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Abstract

We investigate stationary solutions of flows of thin liquid bilayers in an energetic for-
mulation which is motivated by the gradient flow structure of its lubrication approximation.
The corresponding energy favors the liquid substrate to be only partially covered by the
upper liquid. This is expressed by a negative spreading coefficient which arises from an
intermolecular potential combining attractive and repulsive forces and leads to an ultra-
thin layer of thickness ε. For the corresponding lubrication models existence of stationary
solutions is proven. In the limit ε → 0 matched asymptotic analysis is applied to derive
sharp-interface models and the corresponding contact angles, i.e. the Neumann triangle.
In addition we use Γ-convergence and derive the equivalent sharp-interface models rigor-
ously in this limit. For the resulting model existence and uniqueness of energetic minimizers
are proven. The minimizers agree with solutions obtained by matched asymptotics.

1 Introduction

Understanding stability and dewetting behaviour of thin liquid (polymer) films coating a solid or
liquid substrate is very important for many applications in technology and nature, ranging from
tear films to organic solar cell production and numerous applications in the semiconductor in-
dustry. The films we consider have typical thicknesses of a few hundred nanometers and are
unstable due to intermolecular forces. These forces consist of a combination of destabilising
van-der-Waals and stabilising Born-repulsion potentials. The corresponding flow leads to for-
mation of holes, where the liquid layer has receded from the substrate up-to an ultra-thin layer.
The thickness of that ultra-thin layer is given by the minimum of the interfacial potential. After an
initial rupture singularity we encounter a complex dewetting scenario, where holes grow further
and their trailing rims merge into a polygonal network which finally decays into droplets. These
droplets evolve slowly towards a global minimal energy state. Reviews on existing theory and
experiments can be found in [37, 10].

Experimental studies on dewetting from solid substrates exhibiting the scenario described above
and can be found for example in [47, 45] and more references in the reviews [13, 20, 17]. For
liquid-liquid dewetting a number of similar experimental investigations on have been conducted
by the groups [46, 28, 48, 49]. These works include studies of break-up and hole growth in a
liquid-liquid system, dewetting dynamics and equilibrium contact angles of droplets. The stan-
dard system consists of liquid polystyrene (PS) on a polymethylmethacrylate (PMMA) substrate.

Compared to dewetting on a solid substrate, the mathematical description of liquid/liquid flows
has a number of new challenges. For instance, the substrate interface itself is deformed under
the action of the liquid flow. Furthermore the contact line is fixed by two angle conditions instead
of one, i.e. Youngs law is replaced by the Neumann triangle construction [36]. Still one might
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expect that some of the mathematical analysis for solid substrates can be carried over to liquid
substrates.

Concerning dewetting for liquid-liquid systems one of the pioneering theoretical studies is the
paper by Brochard-Wyart et al. [7], where various dewetting regimes are derived and analysed.
Besides this early work, there have been studies considering stability of liquid-liquid systems by
Danov et al. [12], Pototsky et al. [41], Golovin & Fisher [16]. Stationary states and the dynamics
towards stationary states were investigated by Pototsky et al. in [42], by Craster & Matar in [9]
and by Bandyopadhyay & Sharma in [2] and Bandyopadhyay et al. [1]. Kriegsmann & Miksis [27]
computed quasi-stationary states of gravity-driven liquid droplets on a inclined liquid substrate.
Interestingly, direct comparisons of theoretical results with experiments regarding for example
the morphology of the interfaces, as performed in [26], or equilibrium contact angles of the
Neumann triangle, as in [48], are incomplete.

Apart from the numerical analysis, mathematical theory in this field is still largely open. In that
paper we aim to extend the existing theory for liquid droplets on a solid substrate to the situation
on a liquid substrate. Note that regarding the stationary states and coarsening of the droplets
on solid substrates, Bertozzi et al. [4] showed existence of smooth global solutions for positive
data with bounded energy. In addition they prove existence of global minimizers and determine
a family of positive periodic solutions for admissible intermolecular potentials and investigate
their linear stability. Similarly, the linear stability of the stationary solutions for the thin film equa-
tion with Neumann boundary conditions or periodic boundary conditions was investigated by
Laugesen & Pugh [30] and Kitavtsev et al. [24]. In a recent paper by Zhang [51], convergence
to stationary solutions of the one-dimensional degenerate parabolic PDE and the number of
stationary states is investigated. Rump et al. [38] also prove existence and uniqueness (up to
translation) of mesoscopic droplet solutions.

The liquid-liquid intermolecular potential is of the form

φ(h2 − h1) =
φ∗
`− n

[
`

(
h∗

h2 − h1

)n
− n

(
h∗

h2 − h1

)`]
. (1.1)

where h1 is the height of the liquid-liquid interface, h2 the height of the free surface and its mini-
mal value φ∗ < 0 is attained at h∗. Such potentials are widely used in the literature, e.g. [37]. A
choice that is related to the standard Lennard-Jones potential and typically used in experiments
is (n, `) = (2, 8), see e.g. [45] for a liquid PS film dewetting from a SiO/Si substrate.

The Neumann triangle construction for contact angles at triple junction is now replaced by prop-
erties of approximate contact angles resulting from the particular structure of the free surface
energy φ. One of the main tasks of this study is to derive a sharp-interface model, where the
thickness of the ultra-thin film h∗ deceases to zero and thereby obtain appropriate contact an-
gles for the corresponding Neumann triangle.

The content of the paper is as follows. First we introduce the problem formulation and model.
Then, in section 3 we begin our analysis with a straightforward generalisation of the existence
proof for stationary solutions by Bertozzi et al. [4]. With the appropriate energy functional for the
two-layer system and Neumann boundary conditions, we show existence of smooth stationary
solutions as well as existence of a global minimizer for the steady state problem. Here it turns
out to be advantegous to work with the difference h = h2 − h1.
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In section 4 we derive expressions for the equilibrium contact angles of these droplet solutions.
We pursue this with a similar approach as for example in [34], using matched asymptotic ex-
pansions in the limit as the minimum thickness h∗ approaches zero. As a result, we obtain the
equilibrium contact angles of the corresponding Neumann triangle and a corresponding sharp-
interface model. Interestingly, we observe that, while the equilibrium contact angle is easy to
obtain, in order to complete the asymptotic argument, logarithmic switch-back terms enter the
derivation. In retrospect, these terms should also appear in the matched asymptotic derivation
for the limiting problem of a droplet on a solid substrate.

