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AbstratWe desribe a generi mehanism for the destabilization in large regular networksof idential oupled osillators. Based on a redution method for the spetral problem,we �rst present a riterion for this type of destabilization. Then, we investigate therelated bifuration senario, showing the existene of a large number of oexistingperiodi solutions with di�erent frequenies, spatial patterns, and stability properties.Even for unidiretional oupling this an be understood in analogy to the well-knownEkhaus senario for di�usive systems.Networks of oupled osillators have reeived a lot of attention over the last deade [9℄.Their study an ontribute to the understanding of fundamental dynamial features inoupled systems of many kinds, ranging from atoms or neurons to lasers, living organisms[12, 6℄, or even eletrial power stations. The entral question is to understand, howspei� properties of the individual behavior and the oupling arhiteture an give rise tothe emergene of new olletive phenomena. The synhronization and desynhronizationare examples of suh olletive phenomena, whih has been extensively investigated (see[8℄ and refs. therein). A partiularly hallenging task is to deal with networks, ontaininga large number of osillators [5℄. As in the well-known Kuramoto system [4℄, a desriptionof the behavior of a large network has to be based on strutural properties of the networkthat are independent on the atual size.In this paper we analyze the behavior of large networks of idential oupled osillators witha ertain regular struture, as for example a ring with unidiretional oupling. Similar tothe Master Stability Funtion of Peora and Carroll [7℄, we redue the stability analysisof the large oupled system to the level of omplexity of one single osillator. In ontrastto the approah of Peora and Carroll, we determine not only the stability boundary, butdesribe the whole bifuration senario. It turns out that in a large network with ertainstrutural properties an osillatory instability of an individual osillator indues a desta-bilization of the whole network leading to the emergene of a large number of oexistingperiodi solutions with di�erent frequenies, spatial patterns, and stability properties. Asa paradigm for this senario, we analyze in detail the behavior of a unidiretionally ou-pled ring of Stuart-Landau osillators. The observed senario is similar to the Ekhaussenario, whih is a well-known destabilization mehanism in the ontext of spatially ex-tended systems with di�usion. The remarkable fat that it an also our in systems withonvetive (unidiretional) oupling an be explained by the struture of the spetrum ofthe linearized system. In the limit of a large number of osillators, it turns out to beorganized by urves being densely �lled with eigenvalues. In this way, we are able to show1



Figure 1: (a) Ring of unidiretionally oupled osillators. (b) Eigenvalues of the steadystate for the ring of 50 unidiretionally oupled SL osillators. () Eigenvalues for the ringof 150 osillators determined by (2) and (4). (d) More ompliated network, orrespondingto (2) with nonvanishing A, B1 as in (4) and B−1 = B2 = Id. (e) Eigenvalues of the steadystate for the network from Fig. (d).that the observed phenomenon is of a generi nature and an be observed in a large lassof oupled systems where similar spetral onditions are met.Stability analysis for a network with ring struture. A general osillator networkwith ring struture an be written as follows.
u̇j = Auj +

∑

m

Bmuj+m +Hj(u), (1)with the osillator number j = 1, . . . , N and numbers of oupled modes m taken modulo
N . Here, u = (u1, . . . , uN)T , uj ∈ Rn, are state variables of j-th osillator with steady statein the origin. For onveniene, the linear terms are separated and the funtions Hj ontainonly terms of order two or higher. A and Bm are square matries of size n, desribing thelinear part of the osillator itself and of the oupling to the m-th neighbor to the right,respetively. Following Peora and Carroll [7℄, we an write the linearized problem in ablok diagonalized form

ξ̇j =

[

A +
∑

m

γmj Bm

]

ξj. (2)
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where γj=e 2πi

N
j for j = 1 . . . N are the eigenvalues of the N ×N oupling matrix

G =













0 1 0 · · · 0
0 0 1 · · · 0
· · · · ·
0 · · · 0 0 1
1 0 · · · 0 0













,appearing as Gm in the oupling to the m-th neighbor. Note that we violate here theondition∑j Gij = 0, whih was used in [7℄ to distinguish between the synhronous modeand the asynhronous modes. Using the fat that for N → ∞ the roots of unity γj are�lling densely the unit irle in the omplex plane, we replae the disrete eigenvalues γj bythe ontinuous parameter eiϕ. In this way, we obtain from (2) the harateristi equation
χ(λ, ϕ) := det

