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Hölder ontinuity 1
AbstratThe well known De Giorgi result on Hölder ontinuity for solutions of theDirihlet problem is re-established for mixed boundary value problems, pro-vided that the underlying domain is a Lipshitz domain and the border be-tween the Dirihlet and the Neumann boundary part satis�es a very generalgeometri ondition. Impliations of this result for optimal ontrol theory arepresented.



2 R. Haller-Dintelmann, C. Meyer, J. Rehberg1 IntrodutionIn the last deades it has been antiipated in applied analysis that many elliptiproblems originating from siene, engineering, and tehnology possess nonsmoothdata. This means that they often live on nonsmooth domains, the oe�ients arenonsmooth and, thirdly, they often exhibit mixed boundary onditions, see [3℄, [43℄and the referenes ited therein, see also [45℄ and [22℄. In this paper we prove theHölder ontinuity for the solution u of
−∇ · ρ∇u+ u = f +

d∑

j=1

∂fj

∂xj
, f ∈ Lq/2, fj ∈ Lq, (1.1)where q is larger than the spae dimension, and mixed boundary onditions areinorporated, see Theorem 3.3. The result is to be seen in the tradition of Stampa-hia's paper [49℄ (see also [40, 41℄), where Hölder ontinuity already was ahievedfor mixed boundary value problems, but under rather tehnial onditions � di�ultto verify in appliations. Here, we generalize the Stampahia result in spae di-mensions d = 2, 3 and 4 to Lipshitz domains, provided that the Dirihlet boundarypart satis�es a very general ompatibility ondition � purely topologial in natureand easy to hek at least for d = 2, 3, see Theorem 5.2 and Theorem 5.4 below.Note that the admissible distributional right hand sides in (1.1) allow for jumpsin the onormal derivative of solutions aross internal interfaes. This means,e.g. in eletrostatis, that the jump in the normal omponent of the displaement

ν+ · ε∇ϕ− ν− · ε∇ϕ aross a presribed interfae equals the surfae harge densityon the interfae, and this surfae harge density is represented by a distribution onthe underlying domain Ω.Divergene type operators as in (1.1) are of fundamental signi�ane in many ap-pliation areas. This is the ase not only in mehanis (see [38, Ch. IV/V℄), ther-modynamis (see [48℄) and eletrodynamis (see [47℄) of heterogeneous media, butalso in mining, multiphase �ow, mathematial biology (see [20, 6℄) and semion-dutor devie simulation (see [45, 22, 24℄), in partiular quantum eletronis (see[55, 5, 36, 54, 39℄).The non-homogeneous oe�ient funtion ρ represents varying material propertiesas the ontext requires. It may be thermal ondutivity in a heat equation (see [48,�21℄) or dieletri permittivity in a Poisson equation, or di�usivity in a transportequation (see for instane [45, �2.2℄ for arrier ontinuity equations) or e�etiveeletron mass in a Shrödinger equation (see [36℄).Continuity of solutions to (1.1) plays an important role for the disussion of state-onstrained optimal ontrol problems (see for instane [8℄). Hene it is rather natu-ral to use the above mentioned result for the disussion of semilinear ellipti ontrol



Hölder ontinuity 3problems with pointwise inequality onstraints on the state, whih is done here ina very general setting. Suh problems have been disussed by numerous authorsbefore (see for instane [8, 1, 12℄ and the referenes therein). Conerning seond-order su�ient optimality onditions, some progress has reently been made in aontribution of Casas et. al [11℄. Here we show that, based on the regularity resultsof Theorem 3.3, the analysis, developed in [11℄, is also appliable to problems withmixed boundary onditions, whih are not onsidered in [11℄. Thus the onsiderationof mixed boundary onditions for semilinear ellipti state-onstrained optimal on-trol problems represents the genuine ontribution of this paper from the viewpointof optimal ontrol theory.The outline of the paper is as follows: �rst we introdue some notation. In Setion 3we formulate our regularity result, whih is proved in Setion 4. In Setion 5 wegive an alternative haraterization for Gröger's regular sets, whih represent thegeometri setting for the domains under onsideration and the assoiated Dirihletboundary parts, in the 2d and 3d ase. Finally, the relevane of the Hölder propertyfor the disussion of semilinear ellipti optimal ontrol problems with pointwise stateonstraints is pointed out in Setion 6.2 NotationThroughout this paper, Ω ⊂ R
d always denotes a bounded Lipshitz domain (see[31, Ch. 1.2℄ for the de�nition) and Γ ⊂ ∂Ω is an open part of its boundary. Inpartiular, we often use the ube K := {x ∈ R

d : −1 < xj < 1 for 1 ≤ j ≤ d}, thehalf ube K− := {x ∈ K : xd < 0}, its upper plate Σ := {x ∈ K : xd = 0} and,lastly, the half of this, Σ0 := {x ∈ Σ : xd−1 < 0}. The symbol Cα(Ω) stands for theusual Hölder spae on Ω, see [35℄ or [51℄. W 1,p(Ω) denotes the Sobolev spae on Ωonsisting of those Lp(Ω) funtions whose �rst order distributional derivatives alsobelong to Lp(Ω) (see [31℄ or [42℄). We use the symbol W 1,p
Γ (Ω) for the losure of