In section 5 we study the limit h∗ → 0 within the framework of Γ-convergence and obtain
a sharp-interface problem. For that problem we compute the Euler-Lagrange equations, from
which one can immediately read-off the contact angles. Moreover, we rigorously show existence
and uniqueness of minimizers using the rearrangement inequality, a concept which was used
by Otto et al. [38] in the context of mesoscopic droplets on a solid substrate.

In the Conclusion and Outlook section we compare our results using the approach of matched
asymptotics and Γ-convergence and discuss how we can extend our analysis of liquid-liquid
systems to the dynamic regimes of dewetting processes, in particular concerning hole growth
and rim dynamics but also film rupture and coarsening dynamics of quasistationary droplets.

2 Formulation

We consider a layered system of two viscous, immiscible, Newtonian liquids with negative
spreading coefficient φ∗. Let the layered system live in the two phases Ω1 and Ω2 defined
by

Ω1(t) = {(x, y, z) ∈ R3 : 0 ≤ z < h1(t, x, y)}, (2.1a)

Ω2(t) = {(x, y, z) ∈ R3 : h1(t, x, y) ≤ z < h2(t, x, y)}, (2.1b)

for all t > 0 as sketched below in figure 1.

Figure 1: Sketch of stationary droplet on a liquid layer

A typical choice of liquids is PS for the liquid substrate Ω1 and PMMA as the upper liquid Ω2.
Since the liquids are very viscous the flow in each phase Ωi in (2.1) is governed by the Stokes
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equation and the continuity equation

−∇ ·
(
−piI + µi(∇ui +∇u>i )

)
= fi, (2.2a)

∇ · ui = 0, (2.2b)

together with a kinematic condition at each free boundaries z = hi, i.e.

(ez∂thi − ui) · ni = 0, (2.3)

with outer normal ni. At the solid substrate a no-slip and an impermeability condition are im-
posed and at the liquid-liquid interface the velocity is continuous, i.e. u2 = u1. The dewetting
process is driven by the intermolecular potential of the upper liquid layer, i.e. f2 = −∇φ. We
assume that the thickness of the lower layer is sufficiently thick, so other contributions to the
intermolecular potential are negligible, i.e. f1 = 0.

In addition we assume that the the ratio ε` = H/L of the vertical to horizontal length scales
is always small and the two-layer system can be approximated by a lubrication model. We
denote by L the length scale of the typical horizontal width and H = hmax the maximum of the
difference h2 − h1, see the sketch in figure 1.

Detailed derivations of lubrication models for liquid-liquid systems are given for example in [27],
[41] or in [21]. For the convenience of the reader we note here the choice of non-dimensional
variable and parameters, where the non-dimensional horizontal and vertical coordinates are
given by x̃ = x/L, ỹ = y/L and z̃ = z/hmax, respectively, and h̃ = h/hmax. The non-
dimensional pressures p̃i = pi/P and the derivative of the non-dimensional intermolecular
potential φ′ε = φ′/P are scaled such that P = φ∗n`/

(
(`− n)hmax

)
and hence

φε
′(h̃) =

1

ε

[(
ε

h̃

)n+1

−
(
ε

h̃

)`+1
]

(2.4)

attains the minimal value minφε = −1 at h̃ = ε, where ε = h∗/hmax is the non-dimensional
thickness of the ultra-thin film. For the dynamic problem, the velocities are scaled with the char-
acteristic horizontal velocity of the dewetting upper layer, such that for the non-dimensional
horizontal and vertical velocities we have ũ = u/U , ṽ = v/U and w̃ = w/ε`U , respectively,
with U = ε3

`σ2/µ2, and the non-dimensional time t̃ = (U/L)t.

For the remainder of this paper it is convenient to introduce the ratios σ = σ1/σ2 and µ =
µ1/µ2 of surface tensions and viscosities, respectively, and drop all the “∼”. Within this ap-
proximation the normal and tangential stress conditions at the free surface h2 and at the free
liquid-liquid interface h1 yield the expressions for the pressures p1 and p2

p1 = −σ∆h1 − φ′ε(h2 − h1), (2.5a)

p2 = −∆h2 + φ′ε(h2 − h1), (2.5b)

respectively. Under these assumptions the coupled system of nonlinear fourth order partial
differential equations for the profiles of the free surfaces h1 and h2 takes the form

∂th = ∇ · (Q · ∇p) , (2.6)
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where h = (h1, h2)> is the vector of liquid-liquid interface profile and liquid-air surface profile.
The components of the vector p = (p1, p2)> are the interfacial pressures given in (2.5). The
gradient of the pressure vector is multiplied by the mobility matrix Q which is given by

Q =
1

µ


h3

1

3

h3
1

3
+
h2

1(h2 − h1)

2

h3
1

3
+
h2

1(h2 − h1)

2

µ

3
(h2 − h1)3 + h1h2(h2 − h1) +

h3
1

3

 . (2.7)

We proceed to first show existence of stationary solution to the system (2.4)-(2.7) with Neumann
and Dirichlet boundary conditions on a finite domain Ω = (0, L) ⊂ R.

3 Energy functionals and existence of stationary solutions

Consider the two-layer thin film equations (2.5)-(2.7) defined on Ω = (0, L) ⊂ R with
Neumann boundary conditions:

∂xh1 = ∂xh2 = ∂xxxh1 = ∂xxxh2 = 0 for x ∈ ∂Ω. (3.1)

The energy functional associated to the gradient flow of the lubrication equation is given by

Eε(h1, h2) =

∫ L

0

[
σ

2
|∂xh1|2 +

1

2
|∂xh2|2 + φε(h2 − h1)

]
dx (3.2)

where the potential function φε is given as in (2.4) with (n, `) = (2, 8). The relation to the
lubrication equations is pi = δEε/δhi. From (2.5)-(2.7) and (3.1) conservation of mass follows∫

Ω

h1(t, x) dx = m1, (3.3a)∫
Ω

(h2(t, x)− h1(t, x)) dx = m2 for all t > 0, (3.3b)

where m1 and m2 are positive constants. Any stationary solution of (2.5)-(2.7) considered with
(3.1) satisfies

