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1Abstra
t. In the non
onvex 
ase solutions of rate-independent systems may developjumps as a fun
tion of time. To model su
h jumps, we adopt the philosophy that rateindependen
e should be 
onsidered as limit of systems with smaller and smaller vis
osity.For the �nite-dimensional 
ase we study the vanishing-vis
osity limit of doubly nonlinearequations given in terms of a di�erentiable energy fun
tional and a dissipation potentialwhi
h is a vis
ous regularization of a given rate-independent dissipation potential.The resulting de�nition of `BV solutions' involves, in a nontrivial way, both the rate-independent and the vis
ous dissipation potential, whi
h play a 
ru
ial role in the des
rip-tion of the asso
iated jump traje
tories.We shall prove a general 
onvergen
e result for the time-
ontinuous and for the time-dis
retized vis
ous approximations and establish various properties of the limiting BVsolutions. In parti
ular, we shall provide a 
areful des
ription of the jumps and 
omparethe new notion of solutions with the related 
on
epts of energeti
 and lo
al solutions torate-independent systems. 1. Introdu
tionRate-independent evolutions o

ur in several 
ontexts. We refer the reader to [32℄ andthe forth
oming monograph [39℄ for a survey of rate-independent modeling and analysis ina wide variety of appli
ations, whi
h may pertain to very di�erent and far-apart bran
hesof me
hani
s and physi
s. Rate-independent systems present very distin
tive 
ommonfeatures, be
ause of their hystereti
 
hara
ter [54, 24℄. Driven by external loadings ona time s
ale mu
h slower than their internal s
ale, su
h systems respond to 
hanges inthe external a
tions invariantly for time-res
alings. Thus, they in fa
t show (almost) nointrinsi
 time-s
ale. This kind of behavior is en
oded in the simplest, but still signi�
ant,example of rate-independent evolution, namely the doubly nonlinear di�erential in
lusion(DN0) ∂Ψ0(u
′(t)) + DEt(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ).For the sake of simpli
ity, we will 
onsider here the 
ase when X is a �nite dimensionallinear spa
e, E : [0, T ] × X → R an energy fun
tional (DE denoting the di�erential of Ewith respe
t to the variable u ∈ X), and Ψ0 : X → [0, +∞) is a 
onvex, nondegenerate,dissipation potential, hereafter supposed positively homogeneous of degree 1. Thus, (DN0)is invariant for time-res
alings, rendering the system rate independen
e.Sin
e the range K∗ of ∂Ψ0 is a proper subset of X∗, when E(t, ·) is not stri
tly 
onvexone 
annot expe
t the existen
e of an absolutely 
ontinuous solution of (DN0). Over thepast de
ade, this fa
t has motivated the development of suitable notions of weak solutionsto (DN0). In the mainstream of [18, 35, 44℄, the present paper aims to 
ontribute to thisissue. Relying on the vanishing-vis
osity approa
h, we shall propose the notion of BVsolution to (DN0) and thoroughly analyze it.To better motivate the use of vanishing vis
osity and highlight the features of the 
on
eptof BV solution, in the next paragraphs we shall brie�y re
all the other main weak solvabilitynotions for (DN0). For the sake of simpli
ity, we shall fo
us on the parti
ular 
ase(1.1) Ψ0(v) = ‖v‖, for some norm ‖ · ‖ on X.



2Energeti
 and lo
al solutions. The �rst attempt at a rigorous weak formulation of (DN0)goes ba
k to [40℄ and the subsequent [42, 41℄, whi
h advan
ed the notion of global energeti
solution to the rate-independent system (DN0). In the simpli�ed 
ase (1.1), this solution
on
ept 
onsists of the following relations, holding for all t ∈ [0, T ]:(S) ∀ z ∈ X : Et(u(t)) ≤ Et(z) + ‖z − u(t)‖,(E) Et(u(t)) + Var(u; [0, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .The energy identity (E) balan
es at every time t ∈ [0, T ] the dissipated energy Var(u; [0, t])(the latter symbol denotes the total variation of the solution u ∈ BV([0, T ]; X) on theinterval [0, t]), with the stored energy Et(u(t)), the initial energy, and the work of theexternal for
es. On the other hand, (S) is a stability 
ondition, for it asserts that the
hange from the 
urrent state u(t) to another state z brings about a gain of potentialenergy smaller than the dissipated energy. Sin
e the 
ompetitors for u(t) range in thewhole spa
e X, (S) is in fa
t a global stability 
ondition.The global energeti
 formulation (S)�(E) only involves the (assumedly smooth) power ofthe external for
es ∂tE, and is otherwise derivative-free. Thus, it is well suited to jumpingsolutions. Furthermore, as shown in [27, 32℄, it is amenable to analysis in very generalambient spa
es, even with no underlying linear stru
ture. Be
ause of its �exibility, this
on
ept has been exploited in a variety of appli
ative 
ontexts, like, for instan
e, shapememory alloys [42, 37, 5℄, 
ra
k propagation [15, 14, 17℄, elastoplasti
ity [29, 30, 31, 20, 10,11, 28℄, damage in brittle materials [38, 6, 52, 33℄, delamination [23℄, ferroele
tri
ity [43℄,and super
ondu
tivity [50℄.On the other hand, in the 
ase of non
onvex energies 
ondition (S) turns out to be astrong requirement, for it may lead the system to 
hange instantaneously in a very drasti
way, jumping into very far-apart energeti
 
on�gurations (see, for instan
e, [30, Ex. 6.1℄,[21, Ex. 6.3℄, and [35, Ex. 1℄). On the dis
rete level, global stability is re�e
ted in the globalminimization s
heme giving raise to approximate solutions by time-dis
retization. Indeed,for a �xed time-step τ > 0, indu
ing a partition {0 = t0 < t1 < . . . < tN−1 < tN = T} ofthe interval [0, T ], one 
onstru
ts dis
rete solutions (Un
τ )N

n=1 of (S)�(E) by setting U0
τ := u0and then solving re
ursively the variational in
remental s
heme(IP0) Un

τ ∈ Argmin
U∈X

{

‖U − Un−1
τ ‖ + Etn(U)

} for n = 1, . . . , N .However, a s
heme based on lo
al minimization would be preferable, both in view of nu-meri
al analysis and from a modeling perspe
tive, see the dis
ussions in [30, Se
. 6℄ and,in the realm of 
ra
k propagation, [16, 45, 26℄.As pointed out in [16℄, lo
al minimization may be enfor
ed by perturbing the variationals
heme (IP0) with a term, modulated by a vis
osity parameter ε, whi
h penalizes thesquared distan
e from the previous step Un−1
τ,ε(IPε) Un

τ,ε ∈ Argmin
U∈X

{

‖U − Un−1
τ,ε ‖ + ε

|U − Un−1
τ,ε |2

τ
+ Etn(U)

} for n = 1, . . . , N ,



3and depends on a se
ond norm | · |, typi
ally Hilbertian, on the spa
e X. In a in�nite-dimensional setting, one may think of X = L2(Ω), with Ω a domain in R
d, d ≥ 1, and ‖ · ‖,

| · | the L1 and L2 norms, respe
tively. Noti
e that, on the time-
ontinuous level, (IP0)
orresponds to the vis
ous doubly nonlinear equation(DNε) ∂Ψε(u
′
ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),with Ψε(v) = ‖v‖ +

ε

2
|v|2(see [9, 8℄ for the existen
e of solutions uε ∈ AC([0, T ]; X)). Then, the idea would be to
onsider the solutions to (DN0) arising in the passage to the limit, in the dis
rete s
heme(IPε), as ε and τ tend to 0 simultaneously, keeping τ ≪ ε. One 
an guess that, at leastformally, this pro
edure should be equivalent to 
onsidering the limit of the solutions to(DNε) as ε ↓ 0.Vanishing vis
osity has by now be
ome an established sele
tion 
riterion for me
hani-
ally feasible weak solvability notions of rate-independent evolutions. We refer the readerto [25℄ for rate-independent problems with 
onvex energies and dis
ontinuous inputs, and,in more spe
i�
 applied 
ontexts, to [12℄ for elasto-plasti
ity with softening, to [19℄ forgeneral material models with non
onvex elasti
 energies, the re
ent [13℄ for 
am-
lay non-asso
iative plasti
ity, and [53, 21, 22℄ for 
ra
k propagation. Sin
e the energy fun
tionalsinvolved in su
h appli
ations are usually nonsmooth and non
onvex, the passage to thelimit mostly relies on lower semi
ontinuity arguments. Let us illustrate the latter in theprototypi
al 
ase (DNε). The key observation is that (DNε) is equivalent (see the dis
ussionin Se
tion 2.4) to the ε-energy identity(1.2) Et(uε(t)) +

∫ t

0

(

‖u′
ε(s)‖ ds +

ε

2
|u′

ε(s)|
2 +

1

2ε
dist∗

(

−DEs(uε(s)), K
∗
)2

)

ds

= E0(u(0)) +

∫ t

0

∂tEs(uε(s))dsfor all t ∈ [0, T ], where the term(1.3)
dist∗

(

−DEt(u(t)), K∗
)

:= min
z∈K∗

| − DEt(u(t)) − z|∗, with K∗ =
{

z ∈ X∗ : ‖z‖∗ ≤ 1
}

,measures the distan
e with respe
t to the dual norm | · |∗ of −DEt(u(t)) from the set K∗.The term de�ned in (1.3) is penalized in (1.2) by the 
oe�
ient 1/2ε. Thus, passing to thelimit in (1.2) as ε ↓ 0, one �nds
dist∗(−DEt(u(t)), K∗) = 0 for a.a. t ∈ (0, T ) .Hen
e,(1.4) −DEt(u(t)) ∈ K∗, i.e. ‖ − DEt(u(t))‖∗ ≤ 1 for a.a. t ∈ (0, T ) ,whi
h is a lo
al version of the global stability (S). Furthermore, (1.2) yields, via lower-semi
ontinuity, the energy inequality(1.5) Et(u(t)) + Var(u; [0, t]) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ] .Conditions (1.4)�(1.5) give raise to the notion of lo
al solution of the rate-independentsystem (DN0).



4 While the lo
al stability (1.4) is more physi
ally realisti
 than (S), its 
ombinationwith the energy inequality (1.5) turns out to provide an unsatisfa
tory des
ription of thesolution at jumps (see the dis
ussion in [35, Se
. 5.2℄ and Remark 2.8 later on). In orderto 
apture the jump dynami
s, the energeti
 behavior of the system in a jump regime hasto be revealed. From this perspe
tive, it seems to be 
ru
ial to re
over from (1.2), as ε ↓ 0,an energy identity, rather than an energy inequality. Thus, the passage to the limit has tosomehow keep tra
k of the limit of the term
∫ t

0

(

ε

2
|u′

ε(s)|
2 +

1

2ε
dist∗

(

−DEs(uε(s)), K
∗
)2

)

ds ,whi
h in fa
t en
odes the 
ontribution of the vis
ous dissipation ε
2
|u′

ε|
2, 
ompletely missingin (1.5).BV solutions. Moving from these 
onsiderations, it is natural to introdu
e the vanishingvis
osity 
onta
t potential (whi
h is related to the bipotential dis
ussed in [7℄, see Se
tion3) indu
ed by Ψε, i.e. the quantity(1.6) p(v, w) := inf

ε>0

(

Ψε(v) + Ψ∗
ε(w)

)

= inf
ε>0

(

‖v‖ +
ε

2
|v|2 +

1

2ε
dist2

∗(w, K∗)

)

= ‖v‖ + |v| dist∗(w, K∗) for v ∈ X, w ∈ X∗ .Then, the ε-energy identity (1.2) yields the inequality(1.7) Et(uε(t)) +

∫ t

0

p (u′
ε(s),−DEs(uε(s))) ds ≤ E0(u(0)) +

∫ t

0

∂tEs(uε(s))ds ,see Se
tion 3.1. Passing to the limit in (1.7), in Theorem 4.10 we shall prove that, up to asubsequen
e, the solutions (uε) of the vis
ous equation (DNε) 
onverge, as ε ↓ 0, to a 
urve
u ∈ BV([0, T ]; X) satisfying the lo
al stability (1.4) and the following energy inequality(1.8) Et(u(t)) + Varp,E(u; [0, t]) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .Without going into details (see De�nition 3.4 later on), we may point out that (1.8) featuresa notion of (pseudo)-total variation (denoted by Varp,E) indu
ed by the vanishing vis
osity
onta
t potential p (1.6) and the energy E. The main novelty is that a BV-
urve obeyingthe lo
al stability 
ondition (1.4) always satis�es the opposite inequality in (1.8), thusyielding the energy balan
e(Ep,E) Et(u(t)) + Varp,E(u; [t, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds .In fa
t, Varp,E provides a �ner des
ription of the dissipation ∆p,E of u, along a jump betweentwo values u− and u+ at time t: it involves not only the quantity ‖u+ − u−‖ related tothe dissipation potential (1.1), but also the vis
ous 
ontribution indu
ed by the vanishingvis
osity 
onta
t potential p through the formula(1.9) ∆p,E(t; u−, u+) := inf
{

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1]; X), ϑ(r0) = u−, ϑ(r1) = u+

}

.



5By a res
aling te
hnique, it is possible to show that, in a jump point, the system may swit
hto a vis
ous behavior, whi
h is in fa
t reminis
ent of the vis
ous approximation (DNε). Inparti
ular, when the jump point is of vis
ous type, the in�mum in (1.9) is attained andthe states u− and u+ are 
onne
ted by some transition 
urve ϑ : [r0, r1] → X, ful�lling thevis
ous doubly nonlinear equation
∂Ψ0(ϑ

′(r)) + ϑ′(r) + DEt(ϑ(r)) ∋ 0 in X∗ for a.a. r ∈ (r0, r1)(in the 
ase the norm | · | is Eu
lidean and we use its di�erential to identify X with
X∗). The 
ombination of (1.4) and (1.8) yields the notion of BV solution to the rate-independent system (X, E, p). This 
on
ept was �rst introdu
ed in [35℄, in the 
ase theambient spa
e X is a �nite-dimensional manifold X, and both the rate-independent andthe vis
ous approximating dissipations depend on one single Finsler distan
e on X. In thispaper, while keeping to a Bana
h framework, we shall 
onsiderably broaden the 
lass ofrate-independent and vis
ous dissipation fun
tionals, 
f. Remark 2.4. Moreover, the notionof BV solution shall be presented here in a more 
ompa
t form than in [35℄, amenable toa �ner analysis and, hopefully, to further generalizations.Let us now brie�y 
omment on our main results. First of all, we are going to show inTheorems 4.3, 4.6, and 4.7 that the 
on
ept of BV rate-independent evolution 
ompletelyen
ompasses the solution behavior in both a purely rate-independent, non-jumping regime,and in jump regimes, where the 
ompetition between dry-fri
tion and vis
ous e�e
ts ishighlighted. Indeed, from (1.4) and (1.8) it is possible to dedu
e suitable energy balan
esat jumps (
f. 
onditions (JBV) in Theorem 4.3).Then, in Theorem 4.10 we shall prove that, along a subsequen
e, the vis
ous approxima-tions arising from (DNε) 
onverge as ε ↓ 0 to a BV solution. Next, our se
ond main result,Theorem 4.11, states that, up to a subsequen
e, also the dis
rete solutions Uτ,ε 
onstru
tedvia the ε-dis
retization s
heme (IPε) 
onverge to a BV solution u ∈ BV([0, T ]; X) of (DN0)as ε ↓ 0 and τ ↓ 0 simultaneously, provided that the respe
tive 
onvergen
e rates are su
hthat

lim
ε, τ↓0

ε

τ
= +∞ .Finally, in Se
tion 5 we shall develop a di�erent approa
h to BV solutions, via the res
al-ing te
hnique advan
ed in [18℄ and re�ned in [35, 44℄. The main idea is to suitablyreparametrize the approximate vis
ous 
urves (uε) in order to 
apture, in the vanishingvis
osity limit, the vis
ous transition paths at jumps points. This leads to performing anasymptoti
 analysis as ε ↓ 0 of the graphs of the fun
tions uε, in the extended phase spa
e

[0, T ] × X. For every ε > 0 the graph of uε 
an be parametrized by a 
ouple of fun
tions
(tε, uε), tε being the (stri
tly in
reasing) res
aling fun
tion and uε := uε ◦ tε the res
aledsolution. In Theorem 5.6 we assert that, up to a subsequen
e, the fun
tions (tε, uε) 
on-verge as ε ↓ 0 to a parametrized rate-independent solution. By the latter terminology wemean a 
urve (t, u) : [0, S] → [0, T ] × X ful�lling

t : [0, S] → [0, T ] is nonde
reasing,
t′(s) + ‖u′(s)‖ > 0 for a.a. s ∈ (0, S),

(1.10a)
t′(s) > 0 =⇒ ‖− DEt(s)(u(s))‖ ≤ 1,

‖u′(s)‖ > 0 =⇒ ‖− DEt(s)(u(s))‖ ≥ 1

} for a.a. s ∈ (0, S) ,(1.10b)



6and the energy identity
d

ds
E(t(s), u(s)) − ∂tE(t(s), u(s)) t′(s)

= −‖u′(s)‖ − |u′(s)|dist∗(−DEt(s)(u(s)), K∗) for a.a. s ∈ (0, S) ,
(1.10
)As already pointed out in [18, 35℄, like the notion of BV solution, relations (1.10) aswell 
omprise both the purely rate-independent evolution as well as the vis
ous transientregime at jumps. The latter regime in fa
t 
orresponds to the 
ase −DEt(u) 6∈ K∗ : thesystem does not obey the lo
al stability 
onstraint (1.4) any longer, and swit
hes to vis
ousbehavior, see also Remark 5.7 later on.As a matter of fa
t, Theorem 5.8 shows that parametrized rate-independent solutionsmay be viewed as the �
ontinuous 
ounterpart� to BV evolutions. With a suitable trans-formation, it is possible to asso
iate with every parametrized rate-independent solutiona BV one, and 
onversely. One advantage of the parametrized notion is that it avoidsthe te
hni
alities related to BV fun
tions. Hen
e, it is for instan
e more easily amenableto a stability analysis (
f. [35, Rmk. 6℄). Furthermore, in [44℄ a highly re�ned vanish-ing vis
osity analysis has been developed, with this reparametrization te
hnique, in thein�nite-dimensional (L1, L2)-framework, where (DNε) is repla
ed by a general quasilinearevolutionary PDE.Generalizations and future developments. So far we have fo
used on dissipation fun
-tionals of the type (1.1) and Ψε(v) = ‖v‖ + ε

