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Abstract

We develop a full theory for the new class of Optimal Entropy-Transport problems
between nonnegative and finite Radon measures in general topological spaces.

They arise quite naturally by relaxing the marginal constraints typical of Opti-
mal Transport problems: given a couple of finite measures (with possibly different
total mass), one looks for minimizers of the sum of a linear transport functional
and two convex entropy functionals, that quantify in some way the deviation of the
marginals of the transport plan from the assigned measures.

As a powerful application of this theory, we study the particular case of Loga-
rithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich
distance between measures in metric spaces.

The striking connection between these two seemingly far topics allows for a
deep analysis of the geometric properties of the new geodesic distance, which lies
somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein
distances.
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1 Introduction

The aim of the present paper is twofold: In Part I we develop a full theory of the new class
of Optimal Entropy-Transport problems between nonnegative and finite Radon measures
in general topological spaces. As a powerful application of this theory, in Part II we
study the particular case of Logarithmic Entropy-Transport problems and introduce the
new Hellinger-Kantorovich (HK) distance between measures in metric spaces. The striking
connection between these two seemingly far topics is our main focus, and it paves the way
for a beautiful and deep analysis of the geometric properties of the geodesic HK distance,
which (as our proposed name suggests) can be understood as an inf-convolution of the
well-known Hellinger-Kakutani and the Kantorovich-Wasserstein distances. In fact, our
approach to the theory was opposite: in trying to characterize HK, we were first led to the
Logarithmic Entropy-Transport problem, see Section [A]



From Transport to Entropy-Transport problems. In the classical Kantorovich
formulation, Optimal Transport problems [37, 46 2, 47] deal with minimization of a
linear cost functional

C(v) :/X . c(zy, x9) dy(z1,22), c: X3 X Xy = R, (1.1)

among all the transport plans, i.e. probability measures in P(X; x X5), v whose marginals
Wi = 7r§'7 € P(X;) are prescribed. Typically, X7, X are Polish spaces, p; are given Borel
measures (but the case of Radon measures in Hausdorff topological spaces has also been
considered, see [23] [37]), the cost function c is a lower semicontinuous (or even Borel)
function, possibly assuming the value +o0o, and 7(zy, z2) = w; are the projections on the
i-th coordinate, so that

7Té’7 = U; = ,ul(Al) = 71(141 XXQ), /LQ(AQ) = ’71<X1XA2> for every AZ € Xl (12)

Starting from the pioneering work of Kantorovich, an impressive theory has been devel-
oped in the last two decades: from one side, typical intrinsic questions of linear pro-
gramming problems concerning duality, optimality, uniqueness and structural properties
of optimal transport plans have been addressed and fully analyzed. In a parallel way, this
rich general theory has been applied to many challenging problems in a variety of fields
(probability and statistics, functional analysis, PDEs, Riemannian geometry, nonsmooth
analysis in metric spaces, just to mention a few of them: since it is impossible here to
give an even partial account of the main contributions, we refer to the books [47, [39] for
a more detailed overview and a complete list of references).

The class of Entropy-Transport problems, we are going to study, arises quite
naturally if one tries to relax the marginal constraints 7r§'7 = u; by introducing suitable
penalizing functionals .%;, that quantify in some way the deviation from y; of the marginals
¥ = 7T§’7 of . In this paper we consider the general case of integral functionals (also
called Csiszar f-divergences [15]) of the form

Yi = Oif; + %’% (1.3)

d;

Fi(vilpa) = / Fi(oi(x:) dps + 7 (Xi), 00 = T

X; i

where F; : [0,400) — [0, +00] are given convex entropy functions, like for the logarithmic
or power-like entropies

Up(s) = ' —p(s—1)+1), peR\{0,1},

1
p@—lﬁ

Up(s) :=s—1—1logs, Ui(s):=slogs—s+1,

(1.4)

or for the total variation functional corresponding to the nonsmooth entropy V(s) :=
|s — 1|, considered in [35].

Notice that the presence of the singular part 4;- in the Lebesgue decomposition of v;
in does not force Fj(s) to be superlinear as s 1 +o00 and allows for all the exponents
p in .

Once a specific choice of entropies F; and of finite nonnegative Radon measures u; €
M(X;) is given, the Entropy-Transport problem can be formulated as

ET (s, 12) = inf { & (ylpin, 12) - 7 € M(Xy x o)}, (1.5)
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where & is the convex functional

& xlnons) = Filnln) + Faloali) + [ o), (1.6)
X1><X2

Notice that the entropic formulation allows for measures i, s and « with possibly dif-
ferent total mass.

The flexibility in the choice of the entropy functions F; (which may also take the value
+00) covers a wide spectrum of situations (see Section for various examples) and in
particular guarantees that is a real generalization of the classical optimal transport
problem, which can be recovered as a particular case of when Fj(s) is the indicator
function of {1} (i.e. F;(s) always takes the value 400 with the only exception of s = 1,
where it vanishes).

Since we think that the structure of Entropy-Transport problems will lead to new
and interesting models and applications, we have tried to establish their basic theory in
the greatest generality, by pursuing the same line of development of Transport problems:
in particular we will obtain general results concerning existence, duality and optimality
conditions.

Considering e.g. the Logarithmic Entropy case, where Fj(s) = slogs — (s — 1), the
dual formulation of is given by

D(M17M2) ‘= sup {-@(9017S02|M1,M2) D Xy = R, <P1($1) + @2(@) < C($17$2)},

where Z(p1, pa|p1, o) := / (1—e ) du + / (1—e2) duy,

X1 XQ

(1.7)

where one can immediately recognize the same convex constraint of Transport problems:
the couple of dual potentials ¢; should satisfy 1 ®ps < con X; x X5. The main difference
is due to the concavity of the objective functional

(1, 02) = [ (=) dps + / (1—e72) dus,
X1 X2

whose form can be explicitly calculated in terms of the Lagrangian conjugates F;* of the

entropy functions. The change of variables ¢; := 1—e~% transforms (|1.7)) in the equivalent

problem of maximizing the linear functional

(Y1, 02) = Z . Py dpg + i Yo dptg (1.8)

on the more complicated convex set

(@)1 01 X o (mo0,1), (L= @)1= valw)) 2 @} (19)

We will calculate the dual problem for every choice of F; and show that its value always
coincide with ET (i1, p2). The dual problem also provides optimality conditions, that
involve the couple of potentials (¢1,p2), the support of the optimal plan ~ and the
densities o; of its marginals 7; w.r.t. p;. For the Logarithmic Entropy Transport problem
above, they read as

0, >0, o =—logo; u;ae in X,

1.10
1D p2a<c in Xy XXy, @1 Bpa=c v-ae inX; XXy, (1.10)
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and they are necessary and sufficient for optimality.

The study of optimality conditions reveals a different behavior between pure transport
problems and the other entropic ones. In particular, the c-cyclical monotonicity of the
optimal plan ~ (which is still satisfied in the entropic case) does not play a crucial role in
the construction of the potentials ¢;. When F;(0) are finite (as in the logarithmic case)
it is possible to obtain a general existence result of (generalized) optimal potentials even
when c takes the value +oc.

A crucial feature of Entropy-Transport problems (which is not shared by the pure
transport ones) concerns a third “homogeneous” formulation, which exhibits new
and unexpected properties. It is related to the 1-homogeneous Marginal Perspective
function

H(l‘l, 1, T2, 7“2) = égg <T1F1(9/7”1) + TQFQ(Q/’I“Q) + 9C($1, l’Q)) (111)
and to the corresponding integral functional
dp
H(pa, p2|y) 3:/ H@la91(901);902792($2))d’)’+ZFi<O)NZ‘l(Xz‘)> 0i := dﬂ , (1.12)
X1><X2 i 'Yz

where y1; = oy + pit is the “reverse” Lebesgue decomposition of j; w.r.t. the marginals
~; of 7. We will prove that

ET (p1, 12) = min { A (g, o)+ 7 € M(Xy % X)) (1.13)

with a precise relation between optimal plans. In the Logarithmic Entropy case F;(s) =
slog s — (s — 1) the marginal perspective function H takes the particular form

H(w1,71;%,712) = 11+ ra — 2/ry rg e 007202, (1.14)

which will be the starting point for understanding the deep connection with the Hellinger-
Kantorovich distance. Notice that in the case when X; = X5 and c is the singular cost

0 ifa =
c(xl,xg)::{ H = (1.15)

+00 otherwise,

(1.13]) provides an equivalent formulation of the Hellinger-Kakutani distance [20} 22], see
also Example E.5 in Section (3.3

Other choices, still in the simple class , give raise to “transport” versions of well
known functionals (see e.g. [28] for a systematic presentation): starting from the reversed
entropies Fj(s) = s — 1 — log s one gets

(1.16)

L+
H(xl,ﬁ;m,TQ):rllogrl—i—rzlogrz_(T1+T2)10g< 1 2 ))7

24+ C(ZL‘l,ZL’Q

which in the extreme case ((1.15]) reduces to the Jensen-Shannon divergence [29], a squared
distance between measures derived from the celebrated Kullback-Leibler divergence [25].

The quadratic entropy F;(s) = 3(s — 1) produces

1

m ((h —79)? + h(c(zy, 5(72))7”17”2)’ (1.17)

H<x1ar1;x2ar2) —
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where h(c) = ¢(4 —¢) if 0 < ¢ < 2 and 4 if ¢ > 2: Equation can be seen as the
transport variant of the triangular discrimination (also called symmetric X*-measure),
based on the Pearson X?*-divergence, and still obtained by when ¢ has the form
(T.15).

Also nonsmooth cases, as for V(s) = |s — 1| associated to the total variation distance
(or nonsymmetric choices of F;) can be covered by the general theory. In the case of
F;(s) = V(s) the marginal perspective function is

H(zy,7r1;29,1m2) =11+ 79 — (2 —c(21,22)) £ (11 A1) = |rog — r1| + (c(21,22) A 2) (11 ATo);

when X; = X, = R? with c(x,22) := |71 — 22| we recover the generalized Wasser-
stein distance W' introduced and studied by [35]; it provides an equivalent variational
characterization of the flat metric [30].

However, because of our original motivation (see Section , Part II will focus on the
case of the logarithmic entropy F; = Uy, where H is given by . We will exploit its
relevant geometric applications, reserving the other examples for future investigations.

From the Kantorovich-Wasserstein distance to the Hellinger-Kantorovich dis-
tance. From the analytic-geometric point of view, one of the most interesting cases of
transport problems occurs when X; = X, = X coincide and the cost functional & is
induced by a distance d on X: in the quadratic case, the minimum value of for given
measures i1, fio in the space Po(X) of probability measures with finite quadratic moment
defines the so called L2-Kantorovich-Wasserstein distance

W3 (g1, pi2) = inf { /d2<$1,x2) dy(z1,22) -y € P(X X X), 7jy = ui}, (1.18)

which metrizes the weak convergence (with quadratic moments) of probability measures.
The metric space (Po(X), Wy) inherits many geometric features from the underlying (X, d)
(as separability, completeness, length and geodesic properties, positive curvature in the
Alexandrov sense, see [2]). Its dynamic characterization in terms of the continuity equa-
tion [7] and its dual formulation in terms of the Hopf-Lax formula and the corresponding
(sub-)solutions of the Hamilton-Jacobi equation [34] lie at the core of the applications to
gradient flows and partial differential equations of diffusion type [2]. Finally, the behav-
ior of entropy functionals as along geodesics in (Po(X), Wy) [32), B4, 14] encodes a
valuable geometric information, with relevant applications to Riemannian geometry and
to the recent theory of metric-measure spaces with Ricci curvature bounded from below
[44), (45, (31, 13, @, [5, [19].

It has been a challenging question to find a corresponding distance (enjoying analogous
deep geometric properties) between finite positive Borel measures with arbitrary mass in
M(X). In the present paper we will show that by choosing the particular cost function

—1 2(d ifd<7/2
c(x1,22) := (d(x1,22)), where £(d) ;:{ og (cos*(d)) i /2 (1.19)
—+00 otherwise,
the corresponding Logarithmic-Entropy Transport problem
dv;
LET = mi ilogo; —o;+ 1) dpy £(d(zy, dvy, o;= ;
) wgﬁ&);/x(a ogo; — o; + 1) du +/X2 (d(z1,22)) dv, o "
(1.20)



coincides with a (squared) distance in M(X) (which we will call Hellinger-Kantorovich
distance and denote by HK) that can play the same fundamental role like the Kantorovich-
Wasserstein distance for Po(X).

Here is a schematic list of our main results:

(i)

(i)

(i)

The representation ([1.13]) based on the Marginal Perspective function ((1.14) yields

. dp;
LET (g1, p2) = mm{/ <Q1+Q2—2Q1Q2 cos(d(xl,xQ)/\W/Z)> dvy : 0, = d’l;‘ } (1.21)

By performing the rescaling r; — r? we realize that the function H(z1,7};ze,73) is
strictly related to the squared (semi)-distance

d2 (@1, 71309, 79) 1= 12 + 15 — 2rirgcos(d(wy, mo) AT),  (z5,m) € X x Ry (1.22)

which is the so-called cone distance in the metric cone € over X, cf. [9]. The latter
is the quotient space of X x R, obtained by collapsing all the points (z,0), z € X,
in a single point o, called the vertex of the cone. We introduce the notion of “2-
homogeneous marginal”

p=ha = 7T§C(T‘204), /XC(m) dp = /@C(av)r2 da(z,r) for every ¢ € Cp(X),

(1.23)
to “project” measures o € M(€) on measures p € M(X). Conversely, there are
many ways to “lift” a measure p € M(X) to « € M(€) (e.g. by taking o := p ® dy).
The Hellinger-Kantorovich distance HK(fuq, p12) can then be defined by taking the best
Kantorovich-Wasserstein distance between all the possible lifts of py, o in Po(€),
ie.

HK (g1, p12) = min {Wdc(Oél,Oég) L € Po(€), hPay = ,ui}. (1.24)

It turns out that (the square of) (1.24]) yields an equivalent variational representation
of the LET functional. In particular, (1.24) shows that in the case of concentrated
measures

LET (@10, , a204,) = HK* (0164, , a20,,) = d2(21, ar; 29, as). (1.25)
Notice that ([1.24)) resembles the very definition (|1.18)) of the Kantorovich-Wasserstein

distance, where now the role of the marginals 7Té is replaced by the homogeneous
marginals h2. It is a nontrivial part of the equivalence statement to check that the
difference between the cut-off thresholds (7/2 in and 7 in does not
affect the identity LET = HK?.

By refining the representation formula by a suitable rescaling and gluing tech-
nique we can prove that (M(X), H) is a geodesic metric space, a property that it
is absolutely not obvious from the LET-representation and depends on a subtle in-
terplay of the entropy functions Fj(0) = ologo — o + 1 and the cost function ¢
from . We show that the metric induces the weak convergence of measures in
duality with bounded and continuous functions, thus it is topologically equivalent
to the flat or Bounded Lipschitz distance [I7, Sec. 11.3], see also [24, Thm. 3]. It
also inherits the separability, completeness, length and geodesic properties from the

7



(iv)

(vi)

correspondent ones of the underlying space (X,d). On top of that, we will prove
a precise superposition principle (in the same spirit of the Kantorovich-Wasserstein
one [2, Sect.8],[30]) for general absolutely continuous curves in (M(X), HK) in terms
of dynamic plans in €: as a byproduct, we can give a precise characterization of abso-
lutely continuous curves and geodesics as homogeneous marginals of corresponding
curves in (P2(€), Wy, ). An interesting consequence of these results concerns the
lower curvature bound of (M(X), HK) in the sense of Alexandrov: it is a positively
curved space if and only if (X, d) is a geodesic space with curvature > 1.

The dual formulation of the LET problem provides a dual characterization of HK, viz.

%H(Q(,ul,,ug) = sup{/@lgdm — /{d,ul : £ € Lip,(X), i%ff > —1/2}, (1.26)

where (Z)o<t<1 is given by the inf-convolution

Pi&(x) == inf @) sin’(dra(2, 7)) 1 (1 _ COSQ(dw/2($,x/))>

— inf =
vex 11 2t€(x’) | 2+ At€(x))  wext 1+ 2t6(2)

By exploiting the Hopf-Lax representation formula for the Hamilton-Jacobi equation
in €, we will show that for arbitrary initial data & € Lip,(X) with inf £ > —1/2 the
function & = € is a subsolution (a solution, if (X, d) is a length space) of

1
O & (z) + §|DX§t|2(x) +2¢3(z) <0 pointwise in X x (0,1).

If (X,d) is a length space we thus obtain the characterization

1

§|'K2(,u0;,u1) = sup{/X& dpy — /050 dpo : € € Ck([07 1]; Lipy(X)), (1.27)

1 :
006(@) + 5IDx& (@) +268(x) <0 in X x (0, 1)},
which reproduces, at the level of HK, the nice link between Wy and Hamilton-Jacobi
equations. One of the direct applications of (1.27)) is a sharp contraction property

w.r.t. KK for the Heat flow in RCD(0, co) metric measure spaces (and therefore in
every Riemannian manifold with nonnegative Ricci curvature).

(1.27) clarifies that the HK distance can be interpreted as a sort of inf-convolution
between the Hellinger (in duality with solutions to the ODE 9, 4 262 = 0) and the

Kantorovich-Wasserstein distance (in duality with (sub-)solutions to
d&i(z) + 3|Dx&[*(x) < 0). The Hellinger distance

Hell? (11, pio) = / (Vo1 — @)Zd% Wi = 0i,
X

corresponds to the HK functional generated by the discrete distance (d(xy, z2) = 7/2
if 1 # x9). We will prove that

H (e, po) < Hell(pan, pr2),  HK(p, pr2) < We(pa, pi2),
Hna (pt1, p12) T Hell(pr, p2),  nHKg/m T Wa(p, p2)  as n 1 oo,

where H g (resp. HKgy,,) is the HK distance induced by nd (resp. d/n).

8



(vii) Combining the superposition principle and the duality with Hamilton-Jacobi equa-
tions, we eventually prove that HK admits an equivalent dynamic characterization
“a la Benamou-Brenier” [7, [16] (see also the recent [24]) in X = R?

HC (j10, 1) = min { /01/ (|vt|2 + ilwtf) dpedt = p € C([0, 1; M(RY)),

(1.28)

foss = g, oty + V-(vyg1) = wopsy in 2" (RE x (0, 1))}.
Moreover, for the length space X = R? a curve [0,1] 3 ¢ + p(t) is geodesic curve
w.r.t. KK if and only if the coupled system

1
O + V- (Dpbepu) = A&, 016 + §’Dx£2|2 + 2§t2 =0 (1.29)

holds for a suitable solution & = Z%&,. The representation (1.28)) is the starting
point for further investigations and examples, which we have collected in [27].

It is not superfluous to recall that the HK variational problem is just one example in the
realm of Entropy-Transport problems and we think that other interesting applications can
arise by different choices of entropies and cost. One of the simplest variation is to choose
the (seemingly more natural) quadratic cost function c(xy, z2) := d?(z1, z) instead of the
more “exotic” . The resulting functional is still associated to a distance expressed
by

G2 (11, pto) := min { / (7‘% + 73 — 2r 79 exp(—d?(ay, xg)/2)) da} (1.30)

where the minimum runs among all the plans @ € M(€ x €) such that h*mje = p; (we
propose the name “Gaussian Hellinger-Kantorovich distance”). If (X,d) is a complete,
separable and length metric space, (M(X), GK) is a complete and separable metric space,
inducing the weak topology as HK. However, it is not a length space in general, and we
will show that the length distance generated by GK is precisely H.

The plan of the paper is as follows.

Part I develops the general theory of Optimal Entropy-Transport problems. Section
collects some preliminary material, in particular concerning the measure-theoretic setting
in arbitrary Hausdorff topological spaces (here we follow [41]) and entropy functionals.
We devote some effort to deal with general functionals (allowing a singular part in the
definition ([1.3))) in order to include entropies which may have only linear growth. The
extension to this general framework of the duality theorem (well known in Polish
topologies) requires some care and the use of lower semicontinuous test functions instead
of continuous ones.

Section |3| introduces the class of Entropy-Transport problems, discussing same exam-
ples and proving a general existence result for optimal plans. The “reverse” formulation
of Theorem [3.T1] though simple, justifies the importance to deal with the largest class of
entropies and will play a crucial role in Section

Section [4] is devoted to find the dual formulation, to prove its equivalence with the
primal problem (cf. Theorem , to derive sharp optimality conditions (cf. Theorem

9



and to prove the existence of optimal potentials in a suitable generalized sense (cf.
Theorem . The particular class of “regular” problems (where the results are richer)
is also studied with some details.

Section |5 introduces the third formulation based on the marginal perspective
function and its “homogeneous” version (Section. The proof of the equivalence
with the previous formulations is presented in Theorem [5.5] and Theorem [5.8] This part
provides the crucial link for the further development in the cone setting.

Part II is devoted to Logarithmic Entropy-Transport (LET) problems (Section [6)) and
to their applications to the Hellinger-Kantorovich distance HK on M(X).

The Hellinger-Kantorovich distance is introduced by the lifting technique in the cone
space in Section [7, where we try to follow a presentation modeled on the standard one
for the Kantorovich-Wasserstein distance, independently from the results on the LET-
problems. After a brief recap on the cone geometry (Section [7.1) we discuss in some
detail the crucial notion of homogeneous marginals in Section and the useful tightness
conditions (Lemma for plans with prescribed homogeneous marginals. Section
introduces the definition of the HK distance and its basic properties. The crucial rescaling
and gluing techniques are discussed in Section [7.4} they lie at the core of the main metric
properties of HK, leading to the proof of the triangle inequality and to the characterizations
of various metric and topological properties in Section [7.5. The equivalence with the LET
formulation is the main achievement of Section (Theorem , with applications to
the duality formula (Theorem , to the comparisons with the classical Hellinger and
Kantorovich distances (Section and with the Gaussian Hellinger-Kantorovich distance
(Section [7.8)).

The last Section of the paper collects various important properties of HK, that share a
common “dynamic” flavor. After a preliminary discussion of absolutely continuous curves
and geodesics in the cone space € in Section[8.1], we derive the basic superposition principle
in Theorem [8.4] This is the cornerstone to obtain a precise characterization of geodesics
(Theorem [8.6), a sharp lower curvature bound in the Alexandrov sense (Theorem
and to prove the dynamic characterization a la Benamou-Brenier of Section [8.5 The
other powerful tool is provided by the duality with subsolutions to the Hamilton-Jacobi
equation (Theorem , which we derive after a preliminary characterization of metric
slopes for a suitable class of test functions in €. One of the most striking results of Section
is the explicit representation formula for solutions to the Hamilton-Jacobi equation in
X, that we obtain by a careful reduction technique from the Hopf-Lax formula in €. In
this respect, we think that Theorem is interesting by itself and could find important
applications in different contexts. From the point of view of Entropy-Transport problems,
Theorem |8.11|is particularly relevant since it provides a dynamic interpretation of the dual
characterization of the LET functional. In Section [8.6] we show that in the Euclidean case
X = R? all geodesic curves are characterized by the system (1.29)). The last Section
provides various contraction results: in particular we extend the well known contraction
property of the Heat flow in spaces with nonnegative Riemannian Ricci curvature to H.

Note during final preparation. The earliest parts of the work developed here were
first presented at the ERC Workshop on Optimal Transportation and Applications in
Pisa in 2012. Since then the authors developed the theory continuously further and
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presented results at different workshops and seminars, see Appendix [A] for some remarks
concerning the chronological development of our theory. In June 2015 they became aware
of the parallel work [24], which mainly concerns the dynamical approach to the Hellinger-
Kantorovich distance discussed in Section and the metric-topological properties of
Section [7.5]in the Euclidean case. Moreover, in mid August 2015 we became aware of the
work [I1], 12], which starts from the dynamical formulation of the Hellinger-Kantorovich
distance in the Euclidean case, prove existence of geodesics and sufficient optimality and
uniqueness conditions (which we state in a stronger form in Section with a precise
characterization in the case of a couple of Dirac masses, provide a detailed discussion
of curvature properties following Otto’s formalism [33], and study more general dynamic
costs on the cone space with their equivalent primal and dual static formulation (leading
to characterizations analogous to ([7.1)) and in the Hellinger-Kantorovich case).

Apart from the few above remarks, these independent works did not influence the first
(cf. arXiv1508.07941v1) and the present version of this manuscript, which is essentially a
minor modification and correction of the first version. In the final Appendix [A] we give a
brief account of the chronological development of our theory.

Main notation

M(X) finite positive Radon measures on a Hausdorff topological space X
P(X), Po(X) Radon probability measures on X (with finite quadratic moment)
B(X) Borel subsets of X
Ty push forward of € M(X) by amap 7 : X — Y: (2.5)
v = opt+pt, = o0y+y*+ Lebesgue decompositions of v and y, Lemma
Cp(X) continuous and bounded real functions on X
Lip,(X), Lipys(X) bounded (with bounded support) Lipschitz real functions on X
LSCy(X), LSC4(X) lower semicontinuous and bounded (or simple) real functions on X
USCy(X), USC4(X) upper semicontinuous and bounded (or simple) real functions on X
B(X), By(X) Borel (resp. bounded Borel) real functions
LP(X, 1), LP(X, u; RY) Borel p-integrable real (or R-valued) functions
I(Ry) set of admissible entropy functions, see , .

F(s), Fi(s) admissible entropy functions.
F*( o), Fr (o) Legendre transform of F, F}, see (2.17).

F° (), F2 (i) concave conjugate of an entropy function, see (2.43).

( ), Ri(r;) reversed entropies, see (12.28)).

H.(ry,73), H(x1,71;x2,72) marginal perspective function, see (5.1)), (5.9)), (5.3

c(xy, z9 lower semicontinuous cost function defined in X X 1 X Xo.
F(y|u), Z(u|y) entropy functionals and their reverse form, see and (2.55)

E(y| 1, po), ET (pr, o) general Entropy-Transport functional and its minimum, see ((3.4)

D(plur, p2), D(p1, p2) dual functional and its supremum, see (4.10]) and (4.8))

(oI /) set of admissible Entropy-Kantorovich potentials

LET (g1, p2), £(d) Logarithmic Entropy Transport functional and its cost: Section
Way (1, ) Kantorovich-Wasserstein distance in Po(X)

H (e, ) Hellinger-Kantorovich distance in M(X): Section

GK (g, p2) Gaussian Hellinger-Kantorovich distance in M(X): Section

(€, de), o metric cone and its vertex, see Section

<[r] ball of radius r centered at o in €

11



h?, dilgo(-) homogeneous marginals and dilations, see (7.15]), (7.16)
92 (1, p2), f)%(,ul, 12) plans in € x € with constrained homogeneous marginals, see ((7.20))

ACP(]0,1]; X) space of curves x : [0,1] — X with p-integrable metric speed
|x'|4 metric speed of a curve x € AC([a, b]; (X, d)), Sect.
IDzfl, IDzfla metric slope and asymptotic Lipschitz constant in Z, see (8.34))

Part I. Optimal Entropy-Transport problems

2 Preliminaries

2.1 Measure theoretic notation

Positive Radon measures, narrow and weak convergence, tightness. Let (X, 7)
be a Hausdorff topological space. We will denote by B(X) the o-algebra of its Borel sets
and by M(X) the set of finite nonnegative Radon measures on X [41], i.e. o-additive set
functions p : B(X) — [0, 00) such that

VB e B(X), Ve >0 JK.C B compact such that u(B\ K;.) <e. (2.1)

Radon measures have strong continuity property with respect to monotone convergence.
For this, denote by LSC(X) the space of all lower semicontinuous real-valued functions
on X and consider a nondecreasing directed family (f\)rer € LSC(X) (where L is a
possibly uncountable directed set) of nonnegative and lower semicontinuous functions f)
converging to f, we have (cf. [41, Prop. 5, p.42])

lim/ Hdp = / fdu forall pe M(X). (2.2)
el J X

We endow M(X) with the narrow topology, the coarsest (Hausdorff) topology for which
all the maps p — [ « wdp are lower semicontinuous, as ¢ : X — R varies among the set
LSCy(X) of all bounded lower semicontinuous functions [41, p. 370, Def. 1].

Remark 2.1 (Radon versus Borel, narrow versus weak). When (X, 7) is a Radon space
(in particular a Polish, or Lusin or Souslin space [41], p. 122]) then every Borel measure
satisfies (2.1]), so that M(X) coincides with the set of all nonnegative and finite Borel
measures. Narrow topology is in general stronger than the standard weak topology in-
duced by the duality with continuous and bounded functions of C,(X). However, when
(X, 1) is completely regular, i.e.

for any closed set ' C X and any xy € X \ F

2.3
there exists f € Cp(X) with f(z9) >0 and f=0on F, (2:3)

(in particular when 7 is metrizable), narrow and weak topology coincide [41, p. 371].
Therefore when (X, 7) is a Polish space we recover the usual setting of Borel measures
endowed with the weak topology. 0
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A set KX C M(X) is bounded if sup ,eq p1(X) < 005 it is equally tight if
Ve>0 JK.C X compact such that u(X \ K.) <e for every p € X. (2.4)

Compactness with respect to narrow topology is guaranteed by an extended version of
Prokhorov’s Theorem [41, Thm. 3, p. 379]. Tightness of weakly convergent sequences in
metrizable spaces is due to LE CAM [26].

Theorem 2.2. If a subset KX C M(X) is bounded and equally tight then it is relatively
compact with respect to the narrow topology. The converse is also true in the following
cases:

(i) (X,7) is a locally compact or a Polish space;

(11) (X, 1) is metrizable and X = {p, : n € N} for a given weakly convergent sequence
(4tn)-

If p € M(X) and Y is another Hausdorff topological space, a map 7" : X — Y is Lusin
p-measurable [41, Ch. I, Sec. 5] if for every € > 0 there exists a compact set K. C X
such that p(X \ K.) < € and the restriction of T to K. is continuous. We denote by
Tip € M(Y') the push-forward measure defined by

Tyu(B) := u(T~(B)) for every B € B(Y). (2.5)

For ;1 € M(X) and a Lusin pg-measurable 7' : X — Y, we have Ty € M(Y'). The linear
space B(X) (resp. B;(X)) denotes the space of real Borel (resp. bounded Borel) functions.
If p € M(X), p € [1,00], we will denote by LP(X, 1) the subspace of Borel p-integrable
functions w.r.t. u, without identifying p-almost equal functions.

Lebesgue decomposition. Given v, € M(X), we write v < p if pu(A) = 0 yields
v(A) = 0 for every A € B(X). We say that v L p if there exists B € B(X) such that
u(B) =0=~(X\B).

Lemma 2.3 (Lebesgue decomposition). For every v, € M(X) (with
there exist Borel functions o, 0 : X — [0,00) and a Borel partition (A,
the following properties:

A={reX:o(x)>0t={reX:0(x) >0}, o-0=1 1in 2.6
y=op+yt, o eLli(X,p), 4t Lp, yH(X\A) =p(A) =0, (27
p=oy+ut, 0€li(X,), pm Ly, pH(X\A)=7(4,)=0 (2.8

Moreover, the sets A, A, A,, and the densities o, 0 are uniquely determined up to (p+y)-
negligible sets.

Y

o~

Proof. Let 0 € B(X;[0,1]) be the Lebesgue density of v w.r.t. v := u+ . Thus, 0 is
uniquely determined up to v-negligible sets. The Borel partition can be defined by setting
A={reX:0<b(z)<1}, A, ={reX:0(x)=1}and A, :=={zr € X : (x) = 0}.
By defining 0 :=0/(1—0), p:=1/0 = (1—0)/0 for every x € Aand 0 = p =0 in X \ A,
we obtain Borel functions satisfying and .

Conversely, it is not difficult to check that starting from a decomposition as in (2.6)),
([2.7), and and defining # =0in 4,, 0 =11in A, and § := o/(1 + o) in A we obtain
a Borel function with values in [0, 1] such that v = 0(u + 7). O
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2.2 Min-max and duality

We recall now a powerful form of von Neumann’s Theorem, concerning minimax prop-
erties of convex-concave functions in convex subsets of vector spaces and refer to [I8]
Prop. 1.2+43.2, Chap. VI] for a general exposition.

Let A, B be nonempty convex sets of some vector spaces and let us suppose that A is
endowed with a Hausdorff topology. Let L : A x B — R be a function such that

a— L(a,b) is convex and lower semicontinuous in A for every b € B, (2.9a)
b~ L(a,b) is concave in B for every a € A. (2.9b)
Notice that for arbitrary functions L one always has
inf sup L(a,b) > sup inf L(a, b); (2.10)
a€A beB beB acA

so that equality holds in if supyep inf,c 4 L(a,b) = +0o. When sup,ginf,c4 L(a,b)
is finite, we can still have equality thanks to the following result.

The statement has the advantage of involving a minimal set of topological assumptions
(we refer to [42, Thm. 3.1] for the proof, see also [8, Chapter 1, Prop. 1.1]).