0 = Q · ∂xp (3.4)

in Ω, where the mobility matrix Q is not singular i.e. detQ 6= 0 for all h1, h2 − h1 > 0. There-
fore, one obtains that any positive stationary solution of (2.5)-(2.7) satisfies ∂xp1 = ∂xp2 = 0
in Ω. This in turn is equivalent to

σ∂xxh1 = −φ′ε(h2 − h1)− λ2 + λ1, (3.5a)

∂xxh2 = φ′ε(h2 − h1)− λ1, (3.5b)

where constants λ2 and λ1 are Lagrange multipliers associated with conservation of mass
(3.3a) and (3.3b), respectively. To solve (3.5) let us consider the equation for the difference

h(t, x) = h2(t, x)− h1(t, x)
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which reads as follows

∂xxh =
σ + 1

σ
φ′ε(h) +

1

σ
λ2 −

σ + 1

σ
λ1. (3.6)

For brevity we set

P := − 1

σ
λ2 +

σ + 1

σ
λ1.

According to [4] for positive P , there exists a so called droplet solution h̄ to (3.6) satisfying
boundary conditions (3.1), such that h̄(y+L/2) is an even function and monotone decreasing
for y ∈ (0, L/2).

For this solution the asymptotics and main properties are derived in the next section, here we
consider h̄ as a known analytical function and integrate (3.5) two times w.r.t. x. We then obtain
a solution to (3.5) with (3.1) in the form

h1 = − 1

σ + 1
h̄− 1

2

λ2

σ + 1
x2 + Cx+ C1, (3.7a)

h2 =
σ

σ + 1
h̄− 1

2

λ2

σ + 1
x2 + Cx+ C1. (3.7b)

Using now again (3.1) one obtains that λ2 = 0, C = 0 and

h1 = − 1

σ + 1
h̄+ C1, (3.8a)

h2 =
σ

σ + 1
h̄+ C1. (3.8b)

The additive constant C1 and the remaining Lagrange multiplier are determined from the con-
servation of masses (3.3a) and (3.3b), respectively. We conclude that the solution (3.8) is given
by combination of two symmetric droplets with constant outer layer. The next theorem estab-
lishes existence of a global minimizer to the energy functional (3.2) and shows that it satisfies
(3.5) with (3.1).

Theorem 3.1. Let Ω be a bounded domain of class C0,1 in R d, d ≥ 1 and let m = (m1,m2)
with m1,m2 > 0. Then a global minimizer of Eε(·, ·) defined in (3.2) exists in the class

Xm :=

{
(h1, h2) ∈ H1(Ω)2 : m1 =

∫
Ω

h1, m2 =

∫
Ω

(h2 − h1), h2 ≥ h1

}
, (3.9)

For d = 1 and Ω = (0, L) the function h2 − h1 is strictly positive and (h1, h2) are smooth
solutions to the ODE system (3.5) with (3.1) and

λ1 =
1

L

∫
Ω

φ′ε(h2 − h1) dx, λ2 = 0. (3.10)

Proof. The proof proceeds very analogously to one of Theorem 2-3 in [4] using direct methods
of the calculus of variations. However, for the convenience of the reader we state it here. Let
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(hk1, h
k
2)k∈N be a minimizing sequence which exists since Eε(m1,m2 + m1) < ∞. Observe

that φε(·) is bounded from below by a constant. Hence, a constant C2 exists such that∫
Ω

|∂xhk1|2 + |∂xhk2|2 dx ≤ C2 for all k ∈ N. (3.11)

Rellich’s compactness theorem implies that there is a subsequence (denoted by (hk1, h
k
2)k∈N)

which converges strongly in L2(Ω)2 and pointwise almost everywhere to (h1, h2) ∈ H1(Ω)2.
By Fatou’s lemma, we deduce that also φε(h2 − h1) lies in L1(Ω). Using the weak lower
semicontinuity of the norm, we obtain

Eε(h1, h2) ≤ lim inf
k→∞

Eε(h
k
1, h

k
2) = inf

(h̄1,h̄2)∈V
Eε(h̄1, h̄2).

Consequently, (h1, h2) is a minimizer and the integrability of φε(h2−h1) implies that h2−h1 >
0 almost everywhere in Ω.

Let now d = 1 and Ω = (0, L). The estimate (3.11) implies∫
Ω

|∂x(hk2 − hk1)|2 dx ≤ C3.

Next, the boundedness of
∫
φε(h

k
2 − hk1) dx and definition of φε imply a uniform in k bound on

||(hk2 − hk1)−4||2. Using this, one can estimate∫ L

0

|∂x((hk2 − hk1)−3)| dx = 3

∫ L

0

|∂x(hk2 − hk1)|
(hk2 − hk1)4

dx

≤ 3||∂x(hk2 − hk1)||2 ||(hk2 − hk1)−4||2 ≤ C4,

where C4 is constant. Owing to the continuous embedding of W 1,3(0, 1) into L∞(0, 1) the
strong positivity of h2 − h1 follows. This in turn implies the differentiability of the function
Fε(s) := Eε(h1 + sϕ1, h2 + sϕ2) considered with fixed (ϕ1, ϕ2) ∈ H1(0, L)2 for suffi-
ciently small s. Since (h1, h2) is a minimizer, by differentiation of Fε(s) at s = 0, we obtain
that ∫ L

0

(−σ∂xxh1 − φ′ε(h2 − h1))ϕ1 + (−∂xxh2 + φ′ε(h2 − h1))ϕ2 dx = 0,

for all (ϕ1, ϕ2) ∈ H1(0, L)2 such that∫ L

0

ϕ1 dx =

∫ L

0

(ϕ2 − ϕ1) dx = 0.

Without this constraint and using the Lagrangian multipliers which we defined previously one
can test with general (ψ1, ψ2) ∈ H1(0, L)2 and gets∫ L

0

[
(−σ∂xxh1 − ∂xxh2)ψ1 + (−∂xxh2 + φ′ε)ψ2

]
dx− 1

L

∫ L

0

∫ L

0

φ′ε dy ψ2 dx = 0.