2
|v|2 as in (DNε) for expository reasons only,in order to highlight the main variational argument leading to the notion of BV solution.Indeed, the analysis developed in this paper is targeted to a generalpositively 1-homogeneous, 
onvex dissipation Ψ0 : X → [0, +∞),(
f. (2.1)), and 
onsiders a fairly wide 
lass of approximate vis
ous dissipation fun
tionals

Ψε, de�ned by 
onditions (Ψ.1)�(Ψ.3) in Se
tion 2.3. Furthermore, at the pri
e of justte
hni
al 
ompli
ations, our results 
ould be extended to the 
ase of a Finsler-like familyof dissipation fun
tionals Ψ0(u, ·), depending on the state variable u ∈ X, and satisfyinguniform bounds and Mos
o-
ontinuity with respe
t to u, see [35, Se
t. 2℄ and [47, Se
t. 6, 8℄.The extension to in�nite-dimensional ambient spa
es and nonsmooth energies is 
ru-
ial for appli
ation of the 
on
ept of BV solution to the PDE systems modelling rate-independent evolutions in 
ontinuum me
hani
s. A �rst step in this dire
tion is to gen-eralize the known existen
e results for doubly nonlinear equations, driven by a vis
ousdissipation, to non
onvex and nonsmooth energy fun
tionals in in�nite dimensions. Asshown in [48, 47℄, in the nonsmooth and non
onvex 
ase one 
an repla
e the energy di�er-ential DEt with a suitable notion of subdi�erential ∂Et. A

ordingly, instead of 
ontinuityof DEt, one asks for 
losedness of the multivalued subdi�erential ∂Et in the sense of graphs.These ideas shall be further advan
ed in the forth
oming work [36℄. Therein, exploitingte
hniques from nonsmooth analysis, we shall also ta
kle energies whi
h do not dependsmoothly on time (this is relevant for rate-independent appli
ations, see e.g. [22℄ and [25℄).On the other hand, the requirement that the ambient spa
e is �nite-dimensional 
ouldbe repla
ed by suitable 
ompa
tness (of the sublevels of the energy) and re�exivity as-sumptions on the ambient spa
e X. The latter topologi
al requirement in fa
t ensures



7that X has the so-
alled Radon-Nikodým property, i.e. that absolutely 
ontinuous 
urveswith values in X are almost everywhere di�erentiable. The vanishing vis
osity analysisin spa
es whi
h do not enjoy this property requires a subtler approa
h, involving metri
arguments (see e.g. [47, Se
t. 7℄), or ad-ho
 stronger estimates [44℄. See also [34℄ for somepreliminary approa
hes to BV solutions for PDE problems.Plan of the paper. Se
tion 2 is devoted to an extended presentation of energeti
 andlo
al solutions to rate-independent systems. In parti
ular, after �xing the setup of thepaper in Se
tion 2.1, in Se
. 2.2 we re
all the de�nition of global energeti
 solution, showits di�erential 
hara
terization and the related variational time-in
remental s
heme. Wedevelop the vanishing-vis
osity approa
h in Se
s. 2.3 and 2.4, thus arriving at the notionof lo
al solution (see Se
tion 2.5), whi
h also admits a di�erential 
hara
terization.In Se
tion 3 we introdu
e the 
on
ept of vanishing vis
osity 
onta
t potential and thor-oughly analyze its properties, as well as the indu
ed (pseudo)-total variation. With theseingredients, in Se
. 4 we present the notion of BV solution. We show that BV rate-independent evolutions admit, too, a di�erential 
hara
terization, and, in Se
. 4.2, thatthey provide a 
areful des
ription of the energeti
 behavior of the system. Then, in Se
-tion 4.3, we state our main results on BV solutions.While Se
tion 5 is fo
used on the alternative notion of parametrized rate-independentsolutions, the last Se
. 6 
ontains some te
hni
al results whi
h lie at the 
ore of our theory.2. Global energeti
 versus lo
al solutions, and their vis
ousregularizationsIn this se
tion, we will brie�y re
all the notion of energeti
 solutions and show that theirvis
ous regularizations give raise to lo
al solutions.2.1. Rate-independent setting: dissipation and energy fun
tionals. We let
(X, ‖ · ‖X) be a �nite-dimensional normed ve
tor spa
e,endowed with a gauge fun
tion Ψ0, namely a(2.1) non-degenerate, positively 1-homogeneous, 
onvex dissipation Ψ0 : X → [0, +∞),i.e. Ψ0 satis�es Ψ0(v) > 0 if v 6= 0, and

Ψ0(v1 + v2) ≤ Ψ0(v1) + Ψ0(v2), Ψ0(λv) = λΨ0(v) for every λ ≥ 0, v, v1, v2 ∈ X.In parti
ular, there exists a 
onstant η > 0 su
h that
η−1‖v‖X ≤ Ψ0(v) ≤ η‖v‖X for every v ∈ X.Sin
e Ψ0 is 1-homogeneous, its subdi�erential ∂Ψ0 : X ⇉ X∗ 
an be 
hara
terized by(2.2) ∂Ψ0(v) :=

{

w ∈ X : 〈w, z〉 ≤ Ψ0(z) for every z ∈ X, 〈w, v〉 = Ψ0(v)
}

⊂ X∗;

∂Ψ0 takes its values in the 
onvex set K∗ ⊂ X∗, given by(2.3) K∗ = ∂Ψ0(0) :=
{

w ∈ X∗ : 〈w, z〉 ≤ Ψ0(z) ∀ z ∈ X} ⊃ ∂Ψ0(v) for every v ∈ X,



8whi
h enjoys some useful (and well-known, see e.g. [46℄) properties. For the reader's 
on-venien
e we list them here:K1. K∗ is the proper domain of the Legendre transform Ψ∗
0 of Ψ0, sin
e(2.4) Ψ∗

0(w) = IK∗(w) =

{

0 if w ∈ K∗,

+∞ otherwise.K2. Ψ0 is the support fun
tion of K∗, sin
e(2.5) Ψ0(v) = sup
w∈K∗

〈w, v〉 for every v ∈ X,and K∗ is the polar set of the unit ball K :=
{

v ∈ X : Ψ0(v) ≤ 1
} asso
iated with

Ψ0.K3. K∗ is the unit ball of the support fun
tion Ψ0∗ of K:(2.6) K∗ =
{

w ∈ X∗ : Ψ0∗(w) ≤ 1
}

, with Ψ0∗(w) = sup
v∈K

〈w, v〉 = sup
v 6=0

〈w, v〉

Ψ0(v)
.K4. In the even 
ase (i.e., when Ψ0(v) = Ψ0(−v) for all v ∈ X), we have that Ψ0 is anequivalent norm for X, Ψ0∗ is its dual norm, K and K∗ are their respe
tive unit balls.Further, we 
onsider a smooth energy fun
tional

E ∈ C1([0, T ] × X) ,whi
h we suppose bounded from below and with energy-bounded time derivative(2.7) ∃C > 0 ∀ (t, u) ∈ [0, T ] × X : Et(u) ≥ −C , |∂tEt(u)| ≤ C
(

1 + Et(u)+
)

,where (·)+ denotes the positive part. The rate-independent system asso
iated with theenergy fun
tional E and the dissipation potential Ψ0 
an be formally des
ribed by therate-independent doubly nonlinear di�erential in
lusion(DN0) ∂Ψ0(u
′(t)) + DEt(u(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ).As already mentioned in the Introdu
tion, for non
onvex energies solutions to (DN0) mayexhibit dis
ontinuities in time. The �rst weak solvability notion for (DN0) is the 
on
eptof (global) energeti
 solution to the rate-independent system (DN0) (see [42, 40, 41℄ andthe survey [32℄), whi
h we re
all in the next se
tion.2.2. Energeti
 solutions and variational in
remental s
heme.De�nition 2.1 (Energeti
 solution). A 
urve u ∈ BV([0, T ]; X) is an energeti
 solution ofthe rate independent system (X, E, Ψ0) if for all t ∈ [0, T ] the global stability (S) and theenergy balan
e (E) holds:(S) ∀ z ∈ X : Et(u(t)) ≤ Et(z) + Ψ0(z − u(t)),(E) Et(u(t)) + VarΨ0

(u; [0, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds.
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BV fun
tions. Hereafter, we shall 
onsider fun
tions of bounded variation pointwise de-�ned in every point t ∈ [0, T ], su
h that the pointwise total variation with respe
t to Ψ0(any equivalent norm of X 
an be 
hosen) VarΨ0

(u; [0, T ]) is �nite, where
VarΨ0

(u; [a, b]) := sup
{

M
∑

m=1

Ψ0

(

u(tm) − u(tm−1)
)

: a = t0 < t1 < · · · < tM−1 < tM = b
}

.Noti
e that a fun
tion u in BV([0, T ]; X) admits left and right limits at every t ∈ [0, T ] :(2.8)
u(t−) := lim

s↑t
u(s), u(t+) := lim

s↓t
u(s), with the 
onvention u(0−) := u(0), u(T+) := u(T ),and its pointwise jump set Ju is the at most 
ountable set de�ned by(2.9)

Ju :=
{

t ∈ [0, T ] : u(t−) 6= u(t) or u(t) 6= u(t+)
}

⊃ ess-Ju :=
{

t ∈ [0, T ] : u(t−) 6= u(t+)
}

.We denote by u′ the distributional derivative of u, and re
all that u′ is a Radon ve
tormeasure with �nite total variation |u′|. It is well known [3℄ that u′ 
an be de
omposed intothe sum of the three mutually singular measures(2.10) u′ = u′
L

+ u′
C + u′

J, u′
L

= u̇L
1, u′

co := u′
L

+ u′
C .Here, u′

L
is the absolutely 
ontinuous part with respe
t to the Lebesgue measure L 1,whose Lebesgue density u̇ is the usual pointwise (and L 1-a.e. de�ned) derivative, u′

J is adis
rete measure 
on
entrated on ess-Ju ⊂ Ju, and u′
C is the so-
alled Cantor part, stillsatisfying u′

C({t}) = 0 for every t ∈ [0, T ]. Therefore u′
co = u′

L
+u′

C is the di�use part of themeasure, whi
h does not 
harge Ju. In the following, it will be useful to use a nonnegativeand di�use referen
e measure µ on (0, T ) su
h that L 1 and u′
C are absolutely 
ontinuousw.r.t. µ: just to �x our ideas, we set(2.11) µ := L

1 + |u′
C|.With a slight abuse of notation, for every (a, b) ⊂ (0, T ) we denote by ∫ b

a
dΨ0(u

′
co) theintegral(2.12) ∫ b

a

dΨ0(u
′
co) :=

∫ b

a

Ψ0

(

du′
co

dµ

)

dµ =

∫ b

a

Ψ0(u̇) dL
1 +

∫ b

a

Ψ0

(

du′
C

d|u′
C|

)

d|u′
C|.Sin
e Ψ0 is 1-homogeneous, the above integral is independent of µ, provided u′

co is abso-lutely 
ontinuous w.r.t. µ.Towards a di�erential 
hara
terization of energeti
 solutions. Let us �rst of allpoint out that (S) is stronger than the lo
al stability 
ondition(Sloc) −DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju,whi
h 
an be formally dedu
ed from (DN0) and (2.3). Indeed, the global stability (S)yields for every z = u(t) + hv ∈ X and h > 0

〈−DEt(u(t)), hv〉+ o(|h|) ≤ Et(u(t)) − Et(u(t) + hv) ≤ hΨ0(v)and therefore, dividing by h and passing to the limit as h ↓ 0, one gets
〈−DEt(u(t)), v〉 ≤ Ψ0(v) for every z ∈ X,



10so that (Sloc) holds. We obtain more insight into (E) by representing the Ψ0 variation
VarΨ0

(u; [a, b]) in terms of the distributional derivative u′ of u. In fa
t, re
alling (2.11) and(2.12), we have
VarΨ0

(u; [a, b]) :=

∫ b

a

dΨ0(u
′
co) + JmpΨ0

(u; [a, b]),where the jump 
ontribution JmpΨ0
(u; [a, b]) 
an be des
ribed, in terms of the quantities(2.13) ∆Ψ0

(v0, v1) := Ψ0(v1 − v0), ∆Ψ0
(v−, v, v+) := Ψ0(v − v−) + Ψ0(v+ − v),by(2.14)

JmpΨ0
(u; [a, b]) := ∆Ψ0

(u(a), u(a+)) + ∆Ψ0
(u(b−), u(b)) +

∑

t∈Ju∩(a,b)

∆Ψ0
(u(t−), u(t), u(t+)).Also noti
e that, as usual in rate-independent evolutionary problems, u is pointwise every-where de�ned and the jump term JmpΨ0

(u; [·, ·]) takes into a

ount the value of u at everytime t ∈ Ju. Therefore, if u is not 
ontinuous at t, this part may yield a stri
tly bigger
ontribution than the total mass of the distributional jump measure u′
J (whi
h gives riseto the so-
alled essential variation).The following result provides an equivalent 
hara
terization of energeti
 solutions: be-sides the global stability 
ondition (S), it involves a BV formulation of the di�erentialin
lusion (DN0) (
f. the subdi�erential formulation of [41℄) and a jump 
ondition at anyjump point of u.Proposition 2.2. A 
urve u ∈ BV([0, T ]; X) satisfying the global stability 
ondition (S)is an energeti
 solution of the rate-independent system (X, E, Ψ0) if and only if it satis�esthe di�erential in
lusion(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the jump 
onditions(Jener)
Et(u(t)) − Et(u(t−)) = −∆Ψ0

(u(t−), u(t)), Et(u(t+)) − Et(u(t)) = −∆Ψ0
(u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) = −∆Ψ0
(u(t−), u(t+)).for every t ∈ Ju (re
all 
onvention (2.8) in the 
ase t = 0, T ).We shall simply sket
h the proof, referring to the arguments for the forth
oming Proposi-tion 2.7 for all details.Proof. By the additivity property of the total variation VarΨ0

(u; [·, ·]), (E) yields for every
0 ≤ t0 < t1 ≤ T(E') VarΨ0

(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt .Arguing as in the proof of Proposition 2.7 later on, one 
an see that the global stability(S) and (E') yield the di�erential in
lusion (DN0,BV) and 
onditions (Jener).



11Conversely, repeating the arguments of Proposition 2.7 one 
an verify that (DN0,BV)and (Jener) imply (E). �In
remental minimization s
heme. Existen
e of energeti
 solutions 
an be proved bysolving a minimization s
heme, whi
h is also interesting as 
onstru
tion of an e�e
tiveapproximation of the solutions.For a given time-step τ > 0 we 
onsider a uniform partition (for simpli
ity) 0 = t0 <
t1 < · · · < tN−1 < T ≤ tN , tn := nτ , of the time interval [0, T ], and an initial value
U0

τ ≈ u0. In order to �nd good approximations of Un
τ ≈ u(tn) we solve the in
rementalminimization s
heme(IP0) �nd U1

τ , · · · , UN
τ su
h that Un

τ ∈ Argmin
U∈X

{

Ψ0(U − Un−1
τ ) + Etn(U)

}

.Setting(2.15) Uτ (t) := Un
τ if t ∈ (tn−1, tn],it is possible to �nd a suitable vanishing sequen
e of step sizes τk ↓ 0 (see, e.g., [41, 32℄ forall 
al
ulations), su
h that

∃ lim
k→+∞

Uτk
(t) =: u(t) for every t ∈ [0, T ],and u is an energeti
 solution of (DN0).2.3. Vis
ous approximations of rate-independent systems. In the present paper wewant to study a di�erent approa
h to approximate and solve (DN0): the main idea is torepla
e the linearly growing dissipation potential Ψ0 with a suitable 
onvex and superlinear�vis
ous� regularization Ψε : X → [0, +∞) of Ψ0, depending on a �small� parameter ε > 0and �
onverging� to Ψ0 in a suitable sense as ε ↓ 0. Solving the doubly nonlinear di�erentialin
lusion (we use the notation u̇ for the time derivative when u is absolutely 
ontinuous)(DNε) ∂Ψε(u̇ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),one 
an 
onsider the sequen
e (uε) as a good approximation of the solution u of (DN0) as

ε ↓ 0.There is also a natural dis
rete 
ounterpart to (DNε), whi
h regularizes the in
rementalminimization problem (IP0). We simply substitute Ψ0 by Ψε in (IP0), re
alling that nowthe time-step τ should expli
itly appear, sin
e Ψε is not 1-homogeneous any longer. Thevis
ous in
remental problem is therefore(IPε) �nd U1
τ,ε, · · · , UN

τ,ε su
h that Un
τ,ε ∈ Argmin

U∈X

{

τΨε

(U − Un−1
τ,ε

τ

)

+ Etn(U)
}

.Setting as in (2.15)
Uτ,ε(t) := Un

τ,ε if t ∈ (tn−1, tn],one 
an study the limit of the dis
rete solutions when τ ↓ 0 and ε ↓ 0, under some restri
tionon the behavior of the quotient ε/τ (see Theorem 4.11 later on).



12The 
hoi
e of the vis
osity approximation Ψε. Here we 
onsider the parti
ular 
asewhen the potential Ψε 
an be obtained starting from a given(Ψ.1) 
onvex fun
tion Ψ : X → [0, +∞) su
h that Ψ(0) = 0, lim
‖v‖X↑+∞

Ψ(v)

‖v‖X
= +∞,by the 
anoni
al res
aling(Ψ.2) Ψε(v) := ε−1Ψ(εv) for every v ∈ X, ε > 0,and Ψε is linked to Ψ0 by the relation(Ψ.3) Ψ0(v) = lim

ε↓0
Ψε(v) = lim

ε↓0
ε−1Ψ(εv) for every v ∈ X.Remark 2.3. Noti
e that, by 
onvexity of Ψ and the fa
t that Ψ(0) = 0, the map ε 7→

ε−1Ψ(εv) is nonde
reasing for all v ∈ X. Hen
e,(2.16) Ψ0(v) ≤ Ψε(v) for all v ∈ X, for all ε > 0.Furthermore, by the 
oer
ivity 
ondition (Ψ.1),
∂Ψε(v) := ∂Ψ(εv) is a surje
tive map.Here are some examples, showing that (Ψ.2) still provides a great �exibility and 
oversseveral interesting 
ases.Example 2.4.