{
v|Ω : v ∈ C∞(Rd), supp v ∩ (∂Ω \ Γ) = ∅

}in W 1,p(Ω). Note that Ω enjoys the extension property for W 1,p(Ω) in view of beinga bounded Lipshitz domain, see [23, Thm. 3.10℄ or [42, Ch. 1.1.16℄. Thus, in aseof Γ = ∂Ω the spae W 1,p
Γ (Ω) is idential with the usual Sobolev spae W 1,p(Ω). If

Γ = ∅ we write as usual W 1,p
0 (Ω) instead of W 1,p

∅ (Ω). W−1,p′

Γ (Ω) denotes the dual to
W 1,p

Γ (Ω) and W−1,p′(Ω) denotes the dual to W 1,p
0 (Ω), when 1

p
+ 1

p′
= 1 holds. If Ωis understood, then we sometimes abbreviate W±1,p

Γ , W 1,p
0 and W−1,p, respetively.Please notie that all funtional spaes under onsideration are regarded as omplexones. By 〈·, ·〉X we indiate the duality between a Banah spae X and its dual.Finally, γ denotes a generi onstant not always of the same numerial value.



4 R. Haller-Dintelmann, C. Meyer, J. Rehberg3 The regularity resultDe�nition 3.1. Let Λ ⊂ R
d be a bounded domain and Υ a (relatively) open partof its boundary ∂Λ. Then we all Λ ∪ Υ regular (in the sense of Gröger [29℄), if forevery x ∈ ∂Λ there are two open sets Ux,Vx ⊂ R

d and a bi-Lipshitz transform Ψxfrom Ux onto Vx, suh that x ∈ Ux, Ψx(x) = 0 and Ψx

(
Ux ∩ (Λ∪Υ)

) either oinideswith K− or with K− ∪ Σ or with K− ∪ Σ0.Assumption 3.2. Let ρ be a Lebesgue measurable, essentially bounded funtionon Ω, taking its values in the set of real d × d matries, that additionally satis�esthe usual (strong) elliptiity ondition
y · ρ(x) y ≥ ι|y|2, y ∈ R

d, (3.1)for almost all x ∈ Ω and some ι > 0.Given a oe�ient funtion ρ, satisfying this assumption, we de�ne the operator
−∇ · ρ∇ + 1 : W 1,2

Γ (Ω) →W−1,2
Γ (Ω) by

〈−∇ · ρ∇v + v, w〉W−1,2
Γ

:=

∫

Ω

(ρ∇v · ∇w + vw) dx , v, w ∈W 1,2
Γ (Ω). (3.2)Then our �rst main result reads as follows.Theorem 3.3. Suppose 2 ≤ d ≤ 4 and q > d. Suppose further that Ω ∪ Γ isregular and that Assumption 3.2 is satis�ed. Then there is an α > 0, suh that

(−∇ · ρ∇ + 1)−1 maps W−1,q
Γ (Ω) ontinuously into Cα(Ω).Remark 3.4. a) The ases Γ = ∅ (Dirihlet boundary ondition) and Γ = ∂Ω(Neumann boundary ondition) are expliitly allowed.b) It is not hard to see that the right hand side of (1.1) de�nes an element of

W−1,q
Γ (Ω). Conversely, any element fromW−1,q

Γ (Ω) may be represented this way, see[56, Ch. 4.3℄.Corollary 3.5. The result of Theorem 3.3 arries over to problems with Robinboundary onditions on Γ, if the representing funtion κ is from L∞(Γ, σ) (σ beingthe indued boundary measure on Γ, f. [33, Setion 3℄).Corollary 3.6. Let a non-negative funtion V ∈ L∞(Ω) be given. Moreover, assumethat, if meas(∂Ω \Γ) = 0, then there is a subset Ω+ of Ω of positive measure, where
V is stritly positive. Then, similarly to Corollary 3.5, Theorem 3.3 also applies toproblems of the form −∇ · ρ∇v + V v = f , f ∈W−1,q

Γ (Ω).Corollary 3.7. Let Dq denote the domain of the maximal restrition of −∇·ρ∇+1to the spae W−1,q
Γ (Ω). Then, under the suppositions of Theorem 3.3, even theomplex interpolation spae [Dq,W

−1,q
Γ ]τ ontinuously embeds into a Hölder spae

Cβ(Ω), if τ and β are su�iently lose to 0.



