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Abstra
tThe 
omplete damage of a linearly-responding material that 
an thus 
om-pletely disintegrate is addressed at small strains under time-varying Diri
hletboundary 
onditions as a rate-independent evolution problem in multidimen-sional situations. The stored energy involves the gradient of the damage vari-able. This variable as well as the stress and energies are shown to be wellde�ned even under 
omplete damage, in 
ontrast to displa
ement and strain.Existen
e of an energeti
 solution is proved, in parti
ular, by detailed in-vestigating the Γ-limit of the stored energy and its dependen
e on boundary
onditions. Eventually, the theory is illustrated on a one-dimensional example.1 Introdu
tionDamage, as a spe
ial sort of inelasti
 response of solid materials, results from mi-
rostru
tural 
hanges under me
hani
al load. important relevan
e in appli
ationsand routine 
omputational simulations using various models are performed, althoughmostly without being supported by rigorous mathemati
al and numeri
al analysis.This 
onvin
ingly indi
ates the mathemati
al non-triviality of the damage problem.We will 
onsider damage as a rate-independent pro
ess by negle
ting all rate de-pendent pro
esses like vis
osity and inertia, This is often, although not always,an appropriate 
on
ept and has appli
ations in a variety of industrially importantmaterials, espe
ially to 
on
rete [13, 16, 33℄, �lled polymers [10℄, or �lled rubbers[18, 24, 25℄. Being rate-independent, it is ne
essarily an a
tivated pro
ess, i.e. totrigger a damage the me
hani
al stress must a
hieve a 
ertain a
tivation thresh-old. The mathemati
al di�
ulty is re�e
ted that only lo
al-in-time existen
e for asimpli�ed s
alar model or for a rate-dependent 0- or 1-dimensional model has beenre
ently performed in [2, 9, 14, 15℄. The 3-dimensional situation was investigated in[27, 28, 11℄ with the fo
us to in
omplete damage. The main fo
us of this paper is on
omplete damage, i.e. the material 
an 
ompletely disintegrate and its displa
ement
ompletely loses any sense on su
h regions. The related mathemati
al troubles areimmediately expe
ted and spe
i�
 mathemati
al te
hniques urgently needed.We 
onsider a nonhomogeneous anisotropi
 material but 
on�ne ourselves to a ma-terials with linear elasti
 response and an isotropi
 damage using only one s
alardamage parameter under small strains (as in [1, 2, 13, 17℄) and the gradient-of-damage theory [8, 13, 16, 17, 22, 23, 34℄ expressing a 
ertain nonlo
ality in the sensethat damage of a parti
ular spot is to some extent in�uen
ed by its surrounding,1



leading to possible hardening or softening-like e�e
ts, and introdu
ing a 
ertain in-ternal length s
ale eventually preventing damage mi
rostru
ture development. Fromthe mathemati
al viewpoint, the damage gradient has a 
ompa
tifying 
hara
ter andopens possibilities for the su

essful analysis of the model. Anyhow, some investiga-tions are still possible without gradient of damage, as shown in [11℄ for in
ompletedamage, leading to a possible mi
rostru
ture in the damage pro�le.To present a relevant formulation of the rate-independent evolution of the damage,in Se
tion 2 we �rst s
rutinize the stati
 problem with a pres
ribed damage pro�leunder a pres
ribed boundary 
ondition. Then, in Se
tion 3, the energeti
 solutionto the evolution problem is formulated in terms of the damage pro�le and stress (or,equivalently, of the shape of 
ompletely damaged part and the strain in the rest)and its existen
e is proved with help of results from [26, 27, 28℄. Eventually, anillustrative one-dimensional example is presented in some detail in Se
tion 4.2 Stati
 problem and its perturbation analysisWe 
onsider a bounded Lips
hitz domain Ω ⊂ R
d, an open nonempty part Γ ⊂

∂Ω of its boundary ∂Ω on whi
h we pres
ribe the Diri
hlet boundary 
ondition
w ∈ W 1/2,2(Γ; Rd). We use the standard notation W k,p for Sobolev or Sobolev-Slobodetski�� spa
es whose p-power of the k-order derivatives is integrable, allowingfor k > 0 non-integer. Further, we will 
onsider ζ ∈ W 1,r(Ω) valued in [0, 1] as as
alar damage parameter assumed pres
ribed in this se
tion but later, in Se
tions 3and 4, it will evolve in time. The meaning of ζ is the portion of the undamagedmaterial, i.e. ζ(x) = 1 means that the material is 
ompletely undamaged at the
urrent point x ∈ Ω while ζ(x) = 0 means just the opposite, i.e. 
omplete damageat x. Let us abbreviate the set of admissible damage pro�les

Z :=
{
ζ∈W 1,r(Ω); ζ(·) ∈ [0, 1] a.e. on Ω

} (2.1)and denote the set of the 
omplete damage by
Nζ :=

{
x∈Ω; ζ(x) = 0

}
, (2.2)then u : Ω\Nζ → Rd will denote a displa
ement. Naturally, we do not 
onsider ude�ned on the damaged part Nζ where the material is 
ompletely disintegrated.Our aim is to investigate a minimization problem that 
an be formally written asminimize V0(u, ζ) :=

∫

Ω

ζ(x)ϕ
(
x, [e(u)](x)

)
+

κ(x)

r
|∇ζ(x)|r dxsubje
t to u is a displa
ement su
h that u|Γ = w.



 (2.3)where κ : Ω → R is a so-
alled fa
tor of in�uen
e of damage and ϕ : Ω × Rd×d

sym → Ris a Carathéodory fun
tion su
h that ϕ(x, ·) : R
d×d
sym → R is a quadrati
 
oer
ive2



form on the set of the symmetri
 (d× d)-matri
es R
d×d
sym des
ribing the elasti
 storedenergy, say

ϕ(e) =
1

2

d∑

i,j,k,l=1

Cijkl(x)eijekl, (2.4)and where, as usual in linear elasti
ity (where small deformations are assumed), e(u)denotes the linearized strain tensor, 
alled the small-strain tensor:
e(u) =

1

2
(∇u)⊤ +

1

2
∇u. (2.5)The 4-th order tensor C(x) of elasti
 moduli satis�es the usual symmetries, uniformpositive-de�niteness and boundedness:

∀(a.a.) x∈Ω : Cijkl(x) = Cjikl(x) = Cklij(x), (2.6a)
∃η > 0 ∀(a.a.)x∈Ω ∀e ∈ R

d×d
sym :

d∑

i,j,k,l=1

Cijkl(x)eijekl ≥ η|e|2, (2.6b)
Cijkl ∈ L∞(Ω). (2.6
)The term 1

r
κ(x)|∇ζ(x)|r models a 
ertain nonlo
ality as mentioned in Se
t. 1 andis quite often used in literature [8, 13, 16, 17, 22, 23℄. The s
alar 
oe�
ient κdetermines a 
ertain length-s
ale of the possible �ne stru
ture that might develop ina damage pro�le and, in a

ord with the adopted nonhomogeneous-material 
on
ept,is assumed possibly x-dependent and to satisfy

κ ∈ L∞(Ω), ess inf
x∈Ω

κ(x) > 0. (2.7)In parti
ular, for the usage in Se
t. 3, we are interested in a 
ertain stability of thisproblem with respe
t to perturbations of the damage pro�le ζ with respe
t to theweak W 1,r(Ω)-topology. Here, in a

ord with [27℄, we 
onsider r > d. Then Nζfrom (2.2) is 
losed in Ω sin
e ζ ∈ W 1,r(Ω) ⊂ C(Ω̄) with r > d. Let us remark thatthe theory of in
omplete damage was alternatively developed also for ζ ∈ W α,2(Ω)with α > 0 in [28℄ but it is not obvious how it would be transferred to 
ompletedamage be
ause, in the following 
onsideration, we will heavily rely on the 
ompa
tembedding ζ ∈ W 1,r(Ω) ⊂ C(Ω̄).Let us agree that o

asionally we will omit the expli
it x-dependen
e of ϕ for brevity.2.1 Regularized problemThe mentioned essential trouble with (2.3) is that the displa
ement u has no obviousmeaning on the 
ompletely damaged part Nζ , whi
h is why (2.3) must be 
onsideredonly formally, as said above. For the purpose of further analysis based on the resultsfrom [27, Se
t.4℄ and, perhaps even more importantly, for a 
on
eptual numeri
al3



strategies (see Remark 3.10 below), it is relevant to investigate limit behavior (for
ε → 0+) of a regularized problemminimize Vε(u, ζ) :=

∫

Ω

(
ζ(x)+ε

)
ϕ
(
x, [e(u)](x)

)
+

κ(x)

r
|∇ζ(x)|r dxsubje
t to u ∈ W 1,2(Ω; Rd), u|Γ = w.




 (2.8)Obviously, V0 from (2.3) is just Vε for ε = 0. For ε ≥ 0, let us de�ne
Gε(u, ζ) :=

{
Vε(u, ζ) if u|Γ = w and ζ ∈ Z,
+∞ elsewhere, (2.9)where Z is from (2.1). The theory for 
omplete damage developed in [27, Se
t.4℄relies on a substantial stored energy de�ned, for a given damage pro�le ζ and ahard-devi
e loading w, as the Γ-limit of the sequen
e {gε}ε>0 (
onsidering only a
ountable number of ε 
onverging to 0) where

gε(ζ) := min
u∈W 1,2(Ω;Rd)

Gε(u, ζ). (2.10)Let us note that the minimum in (2.10) is attained by the standard 
oer
ivityarguments.Thanks to the regularization term ∫
Ω

κ
r
|∇ζ |r dx, the relevant topology used for thedamage variable ζ will be the weak topology of W 1,r(Ω). It is important for thesubsequent analysis that we assumed r > d so that the weak 
onvergen
e of asequen
e {ζε} (denoted as usual by ζε ⇀ ζ) implies the uniform 
onvergen
e as
ontinuous fun
tions on Ω.Re
all now that the sequen
e {gε}ε>0 is said to be sequentially Γ-
onvergent to gfor the weak topology of W 1,r(Ω) if the following properties hold:(i) lower bound: for every sequen
e {ζε}ε>0 
onverging weakly to ζ ∈ Z, we have:

lim inf
ε→0

gε(ζε) ≥ g(ζ). (2.11)(ii) re
overing sequen
e: for every ζ ∈ Z there exists a sequen
e {ζε}ε>0 ⊂ Z
onverging to ζ su
h that
lim sup

ε→0
gε(ζε) ≤ g(ζ). (2.12)When properties (i) and (ii) are satis�ed, we write g = Γ- limε→0 gε. In our 
ase thesequen
e {gε}ε>0 is monotone and the existen
e of a Γ-limit is guaranteed by thefollowing lemma:Lemma 2.1 (See [6℄.) Assume that gε is nonin
reasing with respe
t to ε and let

g0(ζ) := infε>0 gε(ζ). Then {gε}ε>0 does Γ-
onverge to the lower semi
ontinuousenvelope of g0 with respe
t to the weak topology on W 1,r(Ω).4



In our 
ase, the 
omputation of g0 is quite easy: by using (2.10) and by swit
hingthe in�mum in ε with the in�mum in u, one has
g0(ζ) = inf

ε>0
inf

u∈W 1,2(Ω)
Gε(u, ζ) = inf

u∈W 1,2(Ω)
inf
ε>0

Gε(u, ζ) = inf
u∈W 1,2(Ω)

G0(u, ζ) . (2.13)As a 
onsequen
e of Lemma 2.1, g0 will be the Γ-limit we are looking for provided
g0 given above enjoys the lower semi
ontinuity property. Unfortunately, as shownin Se
tion 2.2, this property fails and the determination of g is a more involvedproblem whi
h we are going to solve later, see Proposition 2.10.Also note that g is always bounded from below be
ause we do not 
onsider anyexternal dead loading like gravity for
e; obviously, we always have g ≥ 0. In fa
t,due to the regularization term ∫