(

λ · Id − A −
∑

m

eimϕBm

)

= 0 (3)for eigenvalues of the stationary state of large oupled system. This equation is independenton the number of nodes N and determines n losed urves λ(ϕ) in the omplex plane whihbeome densely �lled with eigenvalues for inreasing N . We will all these urves pseudo-ontinuous spetrum (PCS), sine there is a strong analogy with the pseudo-ontinuousspetrum of delay-di�erential equations [11℄ with large delay. Figure 1 shows some examplesof networks and numerially omputed eigenvalues where one an observe the urves ofPCS: for the unidiretionally oupled ring of Stuart-Landau osillators (a) we obtain thespetrum (b), and for the oupling matries
A =

[

−2 1
−1 −1.5

]

, B1 =

[

−1 0.3
−0.3 1

] (4)the spetrum (). For the more ompliated network (d) we obtain the spetrum (e), using
A, B1 as above and additionally B

−1 = B2 = Id.The notion of the PCS allows the following main onlusions: (i) At a destabilization, theritial part of the spetrum is given by an ar of the PCS rossing the imaginary axis, f.Fig. 2. (ii) Sine the PCS rossing the imaginary axis brings immediately a large numberof eigenvalues to the right half-plane, lassial bifuration theory is not suitable to desribethe bifuration senario exhaustively. Instead, the destabilization in large oupled systemsshould be desribed in terms of instabilities of spatially extended systems. Moreover, thesituation depited in Fig. 2 an be onsidered as a generi senario for destabilizationin large oupled systems. In order to demonstrate the behavior of a system with suhproperties, we analyze now in detail the example of a unidiretionally oupled ring ofStuart-Landau osillators.Coupled Stuart-Landau (SL) osillators. In the system
żj = (α + iβ)zj − zj |zj |2 + eiψzj−1, (5)3
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Figure 2: Critial part of the spetrum for unidiretionally oupled SL osillators withhanging ontrol parameter: stable (α = −1.1), at bifuration (α = −1), unstable (α =
−0.9). For inreased N (right panel), the PCS urves are unhanged, but more densely�lled with eigenvalues. (β = 1)
j = 1 . . .N , eah single osillator undergoes a superritial Hopf bifuration for inreasing
α at α = 0 where a stable limit yle with frequeny β emerges. These single osillatorsare oupled in a unidiretional ring struture. The oupling strength an be resaled tounity and the oupling phase ψ remains as an additional parameter. Using the generalformula (3), we obtain the eigenvalues of the steady state

λk = α + iβ + ei(ψ+ϕk), ϕk = 2πk/N.They are loated on the irle of PCS with the enter at α+ iβ and radius 1, f. Fig. 1(b).By inreasing the ontrol parameter α, the PCS shifts to the right and the steady statebeomes unstable at α = −1. Figure 2 shows the ritial part of the spetrum. Note, thatthe destabilization threshold has been dereased due the mutual oupling (α = 0 for theunoupled osillators).Bifurating multiple periodi solutions. We desribe now the bifuration senariofor inreasing α. At α = −1, the PCS rosses the imaginary axis (see Fig. 2) and in asequene of Hopf bifurations a set of unstable eigenvalues appears. We analyze now thebifurating periodi solutions and their stability. Due to the symmetry properties of system(5), the bifurating periodi solutions are rotating waves of the form z̄ = (z̄1, . . . , z̄N)T ,
z̄j = Aei(ωt+j2πk/N), where ω is the temporal frequeny and every osillator is phase-shiftedby 2πk/N with respet to the neighboring one. Substituting z̄ into (5), we obtain theequation for unknown real parameters A and ω:

iω = α + iβ −A2 + ei(ψ+2πk/N),

4



whih has N solutions
Ak =

√

α + cos(ψ + 2πk/N), (6)
ωk = β + sin(ψ + 2πk/N), k = 0, . . . , N (7)orresponding to periodi solutions z(k) with the omponents z̄(k)

j = Ake
i(ωkt+j2πk/N). Eahof them originates at a Hopf bifuration at

αk = − cos(ψ + 2πk/N), (8)where Ak = 0. Figure 3(I) shows the amplitudes Ak of the bifurating periodi solutionsversus α. The frequenies ωk of the periodi solutions do not depend on α, therefore thebranhes are straight lines in the (ω, α) bifuration diagram in Fig. 3(II). In this diagram,the periodi orbits appear along the irle α2 + (ω − β)2 = 1 (line H).The stability analysis of the bifurating periodi solutions (6-7) an be performed analyti-ally. Omitting tehnial details, we arrive to the following harateristi equation
[