Hölder ontinuity 5Remark 3.8. Corollary 3.7 may be of use for the treatment of paraboli equations,see [46, 2, 44℄.4 Proof of the regularity resultLet us start by ommenting on the philosophy of the proof: the problem will beloalized by means of a suitably hosen partition of unity, afterwards transformedby bi-Lipshitz mappings and, if neessary, by re�etion. In any ase one ends upwith a Dirihlet problem on either a ball, the half ube K− or the ube K. Then awell known regularity result (see Proposition 4.3) may be applied.In order to perform this proedure we �rst quote two results from the literature andafterwards establish some auxiliary results, whih will justify the required tehnialsteps.4.1 Known resultsProposition 4.1 ([30℄, see also [29℄). Suppose that ρ satis�es Assumption 3.2. If
Ω ∪ Γ is regular, then there is a q0 > 2 suh that for all q ∈ [2, q0[ the operator
−∇ · ρ∇ + 1 provides a topologial isomorphism between W 1,q

Γ (Ω) and W−1,q
Γ (Ω).Remark 4.2. It is lear by Sobolev embedding that in the two dimensional asethe assertion of Theorem 3.3 already follows from Proposition 4.1.Proposition 4.3 (see [37, Ch. III.14℄, [35, Thm. C.2℄, [13, Ch. 4℄, see also [15℄). Let

Λ be a ball or a uboid and let the oe�ient funtion ω (mutatis mutandis) satisfyAssumption 3.2. If q > d, then there is an α > 0, suh that
(
−∇ · ω∇

)−1
: W−1,q(Λ) → Cα(Λ) (4.1)is ontinuous.Remark 4.4. Usually, Proposition 4.3 is proved only for real spaes, but it isstraightforward to extend this to the omplex ase: one onsiders for any element

T of the omplex Sobolev spae W−1,q
Γ the linear forms T+T ∗

2
and T−T ∗

2i
, where T ∗is de�ned by T ∗ψ := Tψ. Obviously, both take real values when applied to realfuntions and satisfy T+T ∗

2
+ iT−T ∗

2i
= T . Thus, one may use the result for theorresponding real spaes.4.2 Auxiliary ResultsLemma 4.5. Let Ω ∪ Γ be regular and let U ⊂ R

d be open, suh that Ω• := Ω ∩ Uis also a Lipshitz domain. Furthermore, we put Γ• := Γ ∩ U and �x an arbitrary



6 R. Haller-Dintelmann, C. Meyer, J. Rehbergfuntion η ∈ C∞
0 (Rd) with supp η ⊂ U . Then for any q ∈ [1,∞[ we have thefollowing assertions.i) If v ∈W 1,q

Γ (Ω), then ηv|Ω•
∈ W 1,q

Γ•
(Ω•).ii) Let for any v ∈ L1(Ω•) the symbol ṽ indiate the extension of v to Ω by zero.Then the mapping

W 1,q
Γ•

(Ω•) ∋ v 7→ η̃vhas its image in W 1,q
Γ (Ω) and is ontinuous.Proof. For the proof of both points we will employ the following well known setinlusion (f. [16, Ch. 3.8℄):

(∂Ω ∩ U) ∪ (Ω ∩ ∂U) ⊂ ∂Ω• ⊂ (∂Ω ∩ U) ∪ (Ω ∩ ∂U). (4.2)i) First one observes that the multipliation with η and the restrition is a on-tinuous mapping from W 1,q
Γ (Ω) into W 1,q(Ω•). Thus, it su�es to show theassertion only for elements of the dense subset

{
v|Ω : v ∈ C∞(Rd), supp v ∩ (∂Ω \ Γ) = ∅

}
,what we will do now. One has by (4.2)

supp(ηv)∩ (∂Ω• \ Γ•) ⊂ supp η ∩ supp v ∩
[(

(∂Ω ∩ U)∪ (Ω∩ ∂U)
)
\

(
Γ ∩ U

)]
.Sine (Ω ∩ ∂U) ∩ (Γ ∩ U) = ∅, we see

(
(∂Ω ∩ U) ∪ (Ω ∩ ∂U)

)
\

(
Γ ∩ U

)
=

(
(∂Ω ∩ U) \ (Γ ∩ U)

)
∪

(
(Ω ∩ ∂U) \ (Γ ∩ U)

)

=
(
(∂Ω \ Γ) ∩ U

)
∪ (Ω ∩ ∂U).This, together with supp η ⊂ U yields

supp(ηv) ∩ (∂Ω• \ Γ•) ⊂ supp η ∩ supp v ∩
(
(∂Ω \ Γ) ∩ U

)
= ∅.ii) Let v ∈ C∞

0 (Rd) with supp v ∩ (∂Ω• \ Γ•) = ∅. Sine by the right hand side of(4.2) we have
∂Ω• \ Γ• ⊇ (∂Ω ∩ U) \ Γ• = U ∩ (∂Ω \ Γ),it follows supp v ∩
(
U ∩ (∂Ω \ Γ)

)
= ∅. Combining this with supp η ⊂ U , weobtain

supp(ηv) ∩ (∂Ω \ Γ) = supp(ηv) ∩
(
U ∩ (∂Ω \ Γ

)
= ∅,so ηv|Ω ∈ W 1,q

Γ (Ω). Furthermore, it is not hard to see that ‖ηv‖W 1,q(Ω) ≤
γη‖v‖W 1,q(Ω•), where the onstant γη is independent from v. Thus, the assertionfollows, sine {v|Ω•

: v ∈ C∞
0 (Rd), supp(v) ∩ (∂Ω• \ Γ•) = ∅} is dense in

W 1,q
Γ•

(Ω•) and W 1,q
Γ (Ω) is losed in W 1,q(Ω).