Ω
κ
r
|∇ζ |r dx and (2.7), we have even the 
oer
ivity

g(ζ) ≥ (ess inf κ
r
)‖∇ζ‖r

Lr(Ω;Rd) and therefore the sequential Γ-limit g is weakly lowersemi
ontinuous.Remark 2.2 (Mos
o 
onvergen
e.) In fa
t, later in the proof of (3.21) we will showeven strong 
onvergen
e of re
overy sequen
es. This allows for repla
ing the weaktopology in (ii) by the strong one, whi
h means that the 
onvergen
e of gε to g inthe sense of U. Mos
o [32℄.2.2 A 1-dimensional 
ounterexampleLet us show a 1-dimensional example of a failure of weak lower-semi
ontinuity of g0.Being inspired by [3, Example 3℄, let us 
onsider d = 1, the interval Ω := (−1, 1),the Diri
hlet 
ondition w pres
ribed on Γ := {−1, 1} as w(x) := x, ϕ(e) = 1
2
|e|2,and the damage pro�le

ζ(x) :=
∣∣x

∣∣α with 1 − 1

r
< α < 1. (2.14)Dire
t 
al
ulations easily shows that ζ ∈ W 1,r(Ω). Then we 
onsider the sequen
e

{ζn}n∈N of
ζn(x) :=

(
max

(
0, |x| − 1

n

))α

. (2.15)Obviously ζn → ζ for n → ∞ even in the norm topology of W 1,r(Ω). Moreover,
g0(ζn) = 0 be
ause obviously g0(ζn) = G0(un, ζn) = 0 for the pie
ewise a�ne dis-pla
ement pro�le

un(x) :=






−1 for −1 ≤ x ≤ − 1
n
,

nx for − 1
n

< x < 1
n
,

1 for 1
n
≤ x ≤ 1.

(2.16)5



Therefore g(ζ) = 0 be
ause
0 ≤ g(ζ) ≤ lim inf

n→∞
G0(un, ζn) = lim

n→∞
0 = 0. (2.17)On the other hand, we will show that infu∈W 1,2(Ω;Rd) G0(u, ζ) > 0. Sin
e α < 1,

‖ | · |−α‖L1(Ω) = 2/(1 − α) and, in parti
ular, 1/ζ : x 7→ |x|−α ∈ L1(Ω). We realizethat in our 1-dimensional 
ase we have d
dx

u = e(u) and, by Young's inequality, theestimate
∥∥∥

du

dx

∥∥∥
L1(Ω)

= sup
‖v‖L∞(Ω)≤1

∫

Ω

du

dx
v dx

≤ sup
‖v‖L∞(Ω)≤1

∫

Ω

ζ

2

∣∣∣
du

dx

∣∣∣
2

+
|v|2
2ζ

dx ≤
∫

Ω

ζϕ(e(u)) dx +
1

2

∥∥∥
1

ζ

∥∥∥
L1(Ω)

. (2.18)This shows that ea
h set of u's that has a bounded energy is inevitably boundedin W 1,1(Ω). Note that both subintervals (−1, 0) and (0, 1) whi
h a.e. 
over Ω =
(−1, 1), are 
onne
ted with Γ where the boundary 
onditions are �xed so that theboundedness of u's in L∞(Ω) is also granted. In parti
ular, it holds for a minimizingsequen
e {un}n∈N for G0(·, ζ). Hen
e it 
ontains a subsequen
e 
onverging weakly*in BV(Ω), the spa
e of bounded-variation fun
tions, to some limit u. In parti
ular,
d
dx

un
∗⇀ Du in the spa
e of measures on [−1, 1]. Let us 
onsider a weighted Lebesguespa
e L2

µ(Ω) := {v;
∫
Ω

µ|v|2 dx < +∞} with µ ∈ L1(Ω) �xed; this is a Hilbertspa
e whi
h we identify standardly with its dual. Repla
ing both L1(Ω) and L∞(Ω)in (2.18) by L2
µ(Ω) shows that { d

dx
un}n∈N is bounded also in L2

µ(Ω) if the weight
µ is taken 1/ζ . Note that su
h µ is absolutely 
ontinuous with respe
t to theLebesgue measure. Hen
e the subsequen
e { d

dx
un}n∈N 
onverges also in L2

µ(Ω),hen
e Du ∈ L2
µ(Ω). In parti
ular, Du is absolutely 
ontinuous with respe
t to µ,and thus also with respe
t to the Lebesgue measure. This, however, shows that

g0(ζ) := inf
u∈W 1,2(Ω;Rd)

G0(u, ζ) = lim
n→∞

G0(un, ζ), = G0(u, ζ) > 0 (2.19)be
ause G0(u, ζ) = 0 would be possible only for u 
onstant on (−1, 0) (being equalto −1) and on (0, 1) (being equal to 1). Yet, su
h u has its gradient 2δ0, with δ0denoting the Dira
 measure at 0, whi
h is not absolutely 
ontinuous.Corollary 2.3 For the s
alar situation and Ω, ϕ, and ζ from the above example, itholds g(ζ) < infu∈W 1,2(Ω;Rd) G0(u, ζ).Proof. Just use (2.17) and (2.19). 2In fa
t, the above Corollary 2.3 just gives the 
ounterexample for the (thus wrong)
onje
ture in [27, Remark 4.1℄.
6



2.3 Realizable strain, stress and energyThe important question is the behavior of the stress
σε = (ζε + ε)ϕ′

e(e(uε)) = (ζε + ε)Ce(uε), (2.20)where uε is the minimizer of Gε(·, ζε) as well as the 
orresponding strain e(uε) andthe energy Gε(·, ζε) itself, when ζε approa
hes ζ weakly in W 1,r(Ω) and ε → 0+. Wewill denote su
h sort of limit obje
ts by the adje
tive �realizable�. For this, let us�rst de�ne (possibly nonuniquely) a realizable strain e. Let us de�ne standardly
L2

loc(Ω\Nζ ; R
d) :=

{
u : Ω\Nζ → R

d; ∀A ⊂ Ω\Nζ open,
cl(A) ∩ Nζ = ∅ : u|A ∈ L2(A; Rd)

}
. (2.21)Lemma 2.4 (Realizable strains.) The sequen
e {e(uε)}ε>0 is bounded in

L2
loc(Ω\Nζ; R

d×d
sym) and there is e ∈ L2

loc(Ω\Nζ ; R
d×d
sym) and a subsequen
e su
h that

e(uε) ⇀ e weakly in L2
loc(Ω\Nζ ; R

d×d
sym), i.e. e(uε)|A ⇀ e|A weakly in L2(A; Rd×d

sym) forany A ⊂ Ω\Nζ as in (2.21).Proof. Let Nζ 6= Ω, otherwise the statement is trivial. Without loss of generality, we
an assume A's in (2.21) to be organized into an in
reasing sequen
e whose union isjust Ω\Nζ . As ζε → ζ in C(Ω̄), for any Aj from this sequen
e there is δAj
> 0 and

ε0 > 0 su
h that ζε + ε ≥ δAj
provided ε ≤ ε0. Then, for ε ≤ ε0,

∫

Aj

ϕ(e(uε)) dx ≤ 1

δAj

∫

Aj

(ζε + ε)ϕ(e(uε)) dx

≤ 1

δAj

∫

Ω

(ζε + ε)ϕ(e(uε)) dx =
Gε(uε, ζε)

δAj

, (2.22)whi
h is bounded uniformly with respe
t to ε > 0. By the assumed 
oer
ivity of ϕ,we have e(uε) bounded in L2(Aj; R
d×d
sym). Then we 
an sele
t a subsequen
e of ε's su
hthat {e(uε)|Aj

} 
onverges weakly in L2(Aj ; R
d×d
sym) if ε → 0 to some limit, let us denoteit by eAj

. Then we 
an take Aj+1 and sele
t further subsequen
e from this alreadysele
ted one. This will keep the 
onvergen
e of {e(uε)|Aj
} and gives some eAj+1

as aweak limit of the sub-subsequen
e {e(uε)|Aj+1
}. Of 
ourse, eAj+1

|Aj
= eAj

. In�ating
Aj's by passing j → ∞ gives by the diagonalization pro
edure a subsequen
e of
{e(uε)}ε>0 and e de�ned a.e. on Ω\Nζ by e|Aj

:= eAj
with the 
laimed properties. 2The following assertion introdu
es and 
hara
terizes a realizable stress s provided eis 
onstru
ted by Lemma 2.4.Proposition 2.5 (Realizable stress.) The sequen
e {σε}ε>0 is bounded in

L2(Ω; Rd×d
sym), and ea
h subsequen
e sele
ted in Lemma 2.4 
onverges weakly to arealizable stress s that satis�es

s =

{
ζϕ′

e(e) on Ω\Nζ ,
0 on Nζ .

(2.23)Moreover, this 
onvergen
e is even strong on Nζ.7



Proof. It has already been observed in [27, Formula (4.11)℄ that {σε}ε>0 is boundedin L2(Ω; Rd×d
sym). Indeed, using the property of the quadrati
 form ϕ

∃Cϕ < +∞ ∀e ∈ R
d×d
sym : |ϕ′

e(e)|2 = ϕ′
e(e) : ϕ′

e(e) ≤ Cϕϕ(e), (2.24)we obtain
lim sup

ε→0

∥∥σε

∥∥2

L2(Ω;Rd×d
sym )

= lim sup
ε→0

∫

Ω

(ζε + ε)2|ϕ′
e(e(uε))|2 dx

≤ lim sup
ε→0

(
‖ζε‖L∞(Ω) + ε

)∫

Ω

(ζε + ε)|ϕ′
e(e(uε))|2 dx

≤ lim sup
ε→0

(
‖ζε‖L∞(Ω) + ε

)
Cϕ

∫

Ω

(ζε + ε)ϕ(e(uε)) dx

= ‖ζ‖L∞(Ω)Cϕ lim sup
ε→0

∫

Ω

(ζε + ε)ϕ(e(uε)) dx < +∞. (2.25)Hen
e we 
an 
onsider a subsequen
e and a limit realizable stress s su
h that σε ⇀ sin L2(Ω; Rd×d
sym).Having ζε → ζ weakly in W 1,r(Ω), hen
e strongly in L∞(Ω), and e(uε)|A ⇀ e|A(a subsequen
e) in L2(A; Rd×d

sym) for ea
h A as in (2.21), we 
an just pass to thelimit in (2.20) to get the equality s = ζϕ′
e(e) on A. For this, we used that ϕ′

e in(2.20) is linear. In�ating A yields this equality on the whole Ω\Nζ in the sense of
L2

loc(Ω\Nζ; R
d×d
sym) and thus also L2(Ω\Nζ ; R

d×d
sym) be
ause s ∈ L2(Ω; Rd×d

sym). On theother hand, s = 0 on Nζ be
ause ζε → 0 in L∞(Nζ) and, similarly as in (2.25), we
an estimate
∥∥σε

∥∥2

L2(Nζ ;Rd×d
sym )

≤
(

sup
Nζ

ζε + ε
)

︸ ︷︷ ︸
onverges to 0 Cϕ

∫

Nζ

(ζε + ε)ϕ(e(uε)) dx

︸ ︷︷ ︸remains bounded for ε → 0

−→ 0. (2.26)Hen
e we have the 
omplete formula (2.23) for the realizable stress. As we identi�edthe limit by means of e 
onstru
ted by a subsequen
e sele
ted for Lemma 2.4, wedo not need to sele
t a further subsequen
e here. 2In view of (2.4), we obtained
sij =