Λ(ϕl) + A2
k + cos (ψ + 2πk/N)

(

1 − eiϕl

)]2 (9)
= A4

k − sin2 (ψ + 2πk/N)
(

1 − eiϕl

)2
, (10)whih determines N Floquet exponents Λ(ϕl), l = 0, . . . , N − 1 of the periodi solutions.Similarly to the steady state, the Floquet exponents Λ of periodi solutions appear in theform of pseudo-ontinuous spetrum Λ(ϕ), whih an be found from (9-10) assuming ϕ tobe a ontinuous parameter. Deeper analysis of Eqs. (9-10) reveals additional details of thebifuration senario, whih are presented in Fig 3.Let us �rst onsider this senario in more details for the ase ψ = 0. The role of non-vanishing ψ will be disussed later. The periodi solution with k = 0, A =

√
α + 1, ω0 = βis born stable at α = −1 and remains stable for α > −1. All other periodi solutions with

k 6= 0 appear unstable at someα = αk > −1. There is a prinipal di�erene between theperiodi solutions, whih emerge for −1 < α < 0 (we will all them modes), and thosefor 0 < α < 1 (antimodes). With inreasing α, all modes beome eventually stable via aseries of subsequent torus bifurations (f. Fig. 3). The number of these torus bifurationsagain grows with N → ∞. However, the threshold where the modes beome stable isindependent on the number of osillators and given by
α = 3A2/2 −

√

1 + A4/4 (11)in the (α,A)-plane and
α =

(

2(ω − β)2 − 1
)

/
√

1 − (ω − β)2 (12)in the (α, ω)-plane (line E Fig. 3). Motivated by the similarity to the Ekhaus destabi-lization mehanism for PDEs of reation-di�usion type equations in large or unboundeddomains [2, 10℄ and delay equations [11℄ with large delay, we all this stability boundary5



Figure 3: Bifuration diagram for 50 oupled SL osillators: Amplitudes (I) and frequenies(II) versus parameterα. Branhes of periodi solutions emerge unstable (dashed lines) atHopf bifurations (H), undergo a sequene of torus bifurations (rosses) until they arestable (bold lines) after the Ekhaus-line (E).6
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Figure 4: Spatial patterns for some of the bifurating stable time-periodi solutions (6-7).(I) � homogeneous pattern for k = 0. (II) - period-1 pattern for k = 1. (III) - period-2pattern for k = 2. Other parameters: ψ = 0, β = 1, and α = −0.9
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Figure 5: Representation of bifurating solutions (6-7) in terms of osillator phases, seealso Fig. 4.
E Ekhaus line. The remarkable feature of this bifuration senario is that there appearsa number proportional to N of oexistent periodi solutions, interating in a omplexompetition-ooperation senario.Appearane of di�usive spatial patterns. The osillator number j plays here therole of the spae. Reall that the j-th omponent of the k-th periodi solution is givenas z(k)

j = Ake
i(ωkt+j2πk/N). For k = 0, this is a ompletely synhronized solution with

z
(0)
1 = · · · = z

(0)
N , produing a spatially homogeneous pattern, f. Fig. 4(I). The solutionswith k = 1 and k = 2 produe the patterns given in Fig. 4(II,III). For k = N

2
, neighboringnodes osillate in anti-phase. All suh patterns orresponding to modes beome eventuallystable with inreasing α. Figure 5 gives an alternative view on the disussed periodisolutions. The existene of suh periodi patterns is well-known for systems with di�usionor di�usive oupling [1, 3, 10℄. Our result shows the remarkable fat, that suh patternsappear generially in a system of onvetively oupled osillators.The role of ψ. The oupling phase ψ plays a deisive role for the relation of spatialpatterns and time frequenies: In the ase ψ = 0, the most unstable eigenvalue is λ0 =

α+iβ+1 and orresponds to k = 0. Therefore, the synhronous periodi solution bifurates�rst with inreasing α and is most stable. Next the solution with k = 1 appears, and so7