Hölder ontinuity 7Lemma 4.6. Let Ω, Γ, U , η, Ω• and Γ• be as in the foregoing lemma. Denote by
ρ• the restrition of the oe�ient funtion ρ to Ω• and let the operator −∇ · ρ•∇ :

W 1,2
Γ•

(Ω•) → W−1,2
Γ•

(Ω•) be de�ned analogously to (3.2). Assume v ∈ W 1,2
Γ (Ω) to bethe solution of

−∇ · ρ∇v + v = f ∈W−1,2
Γ (Ω). (4.3)Then the following holds true.i) For all q ∈ ]1,∞[ the linear form

f• : w 7→ 〈f, η̃w〉W−1,2
Γ (Ω),where η̃w again means the extension by zero to the whole Ω, is well de�nedand ontinuous on W 1,q′

Γ•
(Ω•), whenever f ∈W−1,q

Γ (Ω).ii) If we denote the linear form
W 1,2

Γ•
(Ω•) ∋ w 7→

∫

Ω•

vρ•∇η · ∇w dx,by Tv, then u := ηv|Ω•
satis�es

−∇ · ρ•∇u = −ηv|Ω•
− ρ•∇v|Ω•

· ∇η|Ω•
+ Tv + f• =: f •. (4.4)iii) Assume now 2 ≤ d ≤ 4. If f ∈ W−1,q

Γ (Ω) for a q > d, then there is a p > dsuh that f • ∈ W−1,p
Γ•

(Ω•). Moreover, the mapping W−1,q
Γ (Ω) ∋ f 7→ f • ∈

W−1,p
Γ•

(Ω•) is ontinuous.Proof. i) The mapping f 7→ f• is the adjoint to v 7→ η̃v, whih maps by thepreeding lemma W 1,q′

Γ•
(Ω•) ontinuously into W 1,q′

Γ (Ω).ii) For every w ∈W 1,2
Γ•

(Ω•) we have
〈−∇ · ρ•∇u, w〉W−1,2

Γ•
(Ω•) +

∫

Ω•

ηvw dx =

∫

Ω•

ρ•∇(ηv) · ∇w dx +

∫

Ω•

ηvw dx

=

∫

Ω•

vρ•∇η · ∇w dx +

∫

Ω•

ηρ•∇v · ∇w dx +

∫

Ω

v η̃w dx

=

∫

Ω•

vρ•∇η · ∇w dx +

∫

Ω•

ρ•∇v · ∇(ηw) dx−
∫

Ω•

wρ•∇v · ∇η dx +

∫

Ω

v η̃w dxand by (4.3) we see
∫

Ω•

ρ•∇v · ∇(ηw) dx +

∫

Ω

v η̃w dx =

∫

Ω

ρ∇v · ∇(η̃w) dx +

∫

Ω

v η̃w dx

= 〈f, η̃w〉W−1,2
Γ (Ω).



8 R. Haller-Dintelmann, C. Meyer, J. RehbergApplying the de�nition of Tv and f• and afterwards subtrating ∫
Ω•

ηvw dxfrom both sides yields the assertion.iii) We regard the terms in (4.4) from left to right. For the �rst summand theassertion is obvious.Aording to Proposition 4.1 there is an ǫ > 0 suh that the solution v of
−∇·ρ∇v+v = f is fromW 1,2+ǫ

Γ (Ω), what implies∇v ∈ L2+ǫ(Ω). Furthermore,
|∇η| ∈ L∞(Ω•) and |ρ•∇v| ∈ L2+ǫ(Ω•). Consequently we have ρ•∇v · ∇η ∈
L2+ǫ(Ω•). Now, whenever 1/p ≥ (d− 2− ǫ)/(d(2+ ǫ)) we have the embedding
L2+ǫ(Ω•) →֒ W−1,p

Γ•
(Ω•). Sine we restrited the dimension to 2 ≤ d ≤ 4, thereis always a p > 4 ≥ d satisfying that ondition, so the seond term is also �ne.On the other hand, we have v ∈ W 1,2+ǫ

Γ (Ω) →֒ L4+δ(Ω) for a δ = δ(d) > 0.Thus, onerning Tv, we an estimate
|〈Tv, w〉W−1,4+δ

Γ•
(Ω•)| ≤ ‖v‖L4+δ(Ω•) ‖ρ‖L∞(Ω;Cd×d) ‖∇η‖L∞(Ω•) ‖w‖W

1,(4+δ)′

Γ•
(Ω•)

.The laim on f• follows from i), while the proof of the last assertion is impliitlyontained in the above onsiderations.Remark 4.7. It is the lak of integrability of the gradient of v (see the ounterex-ample in [18, Ch. 4℄) together with the quality of the needed Sobolev embeddings,whih prevents the appliability of this loalization proedure to higher dimensionsand thus limits our entral result to the dimensions up to 4.The reader may wonder why we start with the operator −∇·ρ∇+1 and onsider theoperator −∇ · ρ•∇ after the loalization. The reason for this is the following: in or-der to inlude the pure Neumann ase one should onsider the operator −∇·ρ∇+1.On the other hand, the resulting loalized operators −∇ · ρ•∇ exhibit in any asea nontrivial Dirihlet boundary part (making them invertible) and the subsequenttransformation tehniques are tehnially simpler for the pure operator −∇ · ρ•∇.Proposition 4.8. Let Λ ⊂ R
d be a bounded Lipshitz domain and Υ be an opensubset of its boundary. Assume that φ is a mapping from a neighborhood of Λ into R

dthat is bi-Lipshitz. Let us denote φ(Λ) =: Λ△ and φ(Υ) =: Υ△. Then the followingis true.i) For any p ∈ ]1,∞[, the mapping φ indues a linear, topologial isomorphism
Φp : W 1,p