Standard elliptic regularity theory then implies that (h1, h2) are smooth solutions to (3.5) con-
sidered with (3.1) and (3.10).
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Remark 3.2. Note, that for Dirichlet boundary conditions we can proceed as follows: Let us
impose on system (3.5) the Dirichlet boundary conditions

h1(0) = h1(L) = A, h2(0) = h2(L) = B, (3.12)

such that
B − A = min

x∈(0,L)
h̄(x), (3.13)

where h̄ is the Neumann solution to (3.6) defined above. In this case it follows again that h2 −
h1 = h̄. Consequently, h1 and h2 are given by (3.7) with constants λ1, λ2, C, C1 determined
uniquely by (3.12) and the conservation of masses (3.3a)-(3.3b). Using (3.13) and asymptotics
for h̄ one obtains that the leading order of the solution (3.7) as ε→ 0 has now the form

h1(x) =
1

2

λ1 − λ2

σ

(
(x− L

2
)2 − s2

)
+ C1 +O(ε), x ∈ ω (3.14a)

h2(x) = −1

2
λ1

(
(x− L

2
)2 − s2

)
+ C1 +O(ε), x ∈ ω (3.14b)

h1(x) = h2(x) = −1

2

λ2

σ + 1

(
(x− L

2
)2 − s2

)
+ C1 +O(ε), x ∈ (0, L) \ ω, (3.14c)

where ω = (L/2− s, L/2 + s) and

s2 =
2σ(σ + 1)

(λ2 − (σ + 1)λ1)2 .

In contrast to solution of (3.14) with Neumann conditions, solutions with Dirichlet boundary
conditions are not constant but quadratic in the ultra-thin layer (0, L) \ ω.

4 Matched asymptotic solution and contact angles

Note first that the system of equations for h1 and h2 (3.4) is equivalent to following system for
h1 and h

0 = ∂x (−σ∂xxh1 − φ′ε(h)) , (4.1a)

0 = ∂x

(
− σ

σ + 1
∂xxh+ φ′ε(h)

)
. (4.1b)

where we denote σ = σ1/σ2, see [21] for more details. For our asymptotic analysis, this is
convenient, since now for the variable h = h2 − h1 we can distinguish the core droplet region,
which we will call the “outer region” and the adjacent thin regions of thickness ε, which we call
the “inner region”. We will derive a sharp-interface limit using matched asymptotic analysis in
the limit as ε→ 0. For this we first write the equations in the form such that the intermolecular
potential is small in the core region and becomes order one in the adjacent thin regions. Using
(n, `) = (2, 8) we define

φ′ε(h) =
1

ε
Φ′
(
h

ε

)
(4.2)
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4.1 Stationary solution for h

As we will later show rigorously, we can assume that the droplet is (axi)symmetric and the profile
a decreasing function, so that without loss of generality, the maximum of h is at the origin of our
coordinate system. Now consider the problem h and x ≥ 0

0 = ∂x

[
σ

σ + 1
∂xxh−

1

ε
Φ′
(
h

ε

)]
, (4.3a)

lim
x→∞

h = h∞, lim
x→∞

∂xh = 0, lim
x→∞

∂xxh = 0. (4.3b)

We can integrate this twice and use the conditions as x→∞ to fix the integration constants to
obtain

∂xh =

√
2
σ + 1

σ

√
Φ

(
h

ε

)
− Φ

(
h∞
ε

)
− 1

ε
Φ′
(
h∞
ε

)
(h− h∞) (4.4)

The solution to this problem shows a steep decline in height towards O(ε) in an ε-strip around
x = s, where we would like to determine the apparent contact-angle. This can be obtained by
writing the problem in so-called outer and inner coordinates, valid in the core and the adjacent
thin regions, and matching as ε→ 0. Interestingly, while it is easy to obtain the condition for the
contact angle, it turns out that in order to carry out the complete matching consistently, we need
to go up to second order in the matching, in order to account for the logarithmic switch-back
terms, that come into play in this problem.

Note, that the coefficient (σ+ 1)/σ can be removed by rescaling x appropriately, leading to the
classical problem of a droplet of height h on a solid substrate. Interestingly, to our knowledge for
this problem the above mentioned logarithmic switch-back terms have not been noticed before.

Outer problem

The symmetry of the problem leads us to the condition that at the symmetry axis x = 0 we
have

∂xh = 0 (4.5)

It is also convenient to normalize the height such that h(0) = 1. In this case we obtain from
(4.4) an algebraic equation for h∞ and ε that can be approximated as ε→ 0.

0 = Φ

(
1

ε

)
− Φ

(
h∞
ε

)
− 1

ε
Φ′
(
h∞
ε

)
(1− h∞) (4.6)

Solving this by making the ansatz for the asymptotic expansion for h∞

h∞ = εh∞,0 + ε2h∞,1 + ε3h∞,2 +O(ε4) (4.7)

we obtain

h∞,0 = 1, h∞,1 =
1

16
, h∞,2 =

45

512
, (4.8)
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Next, we assume that the asymptotic solution to the outer problem can be represented by the
expansion

h(x; ε) = f0(x) + εf1(x) + εf2(x) +O(ε3). (4.9)

The leading order outer problem then becomes

∂xf0 = −
√

3

4

σ + 1

σ
(1− f0), (4.10a)

f0(0) = 1 (4.10b)

which has the solution

f0(x) = − 3

16

σ + 1

σ
x2 + 1. (4.11)

Hence, the leading order outer solution will vanish as x approaches the location

s =
4√
3

√
σ

σ + 1
(4.12)

However, the full solution does not vanish and will be obtained by matching to the solution of the
“inner” problem near s. We will find that in order to complete the solution, we will need to solve
the expansion up-to second order. We find for f1 and f2

∂xf1 =
f1

x
− 3

16

σ + 1

σ
x, (4.13a)

f1(0) = 0 (4.13b)

and

∂xf2 = 2
f2

x
+

1

x

(
8

3

1

f 2
0

+
1

16
(f0 − 1)− 2

3
(f0 + 3) + 2f1

)
+

3

8

σ + 1

σ
x (4.14a)

f2(0) = 0 (4.14b)

Inner problem

The solution of the inner problem lives in an ε neighborhood of x = s and extends towards
x → +∞. It will be matched to the outer problem in the other direction. Hence we introduce
the inner variables v(z) and independent variable z via

h(x) = ε v(z; ε) and x = s+ εz. (4.15)