Theorem 2.4 (Minimax duality). Assume that (2.9a]) and (2.9b)) hold. If there exists
b, € B and C > sup,cpinf,c 4 L(a,b) such that

{a€ A:L(a,b,) <C} is compact in A, (2.11)
then
inf sup L(a, b) = sup inf L(a,b). (2.12)
acA beB beEB acA

2.3 Entropy functions and their conjugates

Entropy functions in [0,00). We say that F' : [0,00) — [0,00] belongs to the class
['(R,) of admissible entropy function if it satisfies

F' is convex and lower semicontinuous with Dom(F") N (0, 00) # 0, (2.13)
where
Dom(F) :={s>0: F(s) < oo}, sz :=inf Dom(F), s} :=supDom(F)>0. (2.14)

The recession constant F!_, the right derivative F{ at 0, and the asymptotic affine coetfhi-
cient aff i, are defined by (here s, € Dom(F"))

F F(s) — F(s, —00 if F(0) = +o0,
F! := lim £ls) = sup M, F} = i FE)=F(O) : (2.15)
sooo 8 50 5— 8, slﬂ[)l ————— otherwise,
&R +00 if F, = 400, 5 16
oo = im (Fl s —F(s)) otherwise. (2.16)
§—00

To avoid trivial cases, we assumed in that the proper domain Dom(F') contains at
least a strictly positive real number. By convexity, Dom(F) is a subinterval of [0, c0),
and we will mainly focus on the case when Dom(F") has nonempty interior and F' has
superlinear growth, i.e. F., = 400, but it will be useful to deal with the general class

defined by ([2.13)).
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Legendre duality. As usual, the Legendre conjugate function F* : R — (—o0, +00] is
defined by

F*(¢) :=sup (s¢ — F(s)), (2.17)

s>0

with proper domain Dom(F™) := {¢ € R : F*(¢) € R}. Strictly speaking, F™* is the
conjugate of the convex function F' : R — (—o00, +00], obtained by extending F' to +oo
for negative arguments. Notice that

inf Dom(F*) = —oco, sup Dom(F*) = F._, (2.18)
so that F™* is finite and continuous in (—oo, F. ), nondecreasing, and satisfies

lim F*(¢) = inf F* = —F(0), F* = lim F*(6) = +oo. 2.19
Jm (¢) = in (0), sup Jim (0) 00 (2.19)

Concerning the behavior of F* at the boundary of its proper domain we can distinguish
a few cases depending on the behavior of F' at sn and s}:

o If Fjj = —oo (in particular if F(0) = +o00) then F™* is strictly increasing in Dom(F™).

o If F is finite, then F™* is strictly increasing in [Fj, F”.) and takes the constant value
F(0) in (—oo0, F{]. Thus F(0) belongs to the range of F* only if F{ > —o0.

o If I/ is finite, then limyp F*(¢) = aff Fyo. Thus F., € Dom(F™) only if aff F, < oo.
e The degenerate case when F = F{ occurs only when F' is linear.
If F is not linear, we always have
F* is an increasing homeomorphism between (F, F. ) and (—F(0),affF,)  (2.20)

with the obvious extensions to the boundaries of the intervals when Fjj or aff F, are finite.
By introducing the closed convex subset § of R? via

5= {(6.0) €RZ: 4 < —F*(9)} = {(6,0) €R? 156+ < F(s) Vs >0}, (221)

the function F' can be recovered from F* and from § through the dual Fenchel-Moreau
formula

F(s) =sup (s¢ — F*(¢)) = sup s¢+ 1. (2.22)

pER (CEDIS

Notice that § satisfies the obvious monotonicity property
(p0)€F, ©<¥, 6<¢ = (hP)€F. (2.23)

If F' is finite in a neighborhood of +o00, then F™* is superlinear as ¢ 1 co. More precisely,
its asymptotic behavior as ¢ — +o0 is related to the proper domain of F' by

55 = ¢E1foo FTW (2.24)

The functions F' and F* are also related to the subdifferential OF : R — 2% by

p€0F(s) < seDom(F), ¢e€Dom(F”), F(s)+F(¢)=s¢. (2.25)
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Example 2.5 (Power-like entropies). An important class of entropy functions is provided
by the power like functions U, : [0, 00) — [0, 00] with p € R characterized by

U, € C*(0,00), U,(1)=U,(1)=0, Ul(s)=s""7 Uy(0) = 11151 Up(s).  (2.26)
Equivalently, we have the explicit formulas
m(sp—p(s—l)—l) if p#£0,1,
Uy(s) =1 slogs —s+1 ifp=1, for s > 0, (2.27)
s—1—1logs if p=0,

with U,(0) = 1/p if p > 0 and U,(0) = 400 if p < 0.
Using the dual exponent ¢ = p/(p — 1), the corresponding Legendre conjugates read

(%[(1+%)i—1:, Dom(U?) = R, ifp>1, g>1,
e? — 1, Dom(U;) = R, iftp=1, ¢ = o0,
Ui(g) == %[(Hq%)q”:’ Dom(U}) = (—o0,1—¢q), if0<p<1, ¢<0,
—log(1 —¢), Dom(U;) = (—o0,1), ifp=0, ¢=0,
\%[(1+qiil)q—1:, Dom(U;) = (—o0,1 —¢], ifp<0, 0<g<1.

Reverse entropies. Let us now introduce the reverse density function R : [0, 00) —

[0, 0] as |
R(r) := {715(1/7“) i; : 8? (2.28)

It is not difficult to check that R is a proper, convex and lower semicontinuous function,
with

R(0)=F, R_=F(0), affFy=—R) affRy=—F, (2.29)

so that R € I'(R;) and the map F' +— R is an involution on I'(Ry). A further remarkable
involution property is enjoyed by the dual convex set R := {(v,¢) € R* : R*(¢)) + ¢ < 0}
defined as ([2.21)): it is easy to check that

(0, 0) e & (¥.¢) €R (2.30)
It follows that the Legendre transform of R and F' are related by

P<-F(¢) & 0<-RW) © (69)eF foreveyppeR  (231)
As in (2.20)) we have
R* is an increasing homeomorphism between (—aff Fl,, F'(0)) and (—F.,, —F}). (2.32)

A last useful identity involves the subdifferentials of F' and R: for every s,r > 0 with
sr =1, and ¢,1 € R we have

(¢ € OF(r) and ¢ = —F*(¢)) — <¢ € OR(s) and ¢ = —R*(@Z))). (2.33)

It is not difficult to check that the reverse entropy associated to U, is U;_,.
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2.4 Relative entropy integral functionals
For F' € T'(R,) we consider the functional .# : M(X) x M(X) — [0, co| defined by

dy

— 2.34
T e

9(7!#):=/F(0)du+FéovL(X), y=op+yt, v Lp, o=
X

where v = o + v+ is the Lebesgue decomposition of v w.r.t. u, see . Notice that
if F'is superlinear then % (vy|u) = 400 if v &K p, (2.35)
and, whenever 7, is the null measure, we have
F (YImo) = FL (X)), (2.36)

where, as usual in measure theory, we adopted the convention 0 - oo = 0.

Because of our applications in Section [3| our next lemma deals with Borel functions
¢ € B(X;R) taking values in the extended real line R := RU{400}. By § we denote the
closure of § in R x R, i.e.

Y < —F*(9) if —co<dp<F,, ¢<+00
(p)€F & v =-c0 if p = F!, = +o0, (2.37)
and, symmetrically by and ,

¢ < —R* () if —oo <1 < F(0), 1 < 400
(p,0) €T & ¢p=— if 1) = F(0) = +o0, (2.38)
¢ € [—o0,FL] if=—o0.

In particular, we have
(o) €F = (¢ <F andy < F(0)). (2.39)

We continue to use the notation ¢_ and ¢, to denote the negative and the positive part
of a function ¢, where ¢_(z) := min{¢(z),0} and ¢ (z) := max{¢(z),0}.

Lemma 2.6. If v, € M(X) and (¢,7) € B(X;F) satisfy

F(Vln) < oo, o € LN(X, p) (resp. ¢— € LI(X,7)),
then ¢, € LY(X,7) (resp. ¥y € LY(X,u)) and

F ) - / Py > / by, (2.40)

Whenever ¢ € LY (X, u) or ¢ € LYX,7), equality holds in (2.40)) if and only if for the
Lebesgue decomposition given by Lemma one has

¢ €0F (o), v =—F"(¢) (ut+7y)-a.e. in A, (2.41)
Y =F(0) <oopt-ae inA, ¢=F,<oory-ae inA,. (2.42)

Equation (2.41)) can equivalently be formulated as ¢ € OR(p) and ¢ = —R*(1)).
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Proof. Let us first show that in both cases the two integrals of are well defined
(possibly taking the value —oc). If ¢ € L'(X,u) (in particular ¢ > —oo p-a.e.) with
(¢,1) € F we use the pointwise bound s¢ < F(s) — ¢ that yields s¢, < (F(s) — )y <
F(s) 4+ v_ obtaining ¢, € L(X,~), since (¢,9) € § yields ¢, < F'_.

If _ € LY(X,v) (and thus ¢ > —oc y-a.e.) the analogous inequality ¢, < F(s)+ s¢_

yields ¢, € LY(X, u). Then, (2.40)follows from (2.21]) and (2.39).
Once ¢ € LY(X, u) (or ¢ € L1(X, 7)), estimate (2.40) can be written as

/A<F(U)—U¢—¢>du+/Au (F(O)—¢>dul+/Aw(Féo_¢)d7L207

and by and the equality case immediately yields that each of the three
integrals of the previous formula vanishes. Since (¢,) lies in § C R? (u+7)-a.e. in A the
vanishing of the first integrand yields ¢» = —F*(o) and ¢ € 0F (o) by for p and
(1 + ) almost every point in A. The equivalence provides the reversed identities
b € OR(0), 6 = —R*(1).

The relations in follow easily by the vanishing of the last two integrals and the
fact that v is finite p-a.e. and ¢ is finite v-a.e. O

The next theorem gives a characterization of the relative entropy .%#, which is the
main result of this section. Its proof is a careful adaptation of [2, Lemma 9.4.4] to the
present more general setting, which includes the sublinear case when F. < oo and the
lack of complete regularity of the space. This suggests to deal with lower semicontinuous
functions instead of continuous ones. We denote by LSC,(X) the class of lower semicon-
tinuous and simple functions (i.e. taking a finite number of real values only) and introduce
the notation p = —¢ and the concave function

Fo(p) == —F"(—¢). (2.43)

Theorem 2.7 (Duality and lower semicontinuity). For every 7, u € M(X) we have

Fol) =suw{ [ wdu+ [ odyio.0 e LSC.X), (0la),v(a) € Va € X}

(2.44)
- Sup{/xwdu—/XR*(w) dy 1 o, R (V) € LSCS(X)} (2.45)
= sup {/XFO(QO) du _/)(de c o, Fo(p) € LSCS(X)} (2.46)

and the space LSC4(X) in the supremum of (2.44), (2.45) and (2.46) can also be replaced
by the space LSCy(X) (resp By(X)) of bounded l.s.c. (resp. Borel) functions.

Remark 2.8. If (X, 7) is completely regular (recall (2.3)), then we can equivalently
replace lower semicontinuous functions by continuous ones in (2.44)), (2.45) and (2.46))).
E.g. in the case of (2.44) we have

9(7\u):sup{/xwdu+/xédvz ((b,z/J)ECb(X;S)}. (2.47)
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In fact, considering first , by complete regularity it is possible to express every
couple ¢, 1 of bounded lower semicontinuous functions with values in § as the supremum
of a directed family of continuous and bounded functions (¢q, ¥a)aca Which still satisfy
the constraint § due to . We can then apply the continuity of the integrals
with respect to the Radon measures p and ~.

In order to replace l.s.c. functions with continuous ones in we can approximate
¥ by an increasing directed family of continuous functions (¢ )aca. By truncation, one
can always assume that maxiy > supt, > infi, > mine. Since R*(¢)) is bounded,
it is easy to check that also R*(¢,) is bounded and it is an increasing directed family
converging to R*(1)). An analogous argument works for (2.47]). O

Proof. Let us prove : denoting by .#’ its right-hand side, Lemmayields F > F.
In order to prove the opposite inequality let B € B(X) a u-negligible Borel set where v+
is concentrated, let A := X \ B and let 0 : X — [0,00) be a Borel density for v w.r.t. .
We consider a countable subset (¢,,,1,)5°; with ¢; = ¢; = 0, which is dense in § and an
increasing sequence ¢,, € (—oo, F) converging to F., with ¢, := —F*(¢,). By (2.22)
we have

F(o(z)) = ]1[1%10 Fn(x), where for every z € X Fy(z) := 1<su£)N1/Jn +o(x)on

Hence, Beppo Levi’s monotone convergence theorem (notice that Fy > F; = 0) implies
F (1) = Impnpeo F(7|1e), where
Fy6ln) = [ F(e)duta) + w1 (B),
A
It is therefore sufficient to prove that
F'(y|n) > FN(y|u)  for every N € N. (2.48)

We fix N € N, set ¢ := dn, 1y = 1y, and recursively define the Borel sets A;, for
j=0,...,N, with Ay := B and

Ay ={x e A: Fi(x) = Fy(z)},

Aji={r € A1 Fy(z) = Fj(z) > Fja(x)} forj=2,...,N. (249)

Since F; < Fy < ... < Fl, the sets A; form a Borel partition of A. As p and v are Radon
measures, for every € > 0 we find disjoint compact sets K; C A; and disjoint open sets
(by the Hausdorff separation property of X) G; D K; such that

i( A\ KG) + (A \K)) —u(X\CJKj>+7(X\CJKj) <e/Sy

where

Sy = og%}%v [(¢n - ﬁin) + (% - gin)}? rjgin = I_I}in ¢j7 rjr\lfin = {nin wj'
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N

Since (Y., ¥wN. ) € § and the sets G,, are disjoint, the lower semicontinuous functions

w : m1n+z ~ ¥min XGn( )7 (bN mm Z " ¥min XGn( )

(2.50)
take values in § and satisfy

Zn(vlw) = Z/ ) + ¢o7(Ao)

- ¢r]r\iln7( ) + 77Z)m1n:u +

Mz
;;\

<.

) 1)+ [ (5= vh) du(o))

]:O Aj

¢m1n7( ) + wmln/'l/ +

Mz
N\

Drin) ($)+/K (; — PN du(x )) +e

0 J J

/ o) dy (o / Y (@) du(s

Since ¢ is arbltrary we obtain
Equation ([2.45) follows dlrectly by [2.44) and the previous Lemma . In fact, de-

notlng by #" the r1ghthand side of @ Lemma [2.6] shows that .Z”(y|p) < F (7|u)

F'(y|p). On the other hand, if ¢,¢ € LSC4(X) with (¢,¢) € § then —R*(¢)) > ¢.
Hence, R*(1)) € LSC4(X) since R* is nondecreasing, does not take the value —oo, and is
bounded from above by —¢. We thus get .#" (v|u) > F'(v|w).

In order to show we observe that for every w € LSC,(X) with R*(¢) € LSC4(X)
we can set p = R*(@Z)) € LSC,(X); since (¢, —R*(¢)) € S yields ¢ < —F*(—¢p) =
F°(p) so that [F°(o)du — [ody > [¢dp — fR* d’y Since F° cannot take the
value +o0, we also have that (—p, F°(p)) € § so that [ F°()du — [@dy < .Z(v|p) by
Lemma 2.6l

When one replaces LSC, (X ) with LSCy(X) or By(X) in (2.44)), the supremum is taken
on a larger set, so that the righthand side of cannot decrease; on the other hand,
Lemma shows that % (v|u) still provides an upper bound even if ¢, are in B,(X),
thus duality also holds in this case. The same argument applies to or . 0J

<.
Il

The following result provides lower semicontinuity of the relative entropy or of an
increasing sequence of relative entropies.

Corollary 2.9. The functional .Z is jointly convex and lower semicontinuous in M(X) X
M(X). More generally, if F,, € T'(Ry), n € N, is an increasing sequence pointwise
converging to F and (u,v) € M(X) x M(X) is the narrow limit of a sequence (pin,Vn) €
M(X) x M(X), then the corresponding entropy functionals F,, F satisfy

lim inf 2, (v n) = F (7] 10). (2.51)

Proof. The lower semicontinuity of .% follows by (2.44)), which provides a representation
of .Z as the supremum of a family of lower semicontinuous functionals for the narrow
topology. Using F,, > F},, for n > m fixed, we have

hm 1nf Fo(Yul pon) > l1m 1nf m(Ynltin) > Fo (V| 10),
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by the above lower semicontinuity. Hence, it suffices to check that

lim .7, (v|p) = Z(y|p) for every v, u € M(X). (2.52)
n—oo

This formula follows easily by the monotonicity of the convex sets §, (associated to F,
by ) $n C Snt+1 and by the fact that § = U,3§,, since F)' is pointwise decreasing
to F*. Thus for every couple of simple and lower semicontinuous functions (¢, ) taking
values in § we have (¢(z), ¢(z)) € Fn for every € X and a sufficiently large N so that

liminf %, (y|u) > / Ydu —i—/ ¢ dr.
Since ¢, are arbitrary we conclude applying the duality formula ([2.44)). O

Next, we provide a compactness result for the sublevels of the relative entropy, which
will be useful in Section (see Theorem and Lemma [3.9).

Proposition 2.10 (Boundedness and tightness). If X C M(X) is bounded and F! >0,
then for every C' > 0 the sublevels of F#

Ec = {7 e M(X) : F(vy|p) < C for some pu € ZK}, (2.53)

are bounded. If moreover K is equally tight and F!, = oo, then the sets E¢ are equally
tight.

Proof. Concerning the properties of =, we will use the inequality
M(B) < Z(y|p) + F*(\u(B)  for every A€ (0,F.), and Be B(X).  (2.54)

This follows easily by integrating the Young inequality Ao < F(o) + F*(\) for A > 0 and
the decomposition v = o + v+ in B with respect to x4 and by observing that

M (B) = )\/ odp+ M (B) < /\/ odp+ F/ 4H(B) if0< X< F..
B B
Choosing first B = X in (2.54) and an arbitrary A in (0, F.) (notice that F*(\) < oo
thanks to (2.18)) we immediately get a uniform bound of v(X) for every v € Z¢.

In order to prove the tightness when F/ = oo, whenever ¢ > 0 is given, we can choose
A = 2C/e and n > 0 so small that nF*(\)/\ < /2, and then a compact set K C X
such that pu(X \ K) < n for every p € X. shows that v(X \ K) < ¢ for every
v EE. 0

We conclude this section with a useful representation of .# in terms of the reverse
entropy R (2.28) and the corresponding functional Z. We will use the result in Section
for the reverse formulation of the primal entropy-transport problem.

Lemma 2.11. For every v, u € M(X) we have

Bl = [ Rlota)) dafa) + oot (X), (2.59)
b's
where 1 = oy + pt is the reverse Lebesque decomposition given by [2.8)). In particular
F(Y|p) = Z(pl)- (2.56)

Proof. 1t is an immediate consequence of the dual characterization in (2.44]) and the
equivalence in (2.30)). d
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3 Optimal Entropy-Transport problems

The major object of Part I is the entropy-transport functional, where two measures p; €
M(X;) and pp € M(X3) are given, and one has to find a transport plan v € M(X; x X5)
that minimizes the functional.

3.1 The basic setting

Let us fix the basic set of data for Entropy-Transport problems. We are given

two Hausdorff topological spaces (X;,7;), i = 1,2, which define the Cartesian prod-
uct X := X; x X, and the canonical projections 7 : X — Xj;

two entropy functions F; € T'(Ry), thus satisfying ([2.13));

a proper lower semicontinuous cost function ¢ : X — [0, +-00];

a couple of nonnegative Radon measures p; € M(X;) with finite mass m; := p;(X;)
satisfying the compatibility condition

J = (m1 Dom(Fl)) N (m2 Dom(FQ)) £ 0. (3.1)

We will often assume that the above basic setting is also coercive: this means that at least
one of the following two coercivity conditions holds:

= Fo0; (3.2a)
(F1) + (F»)., +infc > 0 and ¢ has compact sublevels. (3.2b)

Fy and F; are superlinear, i.e. (F;)

For every transport plan v € M(X) we define the marginals ~; := 7r§"y and, as in ([2.34)),
we define the relative entropies

d%’ i d%
Fi(ylwi) = / Fi(50) dui + (Bt (X), i = my = oupi 497 0= o0
X; dp; dpi
(3.3)
With this, we introduce the Entropy-Transport functional as
E (Y|, p2) = Zyl(’ﬂ/h) +/ (w1, x2) dy(1, 22), (3.4)
X

i

possibly taking the value +o0o. Our basic setting is feasible if the functional & is not
identically +o0o0, i.e. there exists at least one plan v with & (v|u1, p2) < oo.

3.2 The primal formulation of the Optimal Entropy-Transport
problem

In the basic setting described in the previous Section [3.1, we want to investigate the
following problem.
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Problem 3.1 (Entropy-Transport minimization). Given p; € M(X;) find v € M(X) =
M(X; x Xy) minimizing & (7y|p1, t2), i.e.

E (|1, p2) = ET(pa, pio) = aeiyr/[l(fx)g(UWI’M)' (3.5)

We denote by Opter(p1, po) C M(X) the collection of all the minimizers of (3.5)).

Remark 3.2 (Feasibility conditions). Problem is feasible if there exists at least one
plan v with & (v|u1, 12) < oco. Notice that this is always the case when

F;(0) < o0, i=1,2, (3.6)
since among the competitors one can choose the null plan 7, so that
ET (11, p2) < E(mlpa, p2) = F1(0)pa (X) + Fo(0)pa(X). (3.7)

More generally, thanks to (3.1)) a sufficient condition for feasibility in the nondegenerate
case mymgy # 0 is that there exit functions B; and By with

C(l’l, lL‘Q) < Bl(l’l) + BQ(CCQ), B; € LI(XZ,[,LZ) (38)
In fact, the plans
0
v = p1 ® o with @ € J  given by (3.1)) (3.9)
mqime

are Radon [41, Thm. 17, p. 63], have finite cost and provide the estimate
ET (11, p2) < maF1(0/mq) + maFo(0/ms) + HZmi_lHBiHU(XiM), for every 6 € J.

(3.10)
Notice that (3.1]) is also necessary for feasibility: in fact, setting m;,, := m; + ;- (X;)/n,
the convexity of F;, the definition (2.15)) of (F;)/ , and Jensen’s inequality provide

Zi(y| i) :/ Fi(o) dp; + hTHl Fi(n) d(nfl%l) > 1Lm M Fi (%(Xz>/m%n)
Xi nroo n o

> m;Fi(m/m;), wher? m = 7(X;) = v(X). (3.11)
Thus, whenever & (7y|u1, f12) < 00, we have
E(y|p1, p2) > minf c + myFy(m/my) + maoFo(m/ms), (3.12)
and therefore
m =~(X) € (my Dom(Fy)) N (mo Dom(Fy)) = J. (3.13)

We will often strengthen (3.1)) by assuming that at least one of the domains of the entropies
F; has nonempty interior, containing a point of the other domain:

<int (miDom(F)) N mQDom(F2)> U (mlDom(Fl) N int (ngom(Fg))> £0. (3.14)

This condition is surely satisfied if J has nonempty interior, i.e. max(mysy,masy) <
min(mysy, mesy ), where s; = inf Dom(F}), s; := sup Dom(F}). O
We also observe that whenever p;(X;) = 0 then the null plan v = n, provides the
trivial solution to Problem . Another trivial case occurs when F;(0) < oo and F; are
nondecreasing in Dom(F;) (in particular when F;(0) = 0). Then it is clear that the null

plan is a minimizer and ET (1, p2) = F1(0)my + F5(0)ms.
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3.3 Examples

Let us consider a few particular cases:

E.1

E.2

E.3

E.4

Costless transport: Consider the case ¢ = 0. Since F; are convex, in this case
the minimum is attained when the marginals ~; have constant densities. Setting
o; = 0/m; in order to have mjo; = myos, we thus have

ET (1, o) = Ho(myq, my) := min {mlFl(H/ml) + moFy(0/ms) : 0 > O}. (3.15)

Entropy-potential problems: If uy = 7y then setting V(z;) := inf,,cx, c(x1, z2)
we easily get

ET(1,0) = inf Fi(vlu) + /X Vdy+ (B (Xy). (3.16)

YEM(X1)

0 if r=1
Pure transport problems: We choose F;(r) = I;(r) = nr _
+00 otherwise.

In this case any feasible plan « should have u; and us as marginals and the functional
just reduces to the pure transport part

T(,ul,,ug):min{/X Xcd’y: 7T§’)’=Mz}- (3.17)
1XA2

As a necessary condition for feasibility we get u1(X1) = pa(Xs).

A situation equivalent to the optimal transport case occurs when (3.14) does not
hold. In this case, the set J defined by ({3.1)) contains only one point 6 which separates
miDom(F}) and meDom(F3):

0 =mysy =masy, or 0 =mys] =mas;. (3.18)
It is not difficult to check that in this case

ET (11, p2) = myFy(0/my) +maF3(0/ma) + T(pa, p2). (3.19)

Optimal transport with density constraints: We realize density constraints
by introducing characteristic functions of intervals [a;, b;], viz. Fi(r) = I, 4,(7),
a; <1<0b;,. E.g. when a; =1, b; = oo we have

ET(p1, p2) = min {/ cdy: my> Mi}- (3.20)
X1><X2
For [a1,b;] = [0, 1] and [ag, by] = [1, +00] we get
ET (1, p2) = min {/ cdy: ﬂ;'y < 1, 7T§’7 > ,LLQ}, (3.21)

X1 ><X2

whose feasibility requires po(Xs) > 1 (X7).
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E.5

E.6

E.7

Pure entropy problems: These problems arise if X; = Xy = X and transport is

+00 otherwise.

L
forbidden, i.c. (F}). = oo, c(z1,72) — {0 if 7, = 2

In this case the marginals of « coincide: we denote them by +. We can write the
density of v w.r.t. any measure p such that p; < p (say, e.g., p = 1+ po) as vy = 9u
and then p; = ¥;u. Since v < p; we have J(x) = 0 for p-a.e. x where 1 (z)d2(x) = 0.
Thus o; = 19/9; is well defined and we have

Iy, piz) = /X (IF @) + 02F0/02)) d (3.22)

with the convention that 9, F;(J/9;) = 0if 9 = ¢; = 0. Since we expressed everything
in terms of u, by recalling the definition of the function Hy given in (3.15)) we get

<d[,61 d[,bg
ol —, —

ET = H,
(/1/17 M2> / d/lu 9 dﬂ

> du, whenever p; < p. (3.23)
X

In the Hellinger case F;(s) = Ui(s) = slogs — s+ 1 a simple calculation yields

2
Hy(01,05) = 0, + 05 — 21/0,05 = (\/9_1 - \/(9_2> . (3.24)

In the Jensen-Shannon case, where F;(s) = Uy(s) = s — 1 — log s, we obtain

Hy(01;05) = 6, log <912_?_102> + 65 log (912—?—292)'

Two other interesting examples are provided by the quadratic case Fj(s) = 3(s — 1)?
and by the nonsmooth “piecewise affine” case Fj(s) = |s — 1|, for which we obtain

1
Ho(el, 62) = B (01 — (92)2, and H0(91> 92) = |91 — 92’, respectively.

(01 + 02)

Regular entropy-transport problems: These problems correspond to the choice
of a couple of differentiable entropies F; with Dom(F;) D (0,00), as in the case of
the power-like entropies U, defined in . When they vanish (and thus have a
minimum) at s = 1, the Entropic Optimal Transportation can be considered as a
smooth relaxation of the Optimal Transport case E.3.

Squared Hellinger-Kantorovich distances: For a metric space (X,d), set X; =
Xy = X and let 7 be induced by d. Further, set Fi(s) = Fy(s) := Uy(s) = slog s—s+1
and

c(zy,x2) :== —log <COS2 (d(z1, 22) A 7T/2)> or simply c(x1,x5) := d*(x1, 25).

These cases will be thoroughly studied in the second part of the present paper, see
Section [6l
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E.8 Marginal Entropy-Transport problems: In this case one of the two marginals
of v is fixed, say 1, by choosing Fi(r) := I;(r). Thus the functional minimizes the
sum of the transport cost and the relative entropy of the second marginal .F(7v2|u2)
with respect to a reference measure po, namely

ET(11y, 1) = mi {9 T(v, }
(pe1s ph2) 76%1&2) 2(|p2) + T(v, 1)

This is the typical situation one has to solve at each iteration step of the Minimizing

Movement scheme [2], when T is a (power of a) transport distance induced by c, as
in the Jordan-Kinderlehrer-Otto approach [21].

E.9 The Piccoli-Rossi “generalized Wasserstein distance” [35], 36]: for a metric
space (X,d), set X7 = Xy = X, let 7 be induced by d, and consider Fi(s) = Fy(s) :=
V(s) = |s — 1| with c(xy, xz9) := d(z1, x9).

E.10 The discrete case. Let g = > " 0y, flo = Zjvzl Bj0,, with a;, 8; > 0, and let
¢;j = c(z;,y;). The Entropy-Transport problem for this discrete model consists in
finding coefficients «; ; > 0 which minimize

&l By) ZazF1<Z %J) Zﬁj (Zéﬁ]) _i_Zci’j%’j. (3.25)

3.4 Existence of solutions to the primal problem

The next result provides a first general existence result for Problem in the basic
coercive setting of Section [3.1]

Theorem 3.3 (Existence of minimizers). Let us assume that Problem|(3.1] is feasible (see
Remark and coercive, i.e. at least one of the following conditions hold:

(i) the entropy functions Fy and Fy are superlinear, i.e. (Fy). = (Fy)., = +o00;
(i) ¢ has compact sublevels in X and (Fy)., + (Fy)., +infc > 0.

Then Problem admits at least one optimal solution. In this case Optegr(py, pa) s a
compact convex set of M(X).

Proof. We can apply the Direct Method of Calculus of Variations: since the map v
& (y|p1, p2) is lower semicontinuous in M(X; x X5) by Theorem[2.7 it is sufficient to show
that its sublevels are relatively compact, thus bounded and equally tight by Prokhorov
Theorem [2.2] In both cases boundedness follows by the coercivity assumptions and the
estimate (3.12):

in fact, by the definition (2.15) of (F;)., we can find § > 0 such that ™ Fj(2) >
whenever m > smy; if a :=infc + Z ( ) > 0 the estimate (3.12) ylelds Z

L)

2 . i}
V(X)) < (Y|, p2)  for every v € M(X) with (X)) 2 5 max(u(X1), p2(Xz)).
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In case (i1) equal tightness is a consequence of the Markov inequality and the nonnegativity
of F: in fact, considering the compact sublevels K := {(x1,22) € X; X Xy : c(x1,29) <
A}, we have

X\ Ky <A /cd’y <A 'E(y|p1, po)  for every A > 0.

In the case (1), since ¢ > 0 Proposition shows that both the marginals of plans in a
sublevel of the energy are equally tight: we thus conclude by [2 Lemma 5.2.2]. O

Remark 3.4. The assumptions (i) and (7i) in the previous Theorem are almost optimal,
and it is possible to find counterexamples when they are not satisfied. In the case when
0 < (F1) + (Fy), < oo but ¢ does not have compact sublevels, one can just take
Fi(s) == Up(s) = s —logs — 1, X; == R, c(xy,x3) := 3173 11, = &.

Any competitor is of the form ~ := ady ® dg + 11 ® o + Jp ® o with v; € M(R) and
v;({0}) = 0. Setting n; := v;(R) we find

E(Y|ur, p2) = Fla+ny) + F(a+ng) + 3(a + /efEQ d(vy + VQ)) + ny + no.
Since ming F'(s) + s = log 2 is attained at s = 1/2, we immediately see that
E(y|pr, p2) > 21log2 + o + 3/6_962 d(vy + 12) > 2log 2.

Moreover, 2log 2 is the infimum, which is reached by choosing « = 0 and v| = v, = %(593,

and letting x — co. On the other hand, since n; + ns + a > 0, the infimum can never be
attained.

In the case when c has compact sublevels but (F}), = (F3),, = minc = 0, it is
sufficient to take F(s) := s7!, X; = [—1,1], c(x1,22) = 2% + 23, and p; = &y. Taking
Yn 1= ndy ® &y one easily checks that inf & (vy|u1, u2) = 0 but &(v|u1, pe) > 0 for every
~ € M(R?). O

Let us briefly discuss the question of uniqueness, the first result only addresses the
marginals v; = 7}7.

Lemma 3.5 (Uniqueness of the marginals in the superlinear strictly convex case). Let us
suppose that F; are strictly convex functions. Then the p;-absolutely continuous part o;u;
of the marginals ~; = 7r§'y of any optimal plan are uniquely determined. In particular,
if F; are also superlinear, then the marginals v; are uniquely determined, i.e. if v',v" €

Opter(p, p2) then miy' = miy", i = 1,2.

1m

Proof. 1t is sufficient to take v = %’y’ +57" which is still optimal in Optgr (g1, p2) since & is
a convex functional w.r.t. 4. We have mjy = v; = 57/+357/ = 5(0i+0])p+3(v) " +5000)"
and we observe that the minimality of v and the convexity of each addendum F; in the
functional yield

Fi(Vilw) = 5 F(vilpa) +

N | —

1
2
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Since v~ (X;) = %(WQ)L(XZ) + %(%{’)L(Xi) we obtain

1 1
| (Rio) = 3Ria) - 3RioD) du =0 =12
. 2 2
Since Fj is strictly convex, the above identity implies 0; = o, = o p;-a.e. in X. O

The next corollary reduces the uniqueness question of optimal couplings in Optgr (g1, f2)
to corresponding results for the Kantorovich problem associated to the cost c.