Υ△
(Λ△) →W 1,p

Υ (Λ),whih is given by (Φpf)(x) = f(φ(x)) = (f ◦ φ)(x).ii) Φ∗
p′ is a linear, topologial isomorphism between W−1,p

Υ (Λ) and W−1,p
Υ△

(Λ△).



Hölder ontinuity 9iii) If ω is a bounded, measurable funtion on Λ, taking its values in the set of
d× d matries, then

Φ∗
p′∇ · ω∇Φp = ∇ · ω△∇ (4.5)with

ω△(y) :=
1∣∣ det(Dφ)(φ−1(y))

∣∣(Dφ)(φ−1(y)) ω(φ−1(y))
(
Dφ

)T
(φ−1(y)) (4.6)for almost all y ∈ Λ△. Here, Dφ denotes the Jaobian of φ and det(Dφ) theorresponding determinant.iv) If ω satis�es Assumption 3.2, then ω△ also does.Proof. The proof of i) is ontained in [26, Thm. 2.10)℄. Assertion ii) follows from i)by duality, while iii) is well known, see [32℄ for an expliit veri�ation or [4, Ch. 0.8℄.Finally, iv) is implied by (4.6) and the fat that for a bi-Lipshitz φ the Jaobian

Dφ and its inverse (Dφ)−1 are essentially bounded (see [19, Ch. 3.1℄).The next lemma makes lear that within the lass of bi-Lipshitz transformationsone only needs the two loal model sets K− and K− ∪ Σ, if one dispenses with theondition Ψx(x) = 0 (f. De�nition 3.1):Lemma 4.9. There is a bi-Lipshitz mapping Ψ : R
d → R

d whih maps K− ∪ Σ0onto K− ∪ Σ.Proof. Let us �rst onsider the ase d = 2. We de�ne on the lower halfspae {(x, y) :

y ≤ 0}

χ1(x, y) :=





(x− y/2, y/2), if x ≤ 0, y ≥ x,

(x/2,−x/2 + y), if x ≤ 0, y < x,

(x/2, x/2 + y), if x > 0, y < −x,
(x+ y/2, y/2), if x > 0, y ≥ −x.

(4.7)Observing that χ1 ats as the identity on the x-axis, we may de�ne χ1 on theupper half spae {(x, y) : y > 0} also as the identity and thus obtain a globallybi-Lipshitz transformation χ1 from R
2 onto itself that transforms K−∪Σ0 onto thetriangle shown in Figure 1.Next, we de�ne the bi-Lipshitz mapping χ2 : R

2 → R
2 by

χ2(x, y) :=

{
(x, x+ 2y + 1), if x ≤ 0,

(x,−x+ 2y + 1), if x > 0,
(4.8)in order to get the geometri onstellation in Figure 2.



10 R. Haller-Dintelmann, C. Meyer, J. Rehberg

K_

x

y

1−1

−1

y

−1

−1 1

x

Σ0

Figure 1: K− ∪ Σ0 and χ1(K− ∪ Σ0)

x

y

1−1

−1

1

Figure 2: χ2(ρ1(K− ∪ Σ0))



Hölder ontinuity 11If ϑ is the (lokwise) rotation by π/4, we thus ahieved that χ := ϑχ2χ1 : R
2 → R

2is bi-Lipshitz and satis�es
χ(K− ∪ Σ0) =

{
(x, y) : − 1√

2
< x <

1√
2
, − 1√

2
< y ≤ 1√

2

}
.Let ς : R

2 → R
2 be the a�ne mapping (x, y) 7→ (

√
2x, 1√

2
y − 1

2
). Then Ψ2 := ςχmaps K− ∪ Σ0 bi-Lipshitzian onto K− ∪ Σ in the 2d ase.If d > 2, one simply puts Ψ(x1, . . . , xd) := (x1, . . . , xd−2,Ψ2(xd−1, xd)).Proposition 4.10. Let for any x = (x1, . . . , xd) ∈ R

d the symbol x− denote theelement (x1, . . . , xd−1,−xd). Further, for a d× d matrix ̺, we de�ne the matrix ̺−by
̺−j,k :=





̺j,k, if j, k < d,

−̺j,k, if j = d and k 6= d or k = d and j 6= d,

̺j,k, if j = k = d.

(4.9)Let ω be a bounded, measurable funtion on K− taking its values in the set of real,symmetri d× d matries. We de�ne the matrix valued funtion ω̂ on K by
ω̂(x) :=





ω(x), if x ∈ K−,(
ω(x−)

)−
, if x− ∈ K−,

0, if x ∈ Σ.