Ψ0-vis
osity: The simplest example, still absolutely non trivial [35℄, is to 
onsider(2.17) Ψ(v) := Ψ0(v) +
1

2

(

Ψ0(v)
)2

, Ψε(v) := Ψ0(v) +
ε

2

(

Ψ0(v)
)2

,

∂Ψε(v) =
(

1 + εΨ0(v)
)

∂Ψ0(v).A similar regularization 
an be obtained by 
hoosing a real 
onvex and superlinearfun
tion FV : [0, +∞) → [0, +∞), with FV (0) = F ′
V (0) = 0, and setting(2.18) Ψ(v) := Ψ0(v) + FV (Ψ0(v)) = F (Ψ0(v)), with F (r) := r + FV (r).Quadrati
 or p-vis
osity indu
ed by a norm ‖ · ‖: The most interesting 
ase involvesan arbitrary norm ‖ · ‖ on X and 
onsiders for p > 1(2.19)

Ψ(v) = Ψ0(v) +
1

p
‖v‖p, Ψε(v) = Ψ0(v) +

εp−1

p
‖v‖p, ∂Ψε(v) = ∂Ψ0(v) + εp−1Jp(v),where Jp is the p-duality map asso
iated with ‖ · ‖. In parti
ular, if ‖ · ‖ is a Hilbertiannorm and p = 2, then J2 is the Riesz isomorphism and we 
an 
hoose J2(v) = v byidentifying X with X∗. Hen
e, (DNε) reads

∂Ψε(u̇ε(t)) + εu̇ε(t) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),and the in
remental problem (IPε) looks for Un
τ,ε whi
h re
ursively minimizes

U 7→ Ψ0(U − Un−1
τ,ε ) +

ε

2τ
‖U − Un−1

ε,τ ‖2 + Etn(U).This is the typi
al situation whi
h motivates our investigation.



13Additive vis
osity: More generally, we 
an 
hoose a 
onvex �vis
ous� potential ΨV :
X → [0, +∞) satisfying(2.20) lim

ε↓0
ε−1ΨV (εv) = 0, lim

λ↑+∞
λ−1ΨV (λv) = +∞ for all v ∈ X,and set(2.21) Ψ(v) := Ψ0(v)+ΨV (v), Ψε(v) := Ψ0(v)+ε−1ΨV (εv), ∂Ψε(v) = ∂Ψ0+∂ΨV (εv).2.4. Vis
ous energy identity. Sin
e Ψ has a superlinear growth, the results of [9, 8℄ensure that for every ε > 0 and initial datum u0 ∈ X there exists at least one solution

uε ∈ AC([0, T ]; X) to equation (DNε), ful�lling the Cau
hy 
ondition uε(0) = u0.In order to 
apture its asymptoti
 behavior as ε ↓ 0, we split equation (DNε) in a simplesystem of two 
onditions, involving an auxiliary variable wε : [0, T ] → X∗ and a s
alarfun
tion pε : [0, T ] → R

∂Ψε(u̇ε(t)) ∋ wε for a.a. t ∈ (0, T ) ,(2.22a)
DEt(uε(t)) = −wε(t), ∂tEt(uε(t)) = −pε(t) for all t ∈ [0, T ].(2.22b)Denoting by Ψ∗, Ψ∗

ε the 
onjugate fun
tions of Ψ and Ψε, we have(2.23) 0 = Ψ∗(0) ≤ Ψ∗(ξ) < +∞, Ψ∗
ε(ξ) = ε−1Ψ∗(ξ) for every ξ ∈ X∗.Due to (2.16), there holds(2.24) Ψ∗

ε(ξ) ≤ Ψ∗
0(ξ) for all v ∈ X, ε > 0.The 
lassi
al 
hara
terization of the subdi�erential of Ψε yields that the �rst 
ondition(2.22a) is equivalent to(2.25) Ψε(u̇ε(t)) + Ψ∗

ε(wε(t)) = 〈wε(t), u̇ε(t)〉 for a.a. t ∈ (0, T ) .On the other hand, the 
hain rule for the C1 fun
tional E shows that along the absolutely
ontinuous 
urve uε(2.26)
d

dt
Et(uε(t)) = 〈DEt(uε(t)), u̇ε(t)〉+ ∂tEt(uε(t)) = −〈wε(t), u̇ε(t)〉 − pε(t) for a.a. t ∈ (0, T ).Thus, if wε(t) = −DEt(uε(t)), equation (2.22a) is equivalent to the energy identity(2.27) ∫ t1

t0

(

Ψε (u̇ε(r)) + Ψ∗
ε (wε(r)) + pε(r)

)

dr + Et1(uε(t1)) = Et0(uε(t0)),for every 0 ≤ t0 ≤ t1 ≤ T.Remark 2.5 (The role of Ψ∗
ε). In the general, additive-vis
osity 
ase (see (2.21)), when

Ψ(v) = Ψ0(v) + ΨV (v) the inf-sup 
onvolution formula yields
Ψ∗

ε(ξ) = inf
ξ1+ξ2=ξ

ξ1,ξ2∈X∗

{

IK∗(ξ1) +
1

ε
Ψ∗

V (ξ2)

}

= ε−1 min
z∈K∗

Ψ∗
V (ξ − z).In parti
ular, when ΨV (ξ) := 1

2
|v|2 for some norm | · | of X, one �nds

Ψ∗
ε(ξ) =

1

2ε
min
z∈K∗

|ξ − z|2∗,



14where | · |∗ is the dual norm of | · |. Thus, for all ξ ∈ X∗ the fun
tional Ψ∗
ε(ξ) is the squareddistan
e of ξ from K∗, with respe
t to | · |∗. This shows that, in the vis
ous regularizedequation (DNε), the (lo
al) stability 
ondition w(t) = −DEt(u(t)) ∈ K∗ has been repla
edby the 
ontribution of the penalizing term

1

2ε

∫ T

0

min
z∈K∗

| − DEt(uε(t)) − z|2∗ dtin the energy identity (2.27).2.5. Pointwise limit of vis
ous approximations and lo
al solutions. Using (2.7), itis not di�
ult to show that the vis
ous solutions uε of (DNε) satisfy the a priori bound(2.28) ∫ T

0

(

Ψε(u̇ε(t))+Ψ∗
ε(wε(t))

)

dt ≤ C, with wε(t) = −DEt(uε(t)) for all t ∈ [0, T ].Therefore, Helly's 
ompa
tness theorem shows that, up to the extra
tion of a suitablesubsequen
e, the sequen
e (uε) pointwise 
onverges to a BV 
urve u. From the 
onvergen
e
wε(t) → w(t) = −DEt(u(t)) as ε ↓ 0 and the fa
t that for all t ∈ [0, T ](2.29) lim inf

ε↓0
ε−1Ψ∗(wε(t))

(2.23)
≥ Ψ∗

0(w(t)) = I∗K(w(t)) =

{

0 if w(t) ∈ K∗,

+∞ otherwise,we infer that the limit 
urve u satis�es the (lo
al) stability 
ondition (Sloc). On the otherhand, passing to the limit in (2.27) one gets the energy inequality(E′ineq) Et1(u(t1))+VarΨ0
(u; [t0, t1]) ≤ Et0(u(t0))+

∫ t1

t0

∂tEt(u(t)) dt for 0 ≤ t0 < t1 ≤ T.The above dis
ussion motivates the 
on
ept of lo
al solution (see also [35, Se
. 5.2℄ and thereferen
es therein).De�nition 2.6 (Lo
al solutions). A 
urve u ∈ BV([0, T ]; X) is 
alled a lo
al solution ofthe rate independent system (X, E, Ψ0) if it satis�es the lo
al stability 
ondition(Sloc) −DEt(u(t)) ∈ K∗ for every t ∈ [0, T ] \ Ju,and the energy dissipation inequality (E′ineq).Lo
al solutions admit the following di�erential 
hara
terization.Proposition 2.7 (Di�erential 
hara
terization of lo
al solutions). A 
urve u ∈ BV([0, T ]; X)is a lo
al solution of the rate independent system (X, E, Ψ0) if and only if it satis�es the
BV di�erential in
lusion(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the jump inequalities(Jlo
al)
Et(u(t)) − Et(u(t−)) ≤ −∆Ψ0

(u(t−), u(t)), Et(u(t+)) − Et(u(t)) ≤ −∆Ψ0
(u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) ≤ −∆Ψ0
(u(t−), u(t+)),at ea
h jump time t ∈ Ju.



15Proof. Noti
e that at every point t ∈ (0, T ) where du′
co(t)/dµ = 0, the di�erential in
lusion(DN0,BV) redu
es to the lo
al stability 
ondition (Sloc). In the general 
ase, (DN0,BV) followsby di�erentiation of (E′ineq). Indeed, the latter pro
edure provides the following inequalitybetween the distributional derivative d

dt
Et(u(t)) of the map t 7→ Et(u(t)) and the Ψ0-totalvariation measure Ψ0(u

′
co) := Ψ0

(

du′
co/dµ

)

µ for µ := u′
C + L 1(2.30) d

dt
Et(u(t)) + Ψ0(u

′
co) − ∂tEt(u(t))L 1 ≤ 0 .Applying the 
hain rule formula for the 
omposition of the C1 fun
tional E and the BV
urve u (see [2℄ and [3, Thm. 3.96℄) and taking into a

ount the fa
t that u′

co and u′
J aremutually singular, we obtain from (2.30) that(2.31) 〈

−DEt(u(t)),
du′

co

dµ

〉

µ ≥ Ψ0(u
′
co) = Ψ0

(du′
co

dµ

)

µ .Combining (2.31) with the lo
al stability 
ondition (Sloc), in view of the 
hara
teriza-tion (2.2) of ∂Ψ0 and of (2.3) we �nally 
on
lude (DN0,BV). Lo
alizing (E′ineq) around ajump point t we get the inequalities (Jlo
al).Conversely, let us suppose that a BV 
urve u satis�es (DN0,BV) and (Jlo
al). The lo
alstability 
ondition is an immediate 
onsequen
e of (DN0,BV), whi
h yields−DEt(u(t)) ∈ K∗for L 1-a.e. t ∈ [0, T ] and therefore, by 
ontinuity, at every point of [0, T ] \ Ju.In order to get (E′ineq), we again apply the 
hain rule for the 
omposition E and u,obtaining(2.32) Et1(u(t1)) +

∫ t1

t0

〈

−DEt(u(t)),
du′

co

dµ

〉

dµ(t) − Jmp(E; [t0, t1])

= Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt,where
Jmp(E; [t0, t1]) = E+(t0) + E−(t1) +

∑

t∈Ju∩(t0,t1)

(

E−(t) + E+(t)
)

,and
E−(t) := Et(u(t)) − Et(u(t−)), E+(t) := Et(u(t+)) − Et(u(t)).By (DN0,BV) we have(2.33) ∫ t1

t0

〈

−DEt(u(t)),
du′

co

dµ

〉

dµ(t) =

∫ t1

t0

Ψ0

(du′
co

dµ
(t)

)

dµ(t) =

∫ t1

t0

dΨ0(u
′
co) ,whereas (Jlo
al) yields for every t ∈ Ju(2.34) E−(t) ≤ −∆Ψ0

(u(t−), u(t)), E+(t) ≤ −∆Ψ0
(u(t), u(t+)),so that −Jmp(E; [t0, t1]) ≥ JmpΨ0

(u; [t0, t1]) and therefore (E′ineq) follows from (2.32). �



16Remark 2.8. Unlike the 
ase of energeti
 solutions (
f. Proposition 2.2), a pre
ise de-s
ription of the behavior of lo
al solutions at jumps in missing here. In fa
t, the jumpinequalities (Jlo
al) are not su�
ient to get an energy balan
e and do not 
ompletely 
ap-ture the jump dynami
s, see the dis
ussion of [35, Se
. 5.2℄.In order to get more pre
ise insight into the jump properties and to understand the
orre
t energy balan
e along them, we have to introdu
e a �ner des
ription of the dissipa-tion. It is related to an extra 
ontribution to the jump part of VarΨ0
(u; [·, ·]), whi
h 
an bebetter des
ribed by using the vanishing vis
osity 
onta
t potential indu
ed by the 
oupling

Ψ, Ψ∗. We des
ribe this notion in the next se
tion.3. vanishing vis
osity 
onta
t potentials and Finsler dissipation 
osts3.1. Heuristi
s for the 
on
ept of vanishing vis
osity 
onta
t potential. Supposefor the moment being that, in a given time interval [r0, r1], the energy Et(·) = E(·) doesnot 
hange w.r.t. time. If ϑ ∈ AC([r0, r1]; X) is a solution of (DNε) 
onne
ting u0 = ϑ(r0)to u1 = ϑ(r1), then the energy release between the initial and the �nal state is, by theenergy identity (2.27),(3.1) E(u0) − E(u1) =

∫ r1

r0

(

Ψε(v) + Ψ∗
ε(w)

)

dt,with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)) for a.a. t ∈ (0, T ).If one looks for a lower bound of the right-hand side in the above energy identity whi
h isindependent of ε > 0, it is natural to re
ur to the fun
tional p : X ×X∗ → [0, +∞) de�nedby
p(v, w) := inf

ε>0
(Ψε(v) + Ψ∗

ε(w)) = inf
ε>0

(

ε−1Ψ(εv) + ε−1Ψ∗(w)
) for v ∈ X, w ∈ X∗.We obtain(3.2) E(u0) − E(u1) ≥

∫ r1

r0

p(v, w) dt with v(t) = ϑ̇(t) and w(t) = −DE(ϑ(t)).Sin
e p(·, ·) is positively 1-homogeneous with respe
t to its �rst variable, the right-handside expression in (3.2) is in fa
t independent of (monotone) time res
alings. On the otherhand, the vanishing vis
osity 
onta
t potential p(·, ·) has the remarkable properties(3.3) p(v, w) ≥ 〈w, v〉, p(v, w) ≥ Ψ0(v) for every v ∈ X, w ∈ X∗.Therefore, if ϑ̃ ∈ AC([r0, r1]; X) is another arbitrary 
urve 
onne
ting u0 to u1, the 
hainrule (2.26) for E yields
E(u0) − E(u1) =

∫ r1

r0

〈w̃(t), ṽ(t)〉 dt ≤

∫ r1

r0

(Ψε(v(t)) + Ψ∗
ε(w̃(t))) dt(where ṽ denotes the time derivative of ϑ̃ and w̃ = −DE(ϑ̃)), when
e(3.4) E(u0) − E(u1) ≤

∫ r1

r0

p(ṽ(t), w̃(t)) dt .It follows that, in a time regime in whi
h the energy fun
tional E does not 
hange withrespe
t to time, for every ε > 0 any vis
ous solution of (DNε) (and, therefore, any suitable



17limit of vis
ous solutions) should attain the minimum dissipation, measured in terms ofthe vanishing vis
osity 
onta
t potential p. Moreover, this dissipation always provides anupper bound for the energy release, rea
hed exa
tly along vis
ous 
urves and their limits.Remark 3.1. In some of the 
ases dis
ussed in Example 2.4, the vanishing vis
osity 
onta
tpotential p admits a more expli
it representation.(1) We �rst 
onsider the Ψ0-vis
osity 
ase (2.18), where Ψ(v) := F (Ψ0(v)), F : [0, +∞) →
[0, +∞) being a real 
onvex superlinear fun
tion with F (0) = 0, F ′(0) = 1. We introdu
ethe 1-homogeneous support fun
tion Ψ0∗ of the set

K :=
{

v ∈ X : Ψ0(v) ≤ 1
}

, Ψ0∗(w) := sup
v∈K

〈w, v〉.It is not di�
ult to show that Ψ∗(w) = F ∗(Ψ0∗(w)) and that for all (v, w) ∈ X × X∗(3.5) p(v, w) = Ψ0(v) max(1, Ψ0∗(w)) =

{

Ψ0(v) if w ∈ K∗,

Ψ0(v) Ψ0∗(w) if w 6∈ K∗.(2) In the additive vis
osity 
ase of (2.21) one has for all (v, w) ∈ X × X∗(3.6)
p(v, w) = Ψ0(v) + pV (v, w), where pV (v, w) = inf

ε>0

(

ε−1ΨV (εv) + ε−1 inf
z∈K∗

Ψ∗
V (w − z)

)

.In parti
ular, when ΨV (v) = FV (‖v‖) for some norm ‖ · ‖ of X and a real 
onvex andsuperlinear fun
tion FV : [0, +∞) → [0, +∞) with FV (0) = F ′
V (0) = 0, we have for all

(v, w) ∈ X × X∗(3.7) p(v, w) = Ψ0(v) + pV (v, w), with pV (v, w) = ‖v‖ min
z∈K∗

‖w − z‖∗.Noti
e that in (3.5) and (3.7) the form of the vanishing vis
osity 
onta
t potential p doesnot depend on the 
hoi
e of F and FV , respe
tively, but only on the 
hosen vis
osity norm.By the 1-homogeneity of p(·, w) and these variational properties, it is then natural tointrodu
e the following Finsler dissipation.De�nition 3.2 (Finsler dissipation). For a �xed t ∈ [0, T ], the Finsler 
ost indu
ed by pand (the di�erential of) E at the time t is given by(3.8) ∆p,E(t; u0, u1) := inf
{

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1]; X), ϑ(r0) = u0, ϑ(r1) = u1

}for every u0, u1 ∈ X. We also 
onsider the indu
ed �triple� 
ost
∆p,E(t; u−, u, u+) := ∆p,E(t; u−, u) + ∆p,E(t; u, u+).Remark 3.3. Sin
e p(v, w) ≥ Ψ0(v) by (3.3), a simple time res
aling argument shows thatthe in�mum in (3.8) is always attained by a Lips
hitz 
urve ϑ ∈ AC([r0, r1]; X) with
onstant p-speed, in parti
ular su
h that
p(ϑ̇(r),−DEt(ϑ(r)) ≡ 1 for a.a. r ∈ (r0, r1) .