{
ζ

∑d
k,l=1 Cijklekl on Ω\Nζ ,

0 on Nζ.
(2.27)The further important quantity is the realizable energy density E des
ribing the limitbehavior of the spe
i�
 stored energy Eε := (ζε + ε)ϕ(e(uε)) related to the uniqueminimizer uε of the regularized problem Gε(·, ζε). Let us also note that uε is theminimizer of Gε(·, ζε) satis�es the Euler-Lagrange equation, i.e. in the weak form,

∀v ∈ W 1,2(Ω; Rd), v|Γ = 0 :

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) : e(v) dx = 0. (2.28)8



Considering u
D
is a 
ontinuation of the Diri
hlet boundary data w onto Ω, using

v = uε − u
D
in (2.28) and realizing also (2.4) and (2.20) then yield the formula forthe total energy

∫

Ω

Eε(x) dx =

∫

Ω

(ζε + ε)ϕ(e(uε)) dx

=
1

2

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) : e(uε) dx

=
1

2

∫

Ω

(ζε + ε)ϕ′
e(e(uε)) :e(u

D
) dx =

1

2

∫

Ω

σε :e(u
D
) dx. (2.29)Proposition 2.6 (Realizable energy.) The sequen
e {Eε}ε>0 is bounded in

L1(Ω), and thus, as a subsequen
e, 
onverges weakly* to a realizable energy density,let us denote it by E. This density is a measure on Ω̄ su
h that limε→0 Gε(uε, ζε) =
limε→0

∫
Ω

Eε(x) dx =
∫
Ω̄

E(dx). In parti
ular, it holds for the subsequen
e sele
tedalready in Lemma 2.4 and then, for e from Lemma 2.4 and s from (2.27), it holds
∫

Ω̄

E(dx) =
1

2

∫

Ω

s :e(u
D
) dx =

∫

Ω\Nζ

ζ
d∑

k,l=1

Cijklekl :e(uD
) dx, (2.30)where u

D
∈ W 1,2(Ω; Rd) is an (arbitrary) 
ontinuation of w onto Ω.Proof. It just su�
es to apply Proposition 2.5 to (2.29) and apply (2.27). 2Example 2.7 (Nonuniqueness of e, s, and E.) Referring to Se
tion 2.2, we 
onsider

ζε := ζn from (2.15) with n = n(ε) su
h that n → ∞ but εn(ε)1/α → 0 for ε →
0. Then, for ε small, ζε + ε and the 
orresponding uε essentially approa
h thepro�les ζn(ε) and un(ε) from (2.15) and (2.16), respe
tively. This is be
ause theoverall sti�ness of the slot of the length 2n(ε)−1/α �lled of �material� with the elasti
modulus ε is 1

2
εn(ε)1/α and asymptoti
ally goes to zero so that asymptoti
ally weapproa
h the situation in Se
tion 2.2. For this un(ε), we have got e(un(ε)) = 0 on

Ω\ [− 1
n(ε)

, 1
n(ε)

]. For ζε+ε, this holds only asymptoti
ally but, nevertheless, the limitis the same, namely e = 0 on Ω \ {0}. Also the 
orresponding stress and the energyis (asymptoti
ally) zero, and thus in the limit both s and E are zero. On the otherhand, for ζε := ζ from (2.14), the displa
ement pro�le uε ∈ W 1,2(Ω) 
orrespondingto ζε + ε essentially imitates (2.19), i.e. G0(uε, ζε + ε) 
onverges to G0(u, ζ) > 0
onstru
ted in Se
tion 2.2. In parti
ular, e = e(u) 6= 0, s = ζe(u) 6= 0, and also∫
[−1,1]

E( dx) > 0. Of 
ourse, in both 
ases ζε + ε 
onverges to the same limit pro�le
ζ .In view of the above Example 2.7, it makes sense to 
onsider the set of all realizablestresses s for a given damage pro�le:

S(ζ) :=
{
s∈L2(Ω; Rd×d

sym); ∃ζε ⇀ ζ weakly in W 1,r(Ω) :

σε ⇀ s weakly in L2(Ω; Rd×d
sym) with σε from (2.20)}. (2.31)9



Proposition 2.8 The set S(ζ) is weakly 
ompa
t in L2(Ω; Rd×d
sym).Proof. By arguments like in the proof of Proposition 2.5, we 
an see that the set

S(ζ) is bounded in L2(Ω; Rd×d
sym); in fa
t, all its elements must share the bound in(2.25). Due to metrizability of the weak topology on bounded sets of L2(Ω; Rd×d

sym),we 
an equally fo
us on sequential 
ompa
tness. Take a sequen
e {sj}j∈N ⊂ S(ζ).As it is bounded in L2(Ω; Rd×d
sym), it 
ontains a subsequen
e (for simpli
ity denotedby the same indexes) 
onverging weakly in L2(Ω; Rd×d

sym); let s denote its limit. As
sj ∈ S(ζ) for ea
h j, there are sequen
es {ζεjk

}k∈N su
h that limk→∞ εjk = 0,w-limk→∞ ζεjk
= ζj (meant weakly in W 1,r(Ω)) and w-limk→∞ σεjk

= sj with
σεjk

= (ζεjk
+εjk)ϕ

′
e(e(uεjk

)). By the diagonalization pro
edure we obtain a sequen
e
{σεjnkn

}n∈N 
onverging to s, whi
h shows that s ∈ S(ζ). 2Proposition 2.9 It holds
g(ζ) = min

s∈S(ζ)

1

2

∫

Ω

s : e(u
D
) dx (2.32)where u

D
∈ W 1,2(Ω; Rd) is as in Proposition 2.6.Proof. As u

D
∈ W 1,2(Ω; Rd), also e(u

D
) ∈ L2(Ω; Rd×d

sym), and s 7→ 1
2

∫
Ω

s : e(u
D
) dxis a weakly 
ontinuous fun
tional whi
h obviously attains its minimum on the set

S(ζ) whi
h is, due to Proposition 2.8, weakly 
ompa
t.By the de�nition (2.10) of g, the sequen
e (ε, ζ̃) → (0, ζ) in�mizing the expressionin (2.10) gives a 
luster point s of the 
orresponding sequen
e {σε,ζ̃} with σε,ζ̃ =

(ζ̃ + ε)ϕ′
e(e(uε,ζ̃)) where σε,ζ̃ minimizes Gε(·, ζ̃), 
f. (2.20). This yields s ∈ S(ζ) and,using also (2.29),
g(ζ) = lim

(ε,ζ̃)→(0,ζ)

∫

Ω

(ζ̃ + ε)ϕ(e(uε,ζ̃)) dx = lim
(ε,ζ̃)→(0,ζ)

1

2

∫

Ω

σε,ζ̃ : e(u
D
) dx

=
1

2

∫

Ω

s : e(u
D
) dx ≥ min

es∈S(ζ)

1

2

∫

Ω

s̃ : e(u
D
) dx. (2.33)Conversely, taking s ∈ S(ζ) at whi
h the minimum in (2.32) is attained and, by(2.31), the sequen
e {ζε}ε>0 su
h that the 
orresponding {σε}ε>0 attains s, usingagain also (2.29), we obtain

g(ζ) ≤ lim inf
ε→0

∫

Ω

(ζε + ε)ϕ(e(uε)) dx = lim
ε→0

1

2

∫

Ω

σε : e(u
D
) dx

=
1

2

∫

Ω

s : e(u
D
) dx = min

es∈S(ζ)

1

2

∫

Ω

s̃ : e(u
D
) dx. 2Let us note that the formula (2.32) determines (still nonuniquely) a stress s thatrealizes the minimum in (2.32). Let us 
all it a minimizing realizable stress. Nat-urally, we 
an think also about the 
orresponding minimizing realizable strain10



e ∈ L2
loc(Ω\Nζ ; R

d×d
sym) related with s by

e(x) =
[
ϕ′

e

]−1
( s(x)

ζ(x)

) for a.a. x ∈ Ω\Nζ . (2.34)Let us agree to 
all the realizable stress s ∈ S(ζ) whi
h realizes the minimum in(2.32) an e�e
tive stress and e 
orresponding to it via (2.34) the e�e
tive strain.2.4 E�e
tive stress and strain, and sensitivity to the bound-ary dataNow, we 
onstru
t a parti
ular e�e
tive stress, i.e. a minimizer for (2.32), thatprovides a 
hara
terization of the Γ-limit (2.11)�(2.12) as a pointwise limit and itleads to a sele
tion of a parti
ular e�e
tive stress and that this e�e
tive stress 
anbe re
overed by using a parti
ular approximating sequen
e ζε. Thus we will be ableto prove a spe
i�
 di�erentiable behavior (sometimes, in optimization theory, 
alleda sensitivity) of this Γ-limit with respe
t to varying boundary 
onditions.For this, we apply the standard shift of the Diri
hlet 
ondition. Let us abbreviatethe linear spa
e W 1,2
Γ (Ω; Rd) := {v ∈ W 1,2(Ω; Rd); v|Γ = 0}. Considering e

D
∈

L2(Ω; Rd×d
sym), we de�ne

Fε(eD
, v, ζ) :=

∫

Ω

(ζ+ε)ϕ
(
x, e

D
+ e(v)

)
dx. (2.35)Note that, 
onsidering again the 
ontinuation u

D
of the Diri
hlet 
ondition w as inProposition 2.6 and Gε from (2.9), we have

Gε(u, ζ) = Fε(eD
, v, ζ) with e

D
:= e(u

D
) and v := u − u

D
, (2.36)for any v ∈ W 1,2

Γ (Ω; Rd) or, equally, for any u ∈ W 1,2(Ω; Rd) su
h that u|Γ = w. For
e

D
∈ L2(Ω; Rd×d

sym) let
fε(eD

, ζ) := min
v∈W 1,2

Γ (Ω;Rd)
Fε(eD

, v, ζ). (2.37)For ε > 0, the stri
tly 
onvex quadrati
 fun
tional Fε(eD
, ·, ζ) on W 1,2

Γ (Ω; Rd) has aunique minimizer, say v, and the mapping Lζ+ε de�ned as
e

D
7→ Lζ+εv : L2(Ω; Rd×d

sym) → W 1,2
Γ (Ω; Rd), v minimizes Fε(eD

, ·, ζ), (2.38)is linear and bounded. Hen
e, we 
on
lude that, for ea
h ζ , the fun
tional
e

D
7→ fε(eD

, ζ) = Fε(eD
, Lζ+εeD

, ζ) (2.39)is a quadrati
 form on L2(Ω; Rd×d
sym) whi
h, moreover, is bounded uniformly, namely

0 ≤ fε(eD
, ζ) ≤ C‖e

D
‖2

L2(Ω;Rd×d
sym )

with C := (‖ζ‖C(Ω̄) + ε)‖C‖L∞(Ω;Rd×d×d×d).11



Now, like in (2.10), we 
onsider the Γ-limit of the 
olle
tion {fε(·, ζ)}ε>0,ζ∈Z as
f(e

D
, ζ) := lim inf

ε→0+

ζ̃⇀ζ, ζ̃∈Z

fε(eD
, ζ̃) (2.40)with Z de�ned in (2.1). The following assertion is based on an expli
it 
onstru
tionto a universal re
overy sequen
e for the Γ-limit (2.40).Proposition 2.10 (A formula for the Γ-limit f.) For all ζ ∈ Z the fun
tional

f(·, ζ) : L2(Ω; Rd×d
sym) → R is 
onvex and quadrati
, and 
an be obtained as follows:

f(e
D
, ζ) = lim

δ→0+

(
lim

ε→0+
F(ε, δ, e

D
, ζ)

)
, (2.41)where

F(ε, δ, e
D
, ζ) = fε

(
e

D
, (ζ−δ)+

) with (ζ−δ)+ := max{ζ−δ, 0}. (2.42)Proof.Note that ea
h F(ε, δ, ·, ζ) is a bounded 
onvex quadrati
 form on L2(Ω; Rd×d
sym).If the limit exists, then it will be a 
onvex quadrati
 form again.For the existen
e of the limits, we use the following monotoni
ities of F :

