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On a technique for reducing spurious oscillations in DG
solutions of convection-diffusion equations

Derk Frerichs-Mihov, Volker John

Abstract

This note studies a generalization of a post-processing technique and a novel method inspired
by the same technique which significantly reduce spurious oscillations in discontinuous Galerkin
solutions of convection-diffusion equations in the convection-dominated regime.

1 Introduction

Given a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with polyhedral Lipschitz boundary Γ = ΓD ∪ ΓN

with ΓD ∩ ΓN = ∅. A steady-state convection-diffusion equations reads as follows:

−ε∆u+ b · ∇u = f in Ω,
u = g on ΓD,

−ε∇u · n = 0 on ΓN.
(1)

Convection-diffusion equations model the physical behavior of scalar quantities inside a flowing me-
dium, like temperature or concentration. In (1), ε ∈ R, ε > 0, is a constant diffusion coefficient,
b(x) is the convection field, and the sources are denoted by f(x). The prescribed Dirichlet boundary
conditions on ΓD are denoted by g. At the inflow boundary, Dirichlet boundary conditions have to be
prescribed. Finally, n is the outward pointing unit normal vector on Γ.

In practice, the convection-dominated regime ε � L‖b‖L∞(Ω), where L is a characteristic length
scale of the problem, is of particular interest. In this regime, (weak) solutions of (1) possess typically
layers, which are thin regions with very large gradients, e.g., compare Fig 1. Usually, available grids
cannot resolve layers and it is well known that so-called stabilized discretizations have to be utilized [5].
One method of this type is the discontinuous Galerkin (DG) finite element method, whose stability was
proved, e.g., in [4]. However, numerical solutions computed with the DG method still exhibit spurious
oscillations in a vicinity of layers. In [3], several post-processing methods were investigated that reduce
the size of spurious oscillations. This note addresses an open question formulated in [3] concerning
the so-called ConstJumpMod method, which was the best performing method for triangular grids.
In addition, a simplified variant of this method is proposed in this note. Numerical studies at two-
dimensional problems show that both methods reduce the spurious oscillations of solutions from the
standard DG method significantly.

2 DG method and slope limiting with ConstJumpMod

Equation (1) is transferred in a standard way to a weak formulation. Then, a finite element method
with discontinuous basis functions is applied for computing a numerical approximation of the solution.
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Since it is quite lengthy, it requires the introduction of many notations, and it is not important for the
topic of this note, we like to refer to the literature for a detailed presentation of the DG method, e.g., see
[3]. In our simulations, the DG method was applied with the same parameters as in [3] and numerical
solutions are denoted by uh.

The method ConstJumpMod is a modification of a post-processing technique proposed in [1, 2], which
is based on estimating the order of local convergence. It is the best performing method on triangu-
lar grids and among the best methods on quadrilateral grids in the numerical studies of [3]. Based
on computing an estimate of the order αE for each facet of a mesh cell, cells where one value is
sufficiently small, which indicates that the solution is not smooth, are selected. The DG solution in
these cells is replaced by its integral mean value in order to reduce spurious oscillations, a process
which is called slope limiting. In this note, two methods derived from ConstJumpMod are proposed
and studied.

As already observed in [3], the definition of αE in this paper is not scaling invariant. It might lead
to meaningless values or might even not be defined at all. To address this difficulty, we study those
definition of αE from the point of view of physical units. SinceαE is a power, it has to be dimensionless,
hence the involved numerator and denominator must have the same units. These considerations lead
to the following new definition

αE := ln

(
1

C0Lu2
0

∫
E

JuhK
2
E ds

)/
ln

(
hE
L

)
. (2)

In (2), C0 ∈ R, C0 > 0, is a constant, L > hE is a characteristic length scale of the problem,
u2

0 6= 0 is a characteristic scale of the solution, hE is the length of the facetE, and JuhKE denotes the
jump of uh across E. The parameters C0, L, and u0 have to be chosen by the user and have to be
adapted to the problem. The former version of ConstJumpMod corresponds to the choices L = 1 m
and u0 = 1 K (if u is a temperature). A cell is marked if minE∈E(K) αE ≤ αref for some αref ∈ R,
αref > 0, where E(K) is the set of facets of the mesh cell K . In the numerical examples this method
is again called ConstJumpMod .