18 By the heuristi
al dis
ussion developed throughout (3.1)�(3.4), the 
ost ∆p,E is thenatural 
andidate to substituting the potential Ψ0 and the related 
ost ∆Ψ0
of (2.13) inthe jump 
ontributions (2.14) and in the jump 
onditions (Jener). Noti
e that the se
ondrelation of (3.3) implies(3.9) ∆p,E(t; u0, u1) ≥ ∆Ψ0

(u0, u1) for every u0, u1 ∈ X.The notion of jump variation arising from su
h repla
ements is pre
isely stated as follows.De�nition 3.4 (The total variation indu
ed by ∆p,E). Let u ∈ BV([0, T ]; X) a given 
urve,let u′
co be the di�use part of its distributional derivative u′, and let Ju be its pointwise jumpset (2.9). For every subinterval [a, b] ⊂ [0, T ] the Jump variation of u indu
ed by (p, E) on

[a, b] is(3.10) Jmpp,E(u; [a, b]) :=∆p,E(a; u(a), u(a+)) + ∆p,E(b; u(b−), u(b))+

+
∑

t∈Ju∩(a,b)

∆p,E(t; u(t−), u(t), u(t+)),and the (pseudo-)total variation indu
ed by (p, E) is(3.11) Varp,E(u; [a, b]) :=

∫ b

a

dΨ0(u
′
co) + Jmpp,E(u; [a, b]).Remark 3.5 (The (pseudo-)total variation Varp,E). Let us mention that Varp,E enjoys someof the properties of the usual total variation fun
tionals, but it is not lower semi
ontinuousw.r.t. pointwise 
onvergen
e. In fa
t, it is not di�
ult to see that its lower semi
ontinuousenvelope is simply VarΨ0

. Furthermore, Varp,E is not indu
ed by any distan
e on X. Indeed,we have used slanted fonts in the notation Var to stress this fa
t. In order to re
over amore standard total variation in a metri
 setting, one has to work in the extended spa
e
X := [0, T ] × X and add the lo
al stability 
onstraint −DEt ∈ K∗ on the �
ontinuous�part of the traje
tories. We shall dis
uss this point of view in Se
tion 6.In view of inequality (3.9) between the Finsler dissipation ∆p,E and ∆Ψ0

, the notion oftotal variation asso
iated with ∆p,E provides an upper bound for VarΨ0
, namely(3.12) ∀u ∈ BV([0, T ]; X), [a, b] ⊂ [0, T ] : Varp,E(u; [a, b]) ≥ VarΨ0

(u; [a, b]).3.2. Vanishing vis
osity 
onta
t potentials. While postponing the de�nition of BVsolutions related to Varp,E to the next se
tion, let us add a few remarks about the vanishingvis
osity 
onta
t potential p(3.13)
p(v, w) := inf

ε>0
(Ψε(v) + Ψ∗

ε(w)) = inf
ε>0

(

ε−1Ψ(εv) + ε−1Ψ∗(w)
) for v ∈ X, w ∈ X∗.whi
h partly mat
hes the de�nition introdu
ed by [7℄. We �rst list a set of intrinsi
properties of p, whi
h we shall prove at the end of this se
tion.Theorem 3.6 (Intrinsi
 properties of p). The 
ontinuous fun
tional p : X×X∗ → [0, +∞)de�ned by (3.13) satis�es the following properties:(I1) For every v ∈ X, w ∈ X∗ the maps p(v, ·) and p(·, w) have 
onvex sublevels.(I2) p(v, w) ≥ 〈w, v〉 for every v ∈ X, w ∈ X∗.



19(I3) For every w ∈ X∗ the map v 7→ p(v, w) is 1-homogeneous and thus 
onvex in X, with
p(v, w) > 0 if v 6= 0.(I4) For every v ∈ X, w ∈ X∗ the map λ 7→ p(v, λw) is nonde
reasing in [0, +∞).(I5) If for some v0 ∈ X and w̄, w ∈ X∗ we have p(v0, w̄) < p(v0, w), then the inequality
p(v, w̄) ≤ p(v, w) holds for every v ∈ X, and there exists v1 ∈ X su
h that p(v1, w̄) <
〈w, v1〉.Remark 3.7 (A dual family of 
onvex sets). Property (I5) has a dual geometri
 
ounterpart:let us �rst observe that for every w ∈ X∗ the map v 7→ p(v, w) is a gauge fun
tion andtherefore it is the support fun
tion of the 
onvex set

K∗
w :=

{

z ∈ X∗ : 〈z, v〉 ≤ p(v, w) for every v ∈ X
}

, i.e. p(v, w) = sup
{

〈z, v〉 : z ∈ K∗
w

}

.Assertion (I5) then says that for every 
ouple w, w̄ ∈ X(3.14)we always have w̄ ∈ K∗
w or w ∈ K∗

w̄ and, moreover, w̄ ∈ K∗
w ⇔ p(·, w̄) ≤ p(·, w).Suppose in fa
t that w 6∈ K∗

w̄: this means that an element v0 ∈ X exists su
h that
〈w, v0〉 > p(v0, w̄); by (I2) we get p(v0, w) > p(v0, w̄), and therefore by (I5) p(v, w) ≥
p(v, w̄) ≥ 〈w̄, v〉 for every v ∈ X, so that w̄ ∈ K∗

w. The se
ond statement of (3.14) is animmediate 
onsequen
e of the se
ond part of (I5).Property (I2) suggests that the set where equality holds in plays a 
ru
ial role:De�nition 3.8 (Conta
t set). The 
onta
t set Σp ⊂ X × X∗ is de�ned as(3.15) Σp :=
{

(v, w) ∈ X × X∗ : p(v, w) = 〈w, v〉
}

.Here are some other useful 
onsequen
es of (I1�I5)Lemma 3.9. If p : X × X∗ → [0, +∞) satis�es (I1�I5), then(I6) for every v ∈ X, w ∈ X∗ we have(3.16) p(v, 0) + IK∗

0
(w) ≥ p(v, w) ≥ p(v, 0).(I7) The 
onta
t set 
an be 
hara
terized by(3.17) (v, w) ∈ Σp ⇔ w ∈ ∂p(·, w)(v) ⇔ v ∈ ∂IK∗

w
(w).More generally, if w̄ ∈ ∂p(·, w)(v) then (v, w̄) ∈ Σp, w̄ ∈ K∗

w, and p(v, w) = p(v, w̄).In parti
ular, if w̄ ∈ ∂K∗
w then w ∈ K∗

w̄.Proof. The 
hain of inequalities in (3.16) is an immediate 
onsequen
e of (I4) and of (3.14).(3.17) is a dire
t 
onsequen
e of the fa
t that v 7→ p(v, w) is a gauge fun
tion and IK∗

w
isits Legendre transform.In order to 
he
k the last statement, given v ∈ X, w ∈ X∗ let us take w̄ ∈ ∂p(·, w)(v) sothat w̄ ∈ K∗

w and p(v, w) = 〈w̄, v〉. Combining (I2) with (3.14) we get p(v, w) = p(v, w̄),so that (v, w̄) ∈ Σp. �



20Remark 3.10. Properties (I1,I2,I5) suggest a strong analogy between p and the notion ofbipotential introdu
ed by [7℄: a

ording to [7℄, a bipotential is a fun
tional b : X × X∗ →
(−∞, +∞] whi
h is 
onvex and lower semi
ontinuous in ea
h argument, satis�es (I2), andwhose 
onta
t set ful�ls a 
ondition similar to (3.17)

(v, w) ∈ Σb ⇔ w ∈ ∂b(·, w)(v) ⇔ v ∈ ∂b(v, ·)(w).In our situation, (3.17) is a dire
t 
onsequen
e of the homogeneity of p, but the 
onvexity
ondition with respe
t to w looks too restri
tive, as shown by this simple example. Considerthe 
ase X = X∗ = R
2, with Ψ(v) := ‖v‖1 + ΨV (v), ‖v‖1 := |v1| + |v2|, and

ΨV (v) :=
1

2
v2
1 +

1

4
v4
2, v = (v1, v2) ∈ R

2; Ψ∗
V (w) =

1

2
w2

1 +
3

4
w

4/3
2 w = (w1, w2) ∈ R

2.By (3.6) we have p(v, w) = ‖v‖1+pV (v, w) with pV (v, w) = infε>0
1
ε

(

ΨV (εv)+Ψ∗(w)
) and�nd

Ψ∗(w) =
1

2
(|w1| − 1)2

+ +
3

4
(|w2| − 1)

4/3
+ .Considering the spe
ial 
ase v = (v1, 0), w = (0, w2), we obtain

pV ((v1, 0), (0, w2)) =
√

3/2 |v1|
(

(|w2| − 1)+

)2/3

.The map w2 7→ p((v1, 0), (0, w2)) is therefore not 
onvex.Let us now 
onsider some properties of p and its 
onta
t set Σp involving expli
itlythe fun
tional Ψ. Sin
e the vanishing vis
osity 
onta
t potential p is de�ned through theminimum pro
edure (3.13), the 
onta
t set is stri
tly related to the set of optimal ε > 0attaining the minimum in (3.13).De�nition 3.11 (Lagrange multipliers). For every (v, w) ∈ X × X∗ we introdu
e themultivalued fun
tion Λ (with possibly empty values)(3.18) Λ(v, w) :=
{

ε ≥ 0 : p(v, w) = Ψε(v) + Ψ∗
ε(w)

}

⊂ [0, +∞).Noti
e that for every (v, w) ∈ X ×X∗ the fun
tion ε 7→ ε−1Ψ(εv) + ε−1Ψ∗(w) is 
onvexon (0, +∞). Sin
e Ψ has superlinear growth at in�nity, it goes to +∞ as ε ↑ +∞ if v 6= 0,so that(3.19) the set Λ(v, w) is always a bounded 
losed interval if v 6= 0.Theorem 3.12 (Properties of p, Ψ and Σp).(P1) The vanishing vis
osity 
onta
t potential p satis�es p(v, 0) = Ψ0(v), K∗
0 = K∗, andin parti
ular

p(v, w) ≥ 〈w, v〉, Ψ0(v) + IK∗(w) ≥ p(v, w) ≥ Ψ0(v) ≥ 0 for every v ∈ X, w ∈ X∗,
(3.20)

p(v, w) = Ψ0(v) ⇔ w ∈ K∗.(3.21)



21(P2) For every w ∈ X∗, the 
onvex sets K∗
w are the sublevels of Ψ∗(3.22) K∗

w =
{

z ∈ X∗ : Ψ∗(z) ≤ Ψ∗(w)
}

,and p admits the dual representation(3.23) p(v, w) = sup
{

〈z, v〉 : z ∈ X∗, Ψ∗(z) ≤ Ψ∗(w)
}

.In parti
ular, Ψ∗(w1) ≤ Ψ∗(w2) for some w1, w2 ∈ X∗ if and only if p(v, w1) ≤
p(v, w2) for every v ∈ X.(P3) The multivalued fun
tion Λ de�ned in (3.18) is upper semi
ontinuous, i.e.(3.24) if (vn, wn) → (v, w) ∈ X × X∗ and εn ∈ Λ(vn, wn) → ε, then ε ∈ Λ(v, w).(P4) The 
onta
t set Σp (3.15) 
an be 
hara
terized by(3.25) w ∈ ∂Ψ0(v) ⊂ K∗ or, if w 6∈ K∗, ∃ ε > 0 : w ∈ ∂Ψ(εv),and the last in
lusion holds exa
tly for ε ∈ Λ(v, w). Equivalently,

(v, w) ∈ Σp ⇔ w ∈ ∂Ψε(v) for every ε ∈ Λ(v, w).In parti
ular, in the 
ase of additive vis
osity, with Ψ(v) = Ψ0(v) + ΨV (v) and ΨVsatisfying (2.20), we simply have(3.26) (v, w) ∈ Σp ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv).Proofs of Theorems 3.12 and 3.6.Ad (P1). Inequalities (3.20) are immediate 
onsequen
es of the de�nition of p. Theequality Ψ0(v) = p(v, w) is equivalent to the existen
e of a sequen
e εk > 0 su
h that(re
all that ε−1Ψε(εv) ≥ Ψ0(v))
lim
k→∞

ε−1
k Ψ(εkv) = Ψ0(v), lim

k→∞
ε−1

k Ψ∗(w) = 0.Sin
e the �rst inequality prevents εk from diverging to +∞ (being Ψ superlinear), fromthe se
ond limit we get Ψ∗(w) = 0, i.e.
〈w, z〉 ≤ Ψ(z) ∀ z ∈ X.Repla
ing z with εz, multiplying the previous inequality by ε−1, and passing to the limitas ε ↓ 0, in view of (Ψ.3) we 
on
lude

〈w, z〉 ≤ Ψ0(z) ∀ z ∈ X, so that w ∈ K∗.The 
onverse impli
ation in (3.21) is immediate.Ad (P2). Sin
e the sublevels of Ψ∗ are 
losed and 
onvex, a duality argument shows that(3.22) is equivalent to (3.23). In order to prove the latter formula, let us observe that, if
Ψ∗(z) ≤ Ψ∗(w), then 〈z, v〉 ≤ p(v, w), be
ause the Fen
hel inequality yields
〈z, v〉 = ε−1〈z, εv〉 ≤ ε−1Ψ(εv)+ε−1Ψ(z) = Ψε(v)+Ψ∗

ε(z) ≤ Ψε(v)+Ψ∗
ε(w) for every ε > 0.We show that there exists z ∈ X∗ su
h that Ψ∗(z) ≤ Ψ∗(w) and p(v, w) = 〈z, v〉. Dueto (3.21), if w ∈ K∗, then p(v, w) = Ψ0(v) and the thesis follows from (2.5) Hen
e, let ussuppose that w 6∈ K∗ and v 6= 0; then we 
an 
hoose ε0 ∈ Λ(v, w), ε0 > 0, su
h that(3.27) p(v, w) = ε−1

0 Ψ(ε0v) + ε−1
0 Ψ∗(w) ≤ ε−1Ψ(εv) + ε−1Ψ∗(w) for every ε > 0.



22Choosing zε ∈ ∂Ψ(εv) we have
Ψ(εv) − Ψ(ε0v) ≤ 〈zε, (ε − ε0)v〉 for every ε > 0so that, in view of inequality (3.27),

(

ε−1 − ε−1
0

)

(

Ψ(ε0v) + Ψ∗(w)
)

+ ε−1〈zε, (ε − ε0)v〉 ≥ 0 for every ε > 0.Dividing by ε − ε0 and passing to the limit �rst as ε ↓ ε0 and then as ε ↑ ε0, we thus�nd z± ∈ ∂Ψ(ε0v) (a

umulation points of the sequen
es (zε : ε > ε0) and (zε : ε < ε0),respe
tively), su
h that(3.28) 〈z−, v〉 ≤ p(v, w) = ε−1
0

(

Ψ(ε0v) + Ψ∗(w)
)

≤ 〈z+, v〉.On the other hand, the Fen
hel identity of 
onvex analysis yields(3.29) ε−1
0 Ψ∗(z) = 〈z, v〉 − ε−1

0 Ψ(ε0v) for every z ∈ ∂Ψ(ε0v)so that the map z 7→ Ψ∗(z) is a�ne on ∂Ψ(ε0v) and a 
omparison between (3.28) and(3.29) yields
Ψ∗(z−) ≤ Ψ∗(w) ≤ Ψ∗(z+).Using formula (3.29) we 
an thus �nd θ ∈ [0, 1] and zθ := (1 − θ)z− + θz+ ∈ ∂Ψ(ε0v) su
hthat

Ψ∗(zθ) = Ψ∗(w), 〈zθ, v〉 = p(v, w) = ε−1
0

(

Ψ(ε0v) + Ψ∗(w)
)

.The last statement of (P2) follows easily. One impli
ation is immediate. On the otherhand, if Ψ∗(w1) > Ψ∗(w2), then by the Hahn-Bana
h separation theorem we 
an �nd
v̄ ∈ X and δ > 0 su
h that

〈w1, v̄〉 ≥ δ + 〈z, v̄〉 for every z ∈ X∗ su
h that Ψ∗(z) ≤ Ψ∗(w2),and, therefore, by (3.23) we 
on
lude p(v̄, w1) ≥ 〈w1, v̄〉 ≥ δ + p(v̄, w2).Ad (I1,2,3,4,5) These properties dire
tly follow from (P2).Ad (P3) and 
ontinuity of p. Noti
e that p is upper semi
ontinuous, being de�nedas the in�mum of a family of 
ontinuous fun
tions. Take now 
onverging sequen
es
(vn), (wn), (εn) as in (3.24): we have that
lim inf
n→∞

(

ε−1
n Ψ(εnvn) + ε−1

n Ψ∗(wn)
)

≥ Ψε(v) + Ψ∗
ε(w) =

{

ε−1Ψ(εv) + ε−1Ψ∗(w) if ε > 0,

Ψ0(v) + I∗K(w) if ε = 0.Sin
e(3.30) p(v, w) ≥ lim inf
n→∞

p(vn, wn) ≥ lim inf
n→∞

(

ε−1
n Ψ(εnvn) + ε−1

n Ψ∗(wn)
)

≥ Ψε(v) + Ψ∗
ε(w) ≥ p(v, w),we obtain ε ∈ Λ(v, w).Inequality (3.30) shows that p is also lower semi
ontinuous, sin
e, if v 6= 0, any sequen
e