Rewriting the problem (4.4) in these coordinates and making the ansatz

v(z; ε) = v0(z) + εv1(z) +O(ε2) (4.16)

we find to leading order the problem

∂zv0 = −
√

2
σ + 1

σ

√
− 1

2v2
0

+
1

8v8
0

+
3

4
(4.17)
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and to O(ε) the problem

∂zv1 = −
√

2
σ + 1

σ

√
− 1

2v2
0

+
1

8v8
0

+
3

4

3v9
0(v0 − 1) + 8v1(1− v6

0)

2v0(4v6
0 − 3v8

0 − 1)
(4.18)

We solve and match in the inner coordinates and obtain by expanding v at z = −∞

v0 + εv1 = −
√

3

2

√
σ + 1

σ
z + a1 −

4

9

√
3

σ

σ + 1

1

z
+ · · ·

+ ε

(
− 3

16

σ + 1

σ
z2 +

√
3

4

σ + 1

σ
(a1 − 1) z − ln(−z)

+C +
1

6
+

2

3

√
3

σ

σ + 1
(a1 + 1)

1

z
+ · · ·

)
. (4.19)

For the corresponding outer expansion we have

f0 + εf1 + ε2f2

ε
=−

√
3

2

√
σ + 1

σ
z − 1− 4

9

√
3

σ

σ + 1

1

z
+ · · ·

+ ε

(
− 3

16

σ + 1

σ
z2 −

√
3

2

σ + 1

σ
z − ln(−z)

− ln

[√
3

8

√
σ + 1

σ

]
− 19

96
− ln(ε) + · · ·

)
. (4.20)

We note that all of the terms in the first row of (4.19) and (4.20) match provided a1 = −1. The
terms in the second row match provided

C = − ln(ε)− 35

96
− ln

(√
3

8

√
σ + 1

σ

)
(4.21)

where we note the appearance of a so-called “logarithmic switch-back” term ln(ε).

Hence, the composite solution is

h̄ = ε

[
v0

(
x− s
ε

)
+

√
3

2

√
σ + 1

σ

x− s
ε

]

+ε2

[
v1

(
x− s
ε

)
+

3

16

σ

σ + 1

(
x− s
ε

)2

+

√
3

2

σ + 1

σ

x− s
ε

]
+f0(x) + ε

[
f1(x) + 1

]
+ε2

[
f2(x) +

4

9

√
3σ

σ + 1

1

x− s
+ ln (s− x) +

19

96
+ ln

(√
3

8

√
σ + 1

σ

)]
(4.22)

with s given in equation (4.12) and for x < s. For x ≥ s only the inner expansion h̄ = εv0+ε2v1

remains.
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Figure 2: Top: Comparison of the composite solution hc (dashed curve) with the numerical
solution of (4.3) (solid curve), for ε = 0.2 and σ = 1.2. Bottom: Solutions for h1 and h2

reconstructed from the composite solution h̄ for σ = 1.2 and ε = 0.05 (dashed curve) and
ε = 0.2 (dotted curve) and the solution to the sharp interface model (4.24) (solid curve).

Stationary solution for h1 and h2

To the complete solution, we determine the solution to the liquid-liquid interface h1 simply by
adding equations (4.1a) and (4.1b). Then we integrate thrice and use the far-field conditions
∂xxh, ∂xh, ∂xxh1, ∂xh1 → 0, h → h∞ and h1 → d as x → ±∞ to fix the constants. This
results in h1 being

h1 = − 1

σ + 1
(h− h∞) + d, (4.23a)

and equivalently h2 is

h2 =
σ

σ + 1
(h− h∞) + d+ h∞. (4.23b)

Here d denotes the height h1 as x → ±∞ and we assume d to be large enough so that
h1 never becomes negative. Also note that for other boundary conditions, such as e.g. Dirichlet
conditions mentioned in the previous section, further contributions will arise. Unlike the solutions
for droplets on solid substrates, here new families of profiles for the ultra-thin film connecting a
droplet to the boundaries or to other droplets arise.

In figure 2 we compare our asymptotic solution with the numerical solution. Observe that the
O(ε) solution already gives an excellent approximation of the exact solution for ε = 0.2, where
the exact solution is approximated by the higher-order numerical solution of the boundary value

12



problem. This suggests that a sharp-interface model should also be a good approximation of
the full model. In the following section we show how the sharp-interface model is obtained via
Γ-convergence and also proof existence and uniqueness of its solutions.

Sharp-interface model and contact angles

The sharp-interface model for h is simply the leading order outer problem for h, but now with
boundary conditions, that result from the leading order matching. Hence, we obtain

0 = ∂xxxf0 (4.24a)

with boundary conditions

f0 = 0 and ∂xf0 = ∂zv0 = −
√
−2

σ + 1

σ
Φ(1) at x = ±s (4.24b)

where the contact angle has been determined via matching. Equivalently, for the half-droplet,
by imposing symmetry we have the boundary conditions

f0(s) = 0, ∂xf0(s) = −
√
−2

σ + 1

σ
Φ(1) and ∂xf0(0) = 0 (4.25)

5 Sharp-interface limit via Γ-convergence

In this section we investigate properties of stationary solutions of the sharp-interface two-layer
model. Such model can be obtained by considering the limiting problem ε→ 0 in the framework
of Γ-convergence. For one-layer systems corresponding minimizers are known as mesoscopic
droplets [38]. In this approach equilibrium contact angles can be directly deduced from the
Euler-Lagrange equation of the resulting Γ-limit energy. On the other hand showing an equi-
coerciveness property we have that the sequence of minimizers of Eε converges to a minimizer
of the Γ-limit energy E∞.

For boundary conditions h1 = h2 and certain domains we show that solutions exists and are
unique up-to translations. The main technique used here is the symmetric-rearrangement, see
e.g. [31, 32], which was previously applied by Otto et al. [38].

For the section to come we consider energies such as in (3.2). For later convenience we define
Wε(h) =

(
φε(h) − Φ(1)

)
/|Φ(1)| where as before W (h) = Wε(h/ε) is independent of ε.

The shift by |Φ(1)| has the advantage of working with a non-negative energy without changing
the Euler-Lagrange equations.