Corollary 3.6. Let us suppose that F; are superlinear strictly convex functions and that
for every couple of probability measures v; € P(X;) with v; < p; the optimal transport
problem associated to the cost ¢ (see Example E.3 of Section admits a unique solution.
Then Opter(p1, po) contains at most one plan.

Proof. We can assume m; = pu;(X;) > 0 fori = 1, 2.1t is clear that any v € Optgr (1, p2) is
a solution of the optimal transport problem for the cost ¢ and given (possibly normalized)
marginals ~;. Since 7; < p; and v; and 7, are unique by Lemma [3.5, we conclude.

O

Example 3.7 (Uniqueness in Euclidean spaces). If F; are superlinear strictly convex
functions, c(z,y) = h(z —y) for a strictly convex function h : RY — [0, 00) and pu; < £,
then Problem admits at most one solution. It is sufficient to apply the previous
corollary in conjunction with [2 Theorem 6.2.4]

Example 3.8 (Nonuniqueness of optimal couplings). Consider the logarithmic density
functionals Fj(s) = U;(s) = slogs — s + 1, the Euclidean space X; = X, = R? and any
cost ¢ of the form c(z1, x9) = h(|z1—x3]). For the measures

p1 = 0(-1,0) + 61,0, and gy with support in {0} x R and containing at least two points,

there is an infinite number of optimal plans. In fact, we shall see that the first marginal
v of any optimal plan 4 will have full support in (—1,0), (1,0), i.e. it will of the form
ad(—1,0) + bd(1,0) with strictly positive a, b, and the support of the second marginal v, will
be concentrated in {0} x R and will contain at least two points. In fact, any plan o with
marginals 71, v, will then be optimal, since it can be written as the disintegration

o= /]R <oz(y)5(_170) + 5(3/)5(1,0)) dva(y)

with arbitrary nonnegative densities av, 8 with a+ 4 = 1 and [ady(y) = a, [ Bdy(y) =
b. In fact, the cost contribution of o to the total energy is

/Rh(\/ 1+ y?) dya(y)

and it is independent of the choice of o and f. O

We conclude this section by proving a simple lower semicontinuity property for the
energy-transport functional ET. Note that in metrizable spaces any weakly convergent
sequence of Radon measures is tight.
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Lemma 3.9. Let L be a directed set, (F*)aeL and (c*)xeL be monotone nets of superlinear
entropies and costs pointwise converging to F; and c respectively, and let (1) ser, be equally
tight nets of measures narrowly converging to u; in M(X;). Denoting by ET* (resp. ET)
the corresponding Entropy-Transport functionals induced by F} and c* (resp. F; and c)

we have

lim inf BT (1, 413) > ET (1, pr2). (3.26)
Proof. Let v* € Opter(py, 13) € M(X) be a corresponding net of optimal plans. The
statement follows if assuming that & (y*|ut, u3) = ET(uy, us) < C' < 0o we can prove
that ET(u1,u2) < C. By applying Proposition we obtain that the sequences of
marginals 7T§’7)‘ are tight in M(X;), so that the net 4* is also tight. By extracting a
suitable subnet (not relabeled) narrowly converging to v in M(X), we can still apply
Proposition and the lower semicontinuity of the entropy part .#* of the functional
& to obtain liminfyep, F(y |y, 1) > F (v|p1, 12). A completely analogous argument

shows that liminfye, [c*dy* > [cdy. O

As a simple application we prove the extremality of the class of Optimal Transport
problems (see Example E.3 in Section [3.3]) in the set of entropy-transport problems.

Corollary 3.10. Let F\, F, € T'(Ry) be satisfying F;(r) > F;(1) = 0 for every r €
[0,00), 7 # 1 and let ET" be the Optimal Entropy Transport value associated to
(nFy,nFy). Then for every couple of equally tight sequences (1 n, pron) C M(X1)xM(X2),
n € N, narrowly converging to (u, u2) we have

W BT (s n, i) = Tpnn, pr2)- (3.27)

3.5 The reverse formulation of the primal problem

Let us introduce the reverse entropy functions R; (see (2.28)) via

) rE(1)r) ifr >0,
Ri(r) := {(E)go fr—0. (3.28)

and let #; be the corresponding integral functionals as in (2.55]).
Keeping the notation of Lemma

dps;

d’)/l ’

Vi = Wé’)’ e M(X), pi=o0vi+p, o= (3.29)

we can thus define

R, poly) Z% (ei]vi) / cdy =
(3.30)
= /X <R1(01($1)) + Ra(02(22)) + C(IE1,$2)> dy + Z F(0) ;- (X3).

By Lemma [2.11] we easily get the reverse formulation of the optimal Entropy-Transport
Problem 3.1l
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Theorem 3.11. For every v € M(X) and p; € M(X;)

E (Y|, p2) = Z(pa, p2ly). (3.31)

In particular
ET(u1, = inf Z(u, , 3.32
(s o) = inf (s pialy) (3.32)

and vy € Opter(p1, p2) if and only if it minimizes % (1, po|-) in M(X).

The functional 2 (u1, po, -) is still a convex functional and it will be useful in Section [f|

4 The dual problem

In this section we want to compute and study the dual problem and the corresponding
optimality conditions for the Entropy-Transport Problem in the basic coercive setting
of Section B.1]

4.1 The “inf-sup” derivation of the dual problem in the basic
coercive setting

In order to write the first formulation of the dual problem we introduce the reverse entropy
functions R; defined as in ([2.28]) or Section and their conjugate R : R — (—o0, +00]
which can be expressed by

R () :=sup (s — sF;(1/s)) = sup (¢ — Fi(r))/r. (4.1)

s>0 r>0

The equivalences yield, for all (¢,1) € R?
(V) ed & ¢< R/ (V) (4.2)

As a first step we use the dual formulation of the entropy functionals given by Theorem

(cf. (2.45)) and find
E (Y, p2) = /Cd’)’ + sup { Z (/X i dp; — Z/X R;‘k(%)d%) by, R () € LSCS(Xi)}'

It is natural to introduce the saddle function Z(v,1)) depending on v € M(X) and
1 = (¢1,12) (we omit here the dependence on the fixed measures p; € M(X;))

L) = [ (claran) = Ri(vaon) = Rivaaa)) dy+ 3 [ vndu. (43
In order to guarantee that .Z takes real values, we consider the convex set
M = {~yert(X):/cd»y<oo}. (4.4)
We thus have
&Y, p2) = sup L (v, ¢)

i, R} (i) ELSCs (X;)
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and the Entropy-Transport Problem can be written as

ET (111, o) = inf sup LV, ). (4.5)
YEM o, B} (1) ELSCs (X;)

We can then obtain the dual problem by interchanging the order of inf and sup as in
Section . Let us denote by 1 @ @9 the function (x, z5) — p1(x1) + @a(z2). Since for
every ¥ = (91, 1) with ;, Rf(¢;) € LSC4(Xj;)

inf / <C(a:1,m) — Ri(¢1(z1)) — R;(%(%))) dy = {0 if Ri(y1) @ Ry(4bs) < c,

yeEM —oo otherwise,

we obtain

idp if Ry R3(s) <
inf Z(v,) = Z/Xw pi i Ri(v1) @ Ri(¢s) <c

~YEM

(4.6)

—00 otherwise.

Thus, (4.6) provides the dual formulation, that we will study in the next section.

4.2 Dual problem and optimality conditions

Problem 4.1 (t-formulation of the dual problem). Let R} be the convex functions defined
by (4.1) and let W be the the convex set

o= {¢ € LSC,(X1) x LSC,(Xs) : R:(ty) bounded, R:(tn) @ Ri(s) < c}. (4.7)

The dual Entropy-Transport problem consists in finding a mazximizer b € ¥ for

D(p1, pro) = sup | rdpn + [ thadps. (4.8)
pe¥ J X, X2

As usual, by operating the change of variable
pi = =), U= (i) == —F (—¢i), (4.9)

we can obtain an equivalent formulation of the dual functional D as the supremum of the
concave functionals

el i= 3 [ Felen) du, (4.10)
i YXi
on the simpler convex set
P .= {cp € LSC,(X1) x LSC4(X3), F7(p;) bounded, ¢ & o < c}. (4.11)

Problem 4.2 (p-formulation of the dual problem). Let F? be the concave functions
defined by (4.9) and let ® be the the convex set (4.11). The @-formulation of the dual
Entropy-Transport problem consists in finding a maximizer ¢ € ® for

D' (111, p2) = sup Z(eplpu, pra) = SUPZ/ FY (i) dpsi. (4.12)

ped pedP
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Proposition 4.3 (Equivalence of the dual formulations). The ¢- and the ¢- formulations
of the dual problem are equivalent, D(puy, pe) = D' (11, pto).

Proof. Since R; is nondecreasing, for every 1 € W the functions ¢; := R;(¢;) belong
to LSC(X;) and satisfy ¢1 @ @2 < ¢, with (—¢;,¢;) € §;. It then follows that v; =
—F(—¢;) = F?(p;) > 1; are bounded, so that (¢1,p2) € ® and D’ > D. An analogous

argument shows the converse inequality. 0
Since “infsup > supinf” (cf. (2.10))), our derivation via (4.5) yields
E-I_(Mh M2> > D(:ula :u2) (413)

Using Theorem we will show in Section that is in fact an equality. Before
this, we first discuss for which class of functions 1, ¢; the dual formulations are still
meaningful. Moreover, we analyze the optimality conditions associated to the equality
case in (4.13)).

Extension to Borel functions. It is intended that in some cases we will also consider
larger classes of potentials 1 or ¢ by allowing Borel functions with extended real values
under suitable summability conditions.

First of all, recalling and , we extend R* and F° to R by setting
R*(—o0):=—F., R (4+00):=400; F°(—00):=—00, F°(+o0):=F(0), (4.14)

and we observe that with the definition above and according to — the couples
(—p, F°()) and (—R*(¢)), 1) belong to § whenever ¢ < F(0) and ¢ > —F/_. (4.15)
We also set

G +oCo:=lm(—n VG An)+ (—nV G An) forevery (1,( € R. (4.16)
n—oo

Notice that (+o00) +, (00) = +0o and in the ambiguous case +o0o — oo this definition
yields (4+00) +, (—o0) = 0. We correspondingly extend the definition of @ by setting

(C1 @6 &) (1, 12) := (1(21) +o Go(w2)  for every ¢; € B(Xy;R). (4.17)

The following result is the natural extension of Lemma [2.6stating that & (y|u1, p2) >
PD(p|p1, po) for a larger class of v and ¢ as before.

Proposition 4.4 (Dual lower bound for extended real valued potentials). Let v be a

feasible plan and let ¢ € B(X1;R) x B(Xo; R) with ¢; > —(F}), @1 Bo w2 < ¢ with
(FP o@i) € LNXi, pa) (resp. (i)t € LN Xy, m))-
Then we have (p;)— € LY (Xi;v:) (resp. (FP o w;)y € LY Xy, i) and

S = Y [Pl d (4.18)
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Remark 4.5. In a similar way, if ¥ € B(X,R) x B(X5, R) with ; < F;(0), Ri (1) @,
R3(19) < ¢, and (¢;)- € LY X;, i) (resp. (Rf o)y € LY(X;, 7)), then (Rf o)
Ll(Xz'>%) (resp. (¢z’)+ € Ll(Xi>Mi)) with

& (I, p2) 2 Z/X ¥y dps;. O (4.19)

Proof. Let us consider (4.18) in the case that (F7 o ¢;)_ € L'(Xj, p1;) (the calculations in
the other cases, including (4.19)), are completely analogous). Applying Lemma (with
;== F? op; and ¢; :== —¢;) and - we obtain (¢;)_ € L'(X;,7;) and then

E(y|ps p2) = ZJ (il pa) / cdy 2 Z%(%’Mi) +/ (@1(%) +o 902(552)> dy
i X
.
> Z%(%IM)Jr/X pidy; = Z/X F? (i) dpsi- (4.20)

Notice that the semi-integrability of ¢; w.r.t. v yields ¢;(7'(z1,22)) > —oo for ~-
a.e. (r1,22) € X so that ¢1(x1) +, @2(x2) = p1(z1) + p2(x2) and we can split the
integral

too> [(Tw)ay=3 [a@er=3 [w@an O

Optimality conditions. If there exists a couple ¢ as in Proposition [£.4] such that
E(v|p1, o) = 2(p|p1, p2) then all the above inequalities (4.20])) should be identities so
that we have

Fi(vilm) = /x FY(pi) dpi,  and /X (C(l’l,xz) — (p1(z1) +0 <P2(552))> dy =0,

%

and the second part of Lemma yields

©01(21) 4o 02(x2) = (21, 22) y-a.e. in X, (4.21a)
—p; € OF(0;) (i + v:)-a.e. in A; (4.21b)

i =—(F),, vi-ae.in A, (4.21¢)

FP(pi) = F5(0)  pi-ae. in A, (4.21d)

where (A4;,A4,,, A,,) is a Borel partition related to the Lebesgue decomposition of the
couple (7, it;) as in Lemma . We will show now that the existence of a couple ¢
satisfying

® = (p1,92) € B(X;;R) x B(X9;R), ;> —(F),, ©1®,p2 <c, (4.22)

and the joint optimality conditions is also sufficient to prove that a feasible v € M(X)
is optimal. We emphasize that we do not need any integrability assumption on ¢.

Theorem 4.6. Let v € M(X) with &(v|p, p2) < oo; if there exists a couple ¢ as in
(4.22) which satisfies the joint optimality conditions (4.21) then ~ is optimal.
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Proof. We want to repeat the calculations in of Proposition but now taking
care of the integrability issues. We use a clever truncation argument of [40], based on the
maps

T,:R—=R, T,(p):=-nVeAn, (4.23)

combined with a corresponding approximations of the entropies F; given by

Fualr) i= max (67 — (). (420
Recalling , it is not difficult to check that if ¢; +, 2 > 0 we have 0 < T, (1) +
T,(p2) 1 1+ 2 a5 1.1 00, whereas g, +o2 < 0 yields 0 > T,(1) + To(2) L 91+ 2. In
particular if ¢ satisfies then T),(p;) € Bo(X5), Tn(p1) ® Th(p2) < c, and T,,(p;) >
—(F}), due to (F;)., > 0 and ¢; > —(F;)’,. The boundedness of T},(y;) and Proposition
yield for every 4 € M(X)

LINBESS /X (L)) dp (4.25)

When (F;)., < oo, choosing n > (F;)_ so that T,(p;) = ¢; = —(F)., vi-a.e., and

[e.9] o0

applying (ii) of the next Lemma , we obtain

| e dns BB [ (Bl + oulo)) du

Xi
@219
3 [ Fualo) s+ (Rt (X) + [ Tl
Xi Xi
and the same relation also holds when (F})’,

up the two contributions we get

&, p2) 2 Z (/ in(00) dpi + (Fi)éo#(Xi)) +/

X

= +00 since in this case ;- = 0. Summing

(Tuo1) @ Tala)) dy.

Applying Lemma (i) and the fact that ¢ @, o = ¢ > 0 y-a.e. by (4.21a), we can
pass to the limit as n 1 oo by monotone convergence in the right-hand side, obtaining the
desired optimality & (3|1, p12) > & (|1, 12). 0

Lemma 4.7. Let F;,, : [0,00) — [0,00) be defined by (4.24). Then
(i) Fi, are Lipschitz, F;,(s) < F;(s), and F;,(s) T F;(s) as n T 4o0.
(ii) For every s € Dom(F;) and p; € RU {400} we have

—pi € aE(S) = _Tn(goz) € 61‘7@'7”(3),

pi=to0. 520 = B,0) = F@e)=Fm.

In particular, both cases considered in (4.26)) give F7(T,(i)) = Fin(s) + sT,.(v;).
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Proof. Property (i): By and the definition in (4.24) we get F;,, < F;. Since
—FF(0) = inf F; > 0 we see that Fj, are nonnegative. Recalling that F} are non-
decreasing with Dom(F;) D (—o00,0] (see Section we also get the upper bound
Fin(s) < ns — Ff(—n). Eventually, (4.24) defines F;, as the maximum of a family
of n-Lipschitz functions, so F;,, is n-Lipschitz.

Property (ii): Notice that F;, = (FZ* + I[_mn])* so that (F;n)* = Ff + 1 > Fi'. It
is not difficult to check that Fi(s) = Fi,(s) if and only if dF;(s) N [—n,n] # 0. Therefore
the set I,, := {s > 0: Fi(s) = F;,(s)} is a nonempty closed interval (possibly reduced to
a single point) and it is easy to see that denoting s := max1,, s, := min[l,, T/(s) :=
s, Vs A st wehave Fj,(s) = F;(T)(s)) + n(s — T)(s)). In particular, whenever s > s}
we have n € 0F;,(s) and similarly —n € 0F; ,(s) if s < s;,. If s belongs to the interior of
I,,, then OF;(s) = OF; ,(s) C [-n,n].

Therefore, if ¢; = —p; € 0F;(s) with ¢; € [—n,n], we have F;(s) = ¢;5 — FI(¢;) =
F; n(s) so that ¢; € OF; ,,(s). On the other hand, if 0F;(s) 3 ¢; > n, then s cannot belong
to the interior of I,,, so that by monotonicity s > s and 0F; ,,(s) > n = T,(¢;) = —Tn(¢:)-
The case when 0F;(s) 3 ¢; < —n is completely analogous.

Eventually, if ¢; = —oo and s = 0 (in particular F;(0) = F;"(—o0) < o0), then (4.24))
and the fact that F}" is nondecreasing yields F;,,(0) = —F(—n) = F?(n) = F2 (T, (¢:)).

For the last statement in (ii) the case T,(¢;) = ¢; is trivial. For ¢ > n we have
—n € 0F;,(s) implying F; ,,(s) + F(—n) = —ns. Hence, we have

Fi(Ta(pi)) = —Ef(=n) = Fin(s) + ns = Fin(s) + sTa(p1)-

The case p; < —n is similar. 0

4.3 A general duality result

The aim of this section is to show in complete generality the duality result ET = D,
by using the @-formulation of the dual problem (4.12), which is equivalent to (4.7) by

Proposition [4.3]

We start with a simple lemma depending on a specific feature of the entropy functions
(which fails exactly in the case of pure transport problems, see Example E.3 of Section
3.3)), using the strengthened feasibility condition in (3.14)). First note that the couple
¢; = 0 provides an obvious lower bound for D(puy, p12), viz.

D(pa, 2) > 2(0,0]p1, pi2) = > mF2(0) = Y myinf F;. (4.27)

We derive an upper and lower bound for the potential ¢; under the assumption that
c is bounded.

Lemma 4.8. Let m; = 11;(X;) and assume int (m;Dom(Fy)) N'moDom(Fy) # 0, so that
ds7,s{ € Dom(Fy), s € Dom(Fy) 1 mys; < masy < mysy, (4.28)

and S := supc < oo. Then every couple o = (p1,p2) € ® with D(p|u1, p2) >
>, m;inf F; satisfies
ml(Fl(sf) — inf Fl) + m2<FQ(82) — inf Fz) + mgSQS

_ + .
) <supypy < PF, D = -
mMoSo — M1 Sy

(4.29)
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Proof. Since ¢ = (1, 2) € P satisfies sup ¢1 + sup ps < S, the definition of Z in (4.10))
and the monotonicity of F° yield

> miinf F; < D(plm, pa) < maFy(supr) +maF (S — sup py)

Using the dual bound F?(p;) < ¢;s; + Fi(s;) for s; € Dom(F;) (cf. (4.9)) now implies

Zmi llle S .@(cp\,ul, ,LLQ) S (m151 — m252) sup @1 —+ mlFl(sl) + m2F2(82) + TTLQSQS.

Exploiting (4.28)), the choice s; := s; shows the upper bound in (4.29)); and s; = s{ the
lower bound. O

We improve the previous result by showing that in the case of bounded cost functions
it is sufficient to consider bounded potentials ;. The second lemma is well known in the
case of Optimal Transport problems and will provide a useful a priori estimate in the case
of bounded cost functions used in the proof of Theorem [4.11]

Lemma 4.9. If supc = S < oo then for every couple ¢ € ® there exists ¢ € ® such
that Z(@lp, p2) = D (|, p2) and

sup@; —inf@; <5, 0 <sup@; +supps < S. (4.30)

If moreover (3.14) holds, than there exist a constant .y > 0 only depending on F;,m;, S
such that

— Ymax S inf @z S sup ()52 S Pmax- (431)

Proof. Since ¢ > 0, possibly replacing ¢, with ¢ := @1 V (—sup ) we obtain a new
couple (P71, ¢o) with

P1> 1, P1(x1) + pa(m2) < (@1(21) + @2(22)) A0 < e, 25)

so that (@1, p2) € ® and Z(P1, wa|pa, f2) = D(@1, 2|1, p2) since FY is nondecreasing.
It is then not restrictive to assume that inf ¢o; > — sup 9; a similar argument shows that
we can assume inf @9 > —sup ;. Since

sup 1 + sup g < .S (4.32)

we thus obtain a new couple (@1, 92) € X with

D(P1, P2lp, p2) > D(p1, alpr, pi2),  sup@; —inf @; < S. (4.33)

If moreover sup @1 +sup o = —0 < 0, we could always add the constant J to, e.g., ¢1, thus
increasing the value of Z still preserving the constraint ®. Thus, (4.30]) is established.

When (3.14]) holds (e.g. in the case considered by (4.28)) the previous Lemma
provides constants @i such that ¢; < sup@; < ¢f. Now, (4.30) shows that ¢, <

sup @2 < pf with 5 1= —¢f and ¢35 := S — ;. Applying (4.30]) once again, we obtain
[£.31) with @pax =S5+ ¢f — ¢ . O
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Before stating the last lemma we recall the useful notion of c-transforms of functions
@i+ X; = R for a real valued cost ¢ : X — [0,00), defined via
(c(z1,2) — @a(x)).  (4.34)

oS (z2) : inf1 (c(x,xg) — gpl(x)) and  @5(z1) :

= = inf
rxeX reXo

It is well known that if ¢y & o < ¢ with sup p; < oo then
] and @5 are bounded, 7" ® ] <c, ©I° > ¢, and ] > Es. (4.35)

Moreover, ¢; = ¢{° if and only if ¢ = ¢§ for some function y; in this case ¢ is called
c-concave and (¢5¢, ¢5) is a couple of c-concave potentials.

Since F are nondecreasing, it is also clear that whenever (¢, ¢f are p;-measurable
we have the estimate

D((@1,02) 1, 2) < D((95°, 03) |11, p2) Vo € B(X1) x B(X3), o1 @ oo <c. (4.36)

The next lemma concerns the lower semicontinuity of ¢§ in the case when c is simple
(cf. [23]), i.e. it has the form

N
c= chXA;le%, with ¢, > 0 and A’, open in X;. (4.37)
n=1

Lemma 4.10. Let us assume that c has the form (4.37)) and that ¢ € Bs(X1)xBs(X3) is a
couple of simple functions taking values in Dom(FY)xDom(Fy) and satisfying 1P ps < c.
Then (5%, ¢1) € ® with D((¢5°, 5) |1, p2) = D (Pl pa)-

Proof. 1t is easy to check that ¢{, ¢{ are simple, since the infima in (4.34]) are taken on
a finite number of possible values. By it is thus sufficient to check that they are
lower semicontinuous functions.

We do this for ¢f, the argument for ¢ = (¢$)¢ is completely analogous. For this,
consider the sets

Z:={z=(z)0, €{0,1}V:FyeXiVn=1,....,N: z, =xu(y)},
V,={yeXi: Vn=1,...,N: Xa(y) = 2.}.

Clearly, (Y,).cz defines a Borel partition of X;; we define ¢, := sup{p;(y) : y € Y, }.

By construction, for every z € Z and y € Y, the map f.(z) = c(y,x) — ¢, is
independent of y in Y, and it is lower semicontinuous w.r.t. x € X, since c is lower
semicontinuous. Since ¢§(z9) is the minimum of a finite collection of lower semicontinuous
functions, viz.

¢5(22) = min { fo(22) : 2 € Z} (4.38)
we obtain ¢§ € LSC(X}). O

With all these auxiliary results at hand, we are now ready to prove our main result
concerning the dual representation using Theorem
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Theorem 4.11. In the basic coercive setting of Section [3.1] (i.e. or (3:2b) hold),
the Entropy-Transport functional (3.4 . and the dual functional (4.10 - satzsfy

inf  &(y|p1, p2) = sup Z(plp, p2)  for every p; € M(X;), (4.39)
YEM(X1xX3) ped

i.e. ET (1, pi2) = D(pa, p2) for every p; € M(X;).

Proof. Since ET > D is obvious, it suffices to show ET < D. In particular, it is not
restrictive to assume that D(uq, po) is finite. We proceed in various steps, considering
first the case when ¢ has compact sublevels. We will assume that (F}), = 400 (so that
F? are continuous and increasing on R, and F?op; € LSCy(X;) whenever ¢; € LSCy(X;)),
and we will remove the compactness assumption on the sublevels of ¢ in the following steps.
Step 1: The cost ¢ has compact sublevels. We can directly apply Theorem to the
saddle functional .Z of by choosing A= M given by endowed with the narrow
topology and B = ®. Conditions (|2 and ([2.9b)) are clearly satisfied and the coercivity
assumption (F1)., + (F5)., + minc > () shows that we can choose ¥, = (11, 19) with
constant functions ; and —R*(1;) = = ¢; € [0, (F})’] such that

D:min(c—(¢1@¢2)> = ¢ + ¢ +minc >0, 1); > —o0.

Arguing as in the proof of Theorem (11) we immediately see that (2.11)) is satisfied,
since

L) = [ (c=minc) dy + Dy(X) + 3 dyn(X

In fact, for C sufficiently big, the sublevels {v € M : Z(v,,) < C'} are closed, bounded
(since D > 0) and equally tight (by the compactness of the sublevels of c), thus narrowly
compact. Thus, , i.e. ET = D, follows from Theorem .
Step 2: The case when u; have compact support, holds and the cost c is simple,
i.e. holds. Let us set X; := supp(y;). Since (F})., = +oo the support of all v with
& (|1, p12) < 00 is contained X X X so that the minimum of the functional & (7|p1, i)
does not change by restricting the spaces to X,. By applying the previous step to the
problem stated in X; x XQ, for every ' < ET (1, pi2) we find ¢ € LSC; (X1) x LSC,(X,)
such that ¢, @ ¢y < cin X; x Xy, that F(g;) is finite, and that 3, le_ F2(pi)dp; > E.

Extending ¢; to —supc in X;\ X, the value of PD(p|p1, 1o) does not change and we
obtain a couple of simple Borel functions with 1 ® ¢y < cin X. We can eventually apply
Lemma [4.10] to find (5%, ¢5) € ® with Z(¢5S, ¢ |1, p2) > E. Since E < ET(u1, p12) was
arbitrary, we conclude that holds in this case as well.

Step 3: We remove the assumption on the compactness of supp(p;).

Since p; are Radon, we can find two sequences of compact sets K;,, C X; such that
Ein = /L,-(X \ Kin) = 0asn— oo, ie fiin:=Xg,, - M is narrowly converging to p;.

Let E, = ET (10, pt2,n) and let E/ < E, Wlth lim,, o B! = liminf, ,, E,. Since
i have compact support, by the previous step and Lemma 4.9 - we can find a sequence
@, € ® and a constant ¢, independent of n such that

-@(Qonllul,na/@,n) > E?”L and  sup |90%n| < Pmax-
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This yields
D(py s pi2) > Z / Y (@in) dps + Z FY (= Pmax)€in > E;L + Z FY (—Pmax)€in-
i YKin i i

Using the lower semicontinuity of ET from Lemma [3.9] we obtain
D, p2) > liminf D (|1, p) > Tim B, = liminf BT (51,0, po.n) 2 ET (11, p12).

Thus, (4.39) is established.
Step 4: We remove the assumption (3.14]) on F;. It is sufficient to approximate F; by an

increasing and pointwise converging sequence F* € I'(R;). The corresponding sequence
(EF")° 1 @i > supso(F(s)+sy;) of conjugate concave functions is also nondecreasing and
pointwise converging to F?. By the previous step, if E,, < ET"(u1, p2) with lim,, ., E" =
limy, o0 ET" (1, pt2) = ET (1, p2) we can find ¢, € ® such that

E.<Y /X FP (o) du < Y /X Fo(o) dpis = D, s ).

Passing to the limit n — oo we conclude ET (1, p2) < D(p1, o) as desired.
Step 5: the case of a general cost c.

Let ¢ : X — [0,00] be an arbitrary lLs.c. cost and let us denote by (c®)qea the class
of costs characterized by and majorized by c. Then, A is a directed set with the
pointwise order <, since maxima of a finite number of cost functions in A can still be
expressed as in . It is not difficult to check that ¢ = sup,c, ¢ = limyes c® so that
by Lemma ET (g1, o) = limaen ET (1, pt2) = supaep ET(p1, p12), where ET® denotes
the Entropy-Transport functional associated to c®.

Thus for every E < ET(uq, p2) we can find o € A such that ET*(uy, po) > E and
therefore, by the previous step, a couple ¢® € LSC4(X;) x LSC4(X2) with F?(¢f) finite
such that ¢ @ p§ < c® in X and Z(p®|u1, p2) > E. Since ¢* < ¢ we have ¢p* € ® and
ET (11, p2) < D(py, o) follows. O

Arguing as in Remarkwe can change the spaces of test potentials ¢ = (¢1, p2) € P,
see (4.11)).

Corollary 4.12. The duality formula still holds if we replace the spaces of simple
lower semicontinuous functions LSCy(X;) in the definition of ® with the spaces of bounded
lower semicontinuous functions LSCy(X;) or with the spaces of bounded Borel functions
By(X;).

If (Xi, ;) are completely reqular spaces, then we can equivalently replace lower semi-
continuous functions by continuous ones, obtaining

ET (11, p2) = sup { Z/ F2(@i) dpi = @i, F7 (i) € Cp(Xi), o1 @ pa < C}
iU (4.40)
=up {37 [ v v Rilw) € X0, Bifw) © Bi(0) < c}
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Corollary 4.13 (Subadditivity of ET). The functional ET is convex and positively 1-
homogeneous (in particular it is subadditive), i.e. for every p;, u; € M(X) and X > 0 we
have

ET(Apn, Apg) = NET (s pi2), BT (pa + pi, pio + ) < ET (s, i) + ET (), ). (4.41)

Proof. By Theorem it is sufficient to prove the corresponding property of D, which
follows immediately from its representation formula (4.8) as a supremum of linear func-
tionals. 0J

4.4 Existence of optimal Entropy-Kantorovich potentials

In this section we will consider two cases, when the dual problem admits a couple of
optimal Entropy-Kantorovich potentials ¢ = (¢1, ©2).
The first case is completely analogous to the transport setting.

Theorem 4.14. Consider complete metric spaces (X;,d;), i = 1,2, and assume that
(13.14) holds, and c is bounded and uniformly continuous with respect to the product dis-
tance d((x1,z2), (2] 25)) == >, di(z;, 2}) in X = Xy x Xy. Then there exists a couple of

optimal Entropy-Kantorovich potentials ¢ € Cy(X1) X Cp(X2) satisfying

pr1® w2 <c, ¢ >—(F)y, ET(u,p)=2(elp, 1) (4.42)

Proof. By the boundedness and uniform continuity of ¢ we can find a continuous and
concave modulus of continuity w : [0, +00) — [0, +00) with w(0) = 0 such that

|C(.Z',1,l'2) — c(.rl,xQ)’ < w(dy (2], 1)), ‘c(xl,xé) — c(xl,xg)‘ < w(dy (g, 22)).

Possibly replacing the distances d; with d; + w(d;), we may assume that z; — c(zq,x2)
is 1-Lipschitz w.r.t. d; for every x5 € X5 and x9 — c(x1,x2) is 1-Lipschitz with respect
to dy for every x; € X;. In particular, every c-transform of a bounded function is
1-Lipschitz (and in particular Borel).

Let ¢,, be a maximizing sequence in ®. By Lemma we can assume that ¢, is
uniformly bounded; by and we can also assume that ¢, are c-concave and
thus 1-Lipschitz. If K;,, is a family of compact sets whose union A; has a full ;; measure
in X;, we can thus extract a subsequence (still denoted by ¢,,) pointwise convergent to
¥ = (1, p2) in Ay x Ay. Obviously, we have ¢ := lim,, oo 1., and @9 := liminf, . @ n,
we obtain a family ¢; € By(X;), and ¢ @ vs < ¢, ¢; > (F;), and

90|,u17:u2 Z/ FO 907, d:uz 2 hm Z/A F‘io((pi,n) d#z = Er(,“l;ﬂQ)?

thanks to Fatou’s Lemma and the fact that F?(p;,) are uniformly bounded from above.
Eventually replacing (1, ¢2) with (5%, ¢7) we obtain a couple in Cy(X;) x Cp(Xs) satis-

fying (42). O
The next result is of different type, since it does not require any boundedness nor

regularity of ¢ (which can also assume the value 400 in the case F;(0) < 00).
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Theorem 4.15. Let us suppose that at least one of the following two conditions hold:

a) ¢ is everywhere finite and (3.14)) holds
or

b) F;(0) < +oo.
Then a plan v € M(X) with finite energy & (7|1, o) < 00 is optimal if and only if there
exists a couple @ as in (4.22)) satisfying the optimality conditions (4.21)).