εn ∈ Λ(vn, wn) admits a 
onverging subsequen
e, in view of (3.19).Ad (P4). Con
erning the 
hara
terization (3.25) of Σp, it is easy to 
he
k that, if (v, w)satis�es (3.25), then by the Fen
hel identity and formula (2.2) we have, when w ∈ K∗,

p(v, w) ≥ 〈w, v〉 = Ψ0(v) = p(v, w),



23and, when w 6∈ K∗,
p(v, w) ≥ 〈w, v〉 = ε−1〈w, εv〉 = ε−1Ψ(εv) + ε−1Ψ∗(w) ≥ p(v, w)so that (v, w) ∈ Σp and ε ∈ Λ(v, w). Conversely, if p(v, w) = 〈w, v〉 and w ∈ K∗, then by(3.20) Ψ0(v) = 〈w, v〉 and therefore w ∈ ∂Ψ0(v). If w 6∈ K∗, then, 
hoosing ε ∈ Λ(v, w),we have
Ψ(εv) + Ψ∗(w) = εp(v, w) = 〈w, εv〉, so that w ∈ ∂Ψ(εv).In the parti
ular 
ase of (2.21), (3.26) follows now from (3.25) by the sum rule of thesubdi�erentials and the 0-homogeneity of ∂Ψ0. �4. BV solutions and energy-driven dissipation4.1. BV solutions. We 
an now give our pre
ise de�nition of BV solution of the rate-independent system (X, E, p), driven by the vanishing vis
osity 
onta
t potential p (3.13)and the energy E. From a formal point of view, the de�nition simply repla
es the globalstability 
ondition (S) by the lo
al one (Sloc), and the Ψ0-total variation in the energybalan
e (E) by the �Finsler� total variation (3.11), indu
ed by p and E.De�nition 4.1 (BV solutions, variational 
hara
terization). A 
urve u ∈ BV([0, T ]; X)is a BV solution of the rate independent system (X, E, p) the lo
al stability (Sloc) and the

(p, E)-energy balan
e hold:(Sloc) −DEt(u(t)) ∈ K∗ for a.a. t ∈ [0, T ] \ Ju(Ep,E) Varp,E(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ].We shall see in the next Se
tion 4.3 that any pointwise limit, as ε ↓ 0, of the solutions
(uε) of the vis
ous equation (DNε) or, as τ, ε ↓ 0, of the dis
rete solutions (Uτ,ε) of thevis
ous in
remental problems (IPε), is a BV solutions indu
ed by the vanishing vis
osity
onta
t potential p. Let us �rst get more insight into De�nition 4.1.Properties of BV solutions. As in the 
ase of energeti
 solutions, it is not di�
ult tosee that the energy balan
e (Ep,E) holds on any subinterval [t0, t1] ⊂ [0, T ]; moreover,if the lo
al stability 
ondition (Sloc) holds, to 
he
k (Ep,E) it is su�
ient to prove the
orresponding inequality.Proposition 4.2. If u ∈ BV([0, T ]; X) satis�es (Ep,E), then for every subinterval [t0, t1]there holds(E′

p,E) Varp,E(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEs(u(s)) ds.Moreover, if u satis�es (Sloc), then (Ep,E) is equivalent to the energy inequality(Ep,E;ineq) Varp,E(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +

∫ T

0

∂tEs(u(s)) ds.



24Proof. (E′
p,E) easily follows from the additivity property(4.1) ∀ 0 ≤ t0 < t1 < t2 ≤ T : Varp,E(u; [t0, t1]) + Varp,E(u; [t1, t2]) = Varp,E(u; [t0, t2]).In order to prove the se
ond inequality we argue as in [35, Prop. 4℄, taking (Sloc) intoa

ount. �Noti
e that, by (3.12), any BV solution is also a lo
al solution a

ording to De�nition2.6, i.e. it satis�es the lo
al stability 
ondition and energy inequality (E′ineq). In fa
t, onehas a more a

urate des
ription of the jump 
onditions, as the following Theorem shows(
f. with Propositions 2.2 and 2.7).Theorem 4.3 (Di�erential 
hara
terization of BV solutions). A 
urve u ∈ BV([0, T ]; X)is a BV solution of the rate-independent system (X, E, p) if and only if it satis�es the doublynonlinear di�erential in
lusion in the BV sense(DN0,BV) ∂Ψ0

(du′
co

dµ
(t)

)

+ DEt(u(t)) ∋ 0 for µ-a.e. t ∈ [0, T ], µ := L
1 + |u′

C|,and the following jump 
onditions at ea
h point t ∈ Ju of the jump set (2.9)(JBV) Et(u(t)) − Et(u(t−)) = −∆p,E(t; u(t−), u(t)),

Et(u(t+)) − Et(u(t)) = −∆p,E(t; u(t), u(t+)),

Et(u(t+)) − Et(u(t−)) = −∆p,E(t; u(t−), u(t+)).Proof. We have already seen (see Lemma 2.7) that lo
al solutions satisfy (DN0,BV). Thejump 
onditions (JBV) 
an be obtained by lo
alizing (E′
p,E) around any jump time t ∈ Ju.Conversely, to prove (Ep,E;ineq) (as seen in the proof of Lemma 2.7, (Sloc) ensues from(DN0,BV)), we argue as in the se
ond part of the proof of Lemma 2.7, still applying (2.32)and (2.33), but repla
ing inequalities (2.34) with the following identities,

E−(t) = −∆p,E(t; u(t−), u(t)), E+(t) = −∆p,E(t; u(t), u(t+)) for all t ∈ Ju,whi
h are due to (JBV). Hen
e, −Jmp(E; [0, T ]) = Jmpp,E(u; [0, T ]). Then, (Ep,E;ineq)follows from (2.32). �The next se
tion is devoted to a re�ned des
ription of the behavior of a BV solutionalong the jumps.4.2. Jumps and optimal transitions. Let us �rst introdu
e the notion of optimal tran-sition.De�nition 4.4. Let t ∈ [0, T ], u−, u+ ∈ X with −DEt(u−), −DEt(u+) ∈ K∗, and −∞ ≤
r0 < r1 ≤ +∞. An absolutely 
ontinuous 
urve ϑ : [r0, r1] → X 
onne
ting u− = ϑ(r0)and u+ = ϑ(r1) is an optimal (p, Et)-transition between u− and u+ if(O.1) ϑ̇(r) 6= 0 for a.a. r ∈ (r0, r1); Ψ0∗(−DEt(ϑ(r))) ≥ 1 ∀ r ∈ [r0, r1],(O.2) Et(u−) − Et(u+) = ∆p,E(t; u−, u+) =

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr.



25We also say that an optimal transition ϑ is ofsliding type if − DEt(ϑ(r)) ∈ K∗ for every r ∈ [r0, r1],(Osliding) vis
ous type if − DEt(ϑ(r)) 6∈ K∗ for every r ∈ (r0, r1),(Ovis
ous) energeti
 type if Et(u+) − Et(u−) = −Ψ0(u+ − u−).(Oener)We denote by Θ(t; u−, u+) the (possibly empty) 
olle
tion of su
h optimal transitions, withnormalized domain [0, 1] and 
onstant Finsler velo
ity(4.2) p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u−) − Et(u+) for a.a. r ∈ (0, 1) .Remark 4.5. Noti
e that the notion of optimal transition is invariant by absolutely 
ontin-uous (monotone) time res
alings with absolutely 
ontinuous inverse; moreover, any optimaltransition ϑ has �nite length, it admits a reparametrization with 
onstant Finsler velo
ity
p(ϑ̇(·),−DEt(ϑ(·))), and is a minimizer of (3.8), so that it is not restri
tive to assume
ϑ ∈ Θ(t, u−, u+).Theorem 4.6. A lo
al solution u ∈ BV([0, T ]; X) is a BV solution a

ording to De�ni-tion 4.1 if and only if at every jump time t ∈ Ju the initial and �nal values u(t−) and
u(t+) 
an be 
onne
ted by an optimal transition 
urve ϑt ∈ Θ(t; u(t−), u(t+)), and thereexists r ∈ [0, 1] su
h that u(t) = ϑt(r). Any optimal transition 
urve ϑ satis�es the 
onta
t
ondition(4.3) (ϑ̇(r),−DEt(ϑ(r))) ∈ Σp for a.a. r ∈ (0, 1).Proof. Taking into a

ount Theorem 4.3, the proof of the �rst part of the statement isimmediate. To prove (4.3), let t be a jump point of u and let us �rst suppose that
u(t−) = u(t) 6= u(t+). By Remark 3.3, we 
an �nd a Lips
hitz 
urve ϑ01 ∈ AC([r0, r1]; X)with normalized speed p(ϑ̇,−DEt(ϑ)) ≡ 1, 
onne
ting u(t−) to u(t+), so that the jump
ondition (JBV) yields

∫ r1

r0

〈−DEt(ϑ(r)), ϑ̇(r)〉 dr = Et(u(t−)) − Et(u(t+)) =

∫ r1

r0

p(ϑ̇(r),−DEt(ϑ(r))) dr.This shows that ϑ is an optimal transition 
urve and satis�es
∫ r1

r0

(

p(ϑ̇,−DEt(ϑ(r))) dr − 〈−DEt(ϑ(r)), ϑ̇(r)〉
)

dr = 0.Sin
e the integrand is always nonnegative, it follows that (4.3) holds.In the general 
ase, when u is not left or right 
ontinuous at t, we join two (suitablyres
aled) optimal transition 
urves ϑ01 ∈ Θ(t; u(t−), u(t)) and ϑ12 ∈ Θ(t; u(t), u(t+)). �The next result provides a 
areful des
ription of (p, Et)-optimal transitions.Theorem 4.7. Let t ∈ [0, T ], u−, u+ ∈ X, and ϑ : [0, 1] → X be an optimal transition
urve in Θ(t; u−, u+). Then,



26(1) ϑ is a 
onstant-speed minimal geodesi
 for the (possibly asymmetri
) Finsler 
ost
∆p,E(t; u−, u+), and for every 0 ≤ ρ0 < ρ1 ≤ 1 it satis�es(4.4) Et(ϑ(ρ0)) − Et(ϑ(ρ1)) = ∆p,E(t; ϑ(ρ0), ϑ(ρ1))

= (ρ1 − ρ0)∆p,E(t; u−, u+) = (ρ1 − ρ0)
(

Et(u−) − Et(u+)
)

;In parti
ular, the map ρ 7→ Et(ϑ(ρ)) is a�ne.(2) An optimal transition ϑ is of sliding type (Osliding) if and only if it satis�es(4.5) ∂Ψ0(ϑ̇(r)) + DEt(ϑ(r)) ∋ 0 for a.a. r ∈ (0, 1),(4.6) Ψ0∗(−DEt(ϑ(r))) = 1 for every r ∈ [0, 1].(3) An optimal transition ϑ is of vis
ous type (Ovis
ous) if and only if there holds for everysele
tion (0, 1) ∋ r 7→ ε(r) in Λ(ϑ̇(r),−DEt(ϑ(r))(4.7) ∂Ψ(ε(r)ϑ̇(r)) + DEt(ϑ(r)) ∋ 0 for a.a. r ∈ (0, 1).Equivalently, there exists an absolutely 
ontinuous, surje
tive time res
aling r : (ρ0, ρ1) →
(0, 1), with −∞ ≤ ρ0 < ρ1 ≤ ∞ and ṙ(s) > 0 for L 1 a.e. s ∈ (ρ0, ρ1), su
h that theres
aled transition θ(s) := ϑ(r(s)) satis�es the vis
ous di�erential in
lusion(4.8)

∂Ψ(θ̇(s)) + DEt(θ(s)) ∋ 0 for a.a. s ∈ (ρ0, ρ1) , with lim
s↓ρ0

θ(s) = u−, lim
s↑ρ1

θ(s) = u+ .(4) Any optimal transition ϑ 
an be de
omposed in a 
anoni
al way into an (at most)
ountable 
olle
tion of optimal sliding and vis
ous transitions. In other words, thereexists (uniquely determined) disjoint open intervals (Sj)j∈σ and (Vk)k∈υ of (0, 1), with
σ, υ ⊂ N, su
h that (0, 1) ⊂

(

∪j∈σ Sj) ∪
(

∪k∈υ Vk

) and
ϑ|Sj

is of sliding type, ϑ|Vk
is of vis
ous type.(5) An optimal transition ϑ is of energeti
 type (Oener) if and only if ϑ is of sliding typeand it is a Ψ0-minimal geodesi
, i.e.(4.9) Ψ0(ϑ(r1) − ϑ(r0)) = (r1 − r0)Ψ0(u1 − u0) for every 0 ≤ r0 < r1 ≤ 1.If Ψ0 has stri
tly 
onvex sublevels, then ϑ is linear and r 7→ (ϑ(r), Et(ϑ(r))) is a linearsegment 
ontained in the graph of Et.If Ψ0 is Gâteaux-di�erentiable at X \ {0} then

−DEt(ϑ(r)) = DΨ0(u+ − u−) for every r ∈ [0, 1].In parti
ular, the map r 7→ −DEt(ϑ(r)) is 
onstant.Remark 4.8. It follows from the 
hara
terization in (2) of Theorem 4.7 (
f. with (4.5)�(4.6)) that sliding optimal transitions are independent of the form of the vanishing vis
osity
onta
t potential p, and thus on the parti
ular vis
osity potential Ψ.Instead, as one may expe
t, Ψ o

urs in the doubly nonlinear equation (4.7) (equiv-alently, in (4.8)), whi
h in fa
t des
ribes the vis
ous transient regime. Hen
e, di�erent
hoi
es of the vis
ous dissipation Ψ shall give raise to a di�erent behavior in the vis
ousjumping regime, see also the example in [51, Se
. 2.2℄. The latter paper sets forth a di�er-ent 
hara
terization of rate-independent evolution, still oriented towards lo
al stability, butderived from a global-in-time variational prin
iple and not a vanishing vis
osity approa
h.



27Proof. Ad (1). The geodesi
 property follows from the minimality of ϑ (
f. with (O.2) inDe�nition 4.4). Then, there holds(4.10) d

dr
Et(ϑ(r)) = −p(ϑ̇(r),−DEt(ϑ(r))) ≡ Et(u+) − Et(u−) for a.a. r ∈ (0, 1),where the �rst identity ensues from the 
hain rule (2.26) for E and the 
onta
t 
ondition(4.3), and the se
ond one from (4.2). Clearly, (4.10) implies (4.4).Ad (2). If ϑ is of sliding type, then the 
onta
t 
ondition (4.3), with (3.25), yields (4.5);(4.6) follows sin
e ϑ̇ 6= 0 a.e. in (0, 1).Ad (3). Equation (4.7) still follows from (3.25). Choosing r0 ∈ (0, 1) and a Borel sele
tion

ε(r) ∈ Λ(ϑ̇(r),−DEt(ϑ(r))) (whi
h is therefore lo
ally bounded away from 0), we set(4.11) s(r) :=

∫ r

r0

ε−1(ρ) dρ, r := s−1,so that r is de�ned in a suitable interval of R and satis�es
ṙ(s) = ε(r(s)), θ̇(s) = ε(r(s))ϑ(r(s)).Ad (4). We simply introdu
e the disjoint open sets

V :=
{

r ∈ (0, 1) : −DEt(ϑ(r)) 6∈ K∗
}

, S := (0, 1) \ Vand we 
onsider their 
anoni
al de
omposition in 
onne
ted 
omponents.Ad (5). If ϑ is energeti
, then by (Oener) and (4.4) there holds ∆p,E(t; u−, u+) = Ψ0(u+ −

u−). Thus, taking into a

ount (4.2) and (3.3) as well, we �nd p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r))for a.a. r ∈ (0, 1). Sin
e its Ψ0-velo
ity is 
onstant and the total length is Ψ0(u+ −
u−), we dedu
e that ϑ is a 
onstant speed minimal geodesi
 for Ψ0. Conversely, the
onstraint −DEt(ϑ(r)) ∈ K∗ satis�ed by sliding transitions yields, in view of (3.21), that
p(ϑ̇,−DEt(ϑ(r))) = Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1). Therefore,

∆p,E(t; u−, u+) =

∫ 1

0

Ψ0(ϑ̇(r)) dr = Ψ0(u+ − u−)by the geodesi
 property (4.9).It is well known that, if Ψ0 has stri
tly 
onvex sublevels, the related geodesi
s arelinear segments. In order to prove the last statement, let us observe that for every ξ ∈
∂Ψ0(u+ − u−) ⊂ K∗ there holds

∫ 1

0

〈ξ, ϑ̇(r)〉 dr = 〈ξ, u+ − u−〉 = Ψ0(u+ − u−) =

∫ 1

0

Ψ0(ϑ̇(r)) dr ,where the se
ond equality follows from the 
hara
terization (2.2) of ∂Ψ0(u+ −u−). Hen
e,
∫ 1

0

(

Ψ0(ϑ̇(r)) − 〈ξ, ϑ̇(r)〉
)

dr = 0.Sin
e the above integrand is nonnegative (being ξ ∈ K∗), again by (2.2) we dedu
e that
ξ ∈ ∂Ψ0(ϑ̇(r)) for a.a. r ∈ (0, 1). On the other hand, if Ψ0 is Gâteaux-di�erentiable outside
0, its subdi�erential 
ontains just one point. Ultimately, (4.5) (re
all that ϑ is of slidingtype) shows that −DEt(ϑ(r)) = ξ for every r ∈ [0, 1]. �



28 The next result 
lari�es the relationships between energeti
 and BV solutions.Corollary 4.9 (Energy balan
e and 
omparison with energeti
 solutions).(1) A BV solution u of the rate-independent system (X, E, p) satis�es the energy balan
e(E) if and only if every optimal transition asso
iated with its jump set is of energeti
type (Oener).(2) A BV solution u is an energeti
 solution if and only if it satis�es the global stability
ondition (S). In that 
ase, all of its optimal transition 
urves are of energeti
 type.(3) Conversely, an energeti
 solution u is a BV solution if and only if, for every t ∈ Ju,any jump 
ouple (u(t−), u(t+)) 
an be 
onne
ted by a sliding optimal transition.Proof. Ad (1). Let u be a BV solution su
h that every optimal transition is of energeti
type (Oener). Now, taking into a

ount (JBV), one sees that (Oener) is equivalent to thejump 
onditions (Jener). Then, equation (DN0,BV) (whi
h holds by Theorem 4.3) and (Jener)yield the energy balan
e (E) (
f. the proofs of Propositions 2.2 and 2.7). The 
onverseimpli
ation ensues by analogous arguments.Ad (2). The ne
essity is obvious; for the su�
ien
y we observe that, for every jump point
t ∈ Ju, the global stability 
ondition (S) (written �rst for u(t−) with test fun
tions v = u(t)and v = u(t+), and then for u(t) with v = u(t+)), yields
Ψ0(u(t) − u(t−)) ≥ Et(u(t−)) − Et(u(t)) = ∆p,E(t; u(t−), u(t)) ≥ Ψ0(u(t) − u(t−)),