(4.10)Then we have the following assertions for every p ∈ ]1,∞[.i) If ψ ∈W 1,p
Σ (K−) satis�es −∇·ω∇ψ = f ∈ W−1,p

Σ (K−), then −∇· ω̂∇ψ̂ = f̂ ∈
W−1,p(K) holds for ψ̂ with

ψ̂(x) =

{
ψ(x), if x ∈ K−,

ψ(x−), if x− ∈ K−,and f̂ de�ned by 〈f̂ , ϕ〉W−1,p(K) := 〈f, ϕ|K−
+ϕ−|K−

〉W−1,p
Σ (K−). Here, the fun-tion ϕ− is de�ned by ϕ−(x) := ϕ(x−).ii) The mapping W−1,p

Σ (K−) ∋ f 7→ f̂ ∈W−1,p(K) is ontinuous.Proof. i) It is known that ψ̂ belongs to W 1,p
0 (K), see [23, Lemma 3.4℄. Thus,it remains to show −∇ · ω̂∇ψ̂ = f̂ as an equation in W−1,p(K). Sine everytest funtion from W 1,p

0 (K) may be split up into a symmetri and an anti-symmetri part, we may look at these two ases separately. For every anti-symmetri ϕ ∈ W 1,p
0 (K). i.e. ϕ(x−) = −ϕ(x), the symmetry of ω̂, ψ̂ and f̂yields immediately

〈−∇ · ω̂∇ψ̂, ϕ〉W−1,p
0 (K) = 0 = 〈f̂ , ϕ〉W−1,p

0 (K).



12 R. Haller-Dintelmann, C. Meyer, J. RehbergIn the ase of symmetri funtions ϕ the assertion is obtained by the de�ni-tions of ψ̂, f̂ ,−∇ · ω∇,−∇ · ω̂∇ and straightforward alulations, based onProposition 4.8 when applied to the transformation x 7→ x−.ii) The operator f 7→ f̂ is the adjoint to ϕ 7→ (ϕ|K−
+ ϕ−|K−

).4.3 Core of the proofBy De�nition 3.1 and Lemma 4.9, for every x ∈ ∂Ω there is an open neighborhood
Ux of x, an open set Wx and a bi-Lipshitz mapping Ψx from Ux onto Wx suh that
Ψx

(
(Ω∪Γ)∩Ux

) equals eitherK− orK−∪Σ. Take for every point x ∈ Ω a ball Bx ⊂ Ωentered at x. Obviously, the system {Ux}x∈∂Ω ∪ {Bx}x∈Ω forms an open overingof Ω. Take a �nite subovering Ux1 , . . . ,Uxk
,Bx1 , . . . ,Bxl

and hoose a partition ofunity η1, . . . , ηk, ζ1, . . . , ζl over Ω, whih is subordinated to this subovering.Assume now f ∈W−1,q
Γ (Ω) with q > d and that v is the solution of −∇·ρ∇v+v = f .Then, aording to Proposition 4.6 with Γ• = ∅ and Ω• = Bxj

, every funtion ζjv|Bxjsatis�es an equation −∇ · ρ∇(ζjv|Bxj
) = gj , where gj ∈W−1,p(Bxj

) with p > d and,additionally,
‖gj‖W−1,p(Bxj

) ≤ γ‖f‖W−1,q
Γ (Ω) (4.11)with γ independent from f . Hene, by Proposition 4.3, we have ζjv|Bxj

∈ Cα(Bxj
)for an α = α(j) > 0 and, moreover,

‖ζjv|Bxj
‖Cα(Bxj

) ≤ γ‖gj‖W−1,p(Bxj
). (4.12)Clearly, (4.12) together with (4.11) implies

‖ζjv‖Cα(Ω) = ‖ζjv|Bxj
‖Cα(Bxj

) ≤ γ‖gj‖W−1,p(Bxj
) ≤ γ‖f‖W−1,q

Γ (Ω). (4.13)Let us now onsider the funtions ηjv for �xed j: putting Ωj := Ω∩Uxj
and Γj := Γ∩

Uxj
we obtain by Lemma 4.5 i) that eah ηjv|Ωj

belongs to W 1,2
Γj

(Ωj). Furthermore,Proposition 4.6 shows that ηjv|Ωj
satis�es an equation −∇ · ρ∇(ηjv|Ωj

) = fj , where
fj ∈W−1,p

Γj
(Ωj) with p > d and, additionally,

‖fj‖W−1,p
Γj

(Ωj)
≤ γ‖f‖W−1,q

Γ (Ω) (4.14)with γ independent from f . Next we onsider the 'transformed' funtion (f. Propo-sition 4.8 with φ = Ψ−1
xj
) ψj := Φp(ηjv|Ωj

) = (ηjv|Ωj
) ◦ Ψ−1

xj
on K−, from now ondistinguishing the ases

Ψxj

(
(Ω ∪ Γ) ∩ Uxj

)
= K− (4.15)and

Ψxj

(
(Ω ∪ Γ) ∩ Uxj

)
= K− ∪ Σ. (4.16)