Proof. We already proved (Theorem that the existence of a couple ¢ as in (4.22))
satisfying yields the optimality of ~.

Let us now assume that v € M(X) has finite energy and is optimal. If u; = 1y then
also v = 0 and are always satisfied, since we can choose ¢; = 0.

We can therefore assume that at least one of the measures pu;, say pe, has positive
mass. Let v € Optgr(p, 2), and let us apply Theorem to find a maximizing
sequence ¢, € ® such that lim, 1. Z(p,, |11, 12) = ET (11, o).

Using the Borel partitions (A4;, 4,,, A,,) for the couples of measures ;, y1; provided by
Lemma [2.3] and arguing as in Proposition 4.4] we get

lim (C(xla 1'2) - <,01,n(1'1) - <P2,n(9€2)) dy =0,

n—oo X1 x Xy

lim (Fz'(Ui) + 0iin — on(%n)) dp; =0,

n—00 AUA,,

lim [ (pin + (F)L) dy; = 0.

n—0o0 A
Vi

Since all the integrands are nonnegative, up to selecting a suitable subsequence (not
relabeled) we can assume that the integrands are converging pointwise a.e. to 0. We can
thus find Borel sets A C A;, A), C A,,, A, C A, and A’ C X with 7*(A") = AjU AL

(i 7300 (A0 \ AD U (A, \ 4,) U (A, \ A)) = 0, and y(X \ A) = 0 such that

c(xy1,x2) < 00 nh_)rglo c(z1,22) — pra(r1) — Pon(x2) =0 in A (4.43)

Fi(0;) < o0, nh_)rgo Fi(0i) + 0ipin — F(in) =0 in A{UA (4.44)

Tim (@0 + (F)%) =0 in AL (4.45)

For every x; € X; we define the Borel functions ¢y(x;) := limsup,_,. ¢1.(z1) and

@a(xe) = liminf, . wa,(z2), taking values in R U {£oo}. It is clear that the couple
¢ = (i1, p2) complies with ([.22), (£.21d)) and (4.21d).

If v(X) = 0 then (4.21a) and (4.21b)) are trivially satisfied, so that it is not restrictive
to assume y(X) > 0.

If 1 (X1) = 0 then (F}), is finite (since 17 (X1) = 11(X1) = ¥(X) > 0) and ¢; =
(F1), on A’ and on A’ Tt follows that wy(zy) = c(x1,22) — (F1),, € R on A’ so that
(4.21a]) is satisfied. Since @o(x2) is an accumulation point of ¢, (22) Lemma below
yields —a(x2) € OFy(02(22)) in A} so that is also satisfied (in the case i = 1 one
can choose A} = ().

We can thus assume that p;(X;) > 0 and 4(X) > 0. In order to check and

(4.21Db]) we distinguish two cases.
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Case a: c is everywhere finite and holds. Let us first prove that ¢, < 400
everywhere.

By contradiction, if there is a point Z; € X; such that ¢1(Z1) = +o0o we deduce that
pa(x9) = —o0 for every x5 € Xo.

Since the set A, U A/ has positive us-measure, it contains some point Z: Equa-
tion and Lemmabelow (with F = Fy, s = 09(Za), ¢ := —a.,(T2)) yield s =
max Dom(F) = 05(Z2) < oo and 0y = s3 in Ay U A) . We thus have Dom(F) C [0, s3],
(Fy),, = +oo and therefore mysy = v(X).

On the other hand, if 3 = —o0 in Xy we deduce that ¢1(x1) = +oo for every
xy € w'(A'). Since (F),, > 0, it follows that ~;(A.) = 0 (i.e. 7~ = 0) so that there
is a point ay in A} such that ¢;(a;) = +oo. Arguing as before, a further application of
Lemma [4.19 yields that oy = s; = min Dom(F}) p-a.e. It follows that mysy = 7 (X)) =
(X)) = masy, a situation that contradicts (3.14)).

Since p11(X7) > 0 the same argument shows that ¢y < co everywhere in X5. It follows
that holds and ¢; > —oo on A]. Since p;(z;) is an accumulation point of ¢; ,(x;),
Lemma below yields —;(x;) € F;(0;(x;)) in A} so that is also satisfied.

Case b: F;(0) < oco. In this case F? are bounded from above and ¢; > —(F;).,
everywhere in X;. By Theorem limy, o0 >y [ FP(pin) dp; > —o00, so that Fatou’s
Lemma yields Fy(¢1) € LY(X1, p1) and ¢q(z1) > —oo for p-a.e. 21 € X, in particular
for (y1 +v)-a.e. z; € A}. Applying Lemma[4.19 below , since y(z1) > 0 = min Dom(F})
in A}, we deduce that —¢;(x1) € OF (01(z1)) for (u; + 11)-a.e. 1 € Al ie. for
¢ = 1. Since we already checked that and hold, applying Lemma (with
¢ := —p; and ¥ := F7(p1))) we get ¢; € L1(X1,v), in particular p; o ! € R ~-a.e. in
X. Tt follows that holds and ¢y o 72 € L}(X,~) so that ¢y € R (g + 72)-a.e. in
A,. A further application of Lemma yields for i = 2. 0

Corollary 4.16. Let us suppose that Dom(F;) D (0,00) and F; are differentiable in
(0,00). A plan v € M(X) with &(7|p1, pe) < 0o belongs to Opter(p, u2) if and only if
there exist Borel partitions (A;, Ay, Ay,) and corresponding Borel densities o; associated
to v; and p; as in Lemma such that setting

—F;-I(O'Z') foz & Ai7

pilri) = —(F)y  if 2 € Ay, (4.46)
_(Fle Z'f T € Xi \ (AZ U AM)?

we have
01 Bop2 < cin X1 X Xy, o1 D pe=cy-a.e in (A UA, ) x (A2UA,,). (4.47)

Proof. Since 0F;(s) = {F/(s)} for every s € (0,00) and F?(¢;) = F;(0) if and only
if p; € [—(F)p, +o0], (4.47) is clearly a necessary condition for optimality, thanks to
Theorem Since (F)j < F/(s) < (F;),, Theorem shows that conditions ({4.46))—

(4.47) are also sufficient. O
The next result shows that (4.46|)—(4.47) take an even simpler form when —(F;) =
(F;)., = 4o0; in particular, by assuming that c is continuous, the support of an optimal

plan ~ cannot be too small.
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Corollary 4.17 (Spread of the support). Let us suppose that
e c: X — [0,00] is continuous.

e Dom(F;) D (0,00), F; are differentiable in (0,00), and —(F};)y = (F};)., = oc.

o0

Then, ~ is an optimal plan if and only if v; < p;, for every x; € supp(u;) we have
c(x1,x2) = 400 if x1 € SUpP 11 \ SUPP Y1 OT To € SUPP s \ SUPP Yo, and there exist Borel
sets A; C suppy; with vi(X; \ A;) = 0 and Borel densities o; : A; — (0,00) of v; w.r.t. p;
such that

F{(O‘l) D FQI(O'Q) Z —C Al X Ag, F{(O‘l) D FQI(O'Q) = —C “y-a.e. m A1 X AQ. (448)

Remark 4.18. Apart from the case of pure transport problems (Example E.3 of Section
3.3), where the existence of Kantorovich potentials is well known (see [47, Thm. 5.10]),
Theorem [.15] covers essentially all the interesting cases, at least when the cost c takes
finite values if 0 & Dom(F;). In fact, if the strengthened feasibility condition does
not hold, it is not difficult to construct an example of optimal plan « for which conditions
(1.22), (4.214)), ([£.21b) cannot be satisfied. Consider e.g. X; = R, c(z1,x2) := $|z1 — 227,
g = e VI Ly = e VAERHD) 21 Dom(F); = [a, 1], Dom(F), = [1,b] with arbitrary
choice of a € [0,1) and b € (1, 00]. Since m; = mg = 1 the weak feasibility condition (3.1)
holds, but is violated. We find v; = p;, o; = 1, so that the optimal plan « can be
obtained by solving the quadratic optimal transportation problem, thus « := ¢;u; where
t(x) := (z,xz—1). In this case the potentials ¢; are uniquely determined up to an additive
constant a € R so that we have ¢1(z1) = 21 + a, @2(22) = —22 —a — 1, and it is clear
that condition —¢; € OF;(1) corresponding to cannot be satisfied, since 0F;(1)
are always proper subsets of R. We can also construct entropies such that dF;(1) = ()
(e.g. Fi(r)=(1—r)log(l —r)+r, Fo(r) = (r—1)log(r —1) —r +2) so that can
never hold, independently of the cost c. [l

We conclude this section by proving the simple property on subdifferentials we used
in the proof of Theorem [4.15]

Lemma 4.19. Let F € I'(R,), s € Dom(F), let ¢ € RU{£o0} be an accumulation point
of a sequence (¢,) C R satisfying

lim (F(s) — s¢n + F*(¢,)) = 0. (4.49)

n—0o0

If € R then ¢ € OF(s), if ¢ = +oo then s = maxDom(F) and if ¢ = —oo then
s = min Dom(F'). In particular, if s € int(Dom(F')) then ¢ is finite.

Proof. Up to extracting a suitable subsequence, it is not restrictive to assume that ¢ is the
limit of ¢,, as n — oco. For every w € Dom(F) the Young inequality we,, < F(w)+ F*(¢,,)
yields

lim sup(w — 8)¢, < limsup F(w) — F(s)+ (F(s) — SO+ F*(gbn)) = F(w)—F(s) (4.50)

n—oo n—o0
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If Dom(F) = {s} then 0F(s) = R and there is nothing to prove; let thus assume that
Dom(F') has nonempty interior.

If $ € R then (w — s)¢ < F(w) — F(s) for every w € Dom(F), so that ¢ € 0F(s).
Since the righthand side of is finite for every w € Dom(F), if ¢ = +oo then w < s
for every w € Dom(F'), so that s = maxDom(F'). An analogous argument holds when
P = —0. 0

5 “Homogeneous” formulations of optimal Entropy-
Transport problems
Starting from the reverse formulation of the Entropy-Transport problem of Section 3.5 via
the functional Z, see (3.30)), in this section we will derive further equivalent representa-
tions of the ET functional, which will also reveal new interesting properties, in particular
when we will apply these results to the logarithmic Hellinger-Kantorovich functional. The
advantage of the reverse formulation is that it always admits a “lI-homogeneous” repre-
sentation, associated to a modified cost functional that can be explicitly computed in

terms of R; and c.
We will always tacitly assume the basic coercive setting of Section [3.1] see (3.2)).

5.1 The homogeneous marginal perspective functional.

First of all we introduce the marginal perspective function H. depending on the parameter
c>infc:

Definition 5.1 (Marginal perspective function and cost). For ¢ € [0, 00),the marginal
perspective function H, : [0,00) x [0,00) — [0, +00] is defined as the lower semicontinuous
envelope of

H.(r1,1r9) := gggﬁ (Rl(rl/ﬁ) + Ry(r2/0) + c) = égg riF1(0/r1) + roF2(0/12) + 6c. (5.1)
For ¢ = oo we set

Hoo(r1,79) := F1(0)ry + F5(0)rs. (5.2)
The induced marginal perspective cost is H : (X7 X Ry) x (X3 x Ry) — [0, +00] with
H(z1,7r1522,72) i= He(zy 20)(r1,72),  for x; € X; and r; > 0. (5.3)

The last formula (5.2)) is justified by the property F;(0) = (R;)., and the fact that

e}

H.(r1,72) T Huo(r1,72) as ¢ 1 oo for every rq, 15 € [0,00), see also Lemma 5.3 below .

Example 5.2. Let us consider the symmetric cases associated to the entropies U, and
V.

E.1 In the “logarithmic entropy case”, which we will extensively study in Part I, we have

Fi(s):=Uy(s) =slogs — (s —1) and R;(r) =Uy(r)=r—1—logr.
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A direct computation shows

ﬁ[c(ﬁﬂ’z) = Hc(rlﬂ"z) =711 +1r2— 21172 e ¢/?

(5.4)
= (Vi = /)" + 2y (1 — e ™0?).
E.2 For p =0, Fi(s) = Uy(s) = s —logs — 1, and R;(r) = Uy(r) we obtain
7 o+
H.(r1,79) = H.(r1,72) = 11 logry + rologry — (11 + 1r2) log ( ;_{_ c2>' (5.5)
E.3 In the power-like case with p € R\ {0,1} we start from
1
Fi(s) :=U,(s) = sf—p(s—1)—1), R;(r)=U_,(r
() p() p(p—l)( ( ) ) () 1p()
and obtain, for ry,r9 > 0,
~ 1 ISR q
Arirs) = Bulriors) = [ 72) = e s (2= 0= 0e) ] 59)

where ¢ = p/(p — 1). In fact, we have

B r Py P
p(p—1)
1 71 _ _ P
= )b [ (7 e) - 2 - 1)),

o1 1
0P + ;(7’1 + 7o) + F((P —1)c—2)0)

and ([5.6)) follows by minimizing w.r.t. . E.g. when p = ¢ =2

Ly L
(rtrs) — (2o = g (v =r2+h(rim), (5.7)

Hc(rly TZ) -

N | —

where h(c) =c¢(4—¢)if 0 <c<2and 4 if ¢ > 2. For p=—1and g = 1/2 equation
(5.6) yields

Ho(r1,m2) = Ho(r1,12) = /(77 +73)(2 + 26) — (1 + 7). (5:8)

E.4 In the case of the total variation entropy V(s) = R(s) = |s — 1| we easily find

H.(r1,r9) = Ho(ry,ma) =114+ 10— (2 =) (11 A1) = |ro — 71| + (¢ A 2) (11 A To).

The following dual characterization of H. nicely explains the crucial role of H..

Lemma 5.3 (Dual characterization of H.). For every ¢ > 0 the function H, admits the
dual representation

H.(r1,7r3) = sup {7’1% +rotby 1 € Dom(R}), Ri(¥1) + R5(the) < C} (5.9)

= sup {rlFf(gol) + 1o F5 (p2) i € Dom(FY), @1+ @2 < cp. (5.10)
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In particular it is lower semicontinuous, convezr and positively 1-homogeneous (thus sub-
linear) with respect to (r1,74), nondecreasing and concave w.r.t. ¢, and satisfies

H.(r1,72) < Hoo(r1,72) ZF r;  for every ¢ >0, r; > 0. (5.11)

Moreover,

a) the function H. coincides with H. in the interior of its domain; in particular, if
F;(0) < oo then H.(r1,7m9) = H(s1,72) whenever riry > 0.

b) If (F1)., + (Fy)y +¢ >0 and (Fy)., + (F1)y +c¢ >0, then

e(r1,72) ZF ri if rirg = 0. (5.12)

Proof. Since supDom(R}) = F;(0) by (2.32), one immediately gets in the case
¢ = +00; we can thus assume ¢ < +00.

It is not difficult to check that the function (r1,r2,0) — 6(R1(r1/6) + Ra(r2/0) + ¢) is
jointly convex in [0, 00) x [0, 00) x (0, 00) so that H. is a convex and positive 1-homogeneous
function. It is also proper (i.e. it is not identically +o0) thanks to . By Legendre
duality [38, Thm.12.2], its lower semicontinuous envelope is given by

He(ry,r5) = sup { Zwm H(61,15) <0}, (5.13)
where
H (1, 92) = sup { ZW"Z — He(ry,m3) i1 > 0} igng <W1 - 7’1/9)> —cf

—supe(ZR (¢s) —C):{O if By (i) <oo, 3 Ri(4i) <c

0>0 +00 otherwise.

In order to prove point a) it is sufficient to recall that convex functions are always continu-
ous in the interior of their domain [38, Thm. 10.1]. In particular, since limgyo 6 (R1(r1/6)+
Ro(r2/0) +¢) = >, (Ri)ori = >_; Fi(0)ry for every ry,79 > 0,we have H.(r1,m5) <
> Fi(0)r;, so that H, is always finite if F;(0) < oo.

Concerning b), it is obvious when 1 = 1o = 0. When r; > 7 = 0, the facts that
sup Dom(R}) = F;(0), lim,40) R} (r) = —(F})}, and inf R} = —(F})., (see (2.32)) yield

H.(r1,0) = sup {@/)17“1 : Ri(¢1) < ¢ —inf R;} = F1(0)ry.

An analogous formula holds when 0 = r; < 7. ]

A simple consequence of Lemma and ([2.31)) is the lower bound

gc(rlﬂ“z) > H.(ry,12) > Z%’ﬁ' for (—i, 1) € i with 1 + @9 < c. (5.14)

46



We now introduce the integral functional associated with the marginal perspective cost ([5.3)),
which is based on the decomposition u; = 9;v; + uf:

H(p, p2|y) 3:/ H(x1, 01(21); 72, 02(22)) dy + ZE(O)MZL(XJ (5.15)
X i
where we adopted the same notation as in (3.29). Let us first show that 7 is always

greater than 2.

Lemma 5.4. For every v € M(X), p, p; € M(X;), ¢ € ®, 9 € LL(X;,7) with
fi = 0ii + 15, we have

/X H(x1, 01(21); @2, 02(22)) dy + Z Fi(0)ps(Xi) = D(plpa, pra)- (5.16)

Proof. Recalling that F?(¢;) = —F*(—¢;) > F;(0) and using (5.14)) with r; = p; and
Uy = F2(p;) we have
/ H(xy1, 01(21); 72, 02(22)) dy + ZE(O)N;(XJ
X i
6.19) ] ] /
> / <F1 (p1(z1))o1(z1) + F3 (%02($2))Q2(x2)) dy + ) Fi(0)(X;)
b'e i
= Z/ E‘%%)Qi(%)d%+ZFz‘(0)/~L;(X
Z/ (pi)oi(; d%JrZ/ () dp = Z/ (i) dpi = Z(plpa, p2).-

Note that (2:19) and [243) imply F?(;) < Fi(0). O

An immediate consequence of the previous lemma is the following important result
concerning the marginal perspective cost functional 7 defined by (5.15)). It can be nicely
compared to the Reverse Entropy-Transport functional % for which Theorem stated

K, poly) = E(Y| s pia).
Theorem 5.5. For every pu; € M(X;), v € M(X) and ¢ € ® we have

In particular
ET (11, p2) = H(pr, p2) := min (s, pol7y), (5.18)
YEM(X)

and v € Opter(p, t2) if and only if it minimizes J€ (1, pa|-) in M(X) and satisfies

H(x1, 01(21); w2, 02(72)) ZR oi(x:)) + c(x1,22) ~v-a.e. in X, (5.19)
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where g; is defined as in (2.8)). If moreover the following conditions

F1(0) = 400 or there exists To € Xy with pa({Z2}) =0,

5.20
F5(0) = +o00 or there exists T, € Xy with py({Z1}) = 0, (5.20)

are satisfied, then

ET (41, p12) = min { /X H (w1, 01(21); 02, 02(22)) dy 1 v € M(X), p; = Qi%‘} (5.21)

Proof. The inequality Z(u1, po|y) > (1, 2]7y) is an immediate consequence of the
fact that 3. R;(ri,ms) + ¢ > H.(r1,r9) > H.(r1,73) for every r;,¢ € [0,00], obtained
by choosing @ = 1 in (5.1). The estimate J2(p1, o|y) > Z(p|u1, p12) was shown in by
Lemma [5.41

By using the “reverse” formulation of ET (1, i2) in terms of the functional 2 (1, p2|vy)
given by Theorem and applying Theorem we obtain and the characteri-
zation ([5.19)).

To establish the identity we note that the difference to only lies in drop-
ping the additional restriction p;- = 0. When both Fy(0) = F5(0) = 400 the equivalence
is obvious since the finiteness of the functional v — 5 (1, po|vy) yields ui = s = 0.

In the general case, one immediately see that the righthand side E’ of (with “inf”
instead of “min”) is larger than ET (pu1, i), since the infimum of 2 (1, p12]-) is constrained
to the smaller set of plans ~ satisfying p; < ;. On the other hand, if 4 € Optgr(p1, p2)
with y1; = o/y; + pi- and m; = pi-(X;) > 0, we can consider v := 4 + ﬁuf ® py which
satisfies y; < ;; by exploiting the fact that H(z1,r1;xq,72) < >, F;(0)r; by , we
obtain

1
%(Mhmh):/ H(xlaQ1<$1)3$2>Q2($2))d’7+ po—
X

/H(xl,ml;xz,mz)duf®u§
mimse Jx

< /X H(xy, 01(1); 22, 02(22)) dy + ZE(O)TM = (1, p2|7),

so that we have E’ < ET(ui, ). The case when only one (say py) of the measures
;- vanishes can be treated in the same way: since in this case m; = pi (X;) > 0 and
therefore Fy(0) < oo, by applying (5.20) we can choose v := 4 + =i ® J;,, obtaining

my

_ 1 -
f%ﬂ(ﬂbﬂzh’) :/ H(xla 91(551);332, Q2(5C2)) dy + — H($17m1§x270) dﬂf
X miJx,

< / H (w1, 01(21); T2, 02(22)) Ay + F1(0)my = I (1, 2| ¥). U
X

Remark 5.6. Notice that is always satisfied if the spaces X; are uncountable. If
X; is countable, one can always add an isolated point Z; (sometimes called “cemetery”)
to X; and consider the augmented space X; = X, LI {Z;} obtained as the disjoint union of
X and Z;, with augmented cost ¢ which extends c to +00 on X} x X5 \ (X; x X3). We
can recover by allowing v in M(X; x X5). O
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5.2 Entropy-transport problems with “homogeneous” marginal
constraints

In this section we will exploit the 1-homogeneity of the marginal perspective function J#
in order to derive a last representation of the functional ET, related to the new notion
of homogeneous marginals. We will confine our presentation to the basic, still relevant,
facts, and we will devote the second part of the paper to develop a full theory for the
specific case of the Logarithmic Entropy-transport case.

In particular, the following construction (typical in the Young measure approach to
variational problems) allows us to consider the entropy-transport problems in a setting
of greater generality. We replace a couple (7, 9), where v and ¢ are a measure on X
and a nonnegative Borel function, respectively, by a measure o € M(Y) on the extended
space Y = X X [0, 00). The original couple (7, ¢) corresponds to measures a = (x, o(z))yy
concentrated on the graph of ¢ in Y and whose first marginal is ~.

Homogeneous marginals. In the usual setting of Section [3.1] we consider the product
spaces Y; := X; x [0, 00) endowed with the product topology and denote the generic points
in Y; with y; = (z,7;), x; € X; and r; € [0,00) for i = 1,2. Projections from Y :=Y; x Y5
onto the various coordinates will be denoted by n¥%, 7% =z with obvious meaning.

For p > 0 and y € Y we will set [y|b := >, [r;|” and call M,(Y') (resp. P,(Y')) the
space of measures & € M(Y") (resp. P(Y')) such that

/ ly|h da < 0. (5.22)
Y

If & € M,(Y) the measures r’a belong to M(Y'), which allow us to define the “p-
homogeneous” marginal h?(a) of & € M, (Y") as the x;-marginal of 77, namely

h}(e) =7} (rfer) € M(X;), (5.23)

The maps h! : M,(Y) — M(X;) are linear and invariant with respect to dilations: if
V:Y — (0,00) is a Borel map in LP(Y, o) and prdy(y) := (21, 71/9(y); 22, r2/9(y)), we
set

dily () := (prdy)s(PPex), ie.

. (5.24)
/(p(y) d(dily p(a)) = /go(xl,rl/ﬁ; T, 19 /)P (y) da(y) for p € By(Y).
Using ((5.23)) we obviously have
h?(dily ,(ex)) = ¥ (). (5.25)
In particular, for o € M,(Y") with a(Y") > 0, by choosing
1 Jlyl, if |yl # 0, / 1/p
U = — P P . = Pde + =0 5.26
(v) = - {1 il o, ", hdaralls =on) T (260

we obtain a rescaled probability measure & with the same homogeneous marginals as o
and concentrated on Y, ,:={y €Y : |y|, <r.} C (X x[0,7.]) x (X x [0,7.]):

a =dily,(a) € P,(Y), bhi(a)=h(a), a(Y\Y,,)=0. (5.26b)
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Entropy-transport problems with prescribed homogeneous marginals. Given
1, e € M(X) we now introduce the convex sets

K, pi) = { e € M(V) 1 () < g

(5.27)
HP (o, po) := {a e M,(Y) :hl(a) = ui}.
Clearly HZ (p1, p2) C HE(pa, p2) and theyare nonempty since plans of the form
1 .
a= W(,ul ® 5a1> ® (ug ® 5a2>, with ay,as > 0 (5.28)

12

belong to HP (1, o). It is not difficult to check that HY (uy, po) is also narrowly closed,
while, on the contrary, this property fails for T2 (p1, pg) if g1 (X1)p2(X3) # 0. To see this,
it is sufficient to consider any a € HP (pq, u2) \ {0} and look at the vanishing sequence
dil,-1 ,(ex) for n — oo.

There is a natural correspondence between HZ (uuy, po) (resp. HE (1, o)) and HL (11, pio)
(resp. HL (1, p2)) induced by the map Y 3 (x1,71;20,72) + (w1,7}; 29, 75). For plans
o € HL(ju, p2) we can prove a result similar to Lemma but now we obtain a linear
functional in cr.

Lemma 5.7. Forp € (0,00), u; € M(X;), ¢ € ®, and o € HE (1, p12) we have

/ H(zy, 175 x9,78) da—l—ZF Vi (X3) = D(@lua, pa),  where w; := p; —hla. (5.29)

Proof. The calculations are quite similar to the proof of Lemma [5.4}

/ H(zy, %0, 18) de+ 3 F(0)4(Xs)
Y i

.14)

= [ (ot + Featea)ig) do+ 32 RO
= 3 [ R e + 30 RO
Z/X Ff(%)d(hfaHZ/X_ F (i) dpsg —Z/X F(@i) dps = D(plp, p2). - O

As a consequence, we can characterize the entropy-transport minimum via measures

acMY).
Theorem 5.8. For every pu; € M(X;), p € (0,00) we have

ET(u1,p2) =  min /(ZR )+c Il,x2)> da+ZF pi — i () (X;)

aeﬂ-fp (p1,p2)
(5.30)
= H( 2y d F;(0) (s — h¥( X; 5.31
[, A e 3 (@)(X) (531
= mln /H x1, 14 20,78 dav. (5.32)
oML (p1,p2)
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Moreover, for every plan v € Optgr(pu, p2) (resp. optimal for (5.18)) or for (5.21))) with

Wi = 0 + pi-, the plan o := (w1, Ql/ (21); 2, QQ/IJ(:UQ))W realizes the minimum of (6-30)
(resp. (5.31)) or (5.32))).

Remark 5.9. When F;(0) = 400 (5.30) and (5.31)) simply read as

ET (i1, p2) =  min / (ZR )+c xl,x2)> de

a€HE (p1,p2)

min / H (1,175 29,78 der. O

ae?(l (p1,p2)
Proof of Theorem [5.8 Let us denote by E’ (resp. E”, E") the right-hand side of (/5.30))

(resp. of (5.31)), (5.32)), where “min” has been replaced by “inf”. If v € M(X) and
pi = 0i7vi + ;- (in the case of (5.32)) ui- = 0) is the usual Lebesgue decomposition as in

(3.29), we can consider the plan « := (7, Qi/p(azl); Ta, Qé/p(a;g))w.
Since the map (07", 05'") : X — R? is Borel and takes values in a metrizable and
separable space, it is Lusin ~-measurable [41, Thm 5, p. 26], so that a is a Radon

measure in M(Y'). For every nonnegative ¢; € By(X;) we easily get

/Gﬁi(ﬂfi)ﬁjda:/Qi(-’ﬂi)@'(wi) dy = /Qi¢i dy; < /¢id#i7

so that o € FHE (1, pr2), i = 4, and
o) = [ R@e) +clonse)) -+ 3 FOHX)
/ZR +c:p1,x2)da—|—ZF (i — WPa)(X;) > E';

taking the infimum w.r.t. 4 and recalling we get ET(u1, po) > E'. Since Y, R;i(r?)+
c(x1,x2) > H(xy,r];z9,18) it is also clear that E' > E”.

On the other hand, Lemma shows that E” > 2(p|u1, p2) for every ¢ € ®:
applying Theorem we get ET(uy, o) = B = E”.

Concerning E" it is clear that E"” > E” = ET (1, p12); when hold, by choosing
a induced by a minimizer of we get the opposite inequality E"” < ET (uq, p2).

It does not hold, we can still apply a slight modification of the argument at
the end of the proof of Theorem The only case to consider is when only one of the
two measures j;- vanishes: just to fix the ideas, let us suppose that m; = pi(X;) >
0 = puy(Xy). If 4 € Opter(p1, pt2) and @& is obtained as above, we can just set a :=
a + (ui x 61) x (v x &) for an arbitrary v € P(X5). It is clear that hYa = y; and

[ Htimt)da = [ Heolo)io, w6@) a5+ [ Bt 0dd o
Y X X
B )
< / H(xy1, 01(71); 72, 02(22)) dy 4 F1(0)y = (a1, pa|y) = ET (g1, p12),
X
which yields E"” < ET (u1, p2). O
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Remark 5.10 (Rescaling invariance). By recalling (5.26alb) and exploiting the 1-homo-
geneity of H it is not restrictive to solve the minimum problem (5.31]) in the smaller class
of probability plans concentrated in

Y,, = {(xl,rl;xg,rg) ey M+ < Tp}, rP = ZM(X@)

Notice that it is not restrictive to assume that a({y € Y : |y| = 0}) = 0 since
H(x1,0;29,0) = 0 for every x; € X;. O

Part II. The Logarithmic Entropy-Transport problem
and the Hellinger-Kantorovich distance

6 The Logarithmic Entropy-Transport (LET) prob-
lem

Starting from this section we will study a particular Entropy-Transport problem, whose
structure reveals surprising properties.

6.1 The metric setting for Logarithmic Entropy-Transport prob-
lems.

Let (X, 7) be a Hausdorff topological space endowed with an extended distance function
d: X x X — [0,00] which is lower semicontinuous w.r.t. 7; we refer to (X, 7,d) as an
extended metric-topological space. In the most common situations, d will take finite
values, (X, d) will be separable and complete and 7 will be the topology induced by d;
nevertheless, there are interesting applications where nonseparable extended distances
play an important role, so that it will be useful to deal with an auxiliary topology, see
e.g. [3,1].
From now on we suppose that X; = Xy = X, we choose the logarithmic entropies

Fi(s) =Uy(s) :=slogs —s+1, (6.1)

and a cost ¢ depending on the distance d through the function £ : [0, co] — [0, 00| via

(1, 32) = L(d(z1, 22)), (d) = { ligo(i + tan®(d)) i ;l ; E(T),/;T/Q), 62)
so that |
(1, 2) = {—log (cos?(d(z1,32))) if d(xl,.@) <7/2 .
+0o0 otherwise.

Let us collect a few key properties that will be relevant in the sequel.

LE.1 F; are superlinear, regular, strictly convex, with Dom(F;) = [0,00), F;(0) =1, and
(F})f = —oo. For s > 0 we have 0F;(s) = {log s}.
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LE.2 Ri(r)=rF;(1/r)=r—1—logr, R;(0)=+o0, (R =1.

LE.3 F;(¢) = exp(¢) — 1, F(¢) = 1 — exp(—¢), Dom(F}) = Dom(F7) =R.

LE4 R;(v) = —log(1 — ) for v < 1 and R;(¢)) = +oo for ¢ > 1.

LE.5 The function ¢ can be characterized as the unique solution of the differential equation

0"(d) = 2exp(£(d)),  £(0) = £'(0) =0, (6.4)

since it satisfies

d
((d) = —log (cos*(d)) = 2/0 tan(s)ds, de€[0,7/2), (6.5)
so that
((d) > d*, ¢(d)=2tand >2d, ("(d)=2(1+tan?*(d)) = 2exp(¢(d)) > 2. (6.6)

In particular ¢ is strictly increasing and uniformly 2-convex. It is not difficult to
check that v// is also convex: this property is equivalent to 2£¢” > (¢)? and a direct
calculation shows

200" — (0)? = 4log(1 + tan*(d))(1 + tan?*(d)) — 4 tan?(d) > 0
since (1 +7)log(1+417r) > r.
LE.6 H.(r1,7m9) =11+ 1re — 2¢/T1r2exp(—c/2) for ¢ < 0o, so that

H(xq,7r1;29,1m0) =11 + 79 — 24/T172 COS (dﬂ—/g(l'l,xg)), (6.7)
where we set
do(z1,22) ;== d(zq,22) Ao for z; € X, a > 0. (6.8)

Since the function
H(xy, 72 20,73) =12 + 12 — 21119 cos(dr/2(21, 22)) (6.9)

will have an important geometric interpretation (see Section [7.1)), in the following
we will choose the exponent p = 2 in the setting of Section [5.2]

We keep the usual notation X = X x X, identifying X; and X, with X and letting the
index ¢ run between 1 and 2, e.g. for v € M(X)) the marginals are denoted by v; = (7).