Ψ0(u(t+) − u(t−)) ≥ Et(u(t−)) − Et(u(t+)) = ∆p,E(t; u(t−), u(t+)) ≥ Ψ0(u(t+) − u(t−)),

Ψ0(u(t+) − u(t)) ≥ Et(u(t)) − Et(u(t+)) = ∆p,E(t; u(t), u(t+)) ≥ Ψ0(u(t+) − u(t)),where the intermediate equalities are due to (O.2) and the subsequent inequalities to (3.9).The resulting identities ultimately show that the transition is energeti
, by the very de�-nition (Oener).Ad (3). The 
ondition is 
learly su�
ient. It is also ne
essary by the previous point, sin
eenergeti
 transitions are in parti
ular of sliding type. �4.3. Vis
ous limit. We 
on
lude this se
tion by our main asymptoti
 results:Theorem 4.10 (Convergen
e of vis
ous approximations to BV solutions). Consider asequen
e
(uε) ⊂ AC([0, T ]; X) of solutions of the vis
ous equation (DNε), with uε(0) → u0 as ε ↓ 0.Then, every vanishing sequen
e εk ↓ 0 admits a further subsequen
e (still denoted by
(εk)), and a limit fun
tion u ∈ BV([0, T ]; X) su
h that(4.12) uεk

(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞,and u is a BV solution of (DN0), indu
ed by the vanishing vis
osity 
onta
t potential pa

ording to De�nition 4.1.Proof. It follows from the dis
ussion developed in Se
tion 2.5 that for every sequen
e εk ↓ 0there exists a not relabeled subsequen
e (uεk
) su
h that (4.12) holds, and u 
omplies withthe lo
al stability 
ondition (Sloc). In view of Proposition 4.2, it is then su�
ient to 
he
kthat (Ep,E;ineq) holds. The latter energy inequality is a dire
t 
onsequen
e of the ε-energyidentity (2.27) and the lower semi
ontinuity property stated in Lemma 6.15 later on. �



29Our next result 
on
erns the 
onvergen
e of the dis
rete solutions to the vis
ous time-in
remental problem (IPε), as both the vis
osity parameter ε and the time-step τ tend to
0.Theorem 4.11 (Convergen
e of dis
rete solutions of the vis
ous in
remental problems).Let Uτ,ε : [0, T ] → X be the left-
ontinuous pie
ewise 
onstant interpolants of the dis
retesolutions of the vis
ous in
remental problem (IPε), with U0

τ,ε → u0 as ε, τ ↓ 0.Then, all vanishing sequen
es τk, εk ↓ 0 satisfying(4.13) lim
k↓0

εk

τk

= +∞admit further subsequen
es (still denoted by (τk) and (εk)) and a limit fun
tion u ∈
BV([0, T ]; X) su
h that

Uτk ,εk
(t) → u(t) for every t ∈ [0, T ] as k ↑ +∞,and u is a BV solution of (DN0) indu
ed by the vanishing vis
osity 
onta
t potential pa

ording to De�nition 4.1.The reader may 
ompare this result to [16, 21, 22, 49℄, where the same double passage tothe limit was performed for spe
i�
 applied problems and 
onditions analogous to (4.13)were imposed.Proof. The standard energy estimate asso
iated with the variational problem (IPε) yields(4.14) τ

ε
Ψ

(ε

τ
(Un

τ,ε−Un−1
τ,ε )

)

+Etn(Un
τ,ε) ≤ Etn(Un−1

τ,ε ) = Etn−1
(Un−1

τ,ε )+

∫ tn

tn−1

∂tEt(U
n−1
τ,ε ) dt .Thanks to (2.7), we easily get from (4.14) the following uniform bounds for every 1 ≤ n ≤ N(here C is a 
onstant independent of n, τ, ε)

Etn(Un
τ,ε) ≤ C,

N
∑

n=1

τ

ε
Ψ

( ε

τ
(Un

τ,ε − Un−1
τ,ε )

)

≤ C,

N
∑

n=1

Ψ0(U
n
τ,ε − Un−1

τ,ε ) ≤ C ,the latter estimate thanks to (Ψ.2).Denoting by Uτ,ε (resp. Uτ,ε) the right-
ontinuous pie
ewise 
onstant interpolants (resp. pie
e-wise linear interpolant) of the dis
rete values (Un
τ,ε) whi
h take the value Un

τ,ε at t = tn, wehave
Et(Uτ,ε(t)) ≤ C, VarΨ0

(Uτ,ε; [0, T ]) ≤ C(4.15a)
‖Uτ,ε − Uτ,ε‖L∞(0,T ;X), ‖Uτ,ε − Uτ,ε‖L∞(0,T ;X),≤ sup

n
‖Un

τ,ε − Un−1
τ,ε ‖X ≤ Cω(τ/Cε),

(4.15b)where
ω(r) := sup

x∈X

{

‖x‖X : rΨ(r−1x) ≤ 1
}satis�es limr↓0 ω(r) = 0 thanks to (Ψ.1). By Helly's theorem, these bounds show that (upto the extra
tion of suitable subsequen
es (τk) and (εk) satisfying (4.13)), the sequen
es

(Uτk,εk
), (Uτk ,εk

) and (Uτk ,εk
) pointwise 
onverge to the same limit u.



30 By di�erentiating the variational 
hara
terization of Un
τ,ε given by (IPε) we obtain

∂Ψε

(Un
τ,ε − Un−1

τ,ε

τ

)

+ W n
τ,ε ∋ 0, W n

τ,ε := −DEtn(Un
τ,ε),whi
h yields in ea
h interval (tn−1, tn] (here, Wτ,ε denotes the left-
ontinuous pie
ewise
onstant interpolant of the values (W n

τ,ε)
N
n=1)

τΨε

(

U̇τ,ε

)

+ τΨ∗
ε(Wτ,ε) = −〈DEtn(Uτ,ε(tn)), Uτ,ε(tn) − Uτ,ε(tn−1)〉

= Etn−1
(Uτ,ε(tn−1)) − Etn(Uτ,ε(tn)) +

∫ tn

tn−1

∂tEt(Uτ,ε(t)) dt − R(tn; Uτ,ε(tn−1), Uτ,ε(tn))where
R(t; x, y) := Et(y) − Et(x) − 〈DEt(y), y − x〉.Sin
e E is of 
lass C1, for every 
onvex and bounded set B ⊂ X there exists a 
on
avemodulus of 
ontinuity σB : [0, +∞) → [0, +∞) su
h that limr↓0 σB(r) = σB(0) = 0 and

R(t; x, y) ≤ σB(‖y − x‖X)‖y − x‖X for every t ∈ [0, T ], x, y ∈ B.We thus obtain(4.16)
∫ T

0

(

Ψε(U̇τ,ε(t)) + Ψ∗
ε(Wτ,ε(t))

)

dt + EtN (Uτ,ε(tN)) ≤ E0(u0) +

∫ tN

0

∂tEt(Uτ,ε(t)) dt

+ sup
1≤n≤N

σB(‖Un
τ,ε − Un−1

τ,ε ‖)

N
∑

n=1

‖Un
τ,ε − Un−1

τ,ε ‖, Wτ,ε(t)) = −DEt̄τ (t)(Uτ,ε(t)).We pass to the limit along suitable subsequen
es (τk) and (εk) su
h that Uτk,εk
, Uτk ,εk

→ upointwise; sin
e Uτ,ε and Uτ,ε are uniformly bounded, (4.15b) and (4.13) yield the 
on-vergen
e to 0 of the third term on the right-hand side of (4.16), whi
h thus tends to
E0(u0) +

∫ T

0
∂tEt(u(t)) dt. Sin
e Wτk,εk

(t) → w(t) = −DEt(u(t)), applying the lower semi-
ontinuity result of Lemma 6.15 we obtain that u satis�es (Ep,E;ineq) and the lo
al stability
ondition. In view of Proposition 4.2, this 
on
ludes the proof. �5. Parametrized solutionsIn this se
tion, we restart from the dis
ussions in Se
tions 2.4 and 2.5, and adopt adi�erent point of view, whi
h relies on the rate-independent stru
ture of the limit problem.The main idea, whi
h was introdu
ed by [18℄, is to res
ale time in order to gain a uniformLips
hitz bound on the (res
aled) vis
ous approximations. Keeping tra
k of the asymptoti
behavior of time res
alings, one 
an retrieve the BV limit we analyzed in Se
tion 4. Inparti
ular, we shall re
over that the limiting jump pathes re�e
t the vis
ous approximation.5.1. Vanishing vis
osity analysis: a res
aling argument. Let us re
all that for every
ε > 0 uε are the solutions of the vis
ous di�erential in
lusion(DNε) ∂Ψε(u̇ε(t)) + DEt(uε(t)) ∋ 0 in X∗ for a.a. t ∈ (0, T ),



31whi
h we split into the system
∂Ψε(u̇ε(t)) ∋ wε,

DEt(uε(t)) = −wε, ∂tEt(uε(t)) = −pε.We follow the ideas of [18, 35℄ to 
apture the aforementioned limiting vis
ous jump pathes,.However, owing to the dissipation bound (2.28), we use a di�erent time res
aling sε :
[0, T ] → [0, Sε](5.1) sε(t) := t +

∫ t

0

(

Ψε(u̇ε(r)) + Ψ∗
ε(wε(r))

)

dr and Sε := sε(T ).Thus, sε may be interpreted as some sort of �energy ar
length� of the 
urve uε. Noti
e that,thanks to (2.28), the sequen
e (Sε) is uniformly bounded with respe
t to the parameter ε.Let us 
onsider the res
aled fun
tions (tε, uε) : [0, Sε] → [0, T ] × X and (pε, wε) : [0, Sε] →
R × X∗ de�ned by(5.2) tε(s) := s−1

ε (s) , uε(s) := uε(tε(s)),

pε(s) := pε(tε(s)) = −∂tEtε(s)(uε(s)) , wε(s) := wε(tε(s)) = −DEtε(s)(uε(s)).We now study the limiting behavior as ε ↓ 0 of the reparametrized traje
tories
{(

tε(s), uε(s)
)

: s ∈ [0, Sε]
}

⊂ X = [0, T ] × X,
{(

ṫε(s), u̇ε(s); pε(s), wε(s)
)

: s ∈ [0, Sε]
}

⊂ B,where we use the notation(5.3) B := [0, +∞) × X × R × X∗.In order to rewrite the �res
aled energy identity� ful�lled by the triple (tε, uε, wε), we de�nethe vis
ous spa
e-time vanishing vis
osity 
onta
t potential Pε : (0, +∞)×X ×R×X∗ →
[0, +∞) by setting(5.4) Pε(α, v; p, w) := αΨε(v/α) + αΨ∗

ε(w) + αp =
α

ε
Ψ(

ε

α
v) +

α

ε
Ψ∗(w) + αpHen
e, (2.27) be
omes for all 0 ≤ s1 ≤ s2 ≤ Sε(5.5) ∫ s2

s1

Pε

(

ṫε(s), u̇ε(s); pε(s), wε(s)
)

ds + Etε(s2)(uε(s2)) = Etε(s1)(uε(s1)),and (5.1) yields
Pε

(

ṫε(s), u̇ε(s); 1, wε(s)
)

= 1 for a.a. s ∈ (0, Sε) .A priori estimates and passage to the limit. Due to estimate (2.28), there exists
S > 0 su
h that, along a (not relabeled) subsequen
e, we have sε(T ) → S as ε ↓ 0.Exploiting again (2.28), the Arzelà-As
oli 
ompa
tness theorem, and the fa
t that X is�nite-dimensional (see also the proof of [35, Thm. 3.3℄), we �nd two 
urves t ∈ W 1,∞(0, S)and u ∈ W 1,∞([0, S]; X) su
h that, along the same subsequen
e,

tε → t in C0([0, S]), ṫε⇀
∗ ṫ in L∞(0, S),(5.6a)

uε → u in C0([0, S]; X), u̇ε⇀
∗ u̇ in L∞(0, S; X),(5.6b)

pε → p in C0([0, S]), wε → w in C0([0, S]; X∗),(5.6
)



32with(5.6d) Etε(uε) → Et(u), p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s))for all s ∈ [0, S]. Then, to pass to the limit in (5.5) we exploit a lower semi
ontinuity result(see Proposition 6.2), based on the fa
t that the sequen
e of fun
tionals (Pε) Γ-
onvergesto the augmented vanishing vis
osity 
onta
t potential P : [0, +∞)×X×R×X∗ → [0, +∞](see Lemma 6.1) de�ned by(5.7) P(α, v; p, w) :=

{

Ψ0(v) + IK∗(w) + α p if α > 0,

p(v, w) if α = 0.By (5.6) and Proposition 6.2, we take the lim inf as ε ↓ 0 of (5.5) and 
on
lude that thepair (t, u) ful�ls, for all 0 ≤ s1 ≤ s2 ≤ S, the estimate(5.8) ∫ s2

s1

P
(

ṫ(s), u̇(s); p(s), w(s)
)

ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) .5.2. Vanishing vis
osity 
onta
t potentials and rate-independent evolution. Theaugmented spa
e-time 
onta
t potential P is 
losely related to p introdu
ed by (3.13). Thefollowing result �xes some properties of P. Its proof, whi
h we 
hoose to omit, 
an be easilydeveloped starting from Theorems 3.6 and 3.12 for the vanishing vis
osity 
onta
t potential
p.Lemma 5.1 (General properties of P).(1) P is lower semi
ontinuous, 1-homogeneous and 
onvex in the pair (α, v); for every

(α, v) ∈ [0, +∞) × X the fun
tion P(α, v; ·, ·) has 
onvex sublevels.(2) For all (α, v, p, w) ∈ B (
f. (5.3)) it satis�es
P(α, v; p, w) ≥ 〈w, v〉 + αp, P(0, v; p, w) ≥ p(v, w) ≥ Ψ0(v),(5.9)

P(0, v; p, w) = Ψ0(v) ⇔ w ∈ K∗.(5.10)(3) The 
onta
t set of P(5.11) ΣP :=
{

(α, v; p, w) ∈ B : P(α, v; p, w) = 〈w, v〉 + αp
}does not impose any 
onstraint on p. It 
an be 
hara
terized by(5.12) (α, v; p, w) ∈ ΣP ⇔ w ∈ ∂ P(α, · ; p, w)(v).We also havefor α > 0, (α, v; p, w) ∈ ΣP if and only if w ∈ ∂Ψ0(v),(5.13) for α = 0, (α, v; p, w) ∈ ΣP if and only if (v, w) ∈ Σp.(5.14)Equivalently, (α, v; p, w) ∈ ΣP if and only if(5.15) w ∈ ∂Ψ0(v) ⊂ K∗ or (

w 6∈ K∗, α = 0, ∃ ε ∈ Λ(v, w) : w ∈ ∂Ψ(εv)
)

,where Λ(v, w) is de�ned in (3.18). In parti
ular, in the additive vis
osity 
ase (2.21),we simply have(5.16) (α, v; p, w) ∈ ΣP ⇐⇒ ∃λ ≥ 0 : w ∈ ∂Ψ0(v) + ∂ΨV (λv) and αλ = 0.



33Con
lusion of the vanishing vis
osity analysis. We are now going to show that (5.8)is in fa
t an equality. This 
an be easily 
he
ked relying on the 
hain rule (2.26), whi
hyields for a.a. s ∈ (0, S)(5.17) d

ds
Et(s)(u(s)) = −∂tEt(s)(u(s)) ṫ(s) − 〈−DEt(s)(u(s)), u̇(s)〉(5.2)

= −p(s)ṫ(s) − 〈w(s), u̇(s)〉 ≥ −P(ṫ(s), u̇(s), p(s), w(s)) .Colle
ting (5.17) and (5.8), we 
on
lude that the latter holds with an equality sign and,with an elementary argument, that su
h equality also holds in the di�erential form, namelyfor a.a. s ∈ (0, S)(5.18) p(s) = −∂tEt(s)(u(s)), w(s) = −DEt(s)(u(s))

d

ds
Et(s)(u(s)) = −p(s)ṫ(s) − 〈w(s), u̇(s)〉 = −P(ṫ(s), u̇(s), p(s), w(s))whi
h yields(5.19) (

ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

∈ ΣP for a.a. s ∈ (0, S).Finally, we take the lim sup as ε ↓ 0 of (5.5), using (5.6) and (5.18), when
e
lim sup

ε↓0

∫

S

0

Pε(ṫε(s), u̇ε(s), pε(s), wε(s)) ds ≤

∫

S

0

P(ṫ(s), u̇(s), p(s), w(s)) ds.In parti
ular, we �nd that for a.a. s ∈ (0, S)(5.20) P
(

ṫ(s), u̇(s); 1, w(s)
)

= 1.5.3. Parametrized solutions of rate-independent systems. Motivated by the dis-
ussion of the previous se
tion, we now give the notion of parametrized rate-independentevolution, driven by a general vanishing vis
osity 
onta
t potential P, satisfying 
onditions
(1), (2) of Lemma 5.1.De�nition 5.2 (Parametrized solutions of rate-independent systems). Let P : B →
(−∞, +∞] be the vanishing vis
osity 
onta
t potential (5.7). We say that a Lips
hitz
ontinuous 
urve (t, u) : [a, b] → [0, T ] × X is a parametrized rate-independent solutionfor the system (X, E, P) if t is nonde
reasing and, setting p(s) = −∂tEt(s)(u(s)), w(s) =
−DEt(s)(u(s)) for all s ∈ [a, b], we have(5.21) ∫ s2

s1

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(s2)(u(s2)) ≤ Et(s1)(u(s1)) ∀ a ≤ s1 ≤ s2 ≤ b.Furthermore,(1) if ṫ(s) + Ψ0(u̇(s)) > 0 for a.a. s ∈ (a, b) we say that (t, u) is nondegenerate;(2) if t(a) = 0, t(b) = T we say that (t, u) is surje
tive;(3) if (t, u) satis�es (5.20), we say that it is normalized.De�nition 5.2 generalizes to the present setting the notion whi
h we �rst introdu
edin [35℄.