0 < ε1 < ε2 =⇒ F(ε1, δ, eD
, ζ) < F(ε2, δ, eD

, ζ); (2.43a)
0 < δ1 < δ2 =⇒ F(ε, δ1, eD

, ζ) ≥ F(ε, δ2, eD
, ζ). (2.43b)This follows easily from the monotoni
ity Fε1(eD

, v, ζ1) ≤ Fε2(eD
, v, ζ2), and hen
ealso fε1(eD

, ζ1) ≤ fε2(eD
, ζ2), whenever 0 < ε1+ζ1 ≤ ε2+ζ2.Thus, the existen
e of the inner limit ε → 0+ follows be
ause the fun
tion is non-in
reasing in ε, let us denote it as F0(δ, eD

, ζ) := limε→0+ F(ε, δ, e
D
, ζ), Hen
e,

F0(δ, ·, ζ) exists and is a bounded quadrati
 form on L2(Ω; Rd×d
sym). Moreover,

F0(·, uD
, ζ) is still non-de
reasing on [0, 1]. Hen
e, F00(eD

, ζ) := limδ→0+ F0(δ, uD
, ζ)exists and for ea
h ζ ∈ Z, the fun
tional F00(·, ζ) : L2(Ω; Rd×d

sym) → R is a boundedquadrati
 form.As F00(uD
, ζ) is just the right-hand side of (2.41), it remains to show that f = F00.To show f ≥ F00, we take a re
overy sequen
e ζε for (2.40), i.e. su
h that ζε ⇀ ζ ,

ζε ≥ 0, and fε(eD
, ζε) → f(e

D
, ζ). For ea
h δ > 0 there exists εδ > 0 su
h that

ζε ≥ (ζ−δ)+ for ε ∈ (0, εδ); note that here r > d was essential. Hen
e, we �nd
fε(eD

, ζε) ≥ F(ε, δ, e
D
, ζ). Keeping δ > 0 �xed and letting ε → 0+ we �nd g(e

D
, ζ) ≥

F0(δ, eD
, ζ). Now taking the limit δ → 0+ we obtain f(e

D
, ζ) ≥ F00(eD

, ζ).To show f ≤ F00, we use a diagonalization argument to �nd a sequen
e 0 < δε → 0for ε → 0+ su
h that F(ε, δε, eD
, ζ) → F00(eD

, ζ). Now 
onsider the fun
tions
ζε = (ζ−δε)

+, so that F(ε, δε, eD
, ζ) = fε(eD

, ζε). Be
ause of δε → 0 we easily �ndthat ζε ⇀ ζ in W 1,r(Ω) be
ause obviously ζε → ζ in C(Ω̄) and be
ause always12



|∇ζε| ≤ |∇ζ | a.e. on Ω. Also, ζε ∈ Z be
ause ζ ∈ Z and δε ≥ 0. Hen
e we 
on
ludeby the de�nition of the Γ-limit that
f(e

D
, ζ) ≤ lim inf

ε→0+
fε(eD

, ζε) = lim
ε→0+

F(ε, δε, eD
, ζ) = F00(eD

, ζ). (2.44)
2Let us now fo
us on sensitivity with respe
t to the boundary 
ondition w or, more
onveniently, to its extension u

D
. In the �language� of this subse
tion, it means rathersensitivity with respe
t to e

D
. As f(·, ζ) was proved to be a bounded quadrati
 form,its derivative is a bounded linear operator, let us denote it by Tζ : L2(Ω; Rd×d

sym) →
L2(Ω; Rd×d

sym). Thus we de�ne a stress
τ = τ(e

D
, ζ) := TζeD

:= f′e
D
(e

D
, ζ). (2.45)Let us now relate this to the original quantities as de�ned before. The followinglemma uses an argument developed in [26, Proposition 5.6℄, whi
h in turn is anabstra
t version of a result in [7℄.Lemma 2.11 Let {ζε}ε>0 be a re
overy sequen
e for f(e

D
, ζ) as de�ned by (2.40),let e

D
= e(u

D
), and let σε be the stress 
orresponding to ζε and u

D
due to the formula(2.20). Then, referring to (2.45), it holds σε ⇀ τ in L2(Ω; Rd×d

sym).Proof. In view of (2.40), having assumed {ζε} a re
overy sequen
e, we just assume
fε(eD

, ζε) → f(e
D
, ζ), ε → 0+, and ζε ⇀ ζ . For any other e ∈ L2(Ω; Rd×d

sym), we haveonly
lim inf

ε→0
fε(e, ζε) ≥ f(e, ζ) (2.46)just by the de�nition of the Γ-limit (2.40). Let us put τε := [fε]

′
e
D
(e

D
, ζε). We wantto show that τε ⇀ τ with τ from (2.45). As {τε}ε>0 is bounded in L2(Ω; Rd×d

sym), thereis at least a subsequen
e 
onverging to some τ̃ weakly. By the de�nition of τε andby the 
onvexity of fε(·, ζε), for any h > 0 and any e ∈ L2(Ω; Rd×d
sym), we have

∫

Ω

τε : ẽ dx ≤ fε(eD
, ζε) − fε(eD

− hẽ, ζε)

h
. (2.47)Passing ε → 0+ in (2.47) and using (2.46) for e := e

D
− hẽ, we obtain

∫

Ω

τ̃ : ẽ dx = lim
ε→0+

∫

Ω

τε : ẽ dx ≤ lim sup
ε→0+

fε(eD
, ζε) − fε(eD

−hẽ, ζε)

h

=
1

h
lim
ε→0+

fε(eD
, ζε) −

1

h
lim inf
ε→0+

fε(eD
−hẽ, ζε) ≤

f(e
D
, ζ) − f(e

D
−hẽ, ζ)

h
. (2.48)Passing h → 0+ in (2.48), by (2.45) we obtain ∫

Ω
τ̃ : ẽ dx ≤

∫
Ω

f′e
D
(e

D
, ζ) : ẽ dx =∫

Ω
τ : ẽ dx. Making the same pro
edure with −ẽ instead of ẽ, we get also the13



opposite inequality. Taking ẽ arbitrary, we 
an see that that τ̃ = τ . In parti
ular,the whole sequen
e {τε}ε>0 
onverges to τ .Now it remains to show that σε = τε. Referring to Lζ+ε from (2.38) and the de�nitionof uε from (2.20) as a minimizer of Gε(·, ζε), by using the shift vε = uε−u
D
(
f. 2.36))and vε := Lζε+εe(uD

), we have uε = u
D

+Lζε+εe(uD
). By (2.39) with (2.35), we have

fε(eD
, ζε) = Fε(eD

, Lζε+εe(uD
), ζε) =

∫

Ω

(ζε+ε)ϕ(x, e
D

+ e(Lζε+εe(uD
)) dx

=

∫

Ω

(ζε+ε)ϕ(x, e
D

+ e(uε−u
D
)) dx . (2.49)Di�erentiating both sides of (2.49) with respe
t to e

D
, we obtain

τε := [fε]
′
e
D
(e

D
, ζε) = (ζε+ε)ϕ′

e(x, e
D

+ e(uε−u
D
)). (2.50)In parti
ular, for e

D
= e(u

D
), we 
an still 
ontinue as

(ζε+ε)ϕ′
e(x, e

D
+ e(uε−u

D
)) = (ζε+ε)ϕ′

e(x, e(uε)) =: σε. (2.51)
2Corollary 2.12 Setting

s ≡ s(ζ) := τ(e
D
, ζ) for e

D
= e(u

D
) with u

D
|Γ = w, (2.52)we obtain an e�e
tive stress and, moreover, it holds

g(ζ) =
1

2

∫

Ω

s(ζ) : e
D

dx. (2.53)Proof. As f(·, ζ) is quadrati
, in view of (2.45), we have the formula
f(e

D
, ζ) =

1

2

∫

Ω

τ(e
D
, ζ) : e

D
dx. (2.54)As a 
onsequen
e of (2.36) with (2.10) and (2.37), we have gε(ζ) = fε(uD

, ζ), and thisequality is inherited be the respe
tive Γ-limits de�ned in (2.10) and (2.40), i.e. wehave
g(ζ) = f(e

D
, ζ) for e

D
= e(u

D
) with u

D
|Γ = w. (2.55)Substituting s de�ned by (2.52) into (2.54) and using (2.55), we obtain (2.53).For the spe
i�
 re
overy sequen
e {ζε} from the proof of Proposition 2.10, byLemma 2.11, the 
orresponding stresses σε 
onverge and we have σε ⇀ s(ζ) sothat, by the de�nition (2.31), we have s(ζ) ∈ S(ζ). In view of (2.32), we 
an seethat we have 
onstru
ted a parti
ular realizable stress s(ζ) that attains the minimumin (2.32), i.e. an e�e
tive stress. 2For further use it is important that (2.53) yields an expli
it information aboutsensitivity of g(ζ) with respe
t to u

D
. 14



3 Rate-independent damage evolutionNow, we will let the �hard-devi
e� loading vary in time t ranging [0, T ] with T > 0a �xed time horizon, i.e. w = w(t, x). Then the damage parameter will depend onboth x and t, i.e. ζ = ζ(t, x). Instead of Gε(u, ζ) from (2.9) with (2.8), we will
onsider
Gε(t, u, ζ) :=

{
Vε(u, ζ) if u|Γ = w(t, ·) and ζ ∈ Z,
+∞ elsewhere, (3.1)where Z is again from (2.1). A further important 
on
ept 
onsists in spe
i�
 dissi-pation of energy during the damage pro
ess, whi
h is given by a phenomenologi
ala
tivation threshold, denoted by a(x) > 0 (of a physi
al dimension J/md) at a givenspot x ∈ Ω. Roughly speaking, the damage starts evolving when the elasti
 energy

ϕ(e(u)) rea
hes the a
tivation threshold a, 
f. (3.4b) and Se
t. 3.1 for more details.At the same, a(x) says how mu
h energy (per d-dimensional �volume�) is dissipatedby a

omplishing the damage pro
ess, i.e. by de
reasing ζ(x) from 1 to 0.The rate of energy dissipated in the whole body is then
R(ζ̇) :=

∫

Ω

̺
(
x, ζ̇(x)

)
dx, where ̺(x, ż) =

{
−a(x)ż if ż ≤ 0,
+∞ elsewhere. (3.2)The value +∞ re�e
ts that we 
onsider damage as a unidire
tional pro
ess, i.e. dam-age 
an only develop, but the material 
an never heal. We qualify the a
tivation-threshold pro�le as:

a ∈ L∞(Ω), ess infx∈Ωa(x) > 0. (3.3)3.1 Classi
al formulation of the regularized evolution prob-lemLet us �rst 
onsider the regularized 
ase with ε > 0 where the displa
ement uε =
uε(t, x) is well de�ned a.e. on the whole Q := (0, T ) × Ω. The evolving damagepro�le will now also depend on ε hen
e we denote it by ζε. Taking into a

ount ourGibbs energy (3.1) and the dissipation potential (3.2), the 
lassi
al 
onsiderations inrational thermodynami
s leads to the generalized for
e f ∈ −∂(u,ζ)Gε(t, uε(t), ζε(t))to belong to (0, ∂R( dζε

dt
)), where the notation ∂ stands for subdi�erential of theinvolved 
onvex fun
tionals. This, at least formally, leads to the 
lassi
al formulation(
f. [12℄) 
onsisting in the balan
e of the stress and the evolution of the damageparameter:

div
(
σε

)
= 0 with σε = (ζε+ε)ϕ′

e

(
e(uε)

)
, (3.4a)