Problem 6.1 (The Logarithmic Entropy-Transport problem). Let (X, 7,d) be an extended
metric-topological space, { and c be as in (6.2). Given p; € M(X) find v € M(X)
minimizing

LET (101, p12) = mm (Z/ oilogo; — o + 1)d#i+/€(d($1,$2)) d’Y>,
X

d;
dp;

We denote by Optgr(p1, it2) the set of all the minimizers « in (6.10)).

(6.10)

where o; =
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6.2 The Logarithmic Entropy-Transport problem: main results

In the next theorem we collect the main properties of the Logarithmic Entropy-Transport
(LET) problem relying on the reverse function % from Section [3.5 cf. (3.30)), and #

from Section [5.1] cf. (5.17).

Theorem 6.2 (Direct formulation of the LET problem). Let p; € M(X) be given and let
l,dr/o be defined as in and | .

a) Existence of optzmal plans. There exists an optimal plan v € Optygr(p, 112)
solving Problem [6.1, The set Optigr(pi1, pi2) is convex and compact in M(X), LET is a
convex and positively 1-homogeneous functional (see ([(1.41)) satisfying 0 < LET (puy, pia) <
2 (X))

b) Reverse formulation (LET = Zg). The functional LET has the equivalent reverse
formulation as

LET (g1, p2) = min {%w(yl,ugh) ey e M(X), pi = o + /Ll-l}, where (6.11)

Rue(p, paly) = Z (M%(X) +/ (Qz‘ —1—log Qi) d%’) +/ g(d(xl,xz)) d,

z X X

and 7 is an optimal plan in Optye (w1, po) if and only if it minimizes (6.11)).
c¢) The homogeneous perspective formulation (LET = J4g). The functional LET (11, p2)
can be equivalently characterized as

LET (g1, ft2) = min {,%”LE(,ul,,uzh) Dy E M(X)}, where (6.12)
e (1, pa|y) Zu@ —273[% / V o1(21)02(2) cos(dr o (w1, 72)) dy

—Zﬂz /Q1($1)+Q2(~T2) 21/ 01(21) 02(w2) cos(drya(21, 72))) dy

and v; = oipi + pii-. Moreover, every plan 5 € Optgr (11, p2) provides a solution to (6.12)).

Proof. The variational problem fits in the class considered by Problem , in the
basic coercive setting of Section since the logarithmic entropy is superlinear with
domain [0, 00). The problem is always feasible since U;(0) = 1 so that holds.

a) follows by Theorem [3.3|1); the upper bound of LET is a particular case of (3.7)), and
its convexity and 1-homogeneity follows by Corollary

b) is a consequence of Theorem [3.11

¢) is an application of Theorem E and . O

We consider now the dual representation of LET; recall that LSC,(X') denotes the space
of simple (i.e. taking a finite number of values) lower semicontinuous functions and for a
couple ¢; : X — R the symbol ¢; @ ¢y denotes the function (z1,x2) — ¢1(x1) + Po(2)
defined in X. In part a) we relate to Section whereas b)—d) discusses the optimality
conditions from Section [4.4]
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Theorem 6.3 (Dual formulation and optimality conditions).
a) The dual problem (LET = Dig = Dig). For all uy, pg € M(X) we have

LET (g1, p12) = sup {%(solul,uz) i € LSC5(X), p1 @2 < ﬁ(d)}, (6.13)
= sup{zi:/xd)idm b € LSCy(X), s;p@bi <1,
(1= () (1 = a(w2) = cos(dupa(w1,22)) in X |, (6.14)

where Die(plpn, 1) =Y, [y (1—e7%) dp;. The same identities hold if the space LSC,(X)

is replaced by LSCy(X) or By(X) in (6.13)) and (6.14). When the topology T is completely
regular (in particular when d is a distance and 7 is induced by d) the space LSC4(X) can

be replaced by Cp(X) as well.
b) Optimality conditions. Let us assume that d is continuous. A plan v € M(X) is
optimal if and only if its marginals ~; are absolutely continuous w.r.t. p;, fx ((d) dy < oo,

d>7/2 in ((Supp f11\Supp 1) X supp ug) U (supp p11% (supp 2 \supp 72)>, (6.15)

and there exist Borel sets A; C supp~y; with v;(X \ A;) = 0 and Borel densities o; : A; —
(0,00) of vi w.r.t. p; such that

01(1’1)0’2(1’2) > COSZ<d7r/2(I1, Ig)) m A1 X Ag, (616)
o1(z1)02(xe) = COSQ(dﬂ/2<$1,x2)) Yy-a.e. in A; X As. (6.17)

c) ((d)-cyclical monotonicity. FEvery optimal plan v € Opter(u1, p2) is a solution
of the optimal transport problem with cost £(d) between its marginals ;. In particular it
is £(d)-cyclically monotone, i.e. it is concentrated on a Borel set G C X (G = supp(y)
when d is continuous) such that for every choice of (27, xz3)N_, C G and every permutation

k:{l,...,N} = {1,...,N}

1Y cos?(dy o, 25)) > TIX cos2(d7r/2(x’f,x§("))). (6.18)

n=1

d) Generalized potentials. If v is optimal and A;, o; are defined as in b) above, the
Borel potentials p;,v; : X — R

—IOgUi m Ai, 1—01‘ m AZ’,
;= —00 in X \ supp p, , ;== { —00 in X \ supp p;, (6.19)
400 otherwise, 1 otherwise,

satisfy o1 @, 2 < L(d) and the optimality conditions (4.21) (with the analogous properties
for ;). Moreover e~ 1); € LY X, ;) and

LET (11, p12) = Z/X (1—e ) dpy; = Z/X@D dp; = Zm(X) —2y(X).  (6:20)
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Proof. Identity (6.13)) follows by Theorem [4.11] recalling the definition (4.11) of ® and
the fact that F2(p) =1 — exp(—¢p).

Identity follows from Proposition and the fact that R} () = —log(1l — ).
Notice that the definition of W ensures that we can restrict the supremum in ((6.14))
to functions 1; with supy ¢; < 1. We have discussed the possibility to replace LSC4(X)
with LSC,(X), By(X) or Cy(X) in Corollary [1.12]

The statement of point b) follows by Corollary ; notice that a plan with finite en-
ergy & (7y|u1, u2) < oo always satisfies [, £(d) < co. Conversely, if the latter integrability
property holds, and the fact that [ 4, (logoy) - dy; = i) 4, 0ilog 07) - dp; < o0 yields
E(Y|p, p2) < 0.

Point ¢) is an obvious consequence of the optimality of ~.

Point d) can be easily deduced by b) or by applying Theorem m 0

In the one-dimensional case, the ¢(d)-cyclic monotonicity of part c) of the previous
theorem reduces to classical monotonicity.

Corollary 6.4 (Monotonicity of optimal plans in R). When X = R with the usual
distance, the support of every optimal plan = is a monotone set, i.e.

(z1,22), (2],25) € supp(y), 1 <zy = a9 <. (6.21)
Proof. As the function ¢ is uniformly convex, (6.18]) is equivalent to monotonicity. O

The next result provides a variant of the reverse formulation in Theorem [6.2]

Corollary 6.5. For all py, ps € M(X) we have
LET (121, p12) Z/J% — 2max {’Y(X> Dy € M(X), v = o, (6.22)
o1(xq1)os(xs) < COSQ(dﬂ/Q(CBl,xQ)) ~y-a.e. in X}

Proof. Let us denote by M’ the right-hand side and let v € M(X) be a plan satisfying
the conditions of . If A; are Borel sets with 7;(X \ 4;) = 0 and 0; : X — (0,00)
are Borel densities of 7; w.r.t. u;, we have g;(z;) = 1/0;(z;) in A; so that oq(z1)0s(z2) <
cos?(dq/2(21, 22)) yields o1(21)02(22) cos?(dx/2(21,22)) > 1. Since (log o;)+ € LY(X, ;) we
have

> (uﬂX) + /

X

(0; — 1 —log i) d%-) +/ ((d(21,22)) dy

X

—Z i (X)) — i ))—/Xlog (01(1) 02(2) co8*(drja (21, 22)) d’y<ZuZ ) — 2v(X).

By (6.11) we get M’ > LET (p1, f12). On the other hand, choosing any 4 € Opt g (1, p2)
the optimality condition (6.17) shows that 4 is an admissible competitor for (6.22)) and

(6.20]) shows that M" = LET (uq, p2). O
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The nonnegative and concave functional (g1, p12) = Y. pt;(X) — LET (1, pt2) can be
represented as in the following equivalent ways:

Z“’ LET (1, p2) = 2 max / 01(1) 02(22) cos(dx /o (w1, 22)) dy (6.23)
yeM(X)

_ inf{z / e dp; - i € LSCy(X), 01 @ s < e(d)} (6.24)
— Jx

Ui (ws) = cos(drppler, 22)) in X } (6.25)
= 2max {’y(X) sy e M(X), vi = oifui,
01(21)02(12) < cos*(dy a1, 22)) y-a.e. in X} (6.26)

The next result concerns uniqueness of the optimal plan « in the Euclidean case
X = R?% We will use the notion of approximate differential (denoted by D), see e.g. [2,
Def. 5.5.1].

Theorem 6.6 (Uniqueness). Let u; € M(X) and v € Optgr (e, po).
(i) The marginals ~; = 7r§'y are uniquely determined.
(11) If X = R with the usual distance then ~y is the unique element of Optygr (1, fia).

(iii) If X =R with the usual distance, pu; < L% is absolutely continuous, and A; C R?
and o; : A; — (0,00) are as in Theorem b), then oy is approximately differ-
entiable at v,-a.e. point of Ay and ~ is the unique element of Optgr (1, p2); it is
concentrated on the graph of a function t : R? — R? satisfying

arctan(|&(x1)])
|5($1>|

Proof. (i) follows directly from Lemma [3.5]

(ii) follows by Theorem [6.3](c), since whenever the marginals ; are fixed there is only
one plan with monotone support in R.

In order to prove (iii) we adapt the argument of [2, Thm. 6.2.4] to our singular setting,
where the cost ¢ can take the value 4-o00.

Let A; C R? and 0; : A; — (0,00) as in Theorem b). Since y; = u¥? < £? with
density u € L'(R?), up to removing a ju;-negligible set (and thus ~;-negligible) from A,
it is not restrictive to assume that u(z;) > 0 everywhere in Ay, so that the classes of £4-
and 7;-negligible subsets of A; coincide. For every n € N we define

t(z1) =21 + £(z1), &(z) = —%f)log o1(r1) m-a.e. in Ay, (6.27)

Agp = {1y € Ay 1 09(2) > 1/n},  su(my) = sup cos?(|zy — x9)/oa(x2).  (6.28)

22€A2

The functions s,, are bounded and Lipschitz in R? and therefore differentiable .#%-a.e. by
Rademacher’s Theorem. Since 7; < ju; and gy is absolutely continuous w.r.t. £ we
deduce that s, are differentiable v;-a.e. in A;.
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By we have o1(x1) > s,(z1) in A;. By we know that for yq-a.e. 1 € A;
there exists zo € Ay such that |r; — 5| < 7/2 and oy (x1) = cos?(|z; — x2|) /o2(72) so that
o1(z1) = sn(z1) for n sufficiently big and hence the family (B, ),en of sets B, := {z; €
Ay o1(x1) > su(21)} is decreasing (since s, is increasing and dominated by o) and has
Z4-negligible intersection.

It follows that vi-a.e. x; € A; is a point of #£?-density 1 of {z; € A; : o1(21) = s, (21)}
for some n € N and s, is differentiable at x;. Let us denote by A} the set of all z; € A;
such that oy is approximately differentiable at every z; € A} with approximate differential
Do (z1) equal to Ds,(z1) for n sufficiently big.

Suppose now that 1 € A} and o1(11) = cos?(|x; — za|)/09(xs) for some x5 € As.
Since by and the map 2} — cos?(|z} — z2|)/o1(2]) attains its maximum at
x) = x1, we deduce that

— X2 1~
t it e B}
an(|z, — x2|) \561 o] 5 og o1 (z1),
so that x5 is uniquely determined, and ([6.27) follows. O

We conclude this section with the last representation formula for LET (u1, p2) given in
terms of transport plans ¢ in Y :=Y x Y with Y := X x [0, c0) with constraints on the
homogeneous marginals, keeping the notation of Section 5.2l Even if it seems the most
complicated one, it will provide the natural point of view in order to study the metric
properties of the LET functional.

Theorem 6.7. For every p; € M(X) we have

LET (111, p12) Zuz max / 7172 cos(dr 2 (21, 72)) de (6.29)

aEfH%(#huz) X
= min { / <r% + 13 — 2r179 co8(dy o (1, :@))) da + Z(“’ —h?a)(X): (6.30)
Y i
a € M(Y), h2a < uz}
= min { / (rf + 15 — 27171y cos(dy o (21, :cg))> da:ac M(Y), hia = ui} (6.31)
Y

Moreover, for every plan g € OptLEr;Ll,uz and every couple of Borel densities 0; as in

- ) the plan o := (1, \/01(x1); T2, \/ 02(22) )¢y is optimal for (6.30) and ( -

Proof. Identlty - resp. - ) follows dlrectly by - resp. - ) of Theorem
5.8l Relation is just a different form for 0J

7 The metric side of the LET-functional:
the Hellinger-Kantorovich distance

In this section we want to show that the functional

(11, p2) = A/ LET (i1, po2) (7.1)
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defines a distance in M(X), which is then called the Hellinger-Kantorovich distance and
denoted HK. This distance property is strongly related to the property that the function
(z1,715@2,79) > (H(z1,7%; 20, r%))l/z is a (possibly extended) semidistance in Y = X x
[0, 00).

In the next section we will briefly study this function and the induced metric space, the
so-called cone € on X, [9 Sec.3.6] obtained by taking the quotient w.r.t. the equivalent
classes of points with distance 0.

7.1 The cone construction

In the extended metric-topological space (X, 7, d) of Section we will denote by d, :=
d A @ the truncated distance and by y = (z,7), z € X, r € [0,00), the generic points of
Y =X x[0,00).

It is not difficult to show that the function dg : Y x Y — [0, 00)

d%(<$l> 1), (x2,72)) == 7“% + 7’% — 21179 cos(dy (21, 22)) (7.2)

is nonnegative, symmetric, and satisfies the triangle inequality (see e.g. [9, Prop. 3.6.13]).
We also notice that

d2(y1,52) = |r1 — ro|* 4 4r17y sin® (dﬂ(xl, xQ)/2), (7.3)

which implies the useful estimates

2
max <|7‘1 — 72/, VAR L dr (21, 902)) <de(y1,y2) < |ri—ro| +/rirada (21, 22).  (7.4)

From this it follows that d¢ induces a true distance in the quotient space € =Y/ ~ where
Y1~y & ri=1ry=0 or 1 =71y T =To. (7.5)

Equivalence classes are usually denoted by y = [y] = [z, r|, where the vertex [z, 0] plays
a distinguished role. It is denoted by o, its complement is the open set €, = €\ {o}.
On € we introduce a topology 7, which is in general weaker than the canonical quotient
topology: 7¢ neighborhoods of points in €, coincide with neighborhoods in Y, whereas
the sets

{le,r] :0<r<e}={peC:de(y,0)<e}, >0, (7.6)

provide a system of open neighborhoods of 0. 7¢ coincides with the quotient topology
when X is compact.

It is easy to check that (€, 7¢) is a Hausdorff topological space and d¢ is 7e-lower
semicontinuous. If 7 is induced by d then 7¢ is induced by d¢. If (X,d) is complete
(resp. separable), then (€, d¢) is also complete (resp. separable).

Perhaps the simplest example is provided by the unit sphere X = S¢°! = {x € R¢ :
|z| = 1} in R? endowed with the intrinsic Riemannian distance: the corresponding cone
¢ is precisely R?.

We denote the canonical projection by

p:Y =€ pzr)=|z,r] (7.7)
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Clearly p is continuous and is an homeomorphism between Y\ (X x {0}) and &,. A right
inverse y : € — Y of the map p can be obtained by fixing a point £ € X and defining

x ifr >0,

r:C—[0,00), rlz,r] =7, x:€—= X, x[z,r] = { and y:= (x,r). (7.8)

z ifr=0,
Notice that r is continuous and x is continuous restricted to €,.
A continuous rescaling product from € x [0, 00) to € can be defined by

0 ify=o,
SN = 7.9
) {[w,)\r] if y =[z,7], s> 0. (7.9)

We conclude this introductory section by a characterization of compact sets in (€, 7¢).

Lemma 7.1 (Compact sets in €). A closed set K of € is compact if and only if there is
ro > 0 such that its upper sections

K(p):={rx e X :[z,r] € K for somer > p}
are empty for p > rq and compact in X for 0 < p < rg.

Proof. 1t is easy to check that the condition is necessary.

In order to show the sufficiency, let p = infx r. If p > 0 then K is compact since it is
a closed subset of the compact set p(K (p) x [p,7o]).

If p = 0 then o is an accumulation point of K by and therefore 0 € K since K
is closed. If % is an open covering of K, we can pick Uy € % such that o € Uy. By
there exists £ > 0 such that K\ Uy C p(K(e) x [e,70]): since p(K () x [g,70]) is compact,
we can thus find a finite subcover {Uy, -+, Uy} C % of K\ Uy. {U,}\_, is therefore a
finite subcover of K. O

Remark 7.2 (Two different truncations). Notice that in the constitutive formula defining
de we used the truncated distance d, with upper threshold 7, whereas in Theorem
an analogous formula with d./; and threshold 7/2 played a crucial role. We could then
consider the distance

d72r/2,¢([$17 1], [Te, o)) = r% + rg — 21175 cos(dy /o (1, 2)) (7.10a)

=|r — r2|2 + 4r179 sinz(dﬁ/g(xl, x9)/2) (7.10b)

on €, which satisfies
drj2e < de < \/idﬂ/Q,@- (7.11)

The notation ([7.10a) is justified by the fact that d, /s ¢ is still a cone distance associated
to the metric space (X,dr/2), since obviously (dr/2)r = (dr/2) A 7/2 = dr/o. From the
geometric point of view, the choice of d¢ is natural, since it preserves important met-
ric properties concerning geodesics (see [9, Thm. 3.6.17] and the next section and
curvature (see [9, Sect. 4.7] and the next section [8.3).

On the other hand, the choice of d /5 is crucial for its link with the function H of ,
with Entropy-Transport problems, and with a representation property for the Hopf-Lax
formula that we will see in the next sections. Notice that the 1-homogeneous formula (6.7
would not be convex in (ry,72) if one uses d instead of d,/,. Nevertheless, we will prove
in Section the remarkable fact that both d, and d/; will lead to the same distance
between positive measures. 0]
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7.2 Radon measures in the cone ¢ and homogeneous marginals

It is clear that any measure v € M(€&) can be lifted to a measure v € M(Y') such that
ps = v: it is sufficient to take v = yyv where y is a right inverse of p defined as in (7.8).

We call My(€) (resp. Po(€)) the space of measures v € M(€) (resp. v € P(€)) such
that

/r2 dv = /d%(o,o)dy = / r?dv < oo, U=y (7.12)
¢ ¢ Y

Measures in My(€) thus correspond to images pyv of measures 7 € My(Y) and have
finite second moment w.r.t. the distance d¢, which justifies the index 2 in My (€). Notice
moreover that the measure s?7 does not charge X x {0} and it is independent of the
choice of the point z in (|7.§)).

The above considerations can be easily extended to plans in the product spaces €%V
(where typically N = 2, but also the general case will turn out to be useful later on). To
clarify the notation, we will denote by y = (1), = ([z;,7:])Y, a point in €V and we
will set r;(n) = r(y;) = i, x;(y) = x(;) € X. Projections on the i-coordinate from €®¥
to ¢ are usually denoted by m# or m%, p = p®N : (V)N — €Ny = y&N . &N _, (y)ON
are the Cartesian products of the projections and of the lifts.

Recall that the L2-Kantorovich-Wasserstein (extended) distance Wy, in Mz (€) induced
by d¢ is defined by

Wj, (1, v2) := min { /d%(nl,m) da:a e M(€), o= l/l'}, (7.13)

with the convention that Wy, (11, 12) = 400 if 14(€) # 15(€) and thus the minimum in
(7.13]) is taken on an empty set. We want to mimic the above definition, replacing the
usual marginal conditions in (7.13]) with the homogeneous marginals h? which we are
going to define.

Let us consider now a plan o in M(€®Y) with & = y,a € M(Y®Y): we say that «

lies in My (€®N) if
2d :/ 2da < 0. 7.14
/@@N;rl o YM;?"Z a < o0 ( )

Its “canonical” marginals in M(€) are o; = nga, whereas the “homogeneous” marginals
correspond to (5.23)) with p = 2:

b (at) = (xi)ﬁ(r?a) = W;i (r’a) = h¥(a) e M(X), a:= y; Q. (7.15)

(2

We will omit the index ¢ when N = 1. Notice that r?a does not charge (7)~!(0) (similarly,
rZa does not charge Y®=1 x {(z,0)} x Y®N~) 50 that is independent of the choice
of the point z in ([7.8)).

As for (5.25)), the homogeneous marginals on the cone are invariant with respect to
dilations: if ¥ : €¥¥ — (0, 00) is a Borel map in L*(€®V a) we set

(prdy(n)), = v, - (9(n)) " and dilya(a) := (prdy)s(¥? a), (7.16)

so that
b2 (dilyo(c)) = b (a) for every a € My(€®N). (7.17)
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As for the canonical marginals, a uniform control of the homogeneous marginals is suffi-
cient to get equal tightness, cf. for the definition. We state this result for an arbitrary
number of components, and we emphasize that we are not claiming any closedness of the
involved sets.

Lemma 7.3 (Homogeneous marginals and tightness). Let K;, i = 1,--- , N, be a finite
collection of bounded and equally tight sets in M(X). Then, the set

{a e My(eV) €K, fori=1,...,N} (7.18)
is equally tight in M(€N).

Proof. By applying [2, Lem.5.2.2], it is sufficient to consider the case N = 1: given a
bounded and equally tight set K C M(X) we prove that H := {a € My(€) : b’ € fK}
is equally tight. For A € X, R C (0,00) we will use the short notation A x¢ R for
p(Ax R) C € If A and R are compact, then A x¢ R is compact in €.

Let M := sup,cq u(X) < oo; since K is tight, we can find an increasing sequence of
compact sets K, C X such that u(X \ K,) < 8" for every u € K. For an integer m € N
we then consider the compact sets K, C € defined by

R = {0} UK, x¢[27™, 2" U ( G Ko Xe [277, 2—"+1]). (7.19)

Setting Ko = J,—, K,, we have u(X \ Ky) = 0 and

[e.e]

C\ &, C K,y e (27, 00) U (U(Kn+m\f(n+m,1) Xe (2*"“,00)) U(X\ Ka) Xe (0, 00).

n=1
Since for every a € H with h%a = p and every A € B(X) we have
a(A X (5,00)) < s72u(A) < s7°M and a((X \ Ks) Xe (0,00)) =0,

we conclude

IA

A€\ R) S MAT™ 4+ (X \ Knpmo1) Xe (27", 00))

n=1

L o S (M +3 4—”) <4™(1+ M)),

n=1 n=1

for every e € JH. Since all K, are compact, we obtain the desired equal tightness. [l

7.3 The Hellinger-Kantorovich problem

In this section we will always consider N = 2, keeping the shorter notation Y = Y®? and
€ = €%2. As for (5.27), for every py, pa € My(X) we define the sets
92 (1, pia) == {a eMy(Y) : bla< Mi} and

(7.20)

92 (p, p2) = {a € My(€) : bla= m}-
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They are the images of HZ (p1, 2) and FHZ (j11, p12) through the projections p,; in particular
they always contain plans p,a, where a is given by (5.28). The condition o € f)%(,ul, 12)
is equivalent to ask that

/r?gp(xi) da < /gpd,ui for every nonnegative ¢ € By(X). (7.21)

We can thus define the following minimum problem:

Problem 7.4 (The Hellinger-Kantorovich problem). Given py, s € M(X) find an opti-
mal plan oy € HZ (1, 2) C Mo(€) solving the minimum problem

HK (je1, pt2)? := min { /d%(t)l,t)g) da:a € My(€), hla = ui}. (7.22)

We denote by Opty (i1, 2) € M(E) the collection of all the optimal plans o realizing

the minimum in (7.22) and by HK* (i1, pg) the value of the minimum in (7.22) (whose
existence is guaranteed by the next Theorem @)

Remark 7.5 (Lifting of plans in Y'). Since any plan a € M(€) can be lifted to a plan
a = y,a € P(Y x Y) such that p,& = « the previous problem is also equivalent to
find

min { /d%(yl,yg) da:ae MY xY), hia= ,ui}. (7.23)
The advantage to work in the quotient space € is to gain compactness, as the next Theorem
[7.6] will show. ]

An importance feature of the cone distance and the homogeneous is an invariance
under rescaling, which can be done by the dilations from ((7.16)). Let us set

C[R] := {[z,r] € €:r < R} and €[R]:=¢[R] x €[R]. (7.24)

It is not restrictive to solve the previous problem [7.4] by also assuming that « is a prob-
ability plan in P(€) concentrated on €[R] with R* =3 11;(X), L.e.

HK2 (11, 10) = gleig/dg da, C:= {a € P(€) : b2 = i, €\ €[R)) = 0}. (7.25)

In fact the functional d2 and the constraints have a natural scaling invariance induced by
the dilation maps defined by ([7.16)). Since

/ 42 d(dily o(cx)) = / 92 (1, 71 /9); [, 72/9]) dex = / 2da,  (7.26)

restricting first a to €\ {(0,0)} and then choosing ¥ as in (5.26a)) with p = 2 we obtain a
probability plan dily (L €\ {(0,0)}) in H2 (11, p2) concentrated in €[R]\ {(0,0)} with
the same cost [ dida. In order to show that Problem has a solution we can then
use the formulation and prove that the set C' where the minimum will be found
is narrowly compact in P(€). Notice that the analogous property would not be true in
P(Y xY) (unless X is compact) since measures concentrated in (X x {0}) x (X x {0})
would be out of control. Also the constraints h?a = y; would not be preserved by narrow
convergence, if one allows for arbitrary plans in P(€) as in (7.22).
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Theorem 7.6 (Existence of optimal plans for the HK problem). For every p, s € M(X)
the Hellinger-Kantorovich problem always admits a solution o € P(&) concentrated

on €[R]\ {(0,0)} with R* =", pi;(X).
Proof. By the rescaling ((7.26) it is not restrictive to look for minimizers a of ([7.25]). Since
€[R] is closed in € and the maps r? are continuous and bounded in €[R], C is clearly

narrowly closed. By Lemma C' is also equally tight in P(€), thus narrowly compact
by Theorem Since the d3 is lower semicontinuous in €, the existence of a minimizer
of ([7.25]) then follows by the direct method of the calculus of variations. O

We can also prove an interesting characterization of HK in terms of the L2-Kantorovich-
Wasserstein distance on Py(€) given by (7.13). An even deeper connection will be dis-
cussed in the next section, see Corollary [7.13]

Corollary 7.7 (KK and the Wasserstein distance on Py(&)). For every pu, s € M(X) we
have

m(ﬂl,ﬂg) = min {WdC(Odl, CYQ) Ty € ?2(6), f)zOéi = Hl}, (727)

and there exist optimal measures &; for (7.27) concentrated on €[R] with R* =", u;(X).
In particular the map h? : Po(€) — M(X) is a contraction, i.e.

HK (b2, han) < Wy, (a1, )  for every a; € Po(€). (7.28)

Proof. If a; € Po(€) with h%a; = p; then any Kantorovich-Wasserstein optimal plan a €
P(€ x €) for with marginals a; clearly belongs to $2(juy, i2) and yields the bound
HK (11, pr2) < Wy, (a1, 2). On the other hand, if e € Optypapio is an optimal solution
for and «; := m'a € Py(€) are its marginals, we have H (g1, po) > Wy, (o, @), so
that «; realize the minimum for . O

We conclude this section with two simple properties of the HK functional. We denote
by 1o the null measure.

Lemma 7.8 (Subadditivity of HK?). The functional HK? satisfies
HC (1 m0) = (X)), HC (o) < (X)) + pa(X) - for every p, i € M(X), (7.29)
and it is subadditive, i.e. for every p;, p; € M(X) we have
HE (g1 + 4y, o+ ) < HKE (o, prz) + B, p1). (7.30)

Proof. The relations in ((7.29) are obvious. If @ € H2 (1, o) and &’ € H2 (), ph) it is
easy to check that o+ o’ € 92 (1 + ), 2 + pth). Since the cost functional is linear with

respect to the plan, we get ([7.30)). O

Subsequently we will use “” for the restriction of measures.

Lemma 7.9 (A formulation with relaxed constraints). For every i, ps € M(X) we have

He ) = min [ dioimdat Y (u - 1) () (7.31a)

CXEY)% (1,12

=1 (X) + p2(X) —  max ) {Q/rl ro cos(dy(x1,%2)) da}. (7.31b)

a€HZ (1,2

Moreover,
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(1) equations ([7.31al)—(7.31b|) share the same class of optimal plans.
(i) A plan o € $H2(pa, p2) is optimal for (7.31a) ~(7.31b) if and only if the plan o, =

al (€, x &,) is optimal as well.

(iii) If o is optimal for (7.31a)—(7.31D) with u. := p; — bax, then & = o + ' is an
optimal plan in Opty (i1, 12) Jor all o € 52 (i}, 1}).

(iv) A plan o € HZ(uy, pa) belongs to Opty(p1, p2) if and only if @, := alL(€, x &,) is
optimal for (7.31a)—(7.31D)).

Proof. The formulas (7.31a) and ([7.31b)) are just two different ways to write the same
functional, since for every a € ﬁ%(ul, o) we have

/d% da + Z (1 — bia)(X) = Z,ui(X) -2 / ri ra cos(d;(x1, x2)) dex. (7.32)

Thus, to prove (i) it is sufficient to show . The inequality > is obvious, since
92 (1, p2) D H2(pa, p2) and for every o € HZ2 (1, o) the term Y, (1 — h?ar) (X) van-
ishes.

On the other hand, whenever a € $2(p1, o), setting p == h?a € M(X), p} := p;—pl!
and observing that o € $H2 (i, 1i4) we get

[ dant Y (s~ 20) (X) = HEG ) + 16 () + (X)

7.29 730
= HC ) + W)

The same calculations also prove point (iii).

In order to check (ii) it is sufficient to observe that the integrand in vanishes
on €\ (&, x &,).

Finally, if & € Opty (p11, p12) is optimal for (7.22)), then by the consideration above it
is optimal for and therefore (ii) shows that «, is optimal as well. The converse
implication follows by (iii). O

|‘K2(,u17 M2)~

7.4 Gluing lemma and triangle inequality

In this section we will prove that HK satisfies the triangle inequality and therefore is a
distance on M(X). The main technical step is provided by the following useful property
for plans in M(€®Y) with given homogeneous marginals, which is a simple application of
the rescaling invariance in ([7.26)).

Lemma 7.10 (Normalization of lifts). Let a € My(€®N), N > 2, be a plan satisfying
bla = p; € M(X) fori=1,...N, and a; = /d%(ni_l,ni)da fori=2,...,N, (7.33)

and let j € {1,...,N} be fized. Then, it is possible to find a new plan & € My(€®N)
which still satisfies (7.33) and additionally the normalization of the jth lift,

() = 6o + Pyt ® 01). (7.34)
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Proof. By possibly adding @4, to a (which does not modify (7.33])) we may suppose
that
w; = a({y e ® :1i(y) =o0}) > 1,

where j is fixed as in the lemma. In order to find & it is sufficient to rescale o by the

function
; if ;, # o,
9() = {”ﬁ??z s 7 (7.35)

w; otherwise.

With the notation of (7.16) we set & := dilys(ar) and we decompose a in the sum
a=a' + a” where @' = al {y € €2V : 7i(y) = o}. For every ¢ € By(€) we have

/m da= [ ¢y 07 )P0 dac= [ ok dar + [ ¢llay, /9] () ded
/C zj, 1] 2doz”—{ /C z;,1 2doc— (0)+/Copd(,uj®(51)
which yields . 0

We can now prove a general form of the so-called “gluing lemma” that is the natural
extension of the well known result for transport problems (see e.g. [2, Lemma 5.3.4]).
Here its formulation is strongly related to the rescaling invariance of optimal plans given
by Lemma [7.10]

Lemma 7.11 (Gluing lemma). Let us consider a finite collection of measures p; € M(X)
fori=1,..., N with N > 2. Set

O = Vi (X) + Y H(pir, ) and M’ :Z#z’(X)- (7.36)

=2
Then there exist plans a1, ay € Po(E®N) such that

blayp =p; for i=1,...,N and

/di(nil, n;) day = HK? (i1, pii) for i=2,...,N. (7.37)

Moreover, the plans oy, satisfy the following additional conditions:
o is concentrated on {y € €N Z r;(y) < M*}, (7.38)
o is concentrated on {y € €N supri(p) < O} = (C[@])®N. (7.39)

Proof. We first Construct a plan a satisfying ([7.37)), then suitable rescalings will provide
oy, satisfying ((7.38]) or In order to clarlfy the argument, we consider N-copies
X1, Xo,..., Xy of X (and for € in a similar way) so that X&V = [[Y, X;

We argue by induction; the starting case N = 2 is covered by Theorem and
Lemma [7.10] Let us now discuss the induction step, by assuming that the thesis holds
for N and proving it for N + 1. We can thus find an optimal plan " such that
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hold, and another optimal plan & € Opty (1in, pin+1) for the couple puy, pn+1. Applying
the normalization Lemmal[7.10[to @ (with j = N) and to « (with j = 1) we can assume
that

my (@) = do + Py (py ® 61) = m; ().

