Supporting information

Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries

Soumyadip Choudhury,¹ Pattarachai Srimuk,^{1,2} Kumar Raju,³ Aura Tolosa,^{1,2} Simon Fleischmann,^{1,2} Marco Zeiger,^{1,2} Kenneth I. Ozoemena,³ Lars Borchardt,⁴ and Volker Presser^{1,2,*}

- ¹ INM Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
- ³ Council for Scientific and Industrial Research, Brumeria Road, 0001 Pretoria, South Africa
- ⁴ Department of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
- * Corresponding author: volker.presser@leibniz-inm.de

Figure S1: Transmission electron micrographs of (A) S-DIB-OLC-20 and (B) S-DIB-OLC-10.

Figure S2: Cumulative pore size distributions per volume of carbon onions (dry powder) and S-DIB-OLC hybrids calculated with quenched-solid density functional theory from nitrogen gas sorption isotherms recorded at -196 °C.

Figure S3: TEM micrographs of carbon onion / sulfur copolymer hybrids and their corresponding elemental EDX mappings.

Figure S4: Scanning electron micrographs of carbon onion / sulfur copolymer hybrids and their corresponding elemental EDX mappings.

Figure S5: Cyclic voltammograms (measured in 3-electrode set-up) at a rate of 0.1 mV s⁻¹ and galvanostatic charge/discharge (measured in 2-electrode set-up) profiles at 336 mA g⁻¹ (0.2 C) for charging and 168 mA g⁻¹ (0.1 C) for discharging in the potential window of +1.8 V to +2.6 V vs. Li⁺/Li of (A and B) S-OLC-30, (C and D) S-OLC-20, and (E and F) S-OLC-10.

Figure S6: Rate handling of carbon onion / sulfur hybrids prepared by melt-diffusion measured in 3-electrode set-up.

Figure S7: Digital photographs of carbon onion / sulfur copolymer hybrid cell parts after 100 charge-discharge cycles.

Table S1: Nitrogen gas sorption measurements of carbon onion and carbon onion / sulfur-DIB copolymer hybrids.

	Surface area (m ² ·g ⁻¹)		Pore volume
	BET	DFT	(cm³·g⁻¹)
OLC	430.4	403.6	1.23
S-DIB-OLC-30	42.7	34.1	0.174
S-DIB-OLC-20	16.1	8.7	0.08
S-DIB-OLC-10	11.2	6.8	0.027