With these definitions consider the following family of minimization problems. For Ω ⊂ Rn

bounded with Lipschitz boundary and m1,m2 > 0 given and ε > 0 we look for minimizers of
Eε : Xm → R∞ defined as

Eε(h1, h2) =

∫
Ω

σ

2
|∇h1|2 +

1

2
|∇h2|2 + |Φ(1)|Wε(h2 − h1) (5.1)
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with σ > 0 and Wε(h) = W
(
h/ε
)

as ε→ 0. Note that nonnegativity h1 > 0 is not enforced
because otherwise extra terms in Eε are required.

5.1 Γ-convergence

For a given domain Ω ⊂ Rn bounded with Lipschitz boundary define the space of admissible
interfaces as before in (3.9) by

Xm :=

{
(h1, h2) ∈ H1(Ω)2 : m1 =

∫
Ω

h1, m2 =

∫
Ω

(h2 − h1), h2 ≥ h1

}
, (5.2)

and in general let W : R→ R be a function with the properties

(i) W ≥ 0 and W (h) = 0⇔ h = 1.

(ii) W (h)
h→+∞−−−−→ 1 and W (h) ≤ 1 for h > 1.

We want to investigate the family of minimization problems (5.1). First we note that the sequence
Eε is equi-coercive in the weak topology of H1(Ω)2. This is a simple consequence of

Eε(h1, h2) ≥ c(‖∇h1‖2
H1 + ‖∇h2‖2

H1),

which holds for all (h1, h2) ∈ Xm. Together with the Γ-convergence the equi-coercivity implies
the following. We know that any sequence {h1,n, h2,n} of minimizers to the energies Eεn has
a weakly converging subsequence (h1,n, h2,n) ⇀ (h∗1, h

∗
2). Furthermore the limit (h∗1, h

∗
2) is a

minimizer of the Γ-limit energy E∞. This relates minimizers of Eε to minimizers of the Γ-limit
E∞.

Now we investigate the Γ-limit of (5.1) in the topology of weak convergence in the space
H1(Ω)2. We recall the definition of Γ-convergence , see also [6, 11].

Definition 5.1. We say that a sequenceEε : X → R∞ Γ-converges inX in the weak topology
to E∞ : X → R∞ if for all x ∈ X we have

(i) (lim-inf inequality) For every sequence {xε} ⊂ X weakly converging to x there holds

E∞(x) ≤ lim inf
ε

Eε(xε).

(ii) (lim-sup inequality) There exists a sequence {xε} ⊂ X weakly converging to x such
that

E∞(x) ≥ lim sup
ε

Eε(xε).

The function E∞ is called the Γ-limit of (Eε), and we write E∞=Γ- limεEε.

The key proposition to compute the overall Γ-limit is to consider the Γ-limit of the potential
separately. Here we use that weak convergence in H1 implies strong convergence in L2 and
the right continuity of q 7→

∫
χ{h > q} for any given h ∈ H1.
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Proposition 5.2. Consider the functional Fε : H1(Ω)→ R∞ defined as

Fε(h) =

{∫
Ω
Wε(h) h ∈ Xm,

∞ otherwise,

where

Xm =

{
h ∈ H1(Ω) : h ≥ 0,

∫
Ω

h = m

}
.

Then

Γ- lim
ε
Fε(h) = F∞(h) =

{∫
Ω
χ{h > 0} h ∈ Xm,

∞ otherwise,

with χ being the characteristic function.

Proof. Consider an arbitrary sequence εn → 0 and h ∈ Xm.
(i) (lim-inf condition)
Let {hn} ⊂ Xm such that hn ⇀ h weakly inH1(Ω), then hn → h strongly in L2(Ω). Choose
δn → 0 such that εn/δn → 0 as n→∞ which immediately gives

lim inf
n

∫
Ω

Wεn(hn) ≥ lim inf
n

∫
{hn>δn}

Wεn(hn) = lim inf
n

∫
Ω

χ{hn > δn}. (5.3)

Next we want to use
∫
χ{h > 0} ≤ lim inf

∫
Ω
χ{hn > δn}. Conversely assume

lim inf
n

∫
Ω

χ{hn > δn} <
∫
χ{h > 0}. (5.4)

Then employing right-continuity of s 7→
∫

Ω
χ{h > s} (see [31], Proposition 6.1) there must

exist some δ, δ̄ > 0 such that

0 < lim inf
n

∫
Ω

χ{h > 0} − χ{hn > δn} − δ ≤ lim inf
n

∫
Ω

χ{h > δ̄} − χ{hn > δn},

≤ lim inf
n

∫
Ω

χ{h > δ̄ & hn < δn} ≤
(

2

δ̄

)2

lim inf
n

∫
Ω

|h− hn|2 = 0,

where we used Chebyshev’s inequality. This is a contradiction and thus by the previous asser-
tions

lim inf
n

∫
Ω

Wεn(hn) ≥
∫

Ω

χ{h > 0}.

(ii) (lim-sup condition)
Define a recovery sequence by hn = αnh + εn where αn = m− εn|Ω|/m. Then hn ∈ Xm

and hn → h even strongly in H1(Ω) and the following estimate holds

lim sup
n

∫
Ω

Wεn(hn) = lim sup
n

(∫
{h>0}

W

(
1 +

αn
εn
h

)
+

∫
{h=0}

W

(
1 +

αn
εn
h

))
,

≤ lim sup
n

∫
Ω

χ{h > 0}+

∫
{h=0}

W (1) =

∫
Ω

χ{h > 0} ,

where we used that W (s) ≤ 1 for s > 1 and W (1) = 0.
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To prove the Γ-convergence to the sharp-interface model we can exploit the property that the
behavior of gradient terms can be easily controlled.

Theorem 5.3. For the family of energies (5.1) the Γ-limit is

E∞(h1, h2) =

∫
Ω

σ

2
|∇h1|2 +

1

2
|∇h2|2 + |Φ(1)|χ{h2 > h1}

Proof. The gradient terms in Eε are weakly lower semicontinuous with respect to weak conver-
gence in H1(Ω)2. Together with Proposition 5.2 this gives the lim-inf inequality. On the other
hand the gradient terms are continuous with respect to strong convergence in H1(Ω)2. Choos-
ing the recovery sequence as in the proof of Proposition 5.2 one gets the desired lim-sup in-
equality.