Therefore we can apply the standard gluing Lemma in (vaz_ll €),Cxn, Enpy (see eg. [2
Lemma 5.3.2] and [I, Lemma 2.2] in the case of arbitrary topological spaces) obtaining a
new plan o™V ! N N+ NN+1N+1 — o, In particular, o’V !

satisfying W;’Q" a = o and 7
satisfies .
A further application of the rescaling with 9 as in yields a plan ay
satisfying also (7.38).

In order to obtain ay, we can assume a({|y| = 0}) = 0 and set ay = dily (), where
we use the rescaling function

I() =r Y| =17" sup ri(y) with r?:= /€®N ly|%, da.

To obtain ([7.39) it remains to estimate r. We consider arbitrary coefficients 6; > 0 and
use for n = 2,..., N the inequality

n n 1/2 n 1/2
rn <+ Z Iri —rizq| < (ZQZI) (91@ + Zgi|ri — ri—1|2>
=2 =1 =2
1/2

1/2 N
S <Z 91_1) (91[’% + Z ezdé(nlv U’i—l)) )
=2

i=1

which yields

— <§:0i_1> : <91M1(X) + zN:Qi I_Kz(ﬂi—laﬂi)>;
=1 1=2

optimizing with respect to 6; > 0 we obtain the value of © given by ([7.36]). OJ
The next remark gives a similar rescaling result for probability couplings 3 € P, (€®V).

Remark 7.12. In a completely similar way (see |2, Lemma 5.3.4]), for N > 2, a finite
collection of measures p; € M(X), and coefficients 6; > 0, i = 1,..., N, there exists a
plan 8 € P5(€¥Y) concentrated on {y € €=V : sup, r;(y) < E} with

N
E= V /,61(X> + Z |_K<:u17 :u’L>7 (74())
=2
such that
628 — i and /d@(gl,m) A8 = HC(u, ) fori=1,... N. O (741
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Arguing as in the proof of Corollary [7.7] one immediately obtains the following result,
which will be needed for the proof of Theorem and for the subsequent corollary.

Corollary 7.13. For every finite collection of measures pu; € M(X), i = 1,..., N, there
exist o, B; € Po(C) with o concentrated in €[r] where r = min(M, ©) is given as in (|7.36))
and B; concentrated in €[Z] given by (7.40) such that

b’ = pi and BB = fori=1,..., N,
HK (121, 1) = Wa (81, Bi)  and HK(py, priva) = Wae (i, 2ipr)  fori=2,..., N,

We are now in the position to show that the functional HK is a true distance on M(X),
where we deduce the triangle inequality from that for Wy, by using normalized lifts.

Corollary 7.14 (KK is a distance). HK is a distance on M(X); in particular, for every
1, p2, s € M(X) we have the triangle inequality

HK (e, ps) < HK(p s po) + HK (o, pe3). (7.42)

Proof. 1t is immediate to check that HK is symmetric and HK(uq, o) = 0 if and only if
{1 = po. In order to check it is sufficient to apply the previous corollary to
find measures «; € Po(€), i = 1,2,3, such that h?a; = p; and HK(pq, p2) = Wy, (a1, az)
and HK(ua, pi3) = Wy, (a2, a3). Applying the triangle inequality for Wy, we obtain

l—K(ﬂ17ﬂ3) < Wdc<0517 063) < Wdc(al’ a2) + Wdc(OQ? 043) = I_K<:u17 ,u2) + I-K(:u% Mg) O

As a consequence of the previous two results, the map h? : Po(€) — M(X) is a metric
submersion.

7.5 Metric and topological properties

In this section we will assume that the topology 7 on X is induced by d and that (X, d) is
separable, so that also (€, d¢) is separable. Notice that in this case there is no difference
between weak and narrow topology in M(X). Moreover, since X is separable, M(X)
equipped with the weak topology is metrizable, so that converging sequences are sufficient
to characterize the weak-narrow topology.

It turns out [2, Chap. 7] that (Po(C), Wy, ) is a separable metric space: convergence of a
sequence (ay, )nen to a limit measure v in (Py (&), Wy, ) corresponds to weak-narrow conver-
gence in P(€) and convergence of the quadratic moments, or, equivalently, to convergence
of integrals of continuous functions with quadratic growth, i.e.

lim [ ¢da, = /godoz for every ¢ € C(€) with |p(y)| < A + Bri(y), (7.43)
¢

n—oo ¢

for some constants A, B > 0 depending on ¢. Recall that r?(y) = d3(v, 0).

Theorem 7.15 (HK metrizes the weak topology on M(X)). HK induces the weak-narrow

topology on M(X): a sequence (fin)nen € M(X) converges to a measure p in (M, HK) if and

only if (pn)nen converges weakly to v in duality with continuous and bounded functions.
In particular, the metric space (M(X), HK) is separable.
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Proof. Let us first suppose that lim,, o, HK(j1,,, ) = 0. We argue by contradiction and we
assume that there exists a function ¢ € C,(X) and a subsequence (still denoted by uy,)

such that
| cam— [ caf >0 (7.44)

The first estimate of ([7.29) and the triangle inequality show that

inf
n

: . 2
limsup 11, (X) < limsup (HK (g, 1) + H (2, m0))” = pu(X),
n—o0 n—oo
so that sup,, p,(X) = M? < oo. By Corollary [7.7| we can find measures a,, o/, € Po(€)
concentrated on €[2M] such that

{)QCVTL = M, h2 ;1 = Hn, Wd@(&na a;;) = FK(#? :un)

By Lemma the sequence (ay,)nen is equally tight in Po(€); since it is also uniformly
bounded there exists a subsequence k +— n; such that «,, weakly converges to a limit
a € Py(C). Since a,, is concentrated on €[2M] we also have limy_, o Wy, (e, , o) = 0 and
therefore b = g1, limy o0 Wa, (0, , ) = 0.

We thus have

lim / C(z) dpn, = lim /C(x)r2da;k :/C(x)r2da:/ C(x)dp
k—oo [x k—oo J& ¢ X
which contradicts ((7.44]).

In order to prove the converse implication, let us suppose that pu, is converging
weakly to g in M(X). If g is the null measure 79 = 0, then lim, , 1, (X) = 0 so
that lim,,_. H(ptn, 1) = 0 by (7.29)).

So we can suppose that m := u(X) > 0 and have m,, = p,(X) > m/2 > 0 for
sufficiently large n. We now consider the measures «a,,, @ € P(€) given by

Qy, 1= pﬂ<m;1un®5m) and «a:= pﬁ(m_l,u@(x/a).

Since b2, = p, and h%a = p, by we have HK(pun, 1) < Wy, (ai, ). Since m;, 'y, is
weakly converging to m~'y in P(X) and m,, — m, it is easy to check that m, 'y, ® 0 mr
weakly converges to m™' i ® 4/ in P(Y) and therefore o, weakly converges to o in P(€)
by the continuity of the projection p. Hence, in order to conclude that Wy, (o, @) — 0 it
is now sufficient to prove the convergence of their quadratic moments with respect to the
vertex 0. However, this is is immediate because of

lim [ di(y,0)da, = lim [ r*da, = lim m, =m = /dg(l), 0)da. O

n—oo n—oo n—oo

Corollary 7.16 (Compactness). If (X,d) is a compact metric space then (M(X), HK) is
a proper metric space, i.e. every bounded set is relatively compact.

Proof. 1t is sufficient to notice that a set € C M(X) is bounded w.r.t. KK if and only
if sup,ce (X)) < 0o. Then the classical weak sequential compactness of closed bounded
sets in M(X) gives the result. O
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The following completeness result for (M(X), HK) is obtained by suitable liftings of
measures p; to probability measures «; € Po(€), supported in some €[O]. Then the
completeness of the Wasserstein space (‘Pg( ), Wy, ) is exploited.

HK)

Theorem 7.17 (Completeness of (M(X),
(M(X), HK) is complete.

). If (X, d) is complete than the metric space

Proof. We have to prove that every Cauchy sequence (fi,)nen in (M(X), HK) admits a
convergent subsequence. By exploiting the Cauchy property, we can find an increasing
sequence of integers k + n(k) such that HK(fim,, p) < 27% whenever m, m’ > n(k) and
we consider the subsequence fi; 1= fi3i),

so that
N
Ml(X)_‘_ZH((,un y M (i— 1 < \//Jll +1
=2

and by applylng the Gluing Lemma [7.11] - for every N > 0 we can find measures o €
Po(€),i=1,..., N, concentrated on €[0] with © := /1 (X) + 1, such that

bQCVzN = M; and de(azj‘vvaz‘]\il) = m(#;aﬂg—l)-

For every i the sequence N — al¥ € Py(€) is tight by Lemma and concentrated on the
bounded set €[O], so that by Prokhorov Theorem it is relatively compact in (Pa(€), Wy, ).

By a standard diagonal argument, we can find a further increasing subsequence m +—»
N(m) and limit measures a; € Po(€) such that lim,, . Wy, ( N(m), a;) = 0. The conver-

gence with respect to Wy, yields that
b0 = pri, Wag (0, cia) = HK(p, i) <2770

It follows that ¢ — «; is a Cauchy sequence in (P3(€), Wy, ) which is a complete metric
space [2, Prop. 7.1.5] and therefore there exists a € P5(€) such that lim;_, o, Wy, (c;, &) = 0.
Setting p := h%a € M(X) we thus obtain lim; ., HK(y}, 1) = 0. O

We conclude this section by proving a simple comparison estimate for HK with the
Bounded Lipschitz metric (cf. [I7, Sec. 11.3]), see also [24, Thm. 3|. The Bounded Lips-
chitz metric is defined via

BL(pu1, pi2) := Sup{/éd(m — p2) : ¢ € Lip,(X), Sup ¢l + Lip(¢, X) < 1}- (7.45)

We do not claim that the constant C, below is optimal.

Proposition 7.18. For every pui, ps € M(X) we have
1/2
BL(11, p12) < C*<Z,LL¢(X)) HK (1, o), where Cy := /2 + 72 /2. (7.46)

Proof. Let £ € Lip,(X) with supy ||+ Lip(§, X) < 1 and let a € P(€) optimal for ((7.25))
and concentrated on €[R] with R? := p;(X;) + pa(X2). Notice that

1€(z1) — &(x2)| < max(d(x1,22),2) < 2day(z1,29) < 2di (21, 22) < 27 sin(d,(xy, 22)/2)
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We consider the function ¢ : € — R defined by ((y) := £(x)r*. Hence, ( satisfies

() — C(Uz)) < [66a) = E0e)lrir + (J€0a) I + [§(x2)[r2) 11 — o]

< 2w sin(dy(x1,%x2)/2)r1ira + (r1 + r2)|r — ro
<

\/(l’l +r2)2 + w2riry de(n1,92) < C. r% + r% de(91,92)

Since the optimal plan « is concentrated on {r? 4+ r3 < R?} we obtain

’/de(ul — [i2)

=| [t -ty dal < [1com - cOm)lda

<C.R / de(n1,92) dar < CLRHK(ur, o). O

7.6 Hellinger-Kantorovich distance and Entropy-Transport func-
tionals

In this section we will establish our main result connecting HK with LET.

It is clear that the definition of HKK does not change if we replace the distance d on X
by its truncation d, = d A 7. It is less obvious that we can even replace the threshold 7
with m/2 and use the distance dr/s¢ of Remark in the formulation of the Hellinger-
Kantorovich Problem [7.4f This property is related to the particular structure of the
homogeneous marginals (which are not affected by masses concentrated in the vertex o
of the cone €); in [27), Sect. 3.2] it is is called the presence of a sufficiently large reservoir,
which shows that transport over distances larger than 7/2 is never optimal, since it is
cheaper to transport into or out of the reservoir in 0). This will provide an essential piece
of information to connect the HK and the LET functionals.

In order to prove that transport only occurs of distances < 7/2 we define the subset

€ = {drj2e <de} = {(91,92) € €, x & : d(xy,x2) > 7/2} (7.47)

and consider the partition (€', €") of € = € x €, where €" := €\ € = {dﬂ/z@ = d@}.
Observe that

€ =" N(C x &) = {(91,02) € & x €, : d(x1,%) < 7/2}. (7.48)

In the following lemma we show that minimizers a € Opty(p1, f12) are concentrated on
¢" ie. a(€') = 0 which holds if and only if &, = @l (€, X &,) is concentrated on €. To
handle the mass that is transported into or out of 0, we use the continuous projections

g, : €= &€ gi(91,92) := (h1,0),  g2(n1,92) == (0,92). (7.49)
Lemma 7.19 (Plan restriction). For every a € M(&) the plan
a:=a"+ (g1 + (go)y with o =alL€, a':=alL’ (7.50)

is concentrated on €", has the same homogeneous marginals as o, i.e. h?a = h2a, and

/ 62 dax — / &2, ¢ da < / 62 da, (7.51)
< [ [
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where the inequality is strict if a(€") > 0. In particular for every pi, po € M(X)

K2 (j11. 12) = min { /di/m(gl,gz) da : o € My(€), hPa = ﬂ} (7.52)

Proof. For every ¢ € By(X), since r; o go = 0 and ry o g; = ry, we have
¢d(hia) = [ ((x)rida= [ ((x)ride” + COxalgr))rigr)* ded
/ 1 / 1) / 1) Zk:/ 1\ Yk 1\Yk
— /C(xl)rfda”—i—/((xl)rfda’:/C(xl)r%da:/Cd(bfa),

so that h?a& = h?«; a similar calculation holds for b3 so that & € $2(juy, u2). Moreover,
if (h1,12) € € we easily get

dz(91.92) > 1 413 = dg(g1(91,92)) + dg(g2(91,92))

so that whenever a(€’) > 0 we get

/dgda—/(diogl+d§ogQ)da’+/d§da”</d§da'+/d§da"—/d§da,

which proves ((7.51]) and characterizes the equality case. (7.52)) then follows by (7.51)) and
the fact that the homogeneous marginals of & and a coincide. 0

In (7.52) we have established that o € Opty (41, f12) has support in €”. This allows
us to prove the identity LET = HK?. For this, we introduce the open set & C €” via

S = {([a:l,'rl], [x9,79]) € €y £ 0, d(x1,20) < 7r/2}

and note that riry cos(dy2(x1,%2)) > 0 in &. Recall also p = p®p : Y — &, where p is
defined in ([7.7)).

Theorem 7.20 (HKK* = LET). For all py, iy € M(X) we have

|‘K2(,u17 ,u2) = LEI—(PJM HQ)’ (753)
and a(€') = 0 for optimal solution c € M(€) of Problem or of (7.31alb). Moreover,

(i) a € M(€) is an optimal plan for (7.31alb) if and only if c(€') = 0 and y, (L €, x €,)
1s an optimal plan for (6.30))—(6.29)).

(i) & € M(Y') is any optimal plan for (6.31)) if and only if o := pyax is an optimal plan
for the Hellinger-Kantorovich Problem[7.4).

(111) If v € M(X x X) belongs to Optier(p1, t2) and o; : X — [0,00) are Borel maps so
that pi; = 0;7; + /ML; then B := (P o (z1, Q}/z(xl); 2, Q%ﬂ(%)))ﬂ is an optimal plan
Jor (7.31a)) ~(7.31b)), and it satisfies riry cos(dy/2(x1,%2)) = 1 B-a.e.; in particular 3

1s concentrated on &.
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() If a € M(Y') is an optimal plan for Problem then o := alL® is an optimal
plan for (7.31ab). Moreover,
o the plan B := dilya(&), with ¥ := (r1r2 COS(dw/Q(Xl,X2>>)1/2, is an optimal plan
satisfying rira cos(dy/a2(x1,%2)) = 1 B-a.e.
o If (X, ) is separable and metrizable, v := (x1,%2)sB belongs to Optyger (i, i2),

o If (X,7) is separable and metrizable, B = (p o (z1, g}m(xl); To, Q;/2($2))>ﬁ’7.

Proof. Identity (7.53) and the first statement immediately follow by combining the pre-

vious Lemma with Remark [7.5] and ((6.31).

If & is an optimal plan for the formulation ,b) we can apply Lemma (iii) to
find & > «a optimal for (7.22)), so that a(€') < a(€’) = 0.

Since all the optimal plans for HKK do not charge €', combining Lemma Remark
and Theorems [6.3[ and [6.7] statements (i), (ii), and (iii) follow easily.

Concerning (iv), the optimality of & is obvious from the formulation and the
optimality of 3 = dily2(&) follows from the invariance of with respect to dilations.
We notice that B-almost everywhere in & we have

Z Uo(r?) + c(xq, %) = Z r?—1—logr; — lOg<COSQ<dﬂ—/2(X1,X2)>>

i

= Z r; —2—2log(nry cos(dr/2(x1,%2)))

— I’% + rg — 2r1r2 COS(dw/Q(XhXZ))’

so that by we arrive at
[ (00 + clxix)) 4B+ 3 ((X) = 0280X)) = W), (750)

Let us now set v := (x,x2);8 € M(X x X) and ; := 78 € M(€), which yield ; :=
Ty = ()8 = xyfi € M(X) and ji; := b8 = (x;)3(riy) = x(r*B;). Denoting by
(Biw;)z;ex the disintegration of f; with respect to v; (here we need the metrizability and
separability of (X, 7), see [2 Section 5.3]), we find

[ cai= [coortan = [ ([ cooran)an= [ e [ras)
for all ¢ € By(X), so that
o= s < g with Gia) = [ 17

Applying Jensen inequality we obtain

Joas = [vias = [ ([ v as ) o
> / Uo< / r2 dﬁi,mi(ri)> vy = / Us (i) di.
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Now [ c(x1,x2)dB = [ c(z1,z2) dy and (7.54) imply

H? (pa, pi2) > Z/XUO(Qi)d%‘ +/ cdy + Z%‘(X

XxX

with v; = pu; — fi; € M(X). Hence, u; = 0;7; + v; and the standard decomposition

pti = ovitpi (cf. (2.8) imply we get v; = -4 (0i— i)y > pi-- Hence, Uy(s) = s—1—log s
and the monotonicity of the logarithm yield

H (11, p12) > Z(/XUo(éi)d%ﬂLVi(X)) +/Cd’>’
_Z</ <UO 0 +QZ—QZ>d%+Ml (X))—l—/cd'y
>Z(/ Uos(0:) dry; + 15+ (X)>+/Cd’)’ > LET (1, p12),

where the last estimate follows from Theorem [6.2(b). Above, the first inequality is strict
if v; # pit so that g; > 9; on some set with positive v;-measure.

By the first statement of the Theorem it follows that v € Optg(p1, o). Hence,
all the inequalities are in fact identities, and we conclude 9; = p;. Since Uy is strictly
convex, the disintegration measure f;,, is a Dirac measure concentrated on +/g;(x;), so

that 8 = (p o (1, 91/2(931); T2, 95/2(172)))117- O

We observe that the system (7, 01, 02) provided by the previous Theorem enjoys a
few remarkable properties, that are not obvious from the original Hellinger-Kantorovich
formulation.

a) First of all, the annihilated part ;- of the measures ju; is concentrated on the set

M, ; = {z; € X : d(z;,supp(p;)) > 7/2}
When /LZ(MzJ) = 0 then i << ;.
b) As a second property, an optimal plan v € Opt (1, p2) provides an optimal plan
a = (po(z, g}/z(xl); T, Q;/Q($2>>)ﬁ’7 which is concentrated on the graph of the map
(o 1/2( 1); Q;/2(x2)) from X x X to Ry x R, where the maps p; are independent, in

the sense that p; only depends on z;.

¢) A third important application of Theorem is the duality formula for the HK func-
tional which directly follows from of Theorem . We will state it in a slightly
different form in the next theorem, whose interpretation will be clearer in the light of
Section [8.4l Tt is based on the inf-convolution formula

. &) sin2(d7r/2(x,x’)) .1 cos?(dq/2(z, 2"))
%5(96)—;%§(1+25(x')+ 2(1 + 2£(a)) )“:}g{ﬁ(l_ 1+ 26(x) )- (759

where £ € B(X) with & > —1/2.
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Theorem 7.21 (Duality formula for HK).

(1) If £ € By(X) with infx & > —1/2 then the function P& defined by (7.55) belongs to
Lip,(X), satisfies supy P1& < 1/2, and admits the equivalent representation

. 1 cos?(dq/2(z, "))
Pig(e) = it o (1 ) ) (7.56)

In particular, if & has bounded support then P& € Lip,,(X), the space of Lipschitz
functions with bounded support.

(11) Let us suppose that (X,d) is a separable metric space and T is induced by d. For
every fo, 1 € M(X) we have

1 . .
§I-K2(,u0,,u1) = sup{/@lfdul—/fduo € € Lipy,(X), 1§f§ > —1/2}. (7.57)
Proof. Let us first observe that if

in X, (7.58)

< PE<
1+ 2a — i€

1
— =< <E<bin X =
p<esfisbin 1+ 2b

where the upper bound follows using ' = x, while the lower bound is easily seen from
the first form of £ in and sin® > 0. Since 1/(1 + 2£(2)) < 1/(1 + 2a) for
every ' € X, the function &£ is also Lipschitz, because it is the infimum of a family of
uniformly Lipschitz functions.

Moreover, for d(z,2') > m/2 we have the estimate

1 cos?(dq/2(z, 2')) 1 b _
. )- L ) > |
2( 1+ 26() 2> Ty @) =7/ (7.59)
which immediately gives (7.56|). In particular, we have
E=0 mX\B = 2¢{=0 in{reX:d(z B)>n/2}. (7.60)

Let us now prove statement (ii). We denote by E the the right-hand side of ([7.57)
and by E’ the analogous expression where £ runs in Cy(X):

E =2 sup{/ﬁlfdul — /fd,uo &€ Cy(X), igl(ff > —1/2}. (7.61)

It is clear that B > E. If £ € Cp(X) with inf& > —1/2, setting ¢y (z1) := —2&(z1),
o(g) := 2(1€)(x2), we know that supy 1y < 1 and 1y € Lipy(X). Thus, 11 and 1
are continuous and satisfy

(1= a(22)) (1 = Y1 (21)) > cos®(drja(21, 22)).

Hence, the couple (11, 1)2) is admissible for (with Cp(X) instead of LSC,(X); note

that 7 is metrizable and thus completely regular), so that HK? (g, pt1) = LET (1o, p11) > E'.
On the other hand, if (¢1,12) € Cy(X) x Cy(X) with supy ¢; < 1, setting & = —2

and & := P, (—&;) we see that 26, > 1y giving E' > HK?(ug, p11), and E = E’ follows.
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To show that E = E’ in the general case, we approximate 1) € Cy(X) with infx ¢ > —1
by a decreasing sequence of Lipschitz and bounded functions (e.g. by taking ¢, (z) :=
sup, ¥(y) — nd(z,y)) and use that the supremum in does not change if we restrict
it to Lip,(X).

Let now £ be Lipschitz and valued in [a,b] with —1/2 < a < 0 < b. Taking the
increasing sequence of nonnegative cut-off functions ¢,(z) := 0V (n — d(z,Z)) A 1 which
are uniformly 1-Lipschitz, have bounded support and satisfy ¢, T 1 as n — o0, it is easy
to check that &, := (,€ belong to Lip,,(X) and take values in the interval [a, b] so that
Hj#% < A, < ﬁ for every n € N.

Since &,(x) = 0 if d(z,Z) > n and &,(x) = &(x) if d(z,z) < n — 1, by (7.56) we get
Pi&p(x) =0 ifz>n+n/2, Pi&(x)=P&(x) ife<n—1-—m/2 (7.62)
Thus 1§, € Lip,,(X) and the Lebesgue Dominated Convergence theorem shows that

X X X X

n—o0

7.7 Limiting cases: recovering the Hellinger—Kakutani distance
and the Kantorovich—Wasserstein distance

In this section we will show that we can recover the Hellinger-Kakutani and the Kantorovich-
Wasserstein distance by suitably rescaling the HK functional.

The Hellinger-Kakutani distance. As we have seen in Example E.5 of Section [3.3]
the Hellinger-Kakutani distance between two measures p, ps € M(X) can be obtained
as a limiting case when the space X is endowed with the discrete distance

if
o Moo Cihae frtod. (7.63)
0 if z1 = 29,

dHeu(I1,$2) = {

The induced cone distance in this case is

7“1—7"2)2 ifl'l:l'g
d2([z1, 7], [22,72]) = ( ’ 7.64
2([o1, 1] o2, 72]) {mr; o (7.64)
and the induced cost function for the Entropy-Transport formalism is given by
0 if T, = Ta,
CHell (71, T2) = 7.65
et (@1, 22) {+oo otherwise. ( )

Recalling (3.23])—(3.24) we obtain
Hell* (pu1, p12) = LET wen(p11, i) = /(\/E — /02)" dy with p; = o7y < v € M(X). (7.66)
X

Since chye > ¢ = £(d) for every distance function on X, we always have the upper bound
H (a1, pro) < Hell(p, o) for every pq, pa € M(X). (7.67)

Applying Lemma [3.9| we easily get
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Theorem 7.22 (Convergence of KK to Hell). Let (X, 7,d) be an extended metric topolog-
ical space and let HKyq be the Hellinger-Kantorovich distances in M(X) induced by the
distances dy := Ad, A > 0. For every couple ui, ps € M(X) we have

Hxa(p1, p12) 1 Hell(pg, p2)  as A 1 oo. (7.68)

The Kantorovich—Wasserstein distance. Let us first observe that whenever pq, ps €
M(X) have the same mass their HK-distance is always bounded form above by the
Kantorovich-Wasserstein distance Wy (the upper bound is trivial when p;(X) # pa(X),
since in this case Wy(p1, p2) = +00).

Proposition 7.23. For every couple py, pio € M(X) we have

HK(pa, p12) < W, (11, p2) < Wa(pa, po). (7.69)

Proof. Tt is not restrictive to assume that ng (1, o) = fd?r/Q'y < oo for an optimal
plan v with marginals y;. We then define the plan a := syy € M(€x &) where §(z1, z2) :=

(|z1,1], [z2,1]), so that h?a = p;. By using (7.52)) and (7.3]) we obtain
H (pa, pio) < 4/ sin®(dy 2 (x1,%2)/2) da < / dfr/z(%l,%)d’Y < Wgﬁ/Q(M17ﬂ2>~ 0
¢ b's

In order to recover the Kantorovich-Wasserstein distance we perform a simultaneous
scaling, by taking the limit of nHKy,, where H{q/,, is induced by the distance d/n.

Theorem 7.24 (Convergence of KK to W). Let (X, 7,d) be an extended metric topolog-
ical space and let HKy/ be the Hellinger-Kantorovich distances in M(X) induced by the
distances A\~'d for A > 0. Then, for all py, s € M(X) we have

AR x (g5 p2) T Wa(pen, pr2)  as A1 oo. (7.70)

Proof. Let us denote by LET, = I-KZ /x the optimal value of the LET-problem associated to
the distance d/A. Since the Kantorovich-Wasserstein distance is invariant by the rescaling
AWy/n = Wy, estimate shows that AHKy/, < Wy.

Since = +— sin(x A m/2) is concave in [0,00), the function z +— sin(x A 7/2)/z is
decreasing in [0, 00), so that asin((d/a) A 7/2) < Asin((d/X) A7w/2) for every d > 0 and
0 < a < A. Combining with we see that the map A — AHKq/\ (11, p12) is
nondecreasing.

It remains to prove that L := Hmy oo AHKa/a(pe1, ft2) = supys; AHKaya (e, p2) >
W (p1, p12). For this, it is not restrictive to assume that L is finite. -

Let v, be an optimal plan for Hq/x (1, p12) with marginals vy ; = mjy,. We denote by
Z the entropy functionals associated to logarithmic entropy F'(s) = Ui(s) and by ¢ the
entropy functionals associated to F(s) := I;(s) as in Example E.3 of Section [3.3] Since
the transport part of the LET-functional is associated to the costs

C)\(flfl, l’g) = )\QE(d(ZEl, CCQ)//\) d2($1,$2),

we obtain the estimate

L2 Z >\2LE|-)\(M1,M2> Z Z)\Qﬁ(*}/)\ﬂ“ubz) +/ dQ(ZL‘l,[Eg) d’)’)\ (771)
i X
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Proposition shows that the family of plans (v, )>1 is relatively compact with respect
to narrow convergence in M(X x X). Since \*F(s) 1 I;(s), passing to the limit along a
suitable subnet (A(«))aea parametrized by a directed set A, and applying Corollary
we get a limit plan v € M(X x X) with marginals ; such that

Zg(%mi) < L?, which implies  7; = p;.

In particular, we conclude that p;(X) = (X x X) = ps(X). Since d is lower semicon-
tinuous, narrow convergence of v, and (7.71) also yield

L*> liminf/ dg(xl,xz)d’y)\(a) > / d?(z1, z9) dy > W3 (11, p12). O
b's

acA x

7.8 The Gaussian Hellinger-Kantorovich distance

We conclude this general introduction to the Hellinger-Kantorovich distance by discussing
another interesting example.
We consider the inverse function g : R, — [0,7/2) of V/¢:

g(z) := arccos(e™*/?), satisfying ¢(0) =0, ¢'(0) =1, {(g(d)) = d*. (7.72)

Since v/ is a convex function, g is a concave increasing function in [0, 00) with g(z) < z
and lim, o, g(2) = 7/2.

It follows that g := g od is a distance in X, inducing the same topology as d. We can
now introduce a distance HKg associated to g. The corresponding distance on € is given
by

ge(D1,12) == 12 +r3 — 2riry exp(—d*(x1, x2) /2). (7.73)

From ¢(z) < z we have g¢ < de.

Theorem 7.25 (The Gaussian Hellinger-Kantorovich distance). The functional

G (11, 12) = HRE(p, ) = mim { / gy me)da : @€ M(€), bla—p;} (7.74)

defines a distance on M(X) dominated by HK. If (X, d) is separable (resp. complete) then
(M(X),GK) is a separable (resp. complete) metric space, whose topology coincides with
the weak convergence. We also have

G, ) = min { 37 Fulp) + [ vz dy + oy € MO0}
' * (7.75)

:sup{Z/(l—e_%>dui : @1@@02§d2}.

We shall see in the next Section that HK is the length distance induced by GK if
d is a length distance on X.

78



8 Dynamic interpretation of the
Hellinger-Kantorovich distance

As in Section , in all this chapter we will suppose that (X, d) is a complete and separable
(possibly extended) metric space and 7 coincides with the topology induced by d. All the
results admits a natural generalization to the framework of extended metric-topological
spaces [1l, Sec. 4].

8.1 Absolutely continuous curves and geodesics in the cone €

Absolutely continuous curves and metric derivative. If (Z,dz) is a (possibly
extended) metric space and [ is an interval of R, a curve z : I — Z is absolutely continuous
if there exists m € L*(I) such that

t1
dz(z(to),z(t1)) < / m(t)dt whenever to,t, € I, ty < t;. (8.1)

to

Its metric derivative |z'|q, (we will omit the index dz when the choice of the metric is
clear from the context) is the Borel function defined by

|Z/|dz (t) := lim sup dZ(Z(t + h), Z(t))
h—0 ‘h‘

(8.2)

and it is possible to show (see [2]) that the lim sup above is in fact a limit for .#!-a.e. points
in I and it provides the minimal (up to possible modifications in Z'-negligible sets)
function m for which holds. We will denote by ACP(I; Z) the class of all absolutely
continuous curves z : [ — Z with |Z’| € LP(I); when [ is an open set of R, we will also
consider the local space AC], (I; Z). If Z is complete and separable then ACP([0,1]; Z) is
a Borel set in the space C([0,1]; Z) endowed with the topology of uniform convergence.
(This property can be extended to the framework of extended metric-topological spaces,
see [3].)
A curve z : [0,1] — Z is a (minimal, constant speed) geodesic if

dz(z(to),z(t1)) = |[t1 — to|dz(2(0),2(1)) for every tg,t; € [0, 1]. (8.3)

In particular z is Lipschitz and |7'| = dz(z(to),2(¢1)) in [0,1]. We denote by Geo(Z) C
C([0,1]; Z) the closed subset of all the geodesics.

A metric space (Z,dyz) is called a length (or intrinsic) space if the distance between
arbitrary couples of points can be obtained as the infimum of the length of the absolutely
continuous curves connecting them. It is called a geodesic (or strictly intrinsic) space if
every couple of points zg, z; at finite distance can be joined by a geodesic.

