions are modelled as in the
more complex of the academic test cases with 258 different
chemical reactions of 98 reactants.

Assuming a homogeneous wind field we would expect a
slightly higher reduction of computational cost as for the
academic test case with equal diffusion-reaction setup, as
a smaller fraction of cells is on the finest refinement level.
The actually obtained cost reduction is lower, see also Fig.9.
This results from the fact that the wind fields provided by
the COSMO model exhibit strong variability in all of the
computational domain. A more sophisticated time step selec-
tion based on the characteristic times of the individual blocks
rather than based solely on the spatial resolution can be con-
structed with relative ease. Complications arise for paral-
lel execution – if the temporal refinement level of a block
is changed, a redistribution of the blocks is necessary. This
holds for either of the balancing approaches discussed in
Sect.3.4.

A further defect concerns the parallelisation speedup:
while the problem scales well for up to eight processors, em-
ploying sixteen processors yields only very little improve-
ment. At least in part this results from inhomogeneities due
to the distribution of the point sources. The strongest point
sources are inhomogeneously distributed on the blocks with
the highest temporal and spatial refinement level. Each of
the point sources induces significantly increased cost for the

Geosci. Model Dev., 5, 1395–1405, 2012 www.geosci-model-dev.net/5/1395/2012/



M. Schlegel et al.: Implementation of splitting methods 1405

chemistry solver. For up to eight processors, the blocks con-
taining the point sources are distributed evenly on all proces-
sors; for more processors this is not the case. This problem is
even more complicated due to the temporally varying wind
field. Due to higher concentrations the speed of chemical re-
actions inside of the plume is significantly higher than in free
air. If the plume is transported into a previously empty cell,
computational cost of this cell is increased for the next time
step. This effect can not easily be taken into consideration a
priori. However, employing dynamic repartitioning based on
the measured workload per block seems to be a promising
way to tackle this problem.

Since the correction of both of the mentioned defects in-
volves the implementation of a complex repartitioning rou-
tine, it seems recommendable to implement a conjunctive so-
lution.

5 Conclusions

In this paper, we presented details on an efficient implemen-
tation of a general splitting approach. This approach is em-
ployed to obtain a multirate-IMEX splitting, i.e., advection
for different physical domains is solved with different ex-
plicit time steps depending on the grid size while diffusion-
reaction equations are solved implicitly. We have shown that
the presented implementation is efficient in the sense that
a good fraction of the theoretical speedup can be obtained
practically. As practical tests have shown even the efficiency
of the implicit solving is improved due to synergetic effects.
A reasonable parallel speedup can be achieved by employ-
ing the multi-constraint balancing approach as described in
Sect.3.4.

Further work should include a more sophisticated selec-
tion of the temporal refinement level, as opposed to choosing
the temporal refinement level equal to the spatial refinement
level. Additionally, the system could be improved by imple-
mentation of dynamic repartitioning.

Acknowledgements.This research is funded by the German
research foundation (Deutsche Forschungsgemeinschaft – DFG).
Furthermore, we thank the DWD Offenbach and the NIC Jülich for
supporting the work.

Edited by: A. Sandu

References

Hairer, E., Norsett, S., and Wanner, G.: Solving ordinary differential
equations, vol. I, Springer Verlag, 1987.

Hinneburg, D., Renner, E., and Wolke, R.: Formation of secondary
inorganic aerosols by power plant emissions exhausted through
cooling towers in Saxony, Environ. Sci. Pollut. Res., 16, 25–35,
2009.

Hundsdorfer, W. and Verwer, J.: Numerical solution of time-
dependent advection-diffusion reaction equations, Springer Se-
ries in Computational Mathematics, Springer, Berlin, Heidel-
berg, New York, 2003.

Jackiewicz, Z. and Vermiglio, R.: Order conditions for partitioned
Runge–Kutta methods, Appl. Math., 45, 301–316, 1998.

Karypis, G.: Multilevel algorithms for multi-constraint hypergraph
partitioning, Technical Report 99–034, University of Minnesota,
Department of Computer Science/Army HPC Research Center,
1999.

Karypis, G., Schloegel, K., and Kumar, V.: ParMetis – Paral-
lel graph partitioning and sparse matrix ordering library, Ver-
sion 3.1, available at:http://glaros.dtc.umn.edu/gkhome/metis/
parmetis/overview, 2011.

Knoth, O. and Wolke, R.: Implicit-explicit Runge-Kutta methods
for computing atmospheric reactive flows, Appl. Numer. Math.,
28, 327–341, 1998a.

Knoth, O. and Wolke, R.: An explicit-implicit numerical approach
for atmospheric chemistry-transport modelling, Atmos. Environ.,
32, 1785–1797, 1998b.

Osher, S. and Sanders, R.: Numerical approximations to nonlin-
ear conservation laws with locally varying time and space grids,
Math. Comput., 41, 321–336, 1983.

Schlegel, M., Knoth, O., Arnold, M., and Wolke, R.: Multirate
Runge–Kutta schemes for advection equations, J. Comput. Appl.
Math., 226, 345–357, 2009.

Schlegel, M., Knoth, O., Wolke, R., and Arnold, M.: Numerical so-
lution of multiscale problems in atmospheric modelling, Appl.
Numer. Math., 62, 1531–1543, 2012.

Scḧattler, U., Doms, G., and Schraff, C.: A description of the nonhy-
drostatic regional COSMO model, Part I: Dynamics and numer-
ics, Technical Report, Deutscher Wetterdienst, Offenbach, avail-
able at:http://www.cosmo-model.org, 2011.

Steppeler, J., Doms, G., Schättler, U., Bitzer, H., Gassmann, A.,
Damrath, U., and Gregoric, G.: Meso-gamma scale forecasts us-
ing the nonhydrostatic model LM, Meteorol. Atmos. Phys., 107,
75–96, 2003.

Tang, H. and Warnecke, G.: A class of high resolution schemes for
hyperbolic conservation laws and convection – diffusion equa-
tions with varying time and space grids, SIAM J. Sci. Comput.,
26, 1415–1431, 2005.

Verwer, J. G.: Explicit Runge–Kutta methods for parabolic partial
differential equations, Appl. Numer. Math., 22, 359–379, 1996.

Verwer, J. G., Hundsdorfer, W., and Blom, J. G.: Numerical time
integration for air pollution models, Surv. Math. Indust., 10, 107–
174, 2002.

Verwer, J. G., Sommeijer, B. P., and Hundsdorfer, W.: RKC time-
stepping for advection–diffusion–reaction problems, J. Comput.
Phys., 201, 61–79, 2004.

Wolke, R. and Knoth, O.: Implicit-explicit Runge-Kutta methods
applied to atmospheric chemistry-transport modelling, Environ.
Modell. Softw., 15, 711–719, 2000.

Wolke, R., Knoth, O., Hellmuth, O., Schröder, W., and Renner,
E.: The parallel model system LM-MUSCAT for chemistry-
transport simulations: Coupling scheme, parallelization and ap-
plications, in: Parallel Computing: Software Technology, Algo-
rithms, Architectures, and Applications, edited by: Joubert, G.
R., Nagel, W. E., Peters, F. J., and Walter, W. V., Elsevier, 363–
370, 2004.

www.geosci-model-dev.net/5/1395/2012/ Geosci. Model Dev., 5, 1395–1405, 2012

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.cosmo-model.org