∂ζε

∂t
≤ 0,

ϕ(e(uε)) − rζε − a − div
(
κ|∇ζε|r−2∇ζε

)
≤ 0,

∂ζε

∂t

(
a − ϕ(e(uε)) + div

(
κ|∇ζε|r−2∇ζε

)
+ rζε

)
= 0





(3.4b)15



on Q, where rζε ∈ ∂χ[0,1](ζε). The notation χ[0,1] stands for the indi
ator fun
tion ofthe interval [0, 1] where the damage parameter ranges; in fa
t, [0, +∞) 
an be usedequally. The 
omplementarity problem (3.4b) represents the evolution in
lusion
∂ζ̺̇

(
x,

∂ζε

∂t

)
− κ div

(
|∇ζε|r−2∇ζε

)
+ ϕ(x, e(uε)) + ∂χ[0,1](ζε) ∋ 0 . (3.5)The se
ond inequality in (3.4b) 
an bear the interpretation that the driving for
efor the damage pro
ess 
an be identi�ed as the spe
i�
 energy ϕ(x, e(uε)) and thedamage evolves if it rea
hes the a
tivation threshold a(x) modi�ed by the term

div(κ(x)|∇ζε(x)|r−2∇ζε(x)) whi
h re�e
t in some way hardening-like e�e
ts (if thespot x is surrounded by a less damaged material) or softening (in an opposite 
ase);we refer to [1℄.We must 
omplete the system by some boundary 
onditions not only for uε but nowalso for the damage ζε. In a

ord with previous se
tions, we assume the mentionedDiri
hlet 
onditions for uε 
ombined with zero normal stress impli
itly imposedalready in (2.3) while for ζε we assumed, for simpli
ity, zero Neumann 
ondition asany 
ondition for it is a bit arti�
ial anyhow. Hen
e,
uε = w on Γ, (3.6a)
σεν = 0 on ∂Ω \ Γ, (3.6b)
∂ζε

∂ν
= 0 on ∂Ω. (3.6
)An initial 
ondition should be pres
ribed for the damage parameter, 
onsideringsome pres
ribed initial pro�le ζ0 and, rather formally, also the initial displa
ement

u0 (quali�ed later):
ζε(0, ·) = ζ0, uε(0, ·) = u0 on Ω. (3.7)3.2 Energeti
 solution of the regularized problemThe relevant and mathemati
ally amenable 
on
ept of a �weak solution� to thedoubly-nonlinear problem (3.5) with degree-1 homogeneous ̺(x, ·) is a so-
alled en-ergeti
 solution, formulated in [30, 31℄, see also [26℄ for a survey. Re
ently, this
on
ept was also exposed in the 
ontext of Γ-limits in [29℄.Let us �rst derive it formally from (3.4). For this, let us 
onsider u

D
(t, ·) as a suitable(quali�ed later) extension of w(t, ·). The weak formulation of the Euler-Lagrangeequation (3.4a) tested by ∂

∂t
(uε − u

D
), whi
h has zero tra
es and is thus a legal testfun
tion, yields ∫

Ω
σε : e( ∂

∂t
uε) dx =

∫
Ω

σε : e( ∂
∂t

u
D
) dx. Then, as there is no expli
itdependen
e of Gε on t in (3.1), ∂

∂t
Gε = 0 and we 
an formally apply the 
hain rulein the form

d

dt
Gε

(
t, uε(t), ζε(t)

)
=

∫

Ω

σε:e
(∂uε

∂t

)
+ ϕ

(
e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx

=

∫

Ω

σε:e
(∂u

D

∂t

)
+ ϕ

(
e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx. (3.8)16



Using (3.5) in the weak formulation tested formally by ∂
∂t

ζε together with (3.6
),one gets
∫

Ω

ϕ
(
x, e(uε)

)∂ζε

∂t
+ κ|∇ζε|r−2∇ζε·∇

∂ζε

∂t
dx = −

∫

Ω

∂ζ̺̇
(
x,

∂ζε

∂t

)∂ζε

∂t
dx

= −
∫

Ω

̺
(
x,

∂ζε

∂t

)
dx = −R

(∂ζε

∂t

) (3.9)due to the degree-1 homogeneity of ̺(x, ·), see de�nition (3.2). Putting (3.9) into(3.8), integrating it over a time interval [t1, t2], and expressing the dissipated en-ergy ∫ t2
t1

R( ∂
∂t

ζ(t)) dt as the total variation without referring expli
itly to the timederivative ∂
∂t

ζ , i.e.
VarR(ζ ; t1, t2) := sup

j∑

i=1

R
(
ζ(si) − ζ(si−1)

) (3.10)with the supremum taken over all j ∈ N and over all partitions of [t1, t2] in the form
t1 = s0 < s1 < ... < sj−1 < sj = t2, we eventually obtain

Gε

(
t2, uε(t2), ζε(t2)

)
+ VarR(ζε; t1, t2)

= Gε

(
t1, uε(t1), ζε(t1)

)
+

∫ t2

t1

∫

Ω

σε :e
(∂u

D

∂t

)
dx dt (3.11)In our spe
ial situation with R de�ned via (3.2), we have simply

VarR(ζ ; t1, t2) = R
(
ζ(t1)−ζ(t2)

)

=






∫

Ω

a(x)
(
ζ(t1, x)−ζ(t2, x)

)
dx if ζ(·, x) is nonde
reasingon [t1, t2] for a.a. x ∈ Ω,

+∞ otherwise. (3.12)The parti
ular terms in (3.11) represent respe
tively:
◦ the stored energy at the �nal time t2,
◦ the energy dissipated by damage during the time interval [t1, t2],
◦ the stored energy at the initial time t1, and
◦ the work done by external loadings during the time interval [t1, t2].The global-minimization hypothesis related to (3.4a) is related with a stability prop-erty, i.e.
∀(ũ, ζ̃) ∈ W 1,2(Ω; Rd)×Z, ũ|Γ = w(t) :

Gε

(
t, uε(t), ζε(t)

)
≤ Gε(t, ũ, ζ̃) + R

(
ζ̃−ζε(t)

)
. (3.13)The philosophy of (3.13) is that the gain of Gibbs' energy Gε(t, uε(t), ζε(t)) −

Gε(t, ũ, ζ̃) at any other state (ũ, ζ̃) is not larger than the dissipation R(ζ̃ − ζε(t));
f. [31℄ for dis
ussion. 17



Now, following [30℄, see also [26, 31℄, we introdu
e a de�nition of an energeti
 so-lution to the 
onsidered problem. By B([0, T ]; X) or BV([0, T ]; X) we denote theBana
h spa
e of bounded Bo
hner-measurable or bounded-variation X-valued map-pings de�ned everywhere on [0, T ], respe
tively.De�nition 3.1 (Energeti
 solution to the regularized problem.) A pro
ess
(uε, ζε) : [0, T ] → W 1,2(Ω; Rd) × Z is 
alled an energeti
 solution to the problem(3.4) and (3.6)�(3.7), i.e. given by the data ϕ, κ, ̺, r, w, u0, ζ0, and ε > 0, if, beside(3.7), also(i) (uε, ζε) ∈ B([0, T ]; W 1,2(Ω; Rd)) ×

(
BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,r(Ω))

),(ii) it is stable in the sense that (3.13) holds for all t ∈ [0, T ], and(iii) the energy balan
e (3.11) holds for any 0 ≤ t1 < t2 ≤ T and, in parti
ular, thefun
tion t 7→
∫
Ω

σε :e( ∂
∂t

u
D
) dx belongs to L1(0, T ).Remark 3.2 In fa
t, De�nition 3.1 is based on a global-minimization hypothesis
ompeting with the maximum-dissipation prin
iple (or rather Levitas' realizabilityprin
iple [21℄).Remark 3.3 (Normal stress: rea
tion to the Diri
hlet loading.) Due to (2.20) andDe�nition 3.1(i), σε ∈ B([0, T ]; L2(Ω; Rd×d

sym)) and, in order to ensure that t 7→
∫
Ω

σε :

e( ∂
∂t

u
D
) dx belongs to L1(0, T ), one needs just u

D
∈ W 1,1([0, T ]; W 1,2(Ω; Rd)). Infa
t, one needs only to qualify w ∈ W 1,1([0, T ]; W 1/2,2(Γ; Rd)) be
ause then su
hextension u

D
of it will always exists. Even more, (3.11) and thus the whole De�-nition 3.1 depends only on w and not on any parti
ular 
hoi
e of its extension u

D
.A
tually, we 
ould de�ne the normal stress ~σε as the linear bounded fun
tional on

W 1/2,2(Γ; Rd) by the formula
〈
~σε, v|Γ

〉
=

∫

Ω

σε : e(v(x)) dx. (3.14)It is a 
onsequen
e of the stability (3.13) with ζ̃ := ζε(t) that uε(t) minimizes
Gε(t, ·, ζε(t)) so that the 
orresponding Euler-Lagrange equation, 
f. (2.28) for thestati
 
ase, says in parti
ular that

div(σε) = 0 in the sense of distributions on Q. (3.15)Then the right-hand side of (3.14) is independent of the parti
ular extension v of
v|Γ into Ω and thus the normal stress ~σε is well de�ned by (3.14). This 
an easily beseen by an extension of Green's formula using Neumann boundary 
onditions (3.6b)and by the symmetry of the stress tensor
0 =

∫

Ω

div(σε)·v dx =

∫

∂Ω

(σεν)·v dS−
∫

Ω

σε : ∇v dx =

∫

Γ

(σεν)·v dS−
∫

Ω

σε : e(v) dx,In a regular 
ase thus ~σε = σεν. The last term in (3.11) 
an equivalently be expressedas ∫ t2
t1
〈~σε,

∂w
∂t

〉
dt, whi
h is just the more expli
it form of the work of the external18



�hard-devi
e� load ∫ t2
t1

∫
Γ
~σε · ∂w

∂t
dS dt. In what follows, we will 
on�ne ourselves to

w ∈ C1(I; W 1/2,2(Γ; Rd)), (3.16)whi
h has nearly the same generality in the 
ontext of rate-independent pro
essesand makes the proofs easier, 
f. in parti
ular [29, Assumption (2.8)℄ pointed also outlater in Remark 3.9. Then (3.16) allows for 
onsidering u
D
∈ C1([0, T ]; W 1,2(Ω; Rd)).Proposition 3.4 (Existen
e of energeti
 solutions to ε-problems.) (See[27℄.) Let (2.6), (3.3), (3.16), (u0, ζ0) ∈ W 1,2(Ω; Rd)×Z be stable in the sense

∀ (ũ, ζ̃)∈W 1,2(Ω; Rd)×Z, ũ|Γ = w(0, ·) :

Gε(0, u0, ζ0) ≤ Gε(0, ũ, ζ̃) + R(ζ0 − ζ̃), (3.17)and let ε > 0. Then a solution (uε, ζε) in the sense of De�nition 3.1 does exist.Comments to the proof. The above assertion has been proved, ex
ept the Bo
hnermeasurability of uε, in [27℄ for the 
ase ϕ and ̺ independent of x but our x-dependentgeneralization is trivial. Also, a spe
ial loading and initial stable initial 
ondition was
hosen in [27℄, namely w(0, ·) = 0, u0 = 0, ζ0 = 1, i.e. unloaded undamaged body atthe original time. Our, only slightly more general initial 
ondition makes just a triv-ial and standard modi�
ation, 
f. [12, 26, 28, 29℄. Also, w ∈ W 1,1(I; W 1,∞(Γ; Rd))has been used in [27℄ but the generalization to w ∈ W 1,1(I; W 1/2,2(Γ; Rd)) is routinesin
e, unlike [27℄, we do not treat any 
onta
t problem at large strains and then(3.16) works, too.Due to our formula uε(t) = u
D
(t)+Lζε(t)+εe(uD