Hölder ontinuity 13If (4.15) is true, then Γj := Γ ∩ Uxj
⊂ ∂(Ω ∩ Uxj

) must be empty, sine K− hasonly inner points and inner points pass to inner points and boundary points toboundary points under a bi-Lipshitz transformation. In partiular, this means
ηjv|Ωj

∈ W 1,2
0 (Ωj). By Proposition 4.8 the funtion ψj belongs to W 1,2

0 (K−) andsatis�es an equation −∇ · ω∇ψj = hj with hj = (Φ∗
p′)

−1fj ∈ W−1,p(K−) for thesame p > d as above. Thanks to Proposition 4.8 iv), the oe�ient funtion ω againsatis�es Assumption 3.2. Thus, by Proposition 4.3, ψj ∈ Cα(K−), where α dependson j, and
‖ψj‖Cα(K−) ≤ γ‖hj‖W−1,p(K−)with α and γ independent from hj . Transforming bak, this gives ηjv|Ωj

∈ Cα(Ωj)with
‖ηjv|Ωj

‖Cα(Ωj) ≤ γ‖fj‖W−1,p(Ωj) ≤ γ‖f‖W−1,q
Γ (Ω), (4.17)where the last inequality is just (4.14). As the support of ηjv has a positive distaneto Ω \ Ωj , the funtion ηjv is from Cα(Ω) with the norm equality ‖ηjv‖Cα(Ω) =

‖ηjv|Ωj
‖Cα(Ωj). This, together with (4.17) gives the desired estimate, where γ isindependent from f .Let us now onsider the ase (4.16). Analogously as before Proposition 4.8 yieldsthat ψj belongs to W 1,2

Σ (K−) and satis�es an equation −∇ · ω∇ψj = hj with hj ∈
W−1,p

Σ (K−) and p > d, where ω again satis�es Assumption 3.2. Now, we apply there�etion priniple from Proposition 4.10. This leads to a homogeneous Dirihletproblem−∇·ω̂∇ψ̂j = ĥj , where ĥj ∈W−1,p(K). But then Proposition 4.3 gives ψ̂j ∈
Cα(K) and ‖ψ̂j‖Cα(K) ≤ γ‖ĥj‖W−1,p(K) (α depending on j). Clearly, this, togetherwith Proposition 4.10 ii), implies ‖ψj‖Cα(K−) ≤ γ‖hj‖W−1,p

Σ (K−) and, onsequently,
‖ηjv|Ωj

‖Cα(Ωj) ≤ γ‖fj‖W−1,p
Γj

(Ωj)
≤ γ‖f‖W−1,q

Γ (Ω).Thus, we get ηjv ∈ Cα(Ω) and ‖ηjv‖Cα(Ω) ≤ γ‖f‖W−1,q
Γ (Ω) with γ independent from

f as in the previous ase. Passing to the minimal α(j), this �nishes the proof ofTheorem 3.3.Proof of Corollary 3.5. As is well known ([14, Ch. 1.2℄, [21, Ch II.2℄), in ase of aRobin boundary ondition the operator is de�ned via the bilinear form
W 1,2

Γ (Ω) ×W 1,2
Γ (Ω) ∋ (v, w) 7→

∫

Ω

ρ∇v · ∇w dx +

∫

Ω

vw dx +

∫

Γ

κ v w dσfor some κ ∈ L∞(Γ, σ). It is easy to see that the linear mapping T : L∞(Γ, σ) →
W−1,p

Γ (Ω), given by
〈Tψ, ϕ〉W−1,p

Γ (Ω) =

∫

Γ

κ ψ ϕ dσ,



14 R. Haller-Dintelmann, C. Meyer, J. Rehbergis well de�ned and ontinuous. Denoting the domain of −∇ · ρ∇ + 1 again by Dq,we have by Theorem 3.3 the ompat embedding Dq →֒ Cα(Ω) →֒ L∞(Γ, σ). Hene,the mapping T is relatively ompat with respet to −∇ · ρ∇ + 1 and a lassialperturbation theorem [34, Ch. IV.1.3℄ applies.Proof of Corollary 3.6. We argue analogously to the proof of Corollary 3.5. Here,
T : L∞(Ω) →W−1,q

Γ (Ω) is de�ned by
〈Tψ, ϕ〉W−1,q

Γ (Ω) =

∫

Ω

V ψ ϕ dx.Then, due to the ompat embedding Dq →֒ L∞(Ω), the same perturbation argu-ment as above yields that the domain of the maximal restrition of −∇ · ρ∇+ V to
W−1,q

Γ (Ω) oinides with Dq. Together with the oerivity of the assoiated bilinearform that follows from the assumptions on V stated in Corollary 3.6, this gives theassertion.Proof of Corollary 3.7. Applying a well known re-iteration result on omplex inter-polation (see [51, Ch 1.9.3℄), we obtain for τ ∈ ]0, 1[

[Dq,W
−1,q
Γ (Ω)] τ

2
→֒ [Dq, [Dq,W

−1,q
Γ (Ω)] 1

2
]τ . (4.18)But the embedding W−1,q

Γ (Ω) →֒ W−1,2
Γ (Ω) gives Dq →֒ W 1,2

Γ (Ω). Together with
Dq →֒ Cα(Ω), we obtain by (4.18)