Geodesics in €. If (X,d) is a geodesic (resp. length) space, then also € is a geodesic
(resp. length) space, cf. [9 Sec.3.6]. The geodesic connecting a point ) = [z, r] with o is

y(t) = [z, tr] =y-t fort €0,1]. (8.4)
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If 1,29 € X with d(z1,29) > 7, then a geodesic between y; = [z;,7;] can be easily
obtained by joining two geodesics connecting 1); to o as before; observe that in this case
de(D1,92) = r1 + 72

In the case when d(zq,22) < 7 and 71,79 > 0, every geodesic y : I — € connecting 1,
to 19 is associated to a geodesic x in X joining x; to x9 and parametrized with unit speed
in the interval [0, d(z1, x9)]. To find the radius r(t), we use the complex plane C: we write
the curve connecting z; = 1 € C to 2o = ryexp(id(z1,22)) € C in polar coordinates,
namely

r2(t) = (1—t)%r] + 25 + 2t(1—t)rira cos(d(zy, 72)),

(1=t)ry + try cos(d(zy, x2)) (8.5)

2(t) = r(t) exp(i 0(0)),
n 0t € (0,7

cos(0(t)) =

and then the geodesic curve in € takes the form
n(t) = [x(0(t)),r ()] (8.6)

Absolutely continuous curves in €. We want to obtain now a simple characteriza-
tions of absolutely continuous curves in €. If ¢t — y(t) is a continuous curve in €, with
t € [0,1], is clear that r(f) := r(y(¢)) is a continuous curve with values in [0,00). We
can then consider the open set O, = r‘l((O, oo)) and the map x : [0,1] — X defined by
x(t) := x(y(t)), whose restriction to O, is also continuous. Thus any continuous curve
p: I — € can be lifted to a couple of maps y =yon = (x,r) : [0,1] — Y with r continu-
ous and x continuous on O, and constant on its complement. Conversely, it is clear that
starting from a couple y = (x,r) as above, then § = p oy is continuous in €. We thus
introduce the set

C([0,1);Y) := {y=(1):[0,1] =Y : reC(0,1;Ry), X|, 18 continuous 8.7
and for p > 1 the analogous spaces

ACP(0,11;Y) == {y = (x,1) © r€ AC([0,1;R),

(8.8)
X|o, € ACL.(0r; X), 1l¥| € Lp(or>}.
If y = (x,r) € AC?(]0,1];Y) we define the Borel map |y'| : [0,1] — R, by
V' 2(t) = @) + (@)K 5() ift €O, [¥|(t) =0 otherwise. (8.9)

For absolutely continuous curves the following characterization holds:

Lemma 8.1. Let y € C([0,1];€) be lifted to y =y oy € C([0,1];Y). Theny € AC”(I;€)
if and only if y = (x,1) € ACP([0,1];Y) and

1|a.(t) = [y'|(t)  for £'-a.e. t €]0,1]. (8.10)

Proof. By ([7.4) one immediately sees that if § = poy € ACP([0,1];€) then sr belongs
to ACP([0,1];R) and x € ACE (O,; X). Since p is absolutely continuous, we can evaluate

loc
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the metric derivative at a.e. t € O, where also " and |x/| exist: starting from ([7.3)) leads
to the limit
- diw(+h),0@) e+ h) — (@) + dr(t + h)r(t) sin®(3dR(x(t + h), x(1)))
lim = lim
) h? h10 h?
= ['(O)]* + s(t)[x'[3(1)

which provides .

Moreover, the same calculations show that if the lifting y belongs to AC?([0,1];Y)
then the restriction of 1y to each connected component of O, is absolutely continuous with
metric velocity given by in L?(0,1). Since p is globally continuous and constant in
[0,1] \ O,, we conclude that n € ACP([0, 1]; @). O

As a consequence, in a length space, we get the variational representation formula
(90, ) = inf / (PO + (0P d :
[0,1]n{r>0}

N (8.11)
(x,1) € AC([0,1];Y), [x(i),x(i)] = v, i = 0, 1}.

Remark 8.2 (The Euclidean case). Consider the case X = R? with the usual Euclidean
distance d (21, 25) := |21 — x5|. For y = [x,1] € AC?*([0,1]; &), we can define a Borel vector
field v} : [0,1] — R by

, (r(t)x'(t),r'(t)) whenever r(t) # 0 and the derivatives exist,

Delt) = {(0,0) otherwise. (8.12)

Then, (8.10)) yields |0/|q. () = [pe(t)|garr for L -ae. t € (0,1).

For ¢ € CY(R? x [0,1]) we set (([z,r],t) := 3¢(z,t)r? and obtain 9,(([z,r],t) =

s0up(z,t)r?. Now defining the Borel map De( : € — (R¥)* via

(37Datp(z, 1), m(x,))  for v #o,

8.13
(0,0) otherwise, (8.13)

DCC(Uat) = {
we see that the map ¢ +— ((y(¢), ) is absolutely continuous and satisfies

£C0(0).0) = 3000 0) + (DeC(0(0). 1), 0e(sars Laein (0,1, O (314)

Note that the first component of D¢( contains the factor r rather than r?; since py in
(8.12) already has one factor r in its first component.

8.2 Lifting of absolutely continuous curves and geodesics

Dynamic plans and time-dependent marginals. Let (Z,dz) be a complete and
separable metric space. A dynamic plan 7 in Z is a probability measure in P(C(I; 7)),
and we say that 7 has finite 2-energy if it is concentrated on AC?(I; Z) and

/(/01 23, (1)) dm(2) < oo. (8.15)
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We denote by e; the evaluation map in C(I; Z) given by e;(z) := z(t). If 7 is a dynamic
plan, oy = (e)ym € M(Z) is its marginal at time ¢ € I and the curve ¢ — «; belongs
to C(I; (M(Z),Wsy,)). If moreover 7 is a dynamic plan with finite 2-energy, then o €
AC*(I; (M(Z),Wq,,)).

We say that 7 is an optimal geodesic plan between oy, cq € P(Z) if (e;)ym = a; for
i =0,1, if it is a dynamic plan concentrated on Geo(Z), and if

/dQZ(z(O),z(l))dﬂ'(z):/o 2 dt dm(z) = W2 (ag, ). (8.16)

When Z = € we will denote by h7 = h? o (e); the homogeneous marginal at time
t € I. Since h? : P(€) — M(X) is 1-Lipschitz (cf. Corollary , it follows that the
curve j; == h%a, = h?m belongs to AC?*(1; (M(X), HK)) and moreover

il < [ W0 dn) forac.te (0.1) (8.17)

A simple consequence of this property is that (M(X), HK) inherits the length (or geodesic)
property of (X,d).

Proposition 8.3. (M(X),H) is a length (resp. geodesic) space if and only if (X,d) is a
length (resp. geodesic) space.

Proof. Let us first suppose that (X,d) is a length space (the argument in the geodesic
case is completely equivalent) and let p; € M(X). By Corollary we find a; € Po(€)
such that h?c; = p; and HK(p1, p2) = Wy, (a1, ). Since € is a length space, it is
well known that Po(€) is a length space (see [44]), so that for every k > 1 there exists
a € Lip([0, 1]; (P2(€), Wy, )) connecting o to ap such that [a'|w,, <k Wy, (a1, a2). Setting
e := h2a; we obtain a Lipschitz curve connecting p; to pe with length < x HK(pq, p12).
The converse property is a consequence of the next representation Theorem and
the fact that if (Po(€),Wy) is a length (resp. geodesic) space, then € and thus X are
length (resp. geodesic) spaces. 0

We want to prove the converse representation result that every absolutely continuous
curve  : [0,1] — (M(X),H) can be written via a dynamic plan 7 as pu; = h?w. The
argument only depends on the metric properties of the Lipschitz submersion b.

Theorem 8.4. Let (fut)cjo,1) be a curve in ACP([0, 1]; (M(X), HK)), p € [1, 00], with

Vi) + [ i (818)

Then there exists a curve (ou)iep,1) in ACP([0, 1]; (P2(€), Wy, ) such that oy is concentrated
on €[] for every t € [0,1] and

pe = b2a; in [0,1],  |uhl = |ilw,, for a.e. t€(0,1). (8.19)
Moreover, when p = 2, there exists a dynamic plan ™ € P(AC?([0,1]; €)) such that
= (e))ym, iy = him = h%a; in [0,1],

(8.20)

|l = latlw,, = y) for a.e. t € (0,1).
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Proof. By Lisini’s lifting Theorem [30), Theorem 5] (8.20)) is a consequence of the first part
of the statement and (8.19)) in the case p = 2. It is therefore sufficient to prove that for
a given p € AC([0, 1]; (M(X), HK)) there exists a curve aw € AC([0, 1]; (P2(<), Wy, )) such

that p; = b*(ay) and || = || a.e. in (0,1). By a standard reparametrization technique,
we may assume that p is Lipschitz continuous and |u;| = L.
We divide the interval I = [0, 1] into 2V-intervals of size 27V, namely IV := [tV |, V]

with ¢t := i27" for i = 1,...,2V. Setting p¥ := j,~ we can apply the Gluing Lemma
7.11] (starting from i = 0 to 2%V) to obtain measures oY € Py(€) such that

b(azN) = :UZN’ Wdc(azgvvaz]'j-ﬂ = FK(MZN,/LZ]-\_;_l) S L2_Na (8'21)

and concentrated on €[©y] where

oN

On = Vio(X) + > HK (i, ) < ©.

=1

Thus if ¢ is a dyadic point, we obtain a sequence of probability measures o'V (t) € Py(€)
concentrated on €[0] with h?(a™N(t)) = p; and such that Wy, (™ (t), ™ (s)) < L|t — s] if
s =m2N and t = n2~" are dyadic points in the same grid. By the compactness lemma
and a standard diagonal argument, we can extract a subsequence N (k) such that
an@ (t) converges to a(t) in (Po(€), Wy, ) for every dyadic point ¢. Since Wy, (a(s), a(t)) <
L[t — s| for every dyadic s, t, we can extend « to a L-Lipschitz curve, still denoted by «,
which satisfies h?(a(t)) = p. Since h? is 1-Lipschitz, we conclude that |o/[(t) = |u}| a.e.
in (0,1). 0

Corollary 8.5. Let (y1;)ico.] be a curve in AC*([0, 1]; (M(X), HK)) and let © as in (8.18).

Then there exists a dynamic plan 7 in P(C([0,1];Y)) concentrated on @2([0, 1; V) such
that oy = (e)ym is concentrated in X x [0,0], that u, = h*((e;)y), and that

il = / VPO dr(y) for L-ace. t € 0, 1], (3.22)

where |y'| is defined in (8.9).

Another important consequence of the previous representation result is a precise char-
acterization of the geodesics in (M(X), HK).

Theorem 8.6 (Geodesics in (M(X), HK)).
(i) If (pie)eepoq is a geodesic in (M(X),HK) then there exists an optimal geodesic plan
m in P(Geo(€)) (recall (8.16)) such that
(a) w-a.e. curve v is a geodesic in €,
(b) [0,1] 3 t — oy := (e )y is a geodesic in (Po(C), Wy, ), where all a; are
concentrated on €[O] with ©2 = 2(po(X) 4+ H* (1o, p11)),

(c) u = b2m = b2y for every t € [0,1], and
(d) (es,er)ym € Opty(pes, pte) if 0 < s <t < 1.

(11) If (X,d) is a geodesic space, for every po, pn € M(X) and every o € Opty(fio, 1)
there exists an optimal geodesic plan 7 € P(Geo(C)) such that (es, &)y = .
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Proof. The statement (i) is an immediate consequence of Theorem [8.4]
Statement (ii) is a well known property of the Kantorovich-Wasserstein space (&€, Wy, )
in the case when € is geodesic. 0

Theorem [8.4] also clarifies the relation between HK and GK introduced in Section [7.8|

Corollary 8.7. If (X,d) is separable and complete then AC?([0,1]; (M(X), GK)) coin-
cides with AC*([0,1]; (M(X), HK)) and for every curve pu € AC*([0,1]; (M(X), GK)) we
have

1 |ak(t) = |1 | (t)  for L -a.e. t €[0,1]. (8.23)

In particular if (X, d) is a length metric space then HK is the length distance generated by
GK.

Proof. Since GK < HK it is clear that AC?([0, 1]; (M(X), HK)) € AC?([0, 1]; (M(X), GK)).

In order to prove the opposite inclusion and it is sufficient to notice that the
classes of absolutely continuous curves in € w.r.t. d¢ and ge coincide with equal metric
derivatives |v'[q, = [v/[g,. Since GK = HK; is the Hellinger-Kantorovich distance induced

by g, the assertion follows by (8.20)) of Theorem O

8.3 Lower curvature bound in the sense of Alexandrov

Let us first recall two possible definitions of Positively Curved (PC) spaces in the sense of
Alexandrov, referring to [9] and to [10] for other equivalent definitions and for the more
general case of spaces with curvature > k.

According to Sturm [43], a metric space (Z,dz) is a Positively Curved (PC) met-
ric space in the large if for every choice of points zg,21,---,2y € Z and coefficients
AL, s Ay € (0, +00) we have

N N
Z )\ZAJCIQZ(Z“ Zj) S 2 Z )‘i)\jd2Z<207 Zj). (824)

i,j=1 t,j=1

If every point of Z has a neighborhood that is PC, then we say that Z is locally positively
curved.

When the space Z is geodesic, the above (local and global) definitions coincide with
the corresponding one given by Alexandrov, which is based on triangle comparison: for
every choice of 2y, 21,20 € Z, every t € [0,1], and every point z such that dz(z, z;) =
|k—t|dz (20, 2z1) for k = 0,1 we have

d% (22, z) > (1 — t)d5 (22, 20) + t d%(20, 21) — 2t(1 — 1) d% (20, 21). (8.25)

When Z is also complete, the local and the global definition are equivalent. Next we
provide conditions on (X, d) or (€, d¢) that guarantee that (M(X), HK) is a PC space.

Theorem 8.8. Let (X, d) be a metric space.
(i) If X C R is convex (i.e. an interval) endowed with the standard distance, then
(M(X),HK) is a PC space.

(i1) If (€,d¢) is a PC space in the large, cf. (8.24]), then (M(X), HK(X)) is a PC space.
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(111) If (X,d) is separable, complete and geodesic, then (M(X), HK) is a PC space if and
only if (X, d) has locally curvature > 1.

Before we go into the proof of this result, we highlight that for a compact convex
subset Q C R? with d > 2 equipped with the Euclidean distance, the space (M(), HK)
is not PC, see |27, Sect. 5.6] for an explicit construction showing the semiconcavity of the
squared distance fails.

Proof. Let us first prove statement (ii). If (€, d¢) is a PC space then also (P2(€), W, )
a PC space [44]. Applying Corollary [7.13] for every choice of p; € M(X), ¢ =0,..., N,
we can then find measures (; € P(€) such that

qu(ﬁOvﬂi) = I_K(/VLCI?MZ) for i = ]‘""7N7 (826)

where it is crucial that gy is the same for every i. It then follows that

ZA)\I-KQM,MJ ZA)\Wd (B:, B;) <2ZA>\Wd (B, 3;) _QZA)\I-K (10, f1i)-

4,j=1 1,j=1 4,j=1 3,j=1

Let us now consider (iii) “=": If (M(X), HK) is PC, we have to prove that (X, d) has
locally curvature > 1. By Theorem [9, Thm. 4.7.1] it is sufficient to prove that €\ {o}
is locally PC to conclude that (€,d) has locally curvature > 1. We thus select points
v; = [z, 7], © = 0,1,2, in a sufficiently small neighborhood of y = [z,r] with > 0, so
that d(z;,z;) < /2 for every 4, j and r;,r; > 0. We also consider a geodesic 1§, = [z, 5¢),
t € [0, 1], connecting by to vy, thus satisfying de (v, v;) = | — t|d(ho, v1) for i = 0, 1.

Setting p; := 10, f¢ := S04, it is easy to check (cf. [27, Sect. 3.3.1]) that

FK(MM/JJ) = d@(‘)i)‘)j) for Za] € {07 1a2}7

8.27
HR (pes ) = [k — /K (10, pn) for k€ {0, 1}. (8.27)

We can thus apply (8.25) to po, i1, fo, iy and obtain the corresponding inequality for

Yo; V1, Y2, Yt
(i) “<”: In order to prove the converse property we apply Remark [7.12] For

oy [, foy s = e € M(X) with ¢t € [0,1] and HK(pus, ) = |k — t|HK (o, p11), we find
a plan a € P(Xy x X; x X5 x X3) (with the usual convention to use copies of X) such
that

bioe = 1, /d2(0u%) = HC (i, py) - for (i,5) € A={(0,3), (1,3), (2,3)}. (8.28)

The triangle inequality, the elementary inequality ¢(1 — t)(a + b)* < (1 — t)a® + tb?, and
the very definition of HK yield for t € (0,1) the estimate

H1—t)H (19, 1) < £(1 — 1) / &2 (o, 1) dex < / £(1 — £)((de(90, 0s) + el 11))? dex

= /(1—15)0'%(00703) + tdg (03, 91) da = (1=t)HK (po, p1s) + tHK (s, 1)
= t(l - t)|'K2(M0, ,ul)
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This series of inequalities shows in particular that

(1—1)d%(ho, ) +td2(93, 1) = ¢(1—1) (de (o, 9s) +de(h3, 1)) = t(1—)d2(0,91)  ev-ace.

so that
de(Do,93) = tde(90,91) and de(vs,91) = (1 — t)de(vo,91) a-a.e.

Moreover, 1" & € Opty (pt0, 1), so that (8.28) holds for (i,7) € A= AU {(0,1)}.
By Theorem [7.20] we deduce that

d(xi,x;) <7/2 a-ae. for (i,j) € A

If one of the points 1;, © = 0,1,2, is the vertex o, then it is not difficult to check by a
direct computation that

dz(92,93) > (1 — t)dg(n2,90) + tdg(2,91) — 2t(1 — t)dg(no, v1). (8.29)

When 1; € €\{o} for every i = 0, 1,2, we use d(xg, x1) +d(x1, x2) +d(x2,%0) < 27 < 2, and
Theorem [9, Thm. 4.7.1] yields (8.29)) because of the assumption that X is PC. Integrating

(8:29) w.r.t. e, by taking into account (8.28)), the fact that (7% 7'),a € Opty (1o, 1),
and that

/d%(t)?u Ul) de > I_K2(lu’27,ui) for i = 07 17
we obtain
HC? (2, 113) > (1 — t)HK? (o, i) + tHC (2, 1) — 26(1 — £)HK (pao, ).
Finally, statement (i) is just a particular case of (iii). O

As simple applications of the Theorem above we obtain that M(R) and M(S?!)
endowed with HK are Positively Curved spaces.

8.4 Duality and Hamilton-Jacobi equation

In this section we will show the intimate connections of the duality formula of Theorem
with Lipschitz subsolutions of the Hamilton-Jacobi equation in X x (0, 1) given by

1
N + §|Dxft\2 +26 =0 (8.30)
and its counterpart in the cone space
1
OiCt + §‘D€Ct’2 =0. (8.31)
Indeed, the first derivation of HK via LET was obtained by solving (8.30)) for X = R?, see
the remarks on the chronological development in Section [A]
At a formal level, it is not difficult to check that solutions to (8.30) corresponds to the
special class of solutions to (8.31]) of the form
Cl[z,7]) i= & (2)r?. (8.32)
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Indeed, still on the formal level we have the formula
1
IDeC|? = §|DxC|2 +0,C1° = [Dxg*r? +4€%* it (=& (8.33)

Since the Kantorovich-Wasserstein distance on P5(€) can be defined in duality with subso-
lutions to via the Hopf-Lax formula and 2-homogeneous marginals are modeled on
test functions as in (8.32]), we can expect to obtain a dual representation for the Hellinger-
Kantorovich distance on M(X) by studying the Hopf-Lax formula for initial data of the

form (o(z,7) = &o(2)r?.

Slope and asymptotic Lipschitz constant. In order to give a metric interpretation
to and , let us first recall that for a locally Lipschitz function f : 7 — R
defined in a metric space (Z,dz) the metric slope |Dzf| and the asymptotic Lipschitz
constant |D f|, are defined by

. |f(x) = f(2)] : [f(y) = f(@)|
D z) ;= limsup —————+, Dzfl.(z) := lim sup —————> (8.34
[Dzf|(2) = lim sup a,7.2) Dz fla(2) := lim sup a,0.0) (8.34)
with the convention that |Dzf|(z) = |Dzf|.(2) = 0 whenever z is an isolated point.

Dz fla can also be defined as the minimal constant L > 0 such that there exists a
function G : Z x Z — [0, 00) satisfying

|f<$) - f<y>| < GL(lL‘,y)dz(ZE,y), limsup GL(xay) < L. (835)

T, Yy—=z

Note that |Dyf|, is always an upper semicontinuous function. When Z is a length space,
|Dzfla is the upper semicontinuous envelope of the metric slope |Dzf|. We will often
write |Df], |Df|, whenever the space Z will be clear from the context.

Remark 8.9. The notion of locally Lipschitz function and the value |Dyf[, does not
change if we replace the distance dz with a distance dz of the form

82(21,22) = h(dz(z1,22)) for z1,29 € Z,
h(r) (8.36)

with h : [0,00) — [0,00) concave and 11&)1 — =1
T r

In particular, the truncated distances dz A k with k£ > 0, the distances asin((dz A k)/a)
with @ > 0 and k € (0,an/2], and the distance g = g(d) given by yield the same
asymptotic Lipschitz constant.

In the case of the cone space € it is not difficult to see that the distance dg and d;/2¢
coincide in suitably small neighborhoods of every point ) € € \ {0}, so that they induce
the same asymptotic Lipschitz constants in € \ {o}. The same property holds for g¢. In
the case of the vertex o, relation yields

Defla(0) < Died, jp0)flal0) < V2[Defla(e). O (8.37)

The next result shows that the asymptotic Lipschitz constant satisfies formula (8.33))

for (([z,r]) = &(z)r?.
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Lemma 8.10. For ¢ : X — R let ¢ : € — R be defined by (([z,r]) := &(z)r?.

(i) If C is de-Lipschitz in €[R], then £ € Lip,(X) with

Lip(¢, €[R]).  (8.38)

= =

1 1. .
sup|€| < = sup|¢| < = Lip(¢, €[R)) and Lip(§,X) <
X ¢[R]

(11) If & € Lipy(X), then C is dg-Lipschitz in €[R] for every R > 0 with

sup|¢| < R2suple| and Lip?(¢, €[R]) < B (Lin(, (X, d))+4sup ¢, (3:39)
¢[R] X X

where d := 2sin(d,/2).

(11i) In the cases (i) or (ii) we have, for every x € X and r > 0, the relation

Do, 1) — {(\ngjg(x) n 452<x))r2 forr >0, (5.40)

0 forr=0.
The analogous formula holds for the metric slope |DeC|([x,r]). Moreover, equation

(8.40) remains true if de is replaced by the distance d; o ¢.

Proof. As usual we set v, = [z;,7;] and y = [z, 7].

Let us first check statement (i). If ¢ is locally Lipschitz then |¢(z)| = #z[¢([2, R]) —
¢([z,0])| < £ Lip(¢; €[R]) for every R sufficiently small, so that £ is uniformly bounded.
Moreover, using ([7.3) for every R > 0 we have

R2[&(21)—&(2)| < [¢(21, R)—C(w2, R)| < Lip(¢; €[R])Rd(z1, 72) < Lip(¢; €[R])Rd(w1, 22),

so that £ is uniformly Lipschitz and (8.38]) holds. .
Concerning (ii), for £ € Lip,(X) we set S := sup |{| and L := Lip(&, (X,d)) and use
the identity

C(n1) = C(h2) = (§(z1) — &(@2))rare + 28(2)r(r1 — 72) + w(91,92;9) (11 —72),  (8.41)
where w(h1,92;9) = r1&(x1) + roé(z2) — 2ré(x) with ml})ggnw(m, n2) = 0.

Since |w(n1,2;0)| < 2RS if y; € €[R], equation (8.41)) with » = 0 yields

|§(Ul) — C(Ug)l < La(l’l, 1'2)7"17”2 + 2RS|T1 — 7"2| < 2<L2 + 4T2)1/2Rd¢(01, 02)

Letting R | 0 the inequality above also proves in the case r = 0.

In order to prove when r # 0 let us set Lg := |DeC|?([z,7]), Lx = |Dx&|u(2),
and let G, be a function satisfying with respect to the distance d (see Remark MD
Equation yields, for all y = [x,r], the relation

1C(91) = ¢(02)] < Gy, w2)d(x1, 22)rira + (20€(2)|r + |w(1, 92:9)[) [r1 — 7o
< (G2L(331,$2)7“17”2 + (2|§(93)‘7" + |w(v1,92; 1) )2>1/2d¢(‘)1,02)-
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Passing to the limit yi, 1y, — y and using the fact that =y, 2z, — x due to r # 0, we obtain

Le < r(2 +4le@P) "

In order to prove the converse inequality we observe that for every L’ < Lx there exist two

sequences of points (7, )nen converging to x w.r.t. d such that {(z1,) — {(72,) > L'dy,

where 0 < 0, := d(xypn,22,) — 0. Choosing ry, = r and o, = r(1 + A\d,) for an

arbitrary constant A € R with the same sign as {(z), we can apply (8.41)) and arrive at
> lim inf —r

M) —C(92,0)]
Le>1 f ’ d
CT U e o) T o /NEr202 1 1282 1 o(0y) 21

Optimizing with respect to A we obtain

L5220 (@)l \ba + 0(8,)  L'+2¢(@)] [

Lg > r*((L)* + 4]£(x)[*), where L' < Ly is arbitrary.

This proves (§8.40)) for the asymptotic Lipschitz constant |D¢(|,. The arguments for prov-
ing (8.40]) for metric slopes |D¢(| are completely analogous. O

Hopf-Lax formula and subsolutions to metric Hamilton—Jacobi equation in the
cone €. Whenever f € Lip,(€) the Hopf-Lax formula

B / 1 /
2:f(y) := inf (f(n )+ Q—tdém ) )) forn € Cand ¢ >0, (8.42)

provides a function t — 2, f which is Lipschitz from [0, c0) to C,(&), satisfies the a-priori
bounds
inf f < 2if <sup f, Lip(2.f;€) < 2Lip(f, ), (8.43)
¢

and solves ]
0 2:f(3) + §|D¢Qtf\§(3) <0 foreveryze € t>0, (8.44)

where ;" denotes the partial right derivative w.r.t. t. It is also possible to prove that for
every y € € the time derivative of 2, f(1) exists with possibly countable exceptions and
that is in fact an equality if (€, d¢) is a length space, a property that always holds
if (X,d) is a length metric space. This is stated in our main result:

Theorem 8.11 (Metric subsolution of Hamilton-Jacobi equation in X'). Let & € Lip,(X)
satisfy the uniform lower bound P :=infx & +1/2 > 0 and let us set (([x,r]) := &(z)r?.
Then, for every t € [0, 1] we have

2(([z,7]) = &(x)r?,  where &(x) == P&(x) and (8.45)

. £(2)) sin®(d, 2 (z, 7)) 1 cos?(d/2(x, ')
Zi(z) = inf (1+2t§(m’) 2t(1+2t(7)) > = b5 (1 T Iy )

Moreover, for every R > 0 we have

1
&(2)r? = n’:[a:’i,%eﬁ[R] (f(x')(r')2 + 2—td§([:17,7“]; [z, r'])) forallz € X, r < PR. (8.46)
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The map t — & 1is Lipschitz from [0, 1] to Cp(X) with & € Lip,(X) for every t € [0,1].
Moreover, & s a subsolution to the generalized Hamilton-Jacobi equation

0, & (z) + %|DX§t|3(m) +28%(x) <0 for everyx € X and t € [0,1]. (8.47a)

For every x € X the map t — &(x) is time differentiable with at most countable exceptions.

If (X,d) is a length space, (8.47a) holds with equality and |Dx&l.(z) = |Dx&|(z) for every
reX andtel0,1]:

O &(x) + %|Dx§t|§(ﬂﬁ) +26(2) =0,  [Dx&la(z) = Dx&l(2). (8.47b)

Notice that when £(x) = £ is constant, (8.45) reduces to 2§ = £/(1 + 2t£) which is
the solution to the elementary differential equation %5 + 262 = 0.

Proof. Let us observe that inf,cio 1) .cx (1 + 2t£(2)) = P > 0. A simple calculation shows

() (r')? + Qltd%([x, rl; [/, r']) = %((H—%{(w'))(r')z + 72 = 2r 7’ cos(d,(z, :E’)))
— —Qt(l—l—th(l'/)) |:((1—|—2t€(x/))r/ _ COS(dW(:L’7 Il))”/’) + T’2 <2tf(l’,) + sin2(d7r(x, l’/))>] ‘

Hence, if we choose

reos(d.(x,2'))/ (142t (")) if d(z,2’) < /2

0 otherwise,

' =r'(x, 2 r) = {

we find (notice the truncation at 7/2 instead of )

inf €07 + o) = s

which yields ({8.45) and (8.46]).
Equation (8.46) also shows that the function ¢; = &(x)r? coincides on €[PR] with

the solution ([t given by the Hopf-Lax formula in the metric space €[R]. Since the initial
datum ( is bounded and Lipschitz on €[R] we deduce that ¢[* is bounded and Lipschitz,
so that t +— & is bounded and Lipschitz in X by Lemma [8.10]

Equation and the other regularity properties then follow by and the
general properties of the Hopf-Lax formula in €[R]. O

(2155(31:') + sin2(dy o, a:’))), (8.48)

Duality between the Hellinger-Kantorovich distance and subsolutions to the
generalized Hamilton-Jacobi equation. We conclude this section with the main
application of the above results to the Hellinger-Kantorovich distance.

Theorem 8.12. Let us suppose that (X,d) is a complete and separable metric space.

(i) If u € AC?([0, 1]; (M(X), HK)) and € : [0,1] — Lip,(X) is uniformly bounded, Lips-
chitz w.r.t. the uniform norm, and satisfies (8.474)), then the curve t — [ & duy is
absolutely continuous and

d 1
E/th dpe < §|M;|I2-K (8.49)
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(i1) If (X,d) is a length space, then for every pg, 1 and k € NU {oo} we have

1
§I-K2(uo,,u1) = sup { /X§1 dpy — /050 dupo + €€ Ck([()? 1 Lipy (X)), (8.50)

0i&(x) + SDx&[(x) + 262(x) <0 in X x (0,1)}

Moreover, in the above formula we can also take the supremum over functions £ €
C*([0,1]; Lipy (X)) with bounded support.

Proof. Tf ¢ satisfies then setting (;([z, r]) := &(z)r? we obtain a family of functions
t +— ¢, t €10, 1], whose restriction to every €[R] is uniformly bounded and Lipschitz, and
it is Lipschitz continuous with respect to the uniform norm of Cy(€[R]). By Lemma [8.10]
the function ¢ solves

1
Of G+ 5DeGila <0 in € (0,1).

According to Theorem we find # > 0 and a curve a € AC?([0,1]; (Po(€[0]), Wy, ))
satisfying (8.19). Applying the results of [6, Sect. 6], the map t — [, ¢; doy is absolutely
continuous with

d 1
aQ /@gt doy < §|a2|\2,vd¢ Z'a.e. in (0,1).

Since [, ¢ doy = [ & dpu we obtain (8.49).
Let us now prove (ii). As a first step, denoting by S the right-hand side of ({8.50)), we
prove that HK*(pg, p11) > S. If € € C'([0, 1]; Lip, (X)) satisfies the pointwise inequality

1
0&(w) + 5IDx&[*(2) + 26/ () <0, (8.51)
then it also satisfies (8.47a]), because (8.51]) provides the relation
1
5IDx&[*(x) < —(&:&(w) + 2£f<x)) for every (z,t) € X x (0,1), (8.52)

where the right hand side is bounded and continuous in X. Equation thus yields
the same inequality for the upper semicontinuous envelope of |Dx&| and this function
coincides with |Dx&|, since X is a length space.

We can therefore apply the previous point (i) by choosing A > 1 and a Lipschitz
curve u : [0, 1] — M(X) joining pg to py with metric velocity |u}|m < AHK(po, f11), whose
existence is guaranteed by the length property of X and a standard rescaling technique.

Relation (8.49)) yields
1
2 [ =2 [ i< [ Il < HCGuo ).
X X 0

Since A > 1 is arbitrary, we get HK* (g, p11) > S.

In order to prove the converse inequality in (8.50) we fix 7 > 0 and apply the dual-
ity Theorem to get & € Lip,,(X) (the space of Lipschitz functions with bounded
support) with inf {, > —1/2 such that

) / Pty dyiy -2 / €odpio > M (po, 1) — 1. (8.53)
X X
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Setting & := &, we find a solution to which has bounded support, is uniformly
bounded in Lip,(X) and Lipschitz with respect to the uniform norm. We have to show that
(&¢)ieo,1) can be suitably approximated by smoother solutions £ € C*°((0, 1]; Lip, (X)),
e > 0, in such a way that [ & dp; — [&dp,; ase L0 for i =0,1.