(t)), the 
laimed Bo
hner measurabil-ity of uε in time, not proved in [27℄, is here a simple 
onsequen
e of the measurabilityof ζε : [0, T ] → W 1,r(Ω) and of the 
ontinuity of the mapping (e
D
, ζ) 7→ v := Lζ+εeDas a mapping L2(Ω; Rd×d

sym) × W 1,r(Ω) → W 1,2
Γ (Ω; Rd). The mentioned measurabil-ity of ζε follows from measurability of the BV-fun
tion ζε : [0, T ] → L1(Ω) andfrom the a-priori estimate of {ζε(t)}t∈[0,T ] in the separable spa
e W 1,r(Ω) by Pet-tis' theorem. The mentioned (even lo
ally Lips
hitz (L2×L∞, W 1,2)-) 
ontinuityof (e

D
, ζ) 7→ v := Lζ+εeD


an be proved quite standardly: We take the Euler-Lagrange equation for v := Lζ+εeD
de�ned in (2.38), i.e. in the weak formulation∫

Ω
ζC(e

D
+ e(v)) : e(z) dx = 0 for all z ∈ W 1,2

Γ (Ω; Rd). Considering other ẽ
D
, ζ̃, and

ṽ := Lζ̃+εẽD
, we have ∫

Ω
ζ̃C(ẽ

D
+ e(ṽ)) : e(z) dx = 0. Subtra
ting these equationsand testing the di�eren
e by z := v − ṽ gives, after some algebra and Hölder's andYoung's inequalities,

εη
∥∥e(v − ṽ)

∥∥2

L2(Ω;Rd×d
sym )

≤
∫

Ω

(ζ + ε)C(e(v − ṽ)) : e(v − ṽ) dx

=

∫

Ω

(ζ − ζ̃)C(e
D

+ e(ṽ)) : e(v − ṽ) + (ζ̃ + ε)C(e
D
− ẽ

D
) : e(v − ṽ) dx

≤ C‖ζ − ζ̃‖2
L∞(Ω) + C‖e

D
− ẽ

D
‖2

L2(Ω;Rd×d
sym )

+
εη

2

∥∥e(v − ṽ)
∥∥2

L2(Ω;Rd×d
sym )19



with η > 0 from (2.6b) and with C = max(‖e
D

+e(ṽ)‖L2(Ω;Rd×d
sym ), ‖ζ̃‖L∞(Ω) +ε)2/(εη).Absorbing the last term in the left-hand side and involving still Korn's inequality

‖v − ṽ‖W 1,2(Ω;Rd) ≤ KΩ,Γ‖e(v − ṽ)‖L2(Ω;Rd×d
sym ), we 
learly get the 
laim 
ontinuity. 23.3 Energeti
 solution of the 
omplete-damage problemLet us observe that, due to the de�nition (3.1) with (2.29),

Gε

(
t, uε(t), ζε(t)

)
=

∫

Ω

1

2
σε(t, x) :e(u

D
(t, x)) +

κ(x)

r

∣∣∇ζε(t, x)
∣∣r dx, (3.18)hen
e both (3.11) and (3.13) 
an be expressed in terms of σε and ζε. Moreover, asexplained above, (3.15) implies that σε itself is essentially determined by ζε(t, ·) and

w(t, ·).Like (2.10), let us now de�ne
ggg(t, ζ) := lim inf

ε→0+, ζ̃∈Z,

ζ̃ ⇀ ζ in W 1,r(Ω)

min
u∈W 1,2(Ω;Rd)

Gε(t, u, ζ̃) (3.19)with Gε de�ned in (3.1). Sin
e minu∈W 1,2(Ω;Rd) Gε(t, u, ζ̃) = fε(e(uD
(t)), ζ̃) +∫

Ω
κ
r
|∇ζ̃|r dx with fε from (2.37), we have equivalently

ggg(t, ζ) = lim inf
ε→0+, ζ̃∈Z,

ζ̃ ⇀ ζ in W 1,r(Ω)

fε(e(uD
(t)), ζ̃) +

∫

Ω

κ

r

∣∣∇ζ̃
∣∣r dx. (3.20)Lemma 3.5 Any re
overy sequen
e {ζε}ε>0 ⊂ Z for (3.20), i.e. ζε ⇀ ζ and

fε(e(uD
(t)), ζε) +

∫
Ω

κ
r
|∇ζε|r dx → ggg(t, ζ), in fa
t 
onverges strongly. Moreover,referring to f(u

D
, ζ) de�ned by (2.40), we have now

ggg(t, ζ) = f(e(u
D
(t), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx. (3.21)Proof. First, we prove (3.21). The inequality �≥� is by the weak lower semi
ontinuityof ζ 7→

∫
Ω

κ|∇ζ |r dx and by the de�nition of the Γ-limits ggg and f in (3.19) and (2.40),respe
tively. It su�
es to take any re
overy sequen
e {ζε}ε>0 for ggg and make a limitpassage in
ggg(t, ζ) = lim

ε→0+
min

u∈W 1,2(Ω)
Gε(t, u, ζε) = lim

ε→0+

(
fε(e(uD

(t)), ζε) +

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx
)

≥ lim inf
ε→0+

fε(e(uD
(t)), ζε) + lim inf

ε→0+

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx

≥ f(e(u
D
(t)), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx. (3.22)20



The opposite inequality �≤� is by the same limit passage but now using the spe
ialre
overy sequen
e ζε = (ζ−δε)
+ for f from the proof of Proposition 2.10. It 
onvergesto ζ not only weakly but also strongly. Indeed, ∇ζε(x) → ∇ζ(x) for a.a. x ∈ Ωbe
ause ∇ζ = 0 = ∇ζε a.e. on Nζ and be
ause, for a.a. x ∈ Ω\Nζ , there is εx > 0su
h that 0 < ζε(x) = ζ(x)−δε and thus∇ζε(x) = ∇ζ(x) for all 0 < ε < εx, and then,by Lebesgue dominated-
onvergen
e theorem, ∫

Ω
|∇ζε(x)|r dx →

∫
Ω
|∇ζ(x)|r dx and,having 
onvergen
e of the norms as well as weak 
onvergen
e, we 
an 
on
lude strong
onvergen
e by uniform 
onvexity of W 1,r(Ω) and a Fan-Gli
ksberg type theorem.Let us now 
onsider an arbitrary re
overy sequen
e {ζε}ε>0 ⊂ Z for (3.19). Denote

α̂ =
∫
Ω

κ
r
|∇ζ |r dx. For a subsequen
e and some α and β, ∫

Ω
κ
r
|∇ζε|r dx → α and

fε(e(uD
(t)), ζε) → β. Simultaneously, fε(e(uD

(t)), ζε) +
∫
Ω

κ
r
|∇ζε|r dx → ggg(t, ζ) =

α + β. By the weak lower semi
ontinuity, always α̂ ≤ α. Assume α̂ < α. Using(3.21), we would have
β = lim

ε→0+
fε(e(uD

(t)), ζε) = lim
ε→0+

(
ggg(t, ζ) −

∫

Ω

κ

r

∣∣∇ζε

∣∣r dx
)

= ggg(t, ζ) − α < ggg(t, ζ) − α̂ = f
(
e(u

D
(t)), ζ

)
, (3.23)a 
ontradi
tion with (2.40). Hen
e α̂ = α and we have ∫

Ω
κ
r
|∇ζε|r dx → α = α̂ =∫

Ω
κ
r

∣∣∇ζ
∣∣r dx. Due to the stri
t 
onvexity of the integrand κ(x)| · |r and due to theweak 
onvergen
e ζε ⇀ ζ , we 
an 
on
lude strong 
onvergen
e, 
f. e.g. [35℄. 2Considering an e�e
tive stress, as in (2.53), we 
an write

ggg(t, ζ) =

∫

Ω

1

2
s(t, ζ) : e(u

D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx. (3.24)Motivated by this and by the investigations for ε → 0 in the stati
 
ase in Se
t. 2, weintrodu
e the following �energeti
� de�nition without referring to the problem (3.4)for ε = 0 be
ause the displa
ement need not have a well de�ned sense any longer.For simpli
ity and without mu
h restri
tion for possible appli
ations, we 
onsiderthe initial damage pro�le from Z away from zero

min
x∈Ω

ζ0(x) > 0. (3.25)Then, pres
ribing the initial displa
ement u0 makes sense and we thus automati
allypres
ribe also the initial stress σ(0) = ζ0ϕ
′
e(e(u0)). As for the stability (3.17) of theinitial 
onditions, for example, w(0) = 0, u0 = 0 and 0 < ζ0 ≤ 1 
onstant will satisfy(3.17) even for any ε > 0, whi
h is what we will assume later in Theorem 3.7. This
an be however satis�ed for some non-
onstant damage pro�les ζ0 too, dependingon a(·) and κ(·).De�nition 3.6 (Energeti
 solution to the 
omplete-damage problem.) Thepro
ess (s, ζ) : [0, T ] → L2(Ω; Rd×d

sym) × Z is 
alled an energeti
 solutionto the problem given by the data ϕ, ̺, w, and ζ0, if, beside (3.7), also21



(i) (s, ζ) ∈ B([0, T ]; L2(Ω; Rd×d)) ×
(
BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,r(Ω)),(ii) it is stable in the sense that

ggg(t, ζ(t)) ≤ ggg(t, ζ̃) +

∫

Ω

̺(x, ζ̃ − ζ(t)) dx for any ζ̃∈Z, and (3.26)(iii) and, for any 0 ≤ t1 < t2 ≤ T , the energy equality holds:
ggg(t2, ζ(t2)) + VarR(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω

s :e
(∂u

D

∂t

)
dx dt,(3.27)in parti
ular, the fun
tion t 7→

∫
Ω

s(t, x) : e(
∂u

D

∂t
(t, x)) dx belongs to L1(0, T ),(iv) div(s) = 0 in the sense of distributions and s(t) is an e�e
tive stress withrespe
t to ζ(t) and w(t) for any t ∈ [0, T ]; in parti
ular (3.24) holds.Theorem 3.7 (Existen
e of energeti
 solutions, 
onvergen
e of (uε, ζε).)Let (2.6), (3.3), w ∈ C1([0, T ]; W 1/2,2(Γ; Rd)), (u0, ζ0) ∈ W 1,2(Ω; Rd)×Z satisfy(3.17) for all ε > 0 and (3.25). Then, there exists a subsequen
e {εn}n∈N 
onvergingto 0 and a pro
ess (s, ζ) : [0, T ] → L2(Ω; Rd×d

sym) × Z being an energeti
 solutiona

ording to De�nition 3.6, in parti
ular u
D
∈ C1([0, T ]; W 1,2(Ω; Rd)) is 
onsideredfor (3.27) in a

ord with Remark 3.3, su
h that the following holds for all t ∈ [0, T ]:(i) Eεn(t, uεn(t), ζεn(t)) → ggg(t, ζ(t)),(ii) VarR(ζεn; 0, t) → VarR(ζ ; 0, t),(iii) ζεn(t) → ζ(t) strongly in W 1,r(Ω),(iv) σεn(t) = (ζεn(t) + ε)ϕ′

e(e(uεn(t))) ⇀ s(t) weakly in L2(Ω; Rd×d
sym).Proof. Most of the assertions have been proved in [27, Se
t.4℄ but the most essentialproperties remained open in the 
ontext of non-quadrati
 quasi
onvex ϕ 
onsideredthere. Namely, only an energy inequality in (3.27) has been proved in [27℄, onlythe weak 
onvergen
e of ζεn(t) ⇀ ζ(t) instead of (iii), and, instead of the properties
laimed in De�nition 3.6(iv), s(t) was shown only a realizable stress only. Moreover,instead of (iv), only σεn ⇀ s weakly* in L∞(0, T ; L2(Ω; Rd×d

sym)) was proved in [27℄.Let us remark that, in fa
t, instead of (ζ + ε)ϕ(e), the regularization ζϕ(e) + ε|e|2has been used in [27℄, homogeneous material (i.e. ϕ, ̺, a, and κ independent of x),and only spe
ial initial 
onditions u0 = 0, ζ0 = 1, w(0) = 0 were 
onsidered, butthese modi�
ations are easy under our data quali�
ation. Let us now prove theremaining properties.The property div(s) = 0 
laimed in De�nition 3.6(iv) is inherited by a trivial limitpassage from (3.15).Due to (i), {ζεn}n∈N is a re
overy sequen
e for (3.20), by Lemma 3.5 we have strong
onvergen
e in (iii). Moreover, by Lemma 2.11, we have σεn(t) ⇀ τ(e(u
D
(t)), ζ(t)).Hen
e, modifying s obtained in [27℄, if ne

essary, on a zero-measure set on [0, T ],we have s(t) = τ(e(u

D
(t)), ζ(t)) and s(t) being thus proved an essential stress.22



Energy equality in (3.27) is then a 
onsequen
e of [26, Proposition 5.7℄ provided oneshows the power of external loading to be in L∞(0, T ) and the last term in (3.27) tobe equal to ∫ t2
t1