[Dq,W
−1,q
Γ (Ω)] τ

2
→֒ [Cα(Ω), [W 1,2

Γ (Ω),W−1,2
Γ (Ω)] 1

2
]τ .One identi�es the interpolation spae [W 1,2

Γ (Ω),W−1,2
Γ (Ω)] 1

2
as the spae L2(Ω) (see[51, Ch. 1.18.10℄), what gives

[Dq,W
−1,q
Γ (Ω)] τ

2
→֒ [Cα(Ω), L2(Ω)]τ . (4.19)This latter interpolation spae is known to embed into another Hölder spae Cβ(Ω),if τ > 0 is hosen su�iently small (see [27, Ch. 7℄, see also [52℄).Remark 4.11. If the oe�ient matries are symmetri, the Hölder ontinuity ofthe solution for (1.1) may be dedued from the results of [28℄ and [25℄ by means ofsuitable (but nontrivial) embedding theorems. Unfortunately, this is not arried outthere.5 Alternative haraterization for regular setsGröger's onept of regular sets [29℄ turned out to be a powerful tool for the treat-ment of mixed boundary value problems. Not only his regularity result [29℄, based



Hölder ontinuity 15on this, is exploited in some tens of papers; but the regular sets proved also to bean adequate frame for establishing interpolation results for funtion spaes whihinlude a trae zero ondition on part of the boundary, see [26℄. Moreover, it allowedto reover resolvent estimates and thus provided tools for the treatment of paraboliequations, whih inorporate mixed boundary onditions, see [30℄, [27℄. All of thisshows that the onept of regular sets in itself deserves some investigation in orderto simplify things.In this spirit, the aim of this hapter is to prove that for two and three spaedimensions the property of a set Λ ∪ Υ to be regular in the sense of Gröger (seeDe�nition 3.1) an be haraterized by Λ being a Lipshitz domain and a ertaintopologial property of Υ (to be spei�ed in a moment). The point is that theresulting onditions usually an be heked 'by appearane' � in ontrast to theoriginal de�nition. Let us expliitly mention that the underlying lass of Lipshitzdomains is broad enough to ontain e.g. the ase of two balks, lying on eah otherwith an angle 6= π, whih together do not form a domain with Lipshitz boundary.We start with the following observation.Theorem 5.1. If Λ ∪ Υ is regular, then Λ is a Lipshitz domain.Proof. Let x ∈ ∂Λ. Then there is, due to the de�nition, an open neighborhood
U of x and a bi-Lipshitz mapping Ψ : U → R

d, suh that Ψ(x) = 0 holds and
Ψ(U ∩ (Λ ∪ Υ)) equals K− ∪ Σ̃, where Σ̃ = ∅ or Σ̃ = Σ or Σ̃ = Σ0. This means

Ψ(U ∩ (Λ ∪ Υ)) = Ψ((U ∩ Λ) ∪ (U ∩ Υ)) = K− ∪ Σ̃ (5.1)and sine inner points pass to inner points and boundary points to boundary pointsunder a bi-Lipshitz transformation, (5.1) implies Ψ(U ∩Λ) = K− in all three ases.Hene, U may serve as the loal hart neighborhood required in the de�nition of aLipshitz domain, see [31, Def. 1.2.1.2℄.We �rst deal with the easier ase of d = 2.Theorem 5.2. Let Λ ⊂ R
2 be a bounded Lipshitz domain and Υ ⊂ ∂Λ be anopen part of the boundary. Then Λ ∪ Υ is regular in the sense of Gröger, i� the set

Υ ∩ (∂Λ \ Υ) is �nite and no onneted omponent of ∂Λ \ Υ onsists of a singlepoint.Proof. In view of Theorem 5.1 and an appliation of the de�nition for regular setsit is lear that the ondition is neessary. Su�ieny follows from the Lipshitzdomain property and the fat that any point x ∈ ∂Λ an only lie in Υ, Υ∩ (∂Λ \Υ)or in the (relative) interior of ∂Λ \ Υ.



16 R. Haller-Dintelmann, C. Meyer, J. RehbergRemark 5.3. It is not hard to see that the given ondition is equivalent to thefollowing: Υ is a �nite union of open ar piees from ∂Λ and ∂Λ\Υ is a �nite unionof (nondegenerate) losed ar piees.Now we ome to an intrinsi haraterization of regular sets in R
3, whih we regardas the seond essential result of this work.Theorem 5.4. Let Λ ⊂ R

3 be a bounded Lipshitz domain. Assume Υ to be anopen subset of ∂Λ. Then Λ ∪ Υ is regular in the sense of Gröger, i� the followingtwo onditions are satis�ed.i) ∂Λ \ Υ is the losure of its interior (within ∂Λ).ii) For any x ∈ Υ ∩ (∂Λ \ Υ) there is an open neighborhood N of x and a bi-Lipshitz mapping κ : N ∩ Υ ∩ (∂Λ \ Υ) → ]−1, 1[.Proof. Aording to the de�nition of regular sets the onditions are neessary.In order to prove su�ieny, we have to show that for every x ∈ ∂Λ there is anopen neighborhood U of