Now we want to deduce necessary conditions for minimizers of E∞. We are especially inter-
ested in conditions at the points where the two phase domain meets the one-phase domain. One
problem is that one cannot immediately compute the Euler-Lagrange equations (L2-gradient)
of the sharp-interface energy functional E∞. This is due to

∫
Ω
χ{h2 > h1} being only lower

semicontinuous in the strong H1(Ω) topology, but not continuous nor differentiable. In fact di-
rectional derivatives of this part of the energy will almost surely be zero or infinite. Therefore we
compute the directional derivative of E∞ in another topology as follows: For ease of notation
introduce

ω = {x ∈ Ω : h2 > h1} (5.5)

and restrictions of h1 and h2 to ω and Ω \ ω are called

h1 := h1|ω, h2 := h2|ω, h := h1|Ω\ω = h2|Ω\ω,

with boundary condition h1 = h2 = h on ∂ω. We will now vary h1, h2 and h but also ω. The
formal calculation is restricted to smooth h1, h2, h and ω. Using these we can rewrite the energy
using the restrictions as

E∞(h1, h2, h, ω) =

∫
ω

[
σ

2
|∇h1|2 +

1

2
|∇h2|2 + |Φ(1)|

]
+

∫
Ω\ω

σ′

2
|∇h|2, (5.6)

where we define σ′ := 1 + σ. A perturbation of τ 7→
(
h1(τ), h2(τ), h(τ), ω(τ)

)
can be pa-

rametrised using a deformation ψ(◦, τ) : Ω → Ω with ψ(ω(0), τ) = ω(τ). In the same spirit
define h̄1(x0, τ) = h1(ψ(x0, τ), τ) as the pullback of h1 by ψ and similarly h̄2 and h̄. The
boundary conditions ∂τ h̄1 = ∂τ h̄2 = ∂τ h̄ on ∂ω(τ) translate into

ḣ1 + ψ̇ · ∇h1 = ḣ2 + ψ̇ · ∇h2 = ḣ+ ψ̇ · ∇h =: ξ̇. (5.7)

Here we use the notation ψ̇ := ∂τψ, ḣ1 := ∂τh1, ḣ2 := ∂τh2 and ḣ := ∂τh. Then using
Reynolds transport theorem we get

d

dτ
E∞(h1, h2, h, ω) =

∫
ω

(
σ∇h1∇ḣ1 +∇h2∇ḣ2

)
+

∫
Ω\ω

σ′∇h∇ḣ

+

∫
∂ω

[
σ

2
|∇h1|2 +

1

2
|∇h2|2 −

σ′

2
|∇h|2 + |Φ(1)|

]
(n · ψ̇).

16



Applying integration-by-parts and boundary conditions (5.7) yields in one and two spatial dimen-
sions, i.e. ω ⊂ R and ω ⊂ R2 the directional derivative

0 =
d

dτ

(
E∞ + λ2

∫
h1 + λ1

∫
(h2 − h1)

)
,

=−
∫
ω

[
σ∆h1 + λ2 − λ1

]
ḣ1 +

[
∆h2 + λ1

]
ḣ2 −

∫
Ω\ω

[
σ′∆h+ λ2

]
ḣ

+

∫
∂ω

[
−σ

2
(∇h1)2 − 1

2
(∇h2)2 +

σ′

2
(∇h)2 + |Φ(1)|+ η2

(
1 + σ − σ′

)]
(n · ψ̇)

+

∫
∂ω

[σ(n · ∇h1) + (n · ∇h2)− σ′(n · ∇h)]
(
ξ̇ + (t · ψ̇)

)
. (5.8)

where η2 := (t · ∇h1)2 ≡ (t · ∇h2)2 ≡ (t · ∇h)2. The expressions inside square brackets
have to vanish independently, since the perturbations (ḣ1, ḣ2, ḣ, ξ̇, ψ̇) are independent.

Remark 5.4. Above we added Lagrange multipliers λ1, λ2 to take care of the mass conserva-
tion. In one dimension there is no tangential contribution and hence η ≡ 0, whereas in two
dimensions the contribution with η2 vanishes due to definition σ′ = σ + 1. However, if σ′ could
be choosen independently of σ, there would be an extra contribution in that case.

5.2 Existence and uniqueness of solutions

In this part we consider the sharp interface energy derived by Γ-convergence and study its
minimizers. The main idea of the proof is to apply similar techniques as in Otto et al. [38] to the
difference

h := h2 − h1. (5.9)

Minor additional assumptions are necessary for the proof, e.g. Ω ⊂ Rn is a ball and the bound-
ary condition (h2− h1)|∂Ω = 0 must be included into Xm. The idea of the proof is still to show
that for a minimizer the support of h is a ball, on which the solutions can be computed explicitly.
The minimization itself is performed with masses m = (m1,m2) held fixed. Extensions of the
proof and properties of the solutions are discussed in the end of this section.

Theorem 5.5. (Minimizer of sharp interface energy)

Let Ω = BR(0) and X = {(h1, h2) ∈ Xm(Ω) : (h1 − h2)|∂Ω = 0} and energy

E(h1, h2) :=

∫
Ω

σ

2
|∇h1|2 +

1

2
|∇h2|2 + |Φ(1)|χ{h2>h1} dx. (5.10)

Then using ζ(x) := α(s2 − |x|2)+ minimizers of E with mass (m1,m2) are

h2 =
σ

σ + 1
ζ(x− x0) + h, h1(x) = h2 − ζ(x− x0), (5.11)

with constant x0 ∈ Ω and r, α, h ∈ R. Prescribing the mass (m1,m2) fixes r and h, whereas
α is fixed by the contact angle (Neumann triangle)

σ(∇h1)2 + (∇h2)2 = 2|Φ(1)|, at |x| = r. (5.12)

For large masses m2 (5.12) is not required and we get r = R, x0 = 0 in (5.11).
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Proof. Symmetry: For given (h1, h2) ∈ X let h = (h2 − h1) ∈ H1
0 (Ω) as in (5.9), non-

negative let

λ :=
‖∇h2‖
‖∇h‖

≥ 0.