∂ggg
∂t

(t, ζ(t)) dt. Here, by using su

essively (3.21), (2.54), and (2.45),for any ζ ∈ Z �xed, we have
ggg(t, ζ) = f(e(u

D
(t), ζ) +

∫

Ω

κ

r

∣∣∇ζ
∣∣r dx

=

∫

Ω

1

2
τ(e(u

D
(t)), ζ) : e(u

D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx

=

∫

Ω

1

2
Tζe(uD

(t)) : e(u
D
(t)) +

κ

r

∣∣∇ζ
∣∣r dx. (3.28)In parti
ular, u

D
∈ C1([0, T ]; W1,2(Ω; Rd)) implies g(·, ζ) ∈ C1([0, T ]) for ea
h ζ ∈ Z.Also, by using (3.28) and (2.52), we have the desired formula for the power of externalloading:

∂ggg

∂t
(t, ζ) =

∫

Ω

Tζe(uD
(t)) : e

(∂u
D

∂t

)
dx

=

∫

Ω

τ(e(u
D
(t)), ζ) : e

(∂u
D

∂t

)
dx =

∫

Ω

s(t) : e
(∂u

D

∂t

)
dx. (3.29)The Bo
hner measurability of s follows from the measurability of uε : [0, T ] →

W 1,2(Ω; Rd) proved in Proposition 3.4 implying measurability of σε : [0, T ] →
L2(Ω; Rd×d

sym) and from the point (iv) together with Pettis' theorem. 2Remark 3.8 (Alternative formulation in terms of strains.) Based on formula(2.34), we 
ould de�ne the energeti
 solution to the 
omplete-damage problem notas a 
ouple (s, ζ) but as a 
ouple (e, ζ) with e(t) de�ned on Ω\Nζ(t) and belonging tothe time-dependent lo
ally-
onvex spa
e L2
loc(Ω\Nζ(t); R

d×d
sym). Taking into a

ount(2.23), the energy equality (3.27) would then take the form

ggg(t2, ζ(t2)) + VarR(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω\Nζ(t)

ζϕ′
e(e) :e

(∂u
D

∂t

)
dx dt, (3.30)Remark 3.9 (Dire
t Γ-limit 
onvergen
e.) In terms of ζ only, we 
ould obtainexisten
e of the energeti
 solutions and 
onvergen
e of solutions of our ε-regularizedproblem by using abstra
t results about Γ-limits, see [29, Theorem 3.1℄. In fa
t, [29,Assumptions (2.9)�(2.10)℄ had been proved here in Se
tion 2, [29, Assumption (2.8)℄
an be easily veri�ed if w ∈ C1(I; W 1/2,2(Γ)), and [29, Assumptions (2.11)℄ hadbeen proved in [27℄, while the other assumptions in [29℄ are satis�ed quite obviously.However, by this way, we would lose ta
k on the me
hani
al interpretation involvingstress; in parti
ular, the key information in (3.29) would be 
ompletely out.Remark 3.10 (Numeri
al strategies.) The regularized problem introdu
ed in Se
-tion 3.1 suggests a dire
t numeri
al treatment: applying impli
it dis
retization in23



time with a time step τ > 0 and, 
onsidering a polyhedral domain Ω triangulatedby simpli
ial �nite elements with a mesh-parameter h > 0, applying P1-�nite el-ements for spatial dis
retization of both u and ζ (let us denote the 
orrespondingdis
rete spa
es Uh and Zh, respe
tively), we get a re
ursive 
oer
ive mathemati
al-programming problem with a nonlinear obje
tive and box-
onstraints for (uk
τhε, ζ

k
τhε):Minimize ∫

Ω

ζk
τhε+ε

2
Ce(∇uk

τhε) : e(∇uk
τhε) − aζk

τhε +
κ

r

∣∣∇ζk
τhε

∣∣r dxsubje
t to 0 ≤ ζ ≤ ζk−1
τhε , uk

τhε|Γ = w(kτ),

uk
τhε ∈ Uh , ζk

τhε ∈ Zh





(3.31)for k = 1, ..., K := T/τ with (u0
τhε, ζ

0
τhε) := (u0, ζ0). This is an implementable 
on-
eptual algorithm. Unfortunately, it does not have a quadrati
 
ost fun
tional, whi
hmakes it not entirely simple for numeri
al treatment; for a similar problem with tri-linear obje
tives we refer to numeri
al simulations in [20℄. On the other hand,the approximate solution (uτhε, ζτhε) 
onsidered as a pie
e-wise 
onstant interpolant

(uτhε(t), ζτhε(t)) := (uk
τhε, ζ

k
τhε) for t ∈ ((k−1)τ, kτ ] has a guaranteed 
onvergen
e (interms of suitable subsequen
es), based on the abstra
t results from [29, Theorem3.3℄, 
f. also [28, Se
t.5.5℄.Remark 3.11 (Bourdin's approa
h to 
ra
ks.) A fun
tional that is of a similar typeas (3.31), namely ∫

Ω
(ζ+εα)ϕ(∇u)+ε|∇ζ |2+ε−β(1−ζ) dx, was used in the 
ontext ofapproximation of Fran
fort-Marigo's 
ra
k model [4, 5℄. At least for �xed ε > 0 themathemati
al properties of that fun
tional are exa
tly as those of ours. However,suitable s
alings in ε yields in the limit ε → 0 the mentioned 
ra
k problem.4 A one-dimensional exampleLet us illustrate the above introdu
ed obje
ts on a one-dimensional situation, havingan interpretation of a bar undergoing a tension/
ompression experiment by a �hard-devi
e� loading, where all mathemati
al obje
ts 
an be des
ribed expli
itly. We
onsider a bar of the length L �xed at the end-points with a (possibly spatiallyvarying) elasti
 modulus C (that may re�e
t a possibly varying thi
kness of the bar).Let us thus put d := 1, Ω := (0, L), Γ := ∂Ω = {0, 1}, w(0) := w0, w(L) := wL, andnow C : (0, L) → R+. In a

ord with (2.6b), C(x) ≥ η > 0 for a.a. x ∈ (0, L).4.1 Stati
 
aseMinimization of
Vε(u, ζ) =

∫ L

0

(ζ(x) + ε)
C(x)

2

( du

dx

)2

dx (4.1)24



on {u ∈ W 1,2(0, L); u(0) = w0, u(L) = wL} gives the Euler-Lagrange equation
d

dx

(
(ζ(x) + ε)C(x)

du

dx

)
= 0 on (0, L). (4.2)The stress σε = (ζ + ε)C d

dx
u is thus ne
essarily 
onstant along the whole bar, andits value 
an be 
al
ulated by using ζ + ε ≥ ε > 0 and

wL − w0 = u(L) − u(0) =

∫ L

0

du

dx
dx =

∫ L

0

σε

(ζ(x)+ε)C(x)
dx. (4.3)Thus we �nd the formulas for the (
onstant) stress and for the strain:

σε = H
(
(ζ+ε)C

)wL − w0

L
and du

dx
=

wL − w0

L

H
(
(ζ+ε)C

)

(ζ(x)+ε)C(x)
, (4.4)where H denotes the harmoni
 mean of an indi
ated pro�le over the interval [0, L],i.e.

H(z) :=
1

1
L

∫ L

0
dx

z(x)

. (4.5)In parti
ular, we �nd the expli
it formula for gε from (2.10):
gε(ζ) = H

(
(ζ+ε)C

)(wL − w0)
2

2L
. (4.6)Similarly, the fun
tional fε from (2.37) as a quadrati
 fun
tion of e

D
∈ L2(0, L) 
anexpli
itly be written down as:

fε(eD
, ζ) =

H
(
(ζ+ε)C

)

2L

(∫ L

0

e
D
(x) dx

)2

. (4.7)The 
ounterexample from Se
tion 2.2 (where L = 2 and C = 1 were 
onsidered) iseasily obtained by letting ζ(x) := |x − L/2|α. Clearly,
lim
ε→0+

gε(ζ) = g0(ζ) = H
(
ζC

)(wL − w0)
2

2L
. (4.8)However the Γ-limit f(e

D
, ζ) vanishes for this parti
ular damage pro�le ζ . Indeed,for all δ > 0, we have (ζ − δ)+ = 0 on the interval [L/2 − δ1/α, L/2 + δ1/α] andtherefore by (4.8) and (2.42):

F(ε, δ, e
D
, ζ) =

(wL − w0)
2

2
∫ L

0
dx

((ζ(x)−δ)++ε)C(x)

≤ (wL − w0)
2

2
∫ L/2+δ1/α

L/2−δ1/α
dx

εC(x)

≤ (wL−w0)
2

4

∥∥C
∥∥

L∞(0,L)

ε

δ1/αso that the limit in ε already vanishes. By using the same reasoning for a general
ζ ∈ Z, one 
he
ks easily that f(e

D
, ζ) is given as follows:

f(e
D
, ζ) =

(wL − w0)
2

2

{
1/

∫ L

0
dx

ζ(x)C(x)
if min[0,L] ζ(·) > 0,

0 if min[0,L] ζ(·) = 0.
(4.9)25



Note that f(e
D
, ·) : Z → R

+ is not 
ontinuous in the strong topology of W 1,r(0, L),
r > 1.This example 
an also be used to show that the set S(t, ζ) of realizable stressesmay 
ontain more than one stress distribution. For this, take any ζ ∈ Z su
hthat ∫ L

0
dx

ζ(x)C(x)
is �nite. Now, 
hoosing ζε ≡ ζ , we �nd the stress σε from (4.4)and the limit reads σ0 = (wL−w0)/

∫ L

0
dx

ζ(x)C(x)
. On the other hand, for a suitablesequen
e δε → 0+, the sequen
e ζ̂ε = (ζ − δε)

+ satis�es ∫ L

0
dx

(ζε(x)+ε)C(x)
→ 0 andthe 
orresponding stresses σ̂ε 
onverge to zero. Thus S(t, ζ) 
ontains at least two
onstant stress pro�les. In fa
t, it is not di�
ult to see that all intermediate 
onstantstresses are realizable, that is

S(t, ζ) =

{ {
σ 
onstant; 0 ≤ σ(·) ≤ σ0

} under tension, i.e. if wL ≤ w0,{
σ 
onstant; 0 ≥ σ(·) ≥ σ0

} under 
ompression, i.e. wL ≥ w0.The e�e
tive stress is obviously zero. This is well intuitive for tension experimentbut a bit paradoxi
al for a pressure experiment, but this is a usual 
onsequen
e of(in�nitesimally) small strain 
on
ept.This is a general observation that, as the stress distributions are 
onstant in this1-dimensional 
ase, the set of S(t, ζ) realizable stresses is 
omposed from 
onstantsand is therefore linearly ordered and thus always a minimizer in (2.32), i.e. thee�e
tive stress, is unique.4.2 StabilityFurther, we investigate the global stability of the undamaged state ζ = 1. Forsimpli
ity, we 
onsider r = 2 and homogeneous material, i.e. 
onstant 
oe�
ients
C, a, and κ. Let us abbreviate