A close look at equation (2) reveals that the marking criterion is based essentially on the magnitude
of the square of the integral of the jump. Therefore, with some p ∈ [1,∞], another idea consists in
evaluating the Lp(E)-norm of the jump directly. Hence, for each interior facet

βE := ‖JuhKE‖Lp(E)

/
|E|1/p (3)

can be computed, where |E| is the area of E, and a cell is finally marked if maxE∈E(K) βE ≥ βref for
some user-chosen βref ∈ R. In the numerical studies, this approach is called ConstJumpNorm.

3 Numerical studies

In the simulations, the results obtained with ConstJumpMod and ConstJumpNorm are compared with
the standard DG method. For ConstJumpMod , αref = 4, C0 = 1, and u0 = 1 are chosen. The
parameter βref in ConstJumpNorm is chosen to be the arithmetic mean of all βE and the L∞(E)-
norm is used, such that the denominator in (3) is one. The L1(E)- and the L2(E)-norm have been
investigated as well, but significant differences concerning the results could not be observed. To ap-
proximate the L∞(E)-norm, uh is evaluated at the vertices of the edges and at the quadrature points
of a quadrature rule on the edge of degree 2r. Furthermore, if βref ≤ 10−13 ConstJumpNorm does
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Figure 1: Solution of Example 1 (left) and Example 2 (right).

not mark any cell at all, to prevent limiting of continuous solutions. The simulations are performed with
ParMooN [6] for the polynomial degrees r = 1, 2, 3, 4.

As in [3], the measures oscmax(uh) for the maximal size of spurious oscillations and oscmean(uh)
for a mean value of spurious oscillations are investigated. To compute these values, uh is evaluated
at the points of the nodal functionals defining continuous Pr/Qr finite elements of the same order.
The studies consider two standard test problems, whose description can be found in [3] and whose
solutions are depicted in Fig. 1.
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Figure 2: Results of oscmax for Example 1.

Example 1. A strongly convection-dominated regime is chosen with ε = 10−8. The characteristic
length is set to L = 1.5 > diam(Ω). For the sake of brevity, results are presented for quadrilateral
grids, whose coarsest one consists of a single cell. For triangular grids, a qualitatively similar behavior
can be observed.

The results in Figs. 2 and 3 show that all slope limiting techniques significantly reduce the spu-
rious oscillations of Galerkin. On coarser grids ConstJumpNorm performs better than ConstJump-

DOI 10.20347/WIAS.PREPRINT.2912 Berlin 2022



D. Frerichs-Mihov, V. John 4

102 103 104 105 106

10−4

10−3

10−2

10−1

Q1

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q2

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q3

number dof

o
sc

m
e
a
n
(u

h
)

102 103 104 105 106

10−4

10−3

10−2

10−1

Q4

number dof

o
sc

m
e
a
n
(u

h
)

Galerkin ConstJumpMod (L=1)

ConstJumpMod (L = 1.5) ConstJumpNorm

Figure 3: Results of oscmean for Example 1.

Mod (L = 1.5), especially for r = 3, 4. Usually, the results obtained with ConstJumpMod (L = 1.5)
are notably better than those from ConstJumpMod (L=1), in particular on coarser grids for higher or-
der elements. For oscmax(uh), the curves for all methods coincide on finer meshes and there is a
slight increase the finer the mesh becomes.

Example 2. Again, ε = 10−8 is chosen and the characteristic length is set to L = 13.5 > diam(Ω).
The results are presented for triangular grids, where the initial grid can be seen in [3, Fig. 16]. The
results for both quantities of interest are shown in Figs. 4 and 5.

As for Example 1, ConstJumpMod (L = 13.5) and ConstJumpNorm are able to reduce spurious
oscillations significantly compared to Galerkin. ConstJumpMod (L = 13.5) performs considerably
better than the version ConstJumpMod (L=1) used in [3]. Concerning oscmax(uh), the values for
ConstJumpMod (L = 13.5) and ConstJumpNorm increase marginally if the grids become finer.
ConstJumpMod (L = 13.5) shows a little smaller values for oscmean(uh) on coarser grids than
ConstJumpNorm, but on finer grids both methods behave similarly.

4 Summary and outlook

A generalization of the slope limiting technique ConstJumpMod from [3] and a novel method inspired
by this technique have been proposed and studied. Both led to similar results and they significantly
reduced spurious oscillations compared to the standard DG method. In particular, such oscillations
were reduced often considerably better than with the original method from [3]. Future studies on the
impact of the methods’ parameters on the numerical solutions are planned.
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Figure 4: Results of oscmax for Example 2.
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Figure 5: Results of oscmean for Example 2.
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