Figure 6: Bifuration senario independent on the number of the network nodes. C �appearane of multiple periodi solutions via the bifuration of the PCS. E � Ekhaus line,at whih these periodi orbits beome stable. Gray: region of existene of periodi orbits.Dark gray: stability region for multiple periodi orbits.on, f. Fig. 4. However, invoking the oupling phase ψ, we note that there is no reason forthis spei� role of the synhronous mode. Indeed, the �rst periodi orbit to appear is thatwith 2πk/N ≈ −ψ and neighboring osillators are phase-shifted by the value ≈ ψ. Thespatial period of this solution is lose to ψN/2π. In partiular for ψ = π, the anti-phasesynhronized state appears to be the most stable regime.Universal desription of the bifuration. Independent on the number N of nodes inthe network, we an identify the following universal features of the destabilization meh-anism: (i) The PCS allows to identify the destabilization threshold, based on a reduedspetral problem. (ii) At the Hopf-line H, f. Eq. (8), Figs. 3, 6, multiple periodi orbitsemerge. (iii) The Ekhaus line E, f. Eqs. (11), (12), Figs. 3, and 6, gives the stabilityboundary for the multiple periodi orbits. With inreasing number of nodes, only thenumber of periodi orbits hanges proportionally to N , and the orresponding regions inFig. 3 beome more and more densely �lled with oexisting states. The main qualitativefeatures survive as indiated in Fig. 6: for α inreasing from −1 to 0, the frequeny bandbetween β−1 and β+1 is densely �lled with periodi solutions (left panel) and those withthe highest amplitudes (b) and frequeny losest to β (a) are stable.Conlusions. This Letter reveals a generi mehanism for the destabilization of largenetworks. First, we show how to alulate e�iently the spetrum in large networks, andharaterize the spetral situation leading to the desribed destabilization phenomenon.Then we use a simple example to reveal the senario in detail. Based on our analysis,the following onlusions an be drawn: (i) Multistability is an inherent feature of large8



oupled systems. (ii) Even for idential osillators with a �xed intrinsi frequeny, in alarge network this frequeny an split up into a quasi-ontinuous frequeny band of periodisolutions. (iii) The di�erent frequenies ome along with spatial patterns of di�erent period.(iv) Among these quasi-ontinuum of available periodi states, there is a ompetition-ooperation mehanism with a universal stability boundary whih an be understood inanalogy to the well-known Ekhaus senario.Referenes[1℄ M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Reviewsof Modern Physis, 65:851, 1993.[2℄ Wiktor Ekhaus. Studies in Non-linear stability theory. Springer Trats in NaturalPhilosophy, 1965.[3℄ Rebea Hoyle. Pattern formation. An introdution to methods. Cambridge UniversityPress, 2006.[4℄ Y. Kuramoto. In H. Araki, editor, International Symposium on Mathematial Prob-lems in Theoretial Physis, edited by H. Araki,, volume 30 of Leture Notes in Physis,page 420. Springer, New York, 1975.[5℄ Renato E. Mirollo and Steven H. Strogatz. The spetrum of the loked state for theKuramoto model of oupled osillators. Physia D, 205:249�266, 2005.[6℄ Erik Mosekilde, Yuri Maistrenko, and Dmitry Postnov. Chaoti synhronization. Ap-pliation to living systems. World Sienti�, 2002.[7℄ Louis M. Peora and Thomas L. Carroll. Master stability funtions for synhronizedoupled systems. Phys. Rev. Lett., 80:2109, 1998.[8℄ Arkady Pikovsky, Mihael Rosenblum, and Jürgen Kurths. Synhronization. A uni-versal onept in nonlinear sienes. Cambridge University Press, 2001.[9℄ Steven H. Strogatz. Exploring omplex networks. Nature, 410:268 � 276, 2001.[10℄ Laurette S. Tukerman and Dwight Barkley. Bifuration analysis of the ekhaus in-stability. Physia D, 46:57�86, 1990.[11℄ Matthias Wolfrum and Serhiy Yanhuk. Ekhaus instability in systems with largedelay. Phys. Rev. Lett., 96, 2006.[12℄ Rüdiger Zillmer, Roberto Livi, Antonio Politi, and Alessandro Torini. Desynhro-nization in diluted neural networks. Phys. Rev. E, 74, 2006.9