34Remark 5.3. The ni
e feature of the previous de�nition is its invarian
e with respe
t to(nonde
reasing, Lips
hitz) time res
alings. Namely, if (t, u) : [a, b] → [0, T ] × X is aparametrized solution and s : [α, β] → [a, b] is a Lips
hitz nonde
reasing map, then (t ◦
s, u ◦ s) is a parametrized solution in [α, β].The next result provides equivalent 
hara
terizations of parametrized solutions.Proposition 5.4. A Lips
hitz 
ontinuous 
urve (t, u) : [a, b] → [0, T ] × X, with t nonde-
reasing, is a parametrized solution of (X, E, P) if and only if one of the following (equiv-alent) 
onditions (involving as usual p = −∂tEt(u), w = −DEt(u)) is satis�ed:(1) The energy inequality (5.21) holds just for s1 = a and s2 = b, i.e.(5.22) ∫ b

a

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(b)(u(b)) ≤ Et(a)(u(a)).(2) The energy inequality (5.21) holds in the di�erential form(5.23) d

ds
Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s), w(s)) ≤ 0 for a.a. s ∈ (a, b).(3) The energy identity holds, in the di�erential form(5.24) d

ds
Et(s)(u(s)) + P(ṫ(s), u̇(s); p(s), w(s)) = 0 for a.a. s ∈ (a, b),or in the integrated form(5.25) ∫ s2

s1

P(ṫ(s), u̇(s); p(s), w(s)) ds + Et(s2)(u(s2)) = Et(s1)(u(s1)) for a ≤ s1 ≤ s2 ≤ b.(4) There holds
(

ṫ(s), u̇(s);−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

∈ ΣP for a.a. s ∈ (a, b) .(5) The pair (t, u) satisfy the di�erential in
lusion(5.26) ∂ P
(

ṫ(s), · ;−∂tEt(s)(u(s)),−DEt(s)(u(s))
)

(u̇(s)) + DEt(s)(u(s)) ∋ 0 a.e. in (a, b) .In parti
ular, for a.a. s ∈ (a, b) we have the impli
ations(5.27) ṫ(s) > 0 ⇒ −DEt(s)(u(s)) ∈ K∗,
−DEt(s)(u(s)) ∈ K∗ ⇒ −DEt(s)(u(s)) ∈ ∂Ψ0(u̇(s)),and for every Borel map λ de�ned in the open set J by(5.28) J :=

{

s ∈ (a, b) : −DEt(s)(u(s)) 6∈ K∗
}

,with λ(s) ∈ Λ(u̇(s),−DEt(s)(u(s))) for a.a. s ∈ J,we have(5.29) −DEt(s)(u(s)) ∈ ∂Ψ(λ(s)u̇(s)), ṫ(s) = 0 for a.a. s ∈ J.The proof follows from the 
hain rule (2.26) (arguing as for (5.17), (5.18), (5.19)), andfrom the 
hara
terization of the 
onta
t set ΣP of Lemma 5.1 (see also [35, Prop. 2℄).



35Corollary 5.5 (Di�erential 
hara
terization in the additive vis
osity 
ase). Let P : B →
(−∞, +∞] be a vanishing vis
osity 
onta
t potential satisfying 
onditions (1), (2) of Lemma5.1, and suppose also that the 
onta
t set of P satis�es the 
hara
terization (5.16) ofLemma 5.1 in the additive vis
osity 
ase (2.21) Ψ = Ψ0 + ΨV .Then, a Lips
hitz 
ontinuous 
urve (t, u) : [a, b] → [0, T ]×X is a parametrized solutionof (X, E, P) if and only if there exists a Borel fun
tion λ : (a, b) → [0, +∞) su
h thatfor a.a. s ∈ (a, b)(5.30) ∂Ψ0(u̇(s)) + ∂ΨV (λ(s)u̇(s)) + DEt(s)(u(s)) ∋ 0, λ(s)ṫ(s) = 0 for a.a. s ∈ (a, b).The vanishing vis
osity analysis developed in Se
tions 5.1 and 5.2 provides the following
onvergen
e result.Theorem 5.6 (Convergen
e to parametrized solutions). Let (un) be vis
ous solutions of(DNε) 
orresponding to a vanishing sequen
e (εn), let tn : [0, S] → [0, T ] be uniformlyLips
hitz and surje
tive time res
alings and let un : [0, S] → X be de�ned as un(s) :=
un(tn(s)) for all s ∈ [0, S]. Suppose that

∃α > 0 ∀n ∈ N : mn(s) := Pεn
(ṫn(s), u̇n(s); 1,−DEtn(s)(un(s))) ∈ [α, α−1]for a.a. s ∈ (0, S). If the fun
tions (tn, un, mn) pointwise 
onverge to (t, u, m) as n → ∞,then (t, u) is a (nondegenerate, surje
tive) parametrized rate-independent solution a

ordingto De�nition 5.2, and

P(ṫ(s), u̇(s); 1,−DEt(s)(u(s))) = m(s) for a.a. s ∈ (0, S).The following remark, to be 
ompared with Remark 4.8, highlights the di�erent me-
hani
al regimes en
ompassed in the notion of parametrized rate-independent solution.Remark 5.7 (Me
hani
al interpretation). The evolution des
ribed by (5.26) in Proposi-tion 5.4 bears the following me
hani
al interpretation (
f. with [18℄ and [35℄):
• the regime (ṫ > 0, u̇ = 0) 
orresponds to sti
king,
• the regime (ṫ > 0, u̇ 6= 0) 
orresponds to rate-independent sliding. In both thesetwo regimes −DEt(u) ∈ K∗.
• when −DEt(u) 
annot obey the 
onstraint K∗, then the system swit
hes to a vis
ousregime. The time is frozen (i.e., ṫ = 0), and the solution follows a vis
ous path.In the additive vis
osity 
ase (2.21) it is governed by the res
aled vis
ous equation(5.30) with λ > 0. These vis
ous motions 
an be seen as a jump in the (slow)external time s
ale.We 
on
lude this se
tion with the main equivalen
e result between parametrized and

BV solutions of rate-independent systems (
ompare with the analogous [35, Prop. 6℄). Wepostpone its proof at the end of the next se
tion.Theorem 5.8 (Equivalen
e between BV and parametrized solutions). Let (t, u) : [0, S] →
[0, T ] × X be a (nondegenerate, surje
tive) parametrized solution of the rate independentsystem (X, E, P). For every t ∈ [0, T ] set(5.31) s(t) :=

{

s ∈ [0, S] : t(s) = t
}



36Then, any 
urve u : [0, T ] → X su
h that(5.32) u(t) ∈
{

u(s) : s ∈ s(t)
}is a BV solution of the rate-independent system (X, E, p).Conversely, if u : [0, T ] → X is a BV solution, then there exists a parametrized solution

(t, u) su
h that (5.32) holds for a time-res
aling fun
tion s de�ned as in (5.31).6. Auxiliary resultsAfter proving some lower semi
ontinuity results for vanishing vis
osity 
onta
t poten-tials, in Se
tion 6.2 we develop some auxiliary results 
on
erning the total variation indu
edby time-dependent (and possibly asymmetri
) Finsler norms.6.1. Lower semi
ontinuity for vanishing vis
osity 
onta
t potentials. Let us startwith a lemma whi
h shows that Pε, whi
h is de�ned in (5.4), Γ-
onverges to P as ε ↓ 0(
ompare with [35, Lemma 3.1℄), where P is de�ned in (5.7).Lemma 6.1 (Γ-
onvergen
e of Pε).
Γ-liminf estimate: For every 
hoi
e of sequen
es εn ↓ 0 and (αn, vn, pn, wn) →

(α, v, p, w) in B, we have(6.1) lim inf
n→∞

Pεn
(αn, vn; pn, wn) ≥ P(α, v; p, w).

Γ-limsup estimate: For every (α, v; p, w) ∈ B there exists (αε, vε, pε, wε)ε>0 su
hthat(6.2) lim sup
ε↓0

Pε(αε, vε; pε, wε) ≤ P(α, v; p, w).Proof. The Γ-liminf estimate is easy: if α > 0 then, also re
alling (2.29), one veri�es that(6.3) lim inf
n→∞

Pεn
(αn, vn; pn, wn) ≥ lim inf

n→∞

(

Ψ0(vn) + αnε−1
n Ψ∗

0(wn) + αnpn

)

≥ P0(α, v; p, w),where we have used the notation(6.4) P0(α, v; p, w) := Ψ0(v) + I∗K(w) + αp.The �rst inequality in (6.3) is also due to (2.16). If α = 0, we use the obvious lower bound
Pεn

(αn, vn; pn, wn) ≥ p(vn, wn) + αnpnand the 
ontinuity of p (
f. Theorem 3.12).To show the limsup estimate (6.2) for w ∈ K∗, we simply 
hoose αε := α + ε, vε :=
v, pε := p, wε := w, observing that in this 
ase

Pε(αε, vε; pε, wε) ≤ ε(α + ε)Ψ(v/(ε(α + ε)) + (α + ε)p
ε↓0
→ Ψ0(v) + αp = P(α, v; p, w) ,the �rst passage due to (2.24). If w 6∈ K∗, we 
hoose a 
oe�
ient λ ∈ Λ(v, w) as in (3.18),and we set αε := λε, vε := v, pε := p, wε := w, obtaining

Pε(αε, vε; pε, wε) = p(v, w) + λεp
ε↓0
→ p(v, w) = P(α, v; p, w). �



37An important 
onsequen
e of the previous Lemma is provided by the following lower-semi
ontinuity result for the integral fun
tional asso
iated with Pε.Proposition 6.2 (Lower-semi
ontinuity of the ε-energy). Let us �x an interval (s0, s1).For every 
hoi
e of a vanishing sequen
e εn > 0 and of fun
tions αn ∈ L∞(s0, s1), pn ∈
L1(s0, s1), vn ∈ L1(0, T ; X), wn ∈ L1(0, T ; X∗) su
h that

αn⇀
∗ α in L∞(s0, s1), pn → p in L1(0, T ),

vn ⇀ v in L1(0, T ; X), wn → w in L1(s0, s1),we have the liminf estimates
lim inf
n→∞

∫ s1

s0

Pεn
(αn(s), vn(s); pn(s), wn(s)) ds ≥

∫ s1

s0

P(α(s), v(s); p(s), w(s)) ds,(6.5)
lim inf
n→∞

∫ s1

s0

P0(αn(s), vn(s); pn(s), wn(s)) ds ≥

∫ s1

s0

P(α(s), v(s); p(s), w(s)) ds,(6.6)where P0 is de�ned in (6.4).Proof. It is su�
ient to prove this result in the 
ase pn ≡ p = 0. Then we noti
e that, byLemma 6.1, the integrand
P̃(ε, α, v, w) := Pε(α, v; 0, w) for (ε, α, v, w) ∈ [0, +∞) × [0, +∞) × X × X∗is lower semi
ontinuous and 
onvex in the pair (α, v). Then, inequality (6.5) follows fromIo�e's Theorem (see e.g. [3, Thm. 5.8℄). A similar argument yields (6.6). �6.2. Asymmetri
 dissipations, pseudo-total variation, and extended spa
e-time
urves.Notation. Hereafter, X shall stand for the extended spa
e-time domain [0, T ]×X, withelements x = (t, u) denoted by bold letters. We shall denote by V the tangent 
one

[0, +∞) × X to X and by v = (α, v) the elements in V .We shall 
onsider lower semi
ontinuous dissipation fun
tionals R : X × V → [0, +∞)satisfying the following properties:
∀x ∈ X : R (x; ·) is 
onvex and positively 1-homogeneous;(6.7a)
∃C > 0 ∀x ∈ X , v = (α, v) ∈ V : R (x; v) ≥ C‖v‖X(6.7b)

R is lower semi
ontinuous on X × V .(6.7
)In order to keep tra
k of the time-
omponent of v we also set, for all β ≥ 0,
Rβ (x; v) = αβ + R (x; v) for allx ∈ X , v = (α, v) ∈ V .Noti
e that, for any dissipation R 
omplying with properties (6.7), the 
orrespondingfun
tional Rβ satis�es the subadditivity property for all x ∈ X and v1, v2 ∈ V

Rβ (x; v1 + v2) ≤ Rβ (x; v1) + Rβ (x; v2) .Example 6.3 (Dissipations indu
ed by Ψ0 and P).(1) Our �rst trivial example of a dissipation ful�lling properties (6.7) is given by(6.8) P(x, v) := Ψ0(v) for x ∈ X , v = (α, v) ∈ V .



38 (2) Our main example will be provided by the dissipation indu
ed by the vanishingvis
osity 
onta
t potential P, namely(6.9) B(x; v) := P(α, v, 0,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V .It is not di�
ult to 
he
k that B satis�es all of assumptions (6.7). Hen
e, for all
β ≥ 0 we set(6.10) Bβ (x; v) := P(α, v; β,−DEt(u)) for x = (t, u) ∈ X , v = (α, v) ∈ V .De�nition 6.4 (Pseudo-Finsler distan
e indu
ed by R). Given a dissipation fun
tion

R : X × V → [0, +∞) 
omplying with (6.7), for every xi = (ti, ui) ∈ X , i = 0, 1, with
0 ≤ t0 ≤ t1 ≤ T , we set(6.11) ∆Rβ

(x0, x1) := inf
{

∫ r1

r0

Rβ (x(r); ẋ(r)) dr :

x = (t, u) ∈ Lip(r0, r1; X ), x(ri) = xi, i = 0, 1, ṫ ≥ 0
}

.If t0 > t1 we set ∆Rβ
(x0, x1) := +∞. We also de�ne

∆R0
(t; u0, u1, u2) := ∆R0

((t, u0), (t, u1)) + ∆R0
((t, u1), (t, u2)).(noti
e that this quantity is independent of β).Remark 6.5. The link with the Finsler 
ost ∆p,E (3.8) indu
ed by (p, E) is 
lear. For R = Bgiven by (6.9), using P(0, v; 0, w) = p(v, w) we have, for t0 = t1 = t,(6.12) ∆B0

((t, u0), (t, u1)) = ∆p,E(t; u0, u1) for every u0, u1 ∈ X.When R = P is given by (6.8), we simply have
∆Pβ

((t0, u0), (t1, u1)) = β(t1 − t0) + Ψ0(u1 − u0) for u0, u1 ∈ X, 0 ≤ t0 < t1 ≤ T.General properties of ∆Rβ
(·, ·). It is not di�
ult to 
he
k that the in�mum in (6.11) isattained and, by the usual res
aling argument (
f. Remark 4.5), one 
an always 
hoose anoptimal Lips
hitz 
urve x = (t, u) de�ned in [0, 1] su
h that(6.13)

R1 (x; ẋ) is essentially 
onstant and equal to ∆R1
(x0, x1) = (t1 − t0) + ∆R0

(x0, x1).Properties (6.7b)�(6.7
) yield, for every u0, u1 ∈ X and 0 ≤ t0 ≤ t1 ≤ T, the estimate(6.14) β(t1 − t0) + C‖u1 − u0‖X ≤ ∆Rβ
((t0, u0), (t1, u1)).Noti
e that ∆Rβ

(·, ·) is not symmetri
 but still satis�es the triangle inequality: for xi =
(ti, ui) ∈ X with t0 ≤ t1 ≤ t2, there holds

∆Rβ
(x0, x2) ≤ ∆Rβ

(x0, x1) + ∆Rβ
(x1, x2).Another useful property, dire
t 
onsequen
e of (6.7
), is the lower semi
ontinuity withrespe
t to 
onvergen
e in X : if xi,n = (ti,n, ui,n) → xi = (ti, ui) in X as n ↑ +∞, i = 0, 1,then(6.15) lim inf

n↑+∞
∆Rβ

(x0,n, x1,n) ≥ ∆Rβ
(x0, x1).Indeed, assuming that the lim inf in (6.15) is �nite and that, up to the extra
tion ofa suitable subsequen
e, that it is a limit, it is su�
ient to 
hoose an optimal sequen
e
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xn = (tn, un) of Lips
hitz 
urves as in (6.13), whi
h therefore satis�es a uniform Lips
hitzbound and, up to the extra
tion of a further subsequen
e, 
onverges to some Lips
hitz
urve x = (t, u). Then, (6.15) 
an be proved in the same way as (6.6).In the 
ase of the 
ost indu
ed by B indu
ed by the vanishing vis
osity 
onta
t potential
P, we have a re�ned lower-semi
ontinuity result:Lemma 6.6. Let un, wn : [t0, t1] → X be Borel maps and (εn) be a vanishing sequen
e.Suppose that un is absolutely 
ontinuous for every n ∈ N and that the following 
onvergen
eshold as n → ∞

un(t) → u(t) and wn(t) → w(t) for all t ∈ [t0, t1]; sup
t∈[t0,t1]

‖wn(t) + DEt(un(t))‖X∗ → 0.Then,(6.16) lim inf
n↑+∞

∫ t1

t0

(

Ψεn
(u̇n(t)) + Ψ∗

εn
(wn(t))

)

dt ≥ ∆B0
((t0, u(t0)), (t1, u(t1))).Proof. Up to extra
ting a further subsequen
e, it is not restri
tive to assume that the

lim inf in (6.16) is in fa
t a limit. We set as in (5.1), (5.2)
sn(t) := t − t0 +

∫ t

t0

(

Ψεn
(u̇n(r)) + Ψ∗

εn
(wn(r))

)

dr, Sn := sn(t1),

tn(s) := s−1
n (s), un(s) := un(tn(s)), wn(s) := wn(tn(s)) for all s ∈ [0, Sn]so that(6.17) ∫ t1

t0

(

Ψεn
(u̇n(t)) + Ψ∗

εn
(wn(t))

)

dt =

∫

Sn

0

Pεn
(ṫn(s), u̇n(s); 0, wn(s)) ds.Sin
e the sequen
es (tn) and (un) are uniformly Lips
hitz, applying the As
oli-Arzelà The-orem we 
an extra
t a (not relabeled) subsequen
e su
h that Sn → S, and �nd fun
tions

t : [0, S] → [t0, t1], u : [0, S] → X, and w : [0, S] → X∗, su
h that
tn → t, un → u, wn → w = −DEt(u) uniformly in [0, S].By 
onstru
tion, we have t(0) = t0, u(0) = u(t0), t(S) = t1, and u(S) = u(t1). ApplyingProposition 6.2, we have(6.18) lim inf

n↑+∞

∫

Sn

0

Pεn
(ṫn(s), u̇n(s); 0, wn(s)) ds ≥

∫

S

0

P0(ṫ(s), u̇(s); 0, w(s)) ds

≥ ∆B0
((t(0), u(0)), (t(S), u(S))).Combining (6.17) and (6.18), we 
on
lude (6.16). �The total variation asso
iated with ∆Rβ

. In the same way as in De�nition 3.4 weintrodu
ed the total variation Varp,E asso
iated with the Finsler 
ost ∆p,E, it is now naturalto de�ne the total variation asso
iated with ∆Rβ
.