We use an argument of [I], which relies on the scaling invariance of the generalized
Hamilton-Jacobi equation: If £ solves and A > 0, then &z) := A4 () solves
(8.51)) as well. Hence, by approximating & with A{(At+(1—X)/2,z) with 0 < A < 1 and
passing to the limit A\ 1 1, it is not restrictive to assume that £ is defined in a larger
interval [a,b], with @ < 0,b > 1. Now, a time convolution is well defined on [0, 1], for
which we use a symmetric, nonnegative kernel x € C°(R) with integral 1 defined via

& () = (§y (@) * Ke)y = /gw(a:)/is(t—w) dw, where r.(t) := e 'k(t/e), (8.54)
R
yields a curve £° € C*([0, 1]; Lip, (X)) satistying
0 + %(’Dxf(-)m * Ke + 2(52)) ke <0 in X x [0, 1].

By Jensen inequality 5(2) * ke > (&) * ke)? and [Dx&(y|? * ke > (|Dx&)| * ke)?. Moreover,
applying the following Lemma we also get [Dx&.)| * ke > [Dx& &, so that the
smooth convolution & satisfies (8.51]). Since & — &, uniformly in X for every t € [0, 1],
we easily get

S > limZ(/ £ dm —/ & duo) > H (o, 1) — 1.
£l0 X b'e
Since 1 > 0 is arbitrary the proof of (ii) is complete. O

The next result shows that averaging w.r.t. a probability measure 7 € P(Q2) does not
increase the metric slope nor the asymptotic Lipschitz constant. This was used in the
last proof for the temporal smoothing and will be used for spatial smoothing in Corollary

B.14

Lemma 8.13. Let (X, d) be a separable metric space, let (2, B, ) be a probability space
(i.e. m1(Q2) = 1) and let &, € Lipy(X), w € Q, be a family of uniformly bounded functions
such that sup,,cq Lip(£,; X) < 00 and w — &,(x) is B-measurable for every x € X. Then
the function x — &(x) = [, & (x)dm(w) belongs to Lipy(X) and for every x € X the
maps w — |Dx&,|(x) and w — |Dx&,|a(x) are B-measurable and satisfy

Dxélalx) < /X Dx&ola() dr(w), |Dxé](x) < /X Dyt dn(w).  (8.55)

Proof. The fact that &, € Lip,(X) is obvious. To show measurability we fix z € X
and use the expression for |Dx&la(z). It is sufficient to prove that for every r >
0 the map w — $,,(7) = SUP,L.ep, (2 €(y) — Eu(2)|/d(y, 2) is B-measurable. This
property follows by the continuity of £, and the separability of X, so that it is possible to
restrict the supremum to a countable dense collection of points B, (x) in B,(z). Thus, the
measurability follows, because the pointwise supremum of countably many measurable
functions is measurable. An analogous argument holds for |Dx&,|.
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Using the definition £ := f £,dm we have

\5

|€w — )|
/ d(y.2 dr(w) for y # 2.

Taking the supremum with respect to vy, z € BT(JL') and y # z, we obtain

sup [€) — £(z)] S/er,w($) dm(w).

y#zE€B, () d(y> Z)

A further limit as » | 0 and the application of the Lebesgue Dominated convergence
Theorem yields the first inequality of (8.55)). The argument to prove the second inequality
is completely analogous. ([l

When X = R? the characterization (8.50]) of HK holds for an even smoother class of
subsolutions ¢ of the generalized Hamilton—Jacobi equation.

Corollary 8.14. Let X = R? be endowed with the Euclidean distance. Then

2 _ o . oo (M d
HC® (1o, p11) = 2 Sup{/ &1 dp /Soduo 0 £ e G (R x [0, 1]), 550

B, (a —|Dx5t (@)]° +262(x) <0 mXx(o,1)}

Proof. We just have to check that the supremum of does not change if we substitute
C°°([0, 1]; Lipy, (RY)) with C>®(R? x [0,1]). This can be achieved by approximating any
subsolution ¢ € C*°([0, 1]; Lip,,(R%)) via convolution in space with a smooth kernel with
compact support, which still provides a subsolution thanks to Lemma |3.13] ([l

8.5 The dynamic interpretation of the Hellinger-Kantorovich
distance “a la Benamou-Brenier”

In this section we will apply the superposition principle of Theorem and the duality re-
sult with subsolutions of the Hamilton-Jacobi equation to quickly derive a dynamic
formulation “a4 la Benamou-Brenier” [7, 34], [2, Sect. 8] of the Hellinger-Kantorovich
distance, which has also been considered in the recent [24]. In order to keep the expo-
sition simpler, we will consider the case X = R? with the canonical Euclidean distance
d(z1,xq) := |x; — x2|, but the result can be extended to more general Riemannian and
metric settings, e.g. arguing as in [0, Sect. 6]. A different approach, based on suitable
representation formulae for the continuity equation, is discussed in our companion paper
[27].

Our starting point is provided by a suitable class of linear continuity equations with
reaction. In the following we will denote by p; € M(R? x [0, 1]) the measure

/£dm —/ / &) dpy(z (8.57)

induced by a curve p € CO([0, 1]; M(R?)).
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Definition 8.15. Let u € C°([0, 1]; M(R?)), let (v, w) : R? x (0,1) — R4 be a Borel
vector field in L2(R? x (0, 1), ur; RTY), thus satisfying

1
/ / (]vt(x)\z—i-wtz(w)) dyu(z) dt—/\('v,w)|2du1 < . (8.58)
0 JRd
We say that p satisfies the continuity equation with reaction governed by (v,w) if
Oty + YV - (vyty) = wepy  holds in the sense of distributions in R x (0, 1), (8.59)
i.e. for every test function & € CZ(RY x (0,1))

1
/ /R <3t§t(x) + D& (x)vi(x) + §t(x)wt(x)> dp dt = 0. (8.60)
0 d
An equivalent formulation [2 Sect. 8.1] of is
d
3 L, €@ dm(a) = /R (Det@i(a) + E@pwil@) ) dpe i 20.1), (861)

for every ¢ € C(RY). We have a first representation result for absolutely continuous
curves t — 1, which relies in Theorem [8.4] where we constructed suitable lifted plans
m € P(AC*([0,1];€)), i.e. py = b2, where € is now the cone over R%.

Theorem 8.16. Let (11:)icp1) be a curve in AC*([0, 1]; (M(R?), HK)). Then u satisfies
the continuity equation with reaction (8.59) with a Borel vector field (v,w) € L2(R? x
(0,1), pur; R™1Y) satisfying

1
(vy, wy) € LA(RY; y), / (|’Ut|2 + Z|wt|2) dps < |h* for L'-a.e. t €(0,1).  (8.62)

Proof. We will denote by I the interval [0, 1] endowed with the Lebesgue measure A =
21100, 1]. Recalling the map (x,r) : € = R¥x [0, 00) we define the maps x; : C(I; &) x [ —
R? x [ and R: C([;€) x I — Ry via x;(z,t) := (x(z(t)),t) and R(z,t) := r(z(t)).

Let 7w be a dynamic plan in € representing y; as in Theorem [8.4 We consider the
deformed dynamic plan 7r; := (R?7)®\, the measure fi; := (x;);7; and the disintegration
(T2,t) (z0)crix s Of 7 with respect to ;. Notice that 7« < O, where © is given by (8-18),
and that

fir = /0 (1 ® 6,) AA(E), (8.63)

coincides with yr in (8.57), because for every & € By(R? x I) we have

[ ¢ = [ et aman - [ 1 [ ) du(o) ae - [ <.

0

Let u € L2(AC*(I;€) x I;m ® A\;R¥1) be the Borel vector field u(n,t) := yp(t) for
every curve ) € AC*(I;€) and t € I, where v}, is defined as in (8.12). By taking the
density of the vector measure (x;);(u7;) with respect to p; we obtain a Borel vector field
uy = (v,0) € LA (R x I; up; R which satisfies

wr(z,t) = /udﬂ'm for pr-a.e. (r,t) € RYx I and /(\ut|2+w§) dps < |42 (8.64)
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Choosing a test function (([z,r],t) := &(x)n(t)r? with & € C°(R?) and € C°(I) we can
exploit the chain rule (8.14)) in R¢ and find

. / i - /Rdxf”( D) dpr == [ €xto(e) PO (1) dlr )
/ a0 d(m ) = [ (= S0+ (Dec(() >y¢<t>>)d<n®x>
- [( / ~ o0, d) dm [ (D). 2600). wR (w3
= [ n0(Dt(a), 260w
= / i / (a8 (@), vila)) + 26 (w)iin (@) ) dpe .

Setting w; = 21w, the continuity equation with reaction (8.61]) holds. O

The next result provides the opposite inequality, which will be deduced from the dual-
ity between the solutions of the generalized Hamilton—Jacobi equation and HK developed

in Theorem 812

Theorem 8.17. Let (yu)iep) be a continuous curve in M(R?) that solves the continu-
ity equation with reaction (8.59) governed by the Borel vector field (v,w) € L*(R?¢ x
[0, 1], pr; RTY) with puy given by (8.57). Then pu € AC*([0,1]; (M(R?), HK)) and

1
|/~L;|2 < /d <|'Ut’2 + Z’wt|2> due  for £L'-a.e. t € (0,1). (8.65)
R

Proof. The simple scaling £(t,2) — (b—a)é(a+(b—a)t, x) transforms any subsolution of
the Hamilton-Jacobi equation in [0,1] to a subsolution of the same equation in [a,b].
Thus,

i) = 20-0)sup { [ 6t = [ &du: € € CXR? x ),
(8.66)

atgt |D &(@)[° +262(x) <0 in R x (a,b)}.
Let £ € C°(R? x [0,1]) be a subsolution to the Hamilton-Jacobi equation 8§ + 5|D&J* +

262 < 0 in R? x [0,1]. By a standard argument (see [2, Lem.8.1.2]), the integrability
(8.59) and the weak continuity of ¢ — p; yield

t1
2/ oy dprg, — 2/ Sto dptgy = 2/ atft =+ <Dz§t7 ’Ut> + ftwt) dp dt
]Rd Rd Rd

<2 /tl / - —’Dz§t|2 — 26 + (Do, ve) + &wt) dp dt

S/t /]R <|’Ut| +—|wt| )dﬂtdt-

0
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Applying Corollary and (8.66|) we find
t1 1
HC (paag , 1) < (tl—to>/ / (\vt\2+1\wtl2) dpedt for every 0 < tg < t; < 1,
to R4

which yields ({8.65]). O

Combining Theorems and with Theorem and the geodesic property of
(M(R?), KK) we immediately have the desired dynamic representation.

Theorem 8.18 (Representation of HK & la Benamou-Brenier). For every pg, 11 € M(R?)
we have

1
. 1
o) = min { [ [ (o 4 ) ductt = g€ €0 MR, pms =
0 JRA
Doty + Y - (vojae) = wopty in 2" (R x (0, 1))}. (8.67)

The Borel vector field (v, w) realizing the minimum in (8.67) is uniquely determined ;-
a.e. in RY x (0,1).

The discussion in [27] reveals however that there may be many geodesic curves, so
in general p; is not unique. Indeed, the set of all geodesics connecting 1o = apd,, and
p1 = a6, with ag,a; > 0 and |x;—xzo| = 7/2 is infinite dimensional, see [27], Sect. 5.2].

8.6 Geodesics in M(RY)

As in the case of the Kantorovich-Wasserstein distance, one may expect that geodesics
(11¢)te1) in (M(R?), HK) can be characterized by the system (cf. [27, Sect. 5])

1
Oy + V- (y Dy&4) = A&, 016 + §|Dxft|2 +2¢ =0. (8.68)

In order to give a precise meaning to we first have to select an appropriate reg-
ularity for &. On the one hand we cannot expect C!' smoothness for solutions of the
Hamilton-Jacobi equation (8.68) (in contrast with subsolutions, that can be regularized
as in Corollary and on the other hand the Z¢ a.e. differentiability of Lipschitz
functions guaranteed by Rademacher’s theorem is not sufficient, if we want to consider
arbitrary measures j, that could be singular with respect £<.

A convenient choice for our aims is provided by locally Lipschitz functions which are
strictly differentiable at p;-a.e. points, where uy has been defined by . A function
[ RY — R is strictly differentiable at x € R® if there exists Df(x) € (R?)* such that

o f@) = f@) = Df ()’ — a")

o o |.T/ _ ZB”|
ol !l

— 0. (8.69)

According to [I3, Prop. 2.2.4] a locally Lipschitz function f is strictly differentiable at
x if and only if the Clarke subgradient [I3] Sect. 2.1] of f at x reduces to the singleton
{Df(z)}. In particular, denoting by D C R? the set where f is differentiable and denoting
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by k. a smooth convolution kernel as in (8.54]), Rademacher’s theorem and [I3, Thm. 2.5.1]
yield
lim Df(2") = Df(x), lii(r)lD(f * k.)(z) =Df(x) forall z € D. (8.70)

z'eD

In the proofs we will also need to deal with pointwise representatives of the time derivative
of a locally Lipschitz function £ : R? x (0,1) — R: if D(9,¢) will denote the set (of full

L measure) where ¢ is differentiable w.r.t. time and 9;¢ the extension of 9;¢ to 0
outside D(0,), we set

(0e&t)—(x) := liggiglf (06 % k) (),  (0:&)T () = limjélp (066t * k) (2). (8.71)
15
It is not difficult to check that such functions are Borel; even if they depend on the
specific choice of k., they will still be sufficient for our aims (a more robust definition
would require the use of approximate limits).

We are now ready to characterize the set of all geodesic curves by giving a precise mean-
ing to (8.68)). The proof that the conditions (i)—(iv) below are sufficient for geodesic follows
directly with the subsequent Lemma whereas the proof of necessity is more involved
and relies on the existence of optimal potentials ¢ for LET = HK* in Theorem (d),
on the characterization of subsolutions of the generalized Hamilton—Jacobi equation in
Theorem [8.11] and on the characterization of curves t — 1, in AC*([0, 1]; (M(R?), HKK)).

Theorem 8.19. Let pn € C°([0,1]; M(R?)) be a weakly continuous curve. If there exists a
map & € Lip.((0,1); Cy(RY)) such that

(i) & € Lipy(R%) for every t € (0,1) with t — Lip(&, R?) locally bounded in (0,1)
(equivalently, the map (x,t) — & () is bounded and Lipschitz in R? x [a, b] for every
compact subinterval [a,b] C (0,1)),

(ii) € is strictly differentiable w.r.t. x at pr-a.e. (x,t) € RY x (0,1),

(111) & satisfies

Ot + %\Dxft(x)f +285(x) =0 L -a.e. in R? x (0,1), (8.72)

(iv) and the curve (fit)icjo) solves the continuity equation with reaction with the vector
field (D&, 4€) in every compact subinterval of (0,1), i.e.

Oty + V - (D&) = 4&yy  in 2'(RY x (0,1)), (8.73)

then 1 is a geodesic w.r.t. the HKK distance. Conversely, if p is a geodesic then it is
possible to find & € Lipy,.((0,1); Cy(R?)) that satisfies the properties (i) — —(iv) above, is
right differentiable w.r.t. t in R? x (0,1), and fulfils (8.47b) everywhere in R? x (0,1).

Notice that (8.72) seems the weakest natural formulation of the Hamilton-Jacobi equa-~
tion, in view of Rademacher’s Theorem. The assumption of strict differentiability of & at
pr-a.e. point provides an admissible vector field Dx¢ for (8.73)).
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Proof. The proof splits into a sufficiency and a necessity part, the latter having several
steps.
Sufficiency. Let us suppose that u, ¢ satisfy conditions (i), ..., (iv).

Since D(0;€) has full Z41-measure in R? x (0, 1), Fubini’s Theorem shows that N :=
{te(0,1): L({x e RY: (x,t) & D(9:€)}) > 0} is L1-negligible. By we get

(06)-(x) = ~limsup ((5ID.&I% +267) = 5.) () > —3IDEL() ~ 260(x) (874

el0

for every z € R and ¢ € (0,1) \ N.
We apply Lemma below with v = D¢ and w = 4&: observing that |D&|.(z) =
|D.& ()| at every point z of strict differentiability of &, we get, for all 0 < a < b < 1,

2 [ Gdw-2 [ Gauz2 [ ((at@_ DL () + 46 (2) ) du
R4 R4 R4 x (a,b)
74 1
Do [ (Goare2gw)an' S [ > ;o aw)
R4 x (a,b)
On the other hand, since R? is a length space, Theorem yields
b I_K (/Jla? /Jlb) > 2 gb d,ub -2 fa d,uav
- R R

so that all the above inequalities are in fact identities and, hence,

H (ptas 1) = (b — @) 1] £-ae. in [a,b].

This shows that p is a geodesic. Passing to the limit as a | 0 and b 1 1 we conclude the
proof of the first part of the Theorem.

Necessity. Let (p)e1] be a HK-geodesic in M(R?) connecting y to p11; applying Theo-
remwe can find a Borel vector field (v, w) € L*(R? x (0, 1), ur; R4™) such that
and (8.62) hold. We also consider an optimal plan v € Optg (1, p2)-

Let 11,1 : [ 00, 1] be a pair of optimal potentials given by Theorem [6.3 . d)
and let us set 5 = — wl and & = 2 for t € (0,1). Even if we are considering more
general initial data & € B(R% [—1/2, +00]) in (8.45), it is not difficult to check that the
same statement of Theorem holds in every subinterval [a,b] with 0 < a < b < 1 and

lim Z&(x) = sup Zé(x) = & (), where & (z):=lim inf () (8.75)

tl0 t>0 rl0 a'€By(x)

is the lower semicontinuous envelope of £&. Moreover, setting

(@) = Prg(a) = (o) = inf &), (3.76)

the function & is upper semicontinuous, and optimality yields

%1/;2(:15) =& (2) for yp-a.a. x € RY (8.77)
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By introducing the semigroup Z,¢ := —2,(—¢€) and reversing time, we can define

gt = ﬁl—t- (878)
By using the link with the Hopf-Lax semigroup in € given by Theorem 8.11} the optimality
of (11,12), and arguing as in [47, Thm. 7.36] it is not difficult to check that

. , , 1 ,
& <& mRY §=6= —5%1 po-ae. in R?. (8.79)

Notice that the function z — — cos?*(|]z — 2’| A 7/2) has bounded first and second deriva-
tives, so it is semiconcave. It follows that the map x — & (x) is semiconcave for every
t €(0,1) and & — &(z) is semiconvex.

Since t — [ & dpy and t — [ & dp are absolutely continuous in (0, 1), Theorem [8.12[1)
yields

d 1 1
E/ft dp < §|N:e|2 = QH(Q(MO,M); (8.80)

so that ;
—a
Jedn— [ cad < ™5 0 o).

Passing to the limit first as a | 0 and then as b1 1 by monotone convergence (notice that
& < 1/2) and using optimality once again, we obtain

o) = [wnduo+ [vndin =2 [ a2 [ o

(8.81)
=a}é{%?(/ﬁbdub—/fadua>-...
By (8.80)) it follows that
d 1 1 :
G [ e =Sl = SHC G m) in (0.1). (552)
Reversing time, the analogous argument yields
d [ - 1 1 .
G [ =5l = SHC G m) in (0.1). (8.83)

Hence, we have proved that the maps t — f & dpy and € — f & dpy are affine in [0, 1] and
coincide at ¢ = 0 and ¢t = 1, which implies that

/{t dp, = /ft dpy  for every t € [0, 1]. (8.84)

Recalling (8.79), we deduce that the complement of the set Z; := {x € R : & (x) = & ()}
is pi-negligible. Since & is Lipschitz and semiconcave (thus everywhere superdifferen-
tiable) for t € (0, 1) and since & is Lipschitz and semiconvex (thus everywhere subdiffer-

entiable), we conclude that &, is strictly differentiable in Z;, and thus it satisfies conditions
(i) and (ii).
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Since (iii) is guaranteed by Theorem [8.11] (R is a length space), it remains to check
(8.73). We apply the following Lemma by observing that [3, Prop.3.2,3.3] and
Theorem yield

limsup ;& (2') < limsup 0; & (2') < 0; &(x),  liminf 9,7&(2") > 9, &(w);

o' —x ' —x

since 9; &(x) = 0, & (z) p-a.e. we get

(0:8)T = (08)- =07 E  prae.

and therefore (8.85) holds with equality.
Recalling that |D&|2(x) = |D,&(z)|? at every point of Z;, for every 0 < a < b < 1 we
have

b—a ®33)
5 H<2<uo,u1>=/ &,dub—/ Codpy =
Rd ]Rd

(07€+ Dot v+ €w) dpu

R4 x (a,b)

1
= [ (- 5Dabal ~ 26+ Dugo o+ w) du
R4 x (a,b)

1 1 1 1
[ (= IDut 0P — 26 — 0 + P + gu?) di
Rix(p \ 2 4 9

8
B2 1 2 L2 1 ’2
O N O s R DL MR
Rd x (a,b) a
We deduce that v = D,£ and w = 4€ holds p-a.e. 0

The following lemma provides the “integration by parts” formulas that where used in
the sufficiency and necessity part of the previous proof of Theorem [8.19] It is established
by a suitable temporal and spatial smoothing, involving a smooth kernel x. as in (8.54]).

Lemma 8.20. Let € ACL ((0,1); (M(R?), HK)) be satisfying the continuity equation
with reaction (8.59) governed by the field (v,w) € L*(RY x (a,b), ur) for every [a,b] C
(0,1). If € € Lipy.((0,1); Cy(R?)) satisfies conditions (i,ii) of Theorem[8.19, then for all

0<a<b<l we have

/Rdx(a’b) ((8t§)+ +D§v + §w> dur = /]Rd & dpup — y o dptq -
> [ (00 Do cw)du,
R (a,b)

where (0,€)T, (0:€)_ are defined in terms of a space convolution kernel k. as in (8.71)).

Proof. We fix a compact subinterval [a,b] C (0,1), ¥ € (b, 1), and set M := maxe[q ) p:(R?)
and L := Lip(& R X [a, U']) + SuPgay (g4 €]-

We regularize £ by space convolution as in by setting £° := & % k. and perform
a further regularization in time, viz.

1 T
@) = / & (@)dr, 0<7<V—b, (8.36)
0
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Since 7 € CY(R? x [a,b]), we can argue as in the proof of Theorem and obtain, for
every € > 0 and 7 € (0,b'—b), the identity

/ £ dpuy — / €7 djty — / (BT + DT v b 7w dpr. (88)
R4 Rd R x (a,b)

We first pass to the limit as 7 | 0, observing that £57 — £° uniformly because £° is bounded
and Lipschitz. Similarly, since DE®7 = (DE%)™ and DEF is bounded and Lipschitz, we have
DES™ — DEF uniformly. Finally, using

067 (@) = 2(6l0) = 6(0) = [ (6o — G @Dl — ) o

and the fact that N := {t € (0,1) : L?({z € R?: (z,t) &€ D(0:€)}) > 0} is £ -negligible
by the theorems of Rademacher and Fubini, an application of Lebesgue’s Dominated
Convergence Theorem yields

hﬁ)l 0,67 (1) = 0,5 () = ((0,6) * ke)(z) for every z € RY, ¢t € (a,b) \ N.  (8.88)

Since R x N is also pr-negligible, a further application of Lebesgue’s Dominated
Convergence Theorem yields

/ & duy — / & du, = / (8,5{5 + D& v+ few) dpg. (8.89)
R4 R4 R x (a,b)

Now, (8.85) will be deduced by passing to the limit £ | 0 in (8.89)) as follows. We observe
that £ converges uniformly to £ because £ is bounded and Lipschitz. Moreover, since
lim. o D,& () = D,&(x) at every point € R? where & is strictly differentiable, we
obtain

D& v| < L|v| € LY(R? x (a,b); ;) and 11?01 D& =D& pr-ae. in RY x [a,b],
so that

i [ Godis= [ Gndis [ (Drorew)du = [ (Dagorew)don

el0
R4 x (a,b) R4 x (a,b)

Finally, since 9;£; is also uniformly bounded, Fatou’s Lemma yields

lim sup / &ff dur < / (5t§t)+ dur, limui)nf / 8tft€ dpr > / (atft)— dpy.
el0 €
¢ R4 x (a,b) R4 x (a,b) R4 x (a,b) R4 x (a,b)

Thus, (8.85)) follows from (8.89). O
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8.7 Contraction properties: convolution and Heat equation in
RCD(0, c0) metric-measure spaces.

We conclude this paper with a few applications concerning contraction properties of the
HK distance. The first one concerns the behavior with respect 1-Lipschitz maps.

Lemma 8.21. Let (X,dx), (Y,dy) be separable metric spaces and let f : X — Y be a
1-Lipschitz map. Then f; : M(X) — M(Y") is 1-Lipschitz w.r.t. HK:
HK(fopn, fopa) < HK (g, i) (8.90)

Proof. 1t is sufficient to observe that the map f : €x — €y defined by f([z,r]) := [f(z), ]
satisfies dey, (f([x1,71]), f([wa, 72])) < dey ([21,71], [w2,72]) for every [z;,r;] € €x. Thusfyisa
contraction from (P2(€x), Wa, ) to (P2(€y), Wa,_ ), and hence f; satisfies (8.90). O

A second application concerns convolutions in R?.

Theorem 8.22. Let X = R? with the Euclidean distance and let v € M(R®). Then the
map p— p* v is contractive w.r.t. KK if v(R%) = 1 and, more generally,

HC? (1 * v, o # v) < V(ROHC (g, p2)  for every py, pa € M(RY). (8.91)

Proof. The previous lemma shows that HK is invariant by isometries, in particular trans-
lations in RY, so that

HK (o1 * Oz, pio * 0,) = HK (g1, pi2)  for every puy, po € M(Rd), z € R
By the subadditivity property it follows that if v = ), axd,, for some a; > 0, then

FKQ(M * UV, lg * V) = H’<2(Z Apfby * 5:%7 Zakuz * 5mk)
k k

< ZakFKQ(/Ll * 59%?;“2 * 5:%) = ZakI—KQ(thuQ) = V(Rd)l—KZ(,Ula,UQ)'
k k

The general case then follows by approximating v by a sequence of discrete measure v,
converging to v in M(R?) and observing that j; * v, — p; * v weakly in M(R?). Since HK
is weakly continuous we obtain (8.91]). O

An easy application of the previous result is the contraction property of the (adjoint)
Heat semigroup (P;)s>o in R? with respect to HK. In fact, we can prove a much more
general result for the Heat flow in RCD(0, 00) metric measure spaces (X, d,m) [4, []. It
covers the case of the semigroups (F;):>o generated by

(A) the Heat equation on a open convex domain € C R? with homogeneous Neumann
conditions

Ou=Au in Q x (0, 00), Opu =0 on 90N x (0,00),

(B) the Heat equation on a complete Riemannian manifold (M¢, g) with nonnegative
Ricci curvature defined by

O =Ayu in M? x (0, 00),

where A, is the usual Laplace-Beltrami operator, and
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(C) the Fokker-Planck equation in R? generated by the gradient of a convex potentials
VR = R, viz.
ou=Ayu—V - (uDV) inR? x (0, 00).

Theorem 8.23. Let (X,d,m) be a complete and separable metric-measure space with
nonnegative Riemannian Ricci Curvature, i.e. satisfying the RCD(0,00) condition, and
let (P} )0 : M(X) — M(X) be the Heat semigroup in the measure setting. Then

H (P s P pe) < HK(pa, p2) - for all puy, pp € M(X) and t > 0. (8.92)

Proof. Recall that in RCD(0,00) metric measure spaces the L*-gradient flow of the
Cheeger energy induces a symmetric Markov semigroup (P);>¢ in L*(X,m), which has
a pointwise version satisfying the Feller regularization property P;(B,(X)) C Lip,(X) for
t > 0 and the estimate

IDx P f[*(z) < P,(IDx f|?)(z) for every f € Lip,(X), z € X, t > 0. (8.93)
Its adjoint (P});>¢ coincides with the Kantorovich-Wasserstein gradient flow in P5(X) of

the Entropy Functional . (-|m) where .Z is induced by F(s) = Ui(s) = slogs — s+ 1
and defines a semigroup in M(X) by the formula

/ fd(Prp) = / P,fdu  for every f € By(X) and p € M(X). (8.94)
be b

In order to prove (§8.92)) we use (8.50) (RCD-spaces satisfy the length property) and apply
P, to a subsolution (¥g)gejo.1) in C'([0, 1]; Lip,(X)) of the Hamilton-Jacobi equation

1
Dpthe + Z|DX1/19|2 +45 <0 in X x (0,1). (8.95)

Since P is a linear and continuous map from Lip,(X) to Lip,(X) the curve 6 — )y, =
Py (1) belongs to C'([0,1]; Lip,(X)). Now, (8.93) and the Markov property yield

IDx Pityg|* () < P(|Dxtpol®) (), (Pitg)*(x) < Py(4j)(x) for z € X, 6 €[0,1], t > 0.
Thus, for every t > 0 we obtain
1 .
891/19715 + 4_1|DX¢0¢|2 + %,t <0 in X x (0, 1),
and therefore
J oo~ [ wwdim = [ P~ [ Paodo < s ).
X X X X

We conclude by taking the supremum with respect to all the subsolutions of (8.95)) in
C*([0, 1; Lip, (X)) and applying (8.50). O
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A On the chronological development of our theory

In this section we give a brief account of the order in which we developed the different
parts of the theory. The beginning was the mostly formal work in [27] on reaction-diffusion
systems, where a distance on vectors u of densities over a domain  C R? was formally
defined in the Benamou-Brenier sense via

1
d(ug, w))? — inf / / B, - M) Zy + £, - Kroneo (10y)€,ddlt
0 Q

under the constraint of the continuity equation d;u;+V - (Mdiﬁ‘(“t)Et) = Kreact (ur)€;. The
central question was and still is the understanding of diffusion equations with reactions in

the gradient-flow form dyu =V - (Mdiﬁ(u)V(Yf(u)) — Kreact (w)0F (u), see [27, Sect. 5.1].
It was natural to treat the scalar case first and to restrict to the case where both

mobility operator Myg(u) and Kyeaet(u) are linear in u. Only in that case the formally
derived system ([1.29)) for the geodesics (u,&;) decouples in the sense that & solves an

Hamilton-Jacobi equation that does not depend on u. Choosing Mgg(u) = cu and
Kieact (1) = Su with a, f > 0, the relevant Hamilton-Jacobi equation reads
o p
Ot + §|Dx§t|2 + 5@2 = 0.

As in the other parts of this paper, we restrict to the case a = 1 and § = 4 subsequently,
but refer to [27] for the general case. Thus, the conjectured characterization (8.50) was
first presented in Pisa at the Workshop “Optimal Transportation and Applications” in
November 2012.

During a visit of the second author in Pavia, the generalized Hopf-Lax formula via
the nonlinear convolution 2 (cf. (8.47)) was derived via the classical method of char-
acteristics. This led to the unsymmetric representation for K. To symmetrize
this relation we used that 92,£(z) = inf ®(£(y), |[y—=|) with ®(z, R) = 1(1 A<R)), where

142z
A(R) = cos? (R/\(W/Q)). Setting 19 = —2&, and ¥ = 2& = 227, we have the equivalence

& =& <=  (1=o(x0))(1=tp1(21)) > A(Jzo—21|) for all z;.

Setting ¢; = —log(1—1;) we arrived at the cost function

—21 - f —z1] < /2
c(zo, 1) = —log A(|zo—11) :{ Og(cos\:co 561!) or |rg—x1| < 7/2,

00 otherwise,
for the first time and obtained the characterization (1.7), namely

HK (110, 111)* = D(po, p11) = sup { Z(po, 1lpo. 1) = o & @1 < c}.

It was then easy to dualize &, and the Logarithmic Entropy functional LET in (|1.20]) was
derived in July 2013.

While the existence of minimizers for LET (g, 1) = min & (y|uo, p1) was easily ob-
tained, it was not clear at all, why and how HK defined via HK*(pg, 111) = min & (-], 1)
generates a geodesic distance. The only thing which could easily be checked was that the
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minimum was consistent with the distance between two Dirac masses, which could easily
be calculated via the dynamic formulation.

So, in parallel we tried to develop the dynamic approach, which was not too successful
at the early stages. Only after realizing and exploiting the connection to the cone distance
in Summer and Autumn of 2013 we were able to connect LET systematically with the
dynamic approach. The crucial and surprising observation was that optimal plans for
& and lifts of measures p1 € M(X) to measures A on the cone € could be identified by
exploiting the optimality conditions systematically. Corresponding results were presented
in workshops on Optimal Transport in Banff (June 2014) and Pisa (November 2014).

Already at the Banff workshop, the general structure of the primal and dual Entropy-
Transport problem as well as the homogeneous perspective formulation were presented.
Several examples and refinements where developed afterwards. The most recent part from
Summer 2015 concerns our Hamilton-Jacobi equation in general metric spaces (X, d) and
the induced cone € (cf. Section and the derivation of the geodesic equations in R? (cf.
Section . This last achievement now closes the circle, by showing that all the initial
steps, which were done on a formal level in 2012 and the first half of 2013, have indeed a
rigorous interpretation.
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