ζmin := min
0≤x≤L

ζ(x) and ζmax := max
0≤x≤L

ζ(x). (4.10)Lemma 4.1 Let E(ζ) :=
∫ L

0
κ
2
| d

dx
ζ |2 + a(1−ζ) dx and z ∈ [0, 1), then we have

min
{

E(ζ); ζ∈Z, ζmin = z
}

= aL λ
(
z,

√
aL√
2κ

) (4.11)with
λ(z, ̺) =

{
1 − z − ̺2/3 for 0 < ̺ ≤

√
1−z,

2(1−z)3/2/(3̺) for ̺ ≥
√

1−z.
(4.12)Proof. Sin
e E is 
oer
ive on Z ⊂ W 1,2((0, L)), and 
onvex, there is a minimizer ζ∗on the weakly 
losed (but non-
onvex!) set {ζ∈Z; ζmin = z}.26



As the integrand of E is de
reasing in ζ be
ause a > 0, it is easy to see that the graphof ζ∗ on any interval [x1, x2] has to lie above the segment 
onne
ting (x1, ζ∗(x1)) and
(x2, ζ∗(x2)) if ζ∗(·) > z on [x1, x2], i.e. the value ζ∗(·) = z is attained somewhereoutside [x1, x2]. Hen
e, ζ∗ has at most one point x∗ ∈ [0, L] su
h that ζ∗(x∗) = z if
z < 1, and it is stri
tly 
on
ave on both [0, x∗] and [x∗, L].After some rather lengthy algebra, the formula (4.12) is obtained by assuming x∗ = 0(or, equally, x∗ = L). For small L, we obtain a solution satisfying d

dt
ζ∗(L) = 0 and

ζ∗(L) < 1. For larger L, we have ζ∗(x) = 1 for x ≥
√

2κ/a.The 
ondition ζ∗(x∗) = z with x∗ ∈ (0, L) then leads to aL λ(z,
√

aL/
√

2κ) +
a(L−x∗)λ(z,

√
a(L−x∗)/

√
2κ) as the minimal value of E(ζ) under the (
onvex) 
on-dition ζ(x∗) = z, ζ ∈ Z. The 
on
avity of ξ 7→ ξλ(z, ξ/

√
2aκ) now implies that only

x∗ = 0 or x∗ = L 
an be optimal. 2To study the stability of the undamaged state ζ = 1 at a spe
i�
 (and now 
onsidered�xed) time t, we de�ne
m(γ) := min

ζ∈Z
Jγ(ζ) with

Jγ(ζ) := γH0(ζ) + E(ζ) and H0(ζ) :=

{ H(ζ) if ζmin > 0,

0 if ζmin = 0,
(4.13)where E from Lemma 4.1, H from (4.5) and

γ = γ(t) := C
ℓ(t)2

2L
≥ 0 with ℓ(t) := w(t, L) − w(t, 0) (4.14)is the energy stored in the body if no damage would o

ur, i.e. if ζ ≡ 1; of 
ourse,we then have Jγ(1) = γ. Note that E, γ, Jγ, and m have a physi
al dimension asenergy (i.e. J=kgm2s−1), while λ, ζ , z, and ̺ =

√
aL/

√
2κ have a dimension 1. Also,

γ = g0(1) with g0 from (2.10) with ε = 0 or in the evolution 
ontext, equivalently,
γ = minu∈W 1,2([0,L]) G0(t, ·, 1) with G0 from (3.1).Also, we 
an see that stability of ζ = 1 at time t is equivalent to m(γ) = γ whereas
m(γ) < γ means that the (global!) stability of ζ is lost.Proposition 4.2 (Some 
onditions for stability of the undamaged state.)Let us de�ne fun
tions Λ1, Λ2 : R+ → [0, 1] (of physi
al dimension 1) by

Λ1(̺) :=
2

4 + 3̺
and Λ2(̺) :=

{
1 − ̺2/3 if 0 < ̺ ≤ 1,

2/(3̺) if ̺ ≥ 1.
(4.15)Then we have Λ1(̺) < Λ2(̺) and(i) γ > aLΛ2(

√
aL/

√
2κ) implies m(γ) < γ, i.e. ζ = 1 is not globally stable,(ii) γ ≤ aLΛ1(

√
aL/

√
2κ) implies m(γ) = γ, i.e. ζ = 1 is globally stable.Proof. Part (i) follows easily by using the minimizers of Lemma 1 for z ∈ (0, L) andthen taking the limit z → 0. 27



For Part (ii), the argument is more involved. First, note that a global minimizer ζγof Jγ in Z must exist. As we only 
onsider 0 < γ ≤ aLΛ1(
√

aL/
√

2κ) and Λ1 ≤ Λ2,we use the arguments of Part (i) to 
on
lude that [ζγ ]min > 0, and hen
e ζγ solvesthe Neumann boundary-value problem for the following di�erential in
lusion:
−κ

d2ζ

dx2
− a +

γH(ζ)2

L

1

ζ2
+ ∂χ(−∞,1](ζ) ∋ 0,

dζ

dx
(0) = 0 =

dζ

dx
(L). (4.16)By [19, Chap.3, Theorem 2.3℄, ea
h solution lies in W 2,p((0, L)), p < +∞ arbitrary;possibly it has a �at part with ζ(·) = 1.Testing (4.16) by d

dx
ζ gives

κ

2

∣∣∣
dζ

dx

∣∣∣
2

+ aζ +
γH(ζ)2

L

1

ζ2
= ac (4.17)for a suitable 
onstant c. Note that this also holds if the �rea
tion for
e� from

∂χ(−∞,1](ζ) does not vanish. It holds either ζ = 1 (and then (4.17) is trivial) or
0 < ζmin < 1. In the latter 
ase, d

dx
ζ(x) = 0 whenever ζ(x) = 1 and (4.17) againholds on [0, L].Now, assume 0 < ζmin ≤ ζmax ≤ 1. Then inserting these values into (4.17) (usingthat d

dx
ζ(·) = 0 when these values are attained) gives

aζmax +
γH(ζ)2

L

1

ζmax

= ac = aζmin +
γH(ζ)2

L

1

ζmin

. (4.18)First, 
onsider ζmin = ζmax, then ζ ≡ ζmin and Jγ(ζmin) = γ + (aL−γ)(1−ζmin).Be
ause of γ < aL, we have Jγ(ζmin) > Jγ(1) for ζmin < 1. Hen
e we have a
ontradi
tion. Se
ond, assuming that we have a minimizer with ζmin < ζmax ≤ 1, we
on
lude from (4.18) that
c = ζmin + ζmax and H(ζ)2 =

aL

γ
ζminζmax. (4.19)Using H(ζ) ≤ ζmax and ζmax ≤ 1, we �nd ζmin ≤ γ/(aL). Now, using Jγ(ζ) ≥

E(ζ), we may employ Lemma 4.1 and �nd Jγ(ζγ) ≥ aL λ(γ/(aL),
√

aL/
√

2κ).Some elementary 
al
ulations show that γ ≤ aLΛ1(
√

aL/
√

2κ) implies
aL λ(γ/(aL),

√
aL/

√
2κ) > γ. In fa
t, sin
e γ 7→ λ(γ/(aL), ̺) stri
tly de
reaseson [0, aL] and attains the value 0 at γ = aL, there is a unique solution γ∗ of

γ = λ(γ/(aL), ̺) and Jγ(ζγ) ≥ γ holds for any γ ∈ [0, γ∗]. An expli
it 
al
ula-tion gives γ∗ = aLΛ(
√

aL/
√

2κ), where Λ(̺) is the unique solution of z = λ(z, ̺).We �nd Λ(̺) = 1/2 + ̺2/6 for ̺2 ≤ 3/7 and the estimate Λ(̺) ≥ 2/(3(1+̺)) for
̺2 ≥ 3/7. Hen
e we obtain a 
ontradi
tion to the assumption that a nontrivial(i.e. not identi
ally 1) global minimizer exists, and Part (ii) is proved. 24.3 Evolution 
onje
turedWe 
onje
ture that the bound Λ2 in Proposition 4.2 is sharp, i.e. the upper bound
Λ1 
an be repla
ed by Λ2. In su
h 
ase, we 
ould give an exa
t solution for the28



1-dimensional damage evolution problem as follows. We now 
onsider γ = γ(t)evolving in time, 
f. (4.14).Consider g(t, ζ) = γ(t)H0(ζ) +
∫ L

0
κ
2
| d

dt
ζ |2 dx and R as before, 
f. (4.13)�(4.14)and (3.2). The pres
ribed elongation/shrinkage ℓ(t) is 
ontinuous, 
f. (3.16) whereeven C1-smoothness was assumed. Let ℓ be stri
tly monotone, say de
reasing, intime, starting from ℓ(0) = 0, and the body is initially undamaged and undeformed,i.e. ζ0 ≡ 1 and u0 ≡ 0, whi
h is 
ompatible with (3.17). Then

ζ(t, x) =

{
1 for 0 ≤ t < t∗, x ∈ [0, L],

ζdam(x) for t ≥ t∗, x ∈ [0, L],
(4.20)where t∗ is the unique value su
h that

ℓ(t∗)
2 =

2a

C
L2Λ2

(√aL√
2κ

) (4.21)and where ζdam is one of the two minimizers of E under the 
onstraint ζmin = 0,
f. (4.11) with z = 0. We have immediate total damage at one point sin
e theinstability 
riterion in Proposition 4.2(i) is obtained by 
omplete damage. From(4.21), we 
an identify a 
riti
al strain ecrit := |ℓ(t∗)|/L above whi
h the (even total)damage starts evolving, namely
ecrit :=

|ℓ(t∗)|
L

=

√
2a

C
Λ2

(√aL√
2κ

) (4.22)For very short bars, i.e. small L, we have asymptoti
ally ̺ =
√

aL/
√

2κ → 0 andthen Λ2(̺) → 1, 
f. (4.15), so that, from (4.22), we 
an see that
ecrit ≈

√
2a/C. (4.23)In parti
ular, we 
an see that the resistivity to damage is determined by the ratio(physi
ally of dimension 1) of the a
tivation stress and the elasti
 modulus, while

κ > 0 plays (asymptoti
ally) no role as well as the length L itself.Conversely, for long bars, in parti
ular for L ≥
√

2κ/a, we have ̺ =
√

aL/
√

2κ ≥ 1and thus Λ2(̺) = 2/(3̺), 
f. (4.15), so that, substituting it into (4.22), we 
an seethat
ecrit = 2

4
√

2aκ√
3LC

. (4.24)In parti
ular, we 
an see that ecrit de
ays with in
reasing length L as O(1/
√

L). Aparadoxi
al e�e
t 
an thus be expe
ted (at least asymptoti
ally if L → ∞) that thebar tends to break already even when a very small strain is a
hieved by the loading(although the boundary displa
ement, i.e. the loading ℓ(t∗) = ecritL ≈
√

L itself,must be su�
iently large). This e�e
t is 
aused be the adopted 
on
ept of globalstability (3.13) whi
h is ultimately favorite for damage at small spots if there is29



enough energy stored in the whole body. Fortunately, large engineering workpie
es(as e.g. long bridges or tall towers) rely rather on lo
al stability prin
iples for whi
h,however, a rigorous mathemati
al theory is not developed yet. This reveals 
ertainlimits of appli
ations the presented model.A
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