40De�nition 6.7 (Total variation for the pseudo-Finsler distan
e ∆Rβ
). For every 
urve

x = (t, u) : [0, S] → X su
h that t is nonde
reasing and every interval [a, b] ⊂ [0, S] we set(6.19) VarRβ
(x; [a, b]) := sup

{

M
∑

m=1

∆Rβ
(x(sm), x(sm−1)) :

a = s0 < s1 < · · · < sM−1 < sM = b
}

.For a non-parametrized 
urve u : [0, T ] → X and [a, b] ⊂ [0, T ], we simply set
VarRβ

(u; [a, b]) := VarRβ
(u; [a, b]), with u(t) := (t, u(t)) ∈ X , t ∈ [0, T ].In view of (6.7b), it is immediate to 
he
k that a 
urve u with VarR0

(u; [0, T ]) < +∞belongs to BV([0, T ]; X).In 
ontrast to the (pseudo)-total variation de�ned in (3.11), the above notion of totalvariation is lower semi
ontinuous with respe
t to pointwise 
onvergen
e (
ompare withRemark 3.5).Proposition 6.8 (Lower semi
ontinuity of VarRβ
(·; [a, b])). If xn = (tn, un) : [0, S] → Xis a sequen
e of 
urves pointwise 
onverging to x = (t, u) as n ↑ ∞, we have(6.20) lim inf

n↑∞
VarRβ

(xn; [a, b]) ≥ VarRβ
(x; [a, b]).Proof. The argument is standard: for an arbitrary subdivision a = s0 < s1 < · · · < sM−1 <

sM = b, (6.15) yields
M

∑

m=1

∆Rβ
(x(sm), x(sm−1)) ≤ lim inf

n↑+∞

M
∑

m=1

∆Rβ
(xn(sm), xn(sm−1)) ≤ lim inf

n↑∞
VarRβ

(xn; [a, b]).Taking the supremum with respe
t to all subdivisions of [a, b] we obtain (6.20). �Lips
hitz 
urves. The next result shows that, for Lips
hitz 
urves, the total variation
an be 
al
ulated by integrating the 
orresponding dissipation potential.Proposition 6.9 (The total variation for Lips
hitz 
urves). Given β, L > 0, a bounded
urve x := (t, u) : [0, S] → X satis�es the ∆Rβ
�Lips
hitz 
ondition with Lips
hitz 
onstant

L(6.21) ∆Rβ
(x(s1), x(s2)) ≤ L(s2 − s1) for every 0 ≤ s1 ≤ s2 ≤ S,if and only if it is Lips
hitz 
ontinuous (with respe
t to the usual distan
e in X ), t isnonde
reasing, and(6.22) Rβ (x(s); ẋ(s)) ≤ L for a.a. s ∈ (0, S).In this 
ase, for every γ ≥ 0(6.23) VarRγ

(x; [a, b]) = γ(t(b) − t(a)) +

∫

b

a

R0 (x(s); ẋ(s)) ds.



41Proof. The su�
ien
y of 
ondition (6.22) is 
lear. Let us now 
onsider a 
urve x satisfying(6.21): by the 
oer
ivity (6.14), x is a Lips
hitz 
urve in the usual sense and [47, Prop.2.2℄ yields
∆Rβ

(x(s0), x(s1)) ≤

∫ s1

s0

m(s) ds, where m(s) := lim
h↓0

∆Rβ
(x(s), x(s + h))

his the so-
alled metri
 derivative of x (see [1, 4℄). The minimality of m ensures that(6.24) m(s) ≤ Rβ (x(s); ẋ(s)) for a.a. s ∈ [0, S].On the other hand, sin
e Rβ is lower semi
ontinuous and 1-homogeneous in v, for every
0 < σ < 1 and s ∈ [0, S] we �nd a 
onstant δ > 0 su
h that

Rβ (x(r); v) ≥ σRβ (x(s); v) for every v ∈ V if |r − s| ≤ δ,so that a 
omparison with the linear segment joining x(s) with x(s + h) yields
∆Rβ

(x(s), x(s + h)) ≤ σ−1
Rβ (x(s); x(s + h) − x(s))Dividing by h and passing to the limit �rst as h ↓ 0 and eventually as σ ↑ 1, we obtain theopposite inequality of (6.24). Combining (6.24) (whi
h holds as an equality) with (6.21),we infer (6.22), and (6.23) ensues. �Proposition 6.10 (Reparametrization). Let u : [0, T ] → X be a 
urve with �nite totalvariation V := VarR0

(u; [0, T ]) < +∞, and let us set(6.25) s(t) := t + VarR0
(u; [0, t]) = VarR1

(u; [0, t]) for every t ∈ [0, T ].Then, there exists a Lips
hitz parametrization x = (t, u) : [0, S] → X , with S = V + T ,su
h that(6.26) R1 (x(s); ẋ(s)) = 1 for a.a. s ∈ (0, S),(6.27) t(s(t)) = t, u(s(t)) = u(t) for every t ∈ [0, T ].In parti
ular,(6.28) b − a + VarR0
(u; [a, b]) = s(b) − s(a) =

∫

s(b)

s(a)

R1 (x(s); ẋ(s)) ds.Proof. The proof is 
lassi
al, at least when the dissipation R is 
ontinuous and even in itsse
ond argument: we brie�y sket
h the main ideas and refer to [35, Lemma 4.1℄.Noti
e that the jump set Js of the 
urve s given by (6.25) 
oin
ides with the jump set Juof u, and s is inje
tive in Cu := (0, T )\Ju. We denote by t its inverse, de�ned on Cu := s(Cu)and extended to Cu by its (Lips
hitz) 
ontinuity; we also set u(s) := u(t) if s = s(t) ∈ Cu.Suppose now that (s−, s+) is a 
onne
ted 
omponent of [0, S] \ Cu, 
orresponding to sometime t̄ ∈ [0, T ] with s± = s(t̄±) and s̄ = s(t̄) ∈ [s−, s+]. We have
u(s−) = lim

s↑s−
u(s) = u(t̄−), u(s+) = lim

s↓s+
u(s) = u(t̄+),

s̄ − s− = ∆R0
((t̄, u(t̄−)), (t̄, u(t̄))), s+ − s̄ = ∆R0

((t̄, u(t̄)), (t̄, u(t̄+))).By De�nition 6.4, we 
an join (t̄, u(s−)) to (t̄, u(s+)) by a ∆R0
-Lips
hitz 
urve (still denotedby (t, u)) de�ned in [s−, s+] with 
onstant �rst 
omponent t(s) = t̄, and satisfying (6.13)as well as u(̄s) = u(t̄).



42 It is then easy to 
he
k that the �nal 
urve x = (t, u) obtained by ��lling� in this wayall the (at most 
ountable) holes in [0, S] \ Cu satis�es (6.27) and the Lips
hitz 
ondition(6.21) with L ≤ 1. Applying (6.22) and (6.23) we get
∫

s(b)

s(a)

R1 (x(s); ẋ(s)) ds ≤ s(b) − s(a) = VarR1
(u; [a, b]) ≤ VarR1

(x; [s(a), s(b)])

=

∫

s(b)

s(a)

R1 (x(s); ẋ(s)) dswhere the �rst inequality follows from the 1-Lips
hitz 
ondition, the subsequent identityfrom the de�nition of s, and the last one from (6.28). �The reparametrization of Proposition 6.10 is also useful to express the distributionalderivative of u. If VarR0
(u; [0, T ]) < +∞, we 
an introdu
e the distributional derivative

µR1,u := s′ of s, whi
h is a �nite positive measure satisfying
µR1,u([a, b]) = s(b) − s(a),

∫ T

0

ζ(t) dµR1,u(t) = −

∫ T

0

ζ̇(t)s(t) dt for every ζ ∈ C0
0(0, T ).Noti
e that a singleton {t} has stri
tly positive measure if and only if t ∈ Ju; more pre
isely

µR1,u({t}) = ∆R0
(t; u(t−), u(t), u(t+)) if t ∈ Ju;

µR1,u({t}) = 0 if t ∈ Cu = (0, T ) \ Ju ,with obvious modi�
ation for t = 0, T . As a general fa
t we have the representation formula(re
all that t is the inverse of s)(6.29) t#

(

L
1
|(0,S)

)

= µR1,u, i.e. ∫ T

0

ζ(t) dµR1,u(t) =

∫

S

0

ζ(t(s)) ds,for every bounded Borel fun
tion ζ : [0, T ] → R. Sin
e t is inje
tive in Cu := t−1(Cu) ⊂
(0, S), a Borel subset A of Cu is L 1-negligible if and only if t(A) has µR1,u-measure 0.Therefore, as the derivatives ṫ, u̇ are Borel fun
tions de�ned up to a L 1-negligible subsetof (0, S), the 
ompositions ṫ ◦ s, u̇ ◦ s are well de�ned in Cu. The next lemma shows thatthey play an important role.Proposition 6.11. The Lebesgue measure L 1

|(0,T ) and the ve
tor measure u′
co = u′

L
+u′

Care absolutely 
ontinuous w.r.t. µR1,u, and we have(6.30) dL 1

dµR1,u

= ṫ ◦ s and du′
co

dµR1,u

= u̇ ◦ s µR1,u-a.e. in Cu.Proof. The absolute 
ontinuity of both measures is easy, sin
e L 1 ≤ µR1,u by (6.29) andthe total variation ‖u′‖X is absolutely 
ontinuous w.r.t. µR1,u thanks to (6.14). The �rstidentity of (6.30) 
an be proved as in [35, Lemma 4.1℄. Con
erning the se
ond one, let usset for every smooth fun
tion ζ ∈ C∞
0 (0, T )

Ju(ζ) :=
∑

t∈Ju

ζ(t)
(

u(t+) − u(t−)
)

,



43and let us observe that we have(6.31) −

∫

Cu

(ζ ◦ t)′(s) u(s) ds =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ).Indeed, denoting by At = (at, bt) = t−1(t), t ∈ Ju, the 
onne
ted 
omponents of [0, S] \ Cu,and re
alling that u(at) = u(t−), u(bt) = u(t+), we have
−

∫

Cu

(ζ ◦ t)′(s) u(s) ds = −

∫

S

0

(ζ ◦ t)′(s) u(s) ds +
∑

t∈Ju

∫

bt

at

(ζ ◦ t)′(s) u(s) ds

=

∫

S

0

ζ(t(s)) u̇(s) ds −
∑

t∈Ju

∫

bt

at

(ζ ◦ t)(s) u̇(s) ds + Ju(ζ) =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ).Therefore, there holds
∫ T

0

ζ(t) du′(t) = −

∫ T

0

ζ̇(t) u(t) dt = −

∫

S

0

ζ̇(ṫ(s)) u(t(s)) ṫ(s) ds

= −

∫

Cu

ζ̇(t(s)) u(t(s)) ṫ(s) ds

= −

∫

Cu

(ζ ◦ t)′(s) u(s) ds =

∫

Cu

ζ(t(s)) u̇(s) ds + Ju(ζ)

=

∫

Cu

ζ(t) u̇(s(t)) dµR1,u(t) + Ju(ζ).where the �fth identity ensues from (6.31) and the last one from (6.29). Sin
e
∫ T

0

ζ(t) du′
co(t) =

∫ T

0

ζ(t) du′(t) − Ju(ζ)we 
on
lude the se
ond of (6.30). �Corollary 6.12 (Integral expression for VarR). Let u : [0, T ] → X ful�l VarR0
(u; [0, T ]) <

+∞, let µ be a positive �nite measure su
h that L 1 ≪ µ and u′
co ≪ µ, and let us set(6.32) JmpR0

(u; [a, b]) := ∆R0
(a; u(a), u(a+)) + ∆R0

(b; u(b−), u(b))

+
∑

t∈Ju∩(a,b)

∆R0
(t; u(t−), u(t), u(t+)).Then,(6.33) VarR0

(u; [a, b]) =

∫ b

a

R0

(

(

t, u(t)
)

;
(dL

1

dµ
(t),

du′
co

dµ
(t)

)

)

dµ(t) + JmpR0
(u; [a, b]).



44Proof. Sin
e the expression on the right-hand side is independent of the measure µ, it isnot restri
tive to 
hoose µ = µR1,u; by (6.28) we have
b − a + VarR0

(u; [a, b]) =

∫

(s(a),s(b))∩Cu

R1 (x(s); ẋ(s)) ds + L
1((s(a), s(b)) \ Cu)

=

∫

(a,b)∩Cu

R1 (x(s(t)); ẋ(s(t))) dµ + µ([a, b] ∩ Ju)

=

∫

(a,b)∩Cu

R1

(

(

t, u(t)
)

; (ṫ(s(t)), u̇(s(t)))
)

+ JmpR0
(u; [a, b]),and we 
on
lude by (6.30). �6.3. Total variation for BV solutions. We fo
us now on the parti
ular 
ase (6.10) ofExample 6.3, when the dissipation R is asso
iated with the vanishing vis
osity 
onta
tpotential P.Theorem 6.13 (Comparison between VarB0

(u; [·, ·]) and Varp,E(u; [·, ·])). For every 
urve
u ∈ BV([0, T ]; X) and every interval [a, b] ⊂ [0, T ] we have(6.34) Varp,E(u; [a, b]) ≤ VarB0

(u; [a, b]),and equality holds in (6.34) if and only if u satis�es the lo
al stability 
ondition (Sloc) on
(a, b). Furthermore, if VarB0

(u; [a, b]) < +∞, then u satis�es (Sloc) on (a, b).Proof. Let us �rst noti
e that the jump 
ontributions to the total variations Varp,E and
VarB0

are the same by (6.12). Inequality (6.34) then follows by applying (6.33) and ob-serving that for µ-a.a. t ∈ [0, T ](6.35) B0

(

(

t, u(t)
)

,
(dL 1

dµ
(t),

du′
co

dµ
(t)

))

= P
(dL 1

dµ
(t),

du′
co

dµ
(t); 0, w(t)

)

≥ Ψ0

(du′
co

dµ
(t)

)(where we have used the notation w(t) = −DEt(u(t))), the latter inequality ensuingfrom (5.9). On the other hand, in view of (5.10), (6.35) is an identity if and only if
w(t) ∈ K∗ for µ-a.a t ∈ (0, T ), i.e. if the lo
al stability property (Sloc) holds.Finally, sin
e L 1 ≪ µ, dL 1

dµ
(t) > 0 for L 1-a.a t ∈ (0, T ). Therefore, on a

ount of (5.7)we 
on
lude the last part of the statement. �Corollary 6.14. A 
urve u : [0, T ] → X is a BV solution if and only if it satis�es one ofthe following (equivalent) two 
onditions:(6.36)

VarB0
(u; [t0, t1]) + Et1(u(t1)) = Et0(u(t0)) +

∫ t1

t0

∂tEt(u(t)) dt for every 0 ≤ t0 ≤ t1 ≤ T,(6.37) VarB0
(u; [0, T ]) + ET (u(T )) ≤ E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds.



45Lemma 6.15. Suppose that uε ∈ AC([0, T ]; X), ε > 0, is a family pointwise 
onverging to
u as ε ↓ 0, and wε : [0, T ] → X∗ satis�es ‖wε(t) + DEt(uε(t))‖X∗ → 0 uniformly in [0, T ].Then,(6.38) lim inf

ε↓0

∫ T

0

(

Ψε(u̇ε) + Ψ∗
ε(wε(t))

)

dt ≥ VarB0
(u; [0, T ]) ≥ Varp,E(u; [0, T ]).Proof. Choosing a �nite partition 0 = t0 < t1 < t2 < · · · < tN = T of the time interval

[0, T ], Lemma 6.6 yields
lim inf

ε↓0

∫ T

0

(

Ψε(u̇ε) + Ψ∗
ε(wε(t))

)

dt ≥

N
∑

j=1

∆B0
((tj−1, u(tj−1)), (tj, u(tj))).Taking the supremum of the right-hand side with respe
t to all partitions of [0, T ], we endup with (6.38). �We 
on
lude this se
tion with the proof of Theorem 5.8.Proof. Let (t, u) be a parametrized solution as in the statement of the theorem. It is easyto 
he
k dire
tly from de�nitions (6.11) and (6.19) that

VarB0
(u; [0, T ]) ≤

∫

S

0

P(ṫ(s), u̇(s); 0,−DEt(s)(u(s))) ds

≤ E0(u(0)) − Et(S)(u(S)) +

∫

S

0

∂tEt(s)(u(s))ṫ(s) ds

= E0(u(0)) − ET (u(T )) +

∫ T

0

∂tEt(u(t)) dt ,where the se
ond inequality ensues from (5.22). Thus, (6.37) holds, so that u is a BVsolution by Corollary 6.14. The 
onverse impli
ation follows from Proposition 6.10. �Referen
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