Using Cauchy-Schwarz inequality in L2(Ω) the following energy estimate holds

E(h1, h2) ≥ (σ + 1)‖∇h2‖2 + σ‖∇h‖2 − 2σ‖∇h2‖ ‖∇h‖ + |Φ(1)|µ({h > 0}),
= ‖∇h‖2

(
λ2 + σ(1− λ)2

)
+ |Φ(1)|µ({h > 0}).

Minimizing with respect to λ gives the lower bound

E(h1, h2) ≥ σ

σ + 1
‖∇h‖2 + |Φ(1)|µ({h > 0})

which is attained only if λ = σ/(σ + 1) and ∇h2 is a multiple of ∇h. Now let h∗ be the
symmetric-decreasing rearrangement of h, then∫

Rn

h∗ dx =

∫
Rn

h dx, ‖∇h∗‖L2(Rn) ≤ ‖∇h‖L2(Rn),

and equality holds only if h is symmetric-decreasing [32]. Now assume that h is not symmetric
decreasing, or ∇h 6= σ/(σ + 1)∇h2. Then we can reduce the energy by defining h∗1 and h∗2
by

h∗2(x) :=
σ

σ + 1
h∗(x− x0) + h, h∗1(x) := h∗2(x)− h∗(x− x0),

and have∇h∗2 = λ∇h∗ and µ{h > 0} = µ{h∗ > 0} so that

E(h1, h2) >
σ

σ + 1
‖∇h∗‖2 + |Φ(1)|µ({h∗ > 0}) = E(h∗1, h

∗
2).

Note that {h∗ > 0} = Bs(0) =: ω∗ with s such that µ(ω∗) = µ{h > 0}. To check
ζ(x) = α(s2 − |x|2)+ is analogous to [38]. One has to solve the Euler-Lagrange equation
for the first variation of E given in (5.8) using standard methods.

Corollary 5.6. Let X be as before and the sharp interface energy

E∞(h1, h2, h, ω) :=

∫
ω

(
σ

2
|∇h1|2 +

1

2
|∇h2|2 + |Φ(1)|

)
dx+

∫
Ω\ω

σ′

2
|∇h|2 dx (5.13)

as in (5.6) for σ′ > 0 arbitrary. Then the minimizers of (5.10) and (5.13) in X are identical.

Proof. Since we have h = 0 on the complement of ω the estimates of the previous proof are
valid if the domain of integration is restricted to ω. By construction we have ‖∇h‖2

L2(Ω\ω) ≥
‖∇h∗‖2

L2(Ω\ω∗) = 0.
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Remark 5.7. Using the abbreviation c = |Φ(1)|(σ + 1)/σ we can easily compute the param-
eters r and α from the previous theorem and get

s1d =

(
9m2

2

8c

)1/4

, α1d =

(
2c3

9m2
2

)1/4

,

s2d =

(
8m2

2

π2c

)1/6

, α2d =

(
πc2

2m2

)1/3

.

in one and two spatial dimension respectively. The contact angles are then

n · ∇h1|s− = ±
√

2c

1 + σ
n · ∇h2|s− = ∓

√
2c

σ

1 + σ
. (5.14)

and which actually holds in any spatial dimension. We also have

n · ∇(h2 − h1) =
√

2c =

√
−2(σ + 1)

σ
Φ(1) (5.15)

which can be compared with the appropriate boundary condition in (4.24) from the matched
asymptotic expansion.

6 Conclusions and Outlook

We considered stationary solutions of systems of coupled lubrication equations for liquid bi-
layers with an ultra-thin layer of thickness ε. Firstly, we studied the Euler-Langrange equations
using matched asymptotics. The essential idea here is to rewrite the equations in terms of the
difference h2 − h1 which then turned out to be the lubrication equation for a droplet on a solid
substrate. For that equation we included a discussion of switch-back terms, which appear in the
matching procedure. From the leading order solution of the matched solution we constructed a
sharp-interface model.

Secondly, we derived a sharp interface model rigorously. Here we used the variational structure
of the equations to formulate the problem as a minimization problem, for which we can study
the limit ε→ 0 by Γ-convergence. In one spatial dimension on an interval both sharp-interface
models are equivalent. In particular the contact angle of h from the matched asymptotics in
(4.24) is the same as the one from the Γ-convergence in (5.15). Since the recovery of h1, h2

from h in both cases works via (4.23a,4.23b) or (5.11) the second contact angle agrees as well.
In dimensions d > 1 one has to prove that the shape of the domain {h2−h1 > 0} is a ball of a
certain radius. Using symmetric decreasing rearrangement this property, and thereby existence
and uniqueness of minimizers, was proven rigorously.

We think that as for thin films on solid substrate, the technique of matched asymptotic analysis
can be extended to the dynamic time-dependent problem, i.e. by computing traveling wave
solutions. Furthermore we hope that the computation of the sharp-interface model also supports
the understanding of the energetic structure of the system of PDEs, which should still be valid
in the time-dependent problem, e.g. in the gradient flow structure of a sharp-interface model.
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These insights can be applied to study dewetting regimes, dewetting rates and the stability
properties of the evolving interfaces, as it was done previously for the dewetting liquid films from
solid substrates, see e.g. [34, 23].

Another topic where mathematical theory could be extended concerns the early time rupture
process of the film. For the single thin film on a solid substrate techniques by Bernis et al. [3]
on degenerate fourth-order parabolic equations were further developed by Bertozzi et al. [5]
and more recently by Chou and Kwong [8] to prove existence of weak solutions and finite time
blow-up for the case of no-slip and van-der-Waals type intermolecular potentials. Experimental
evidence and corresponding new lubrication models taking account of an effective interfacial slip
at [15, 43, 35, 22, 33, 29, 34], led to an extension of this analysis and the one by [44] to the more
complicated slip-models and can be found in Peschka et al. [40, 39]. Extensive discussions and
further references on the self-similar approach to rupture can be found in Witelski and Bernoff
[50] and the recent review by Eggers [14]. In a future paper we will explore also how these ideas
and the approaches of this manuscript can be used to further develop the theory of rupture in
liquid-liquid systems.

Finally, we found that the general structure of stationary solutions is richer compared to the
situation on a solid substrate. This suggests that it is worthwhile to study the slow quasista-
tionary coarsening dynamics of droplets on a liquid substrate. The techniques developed in the
corresponding case for the single thin film can be found in [19, 18, 38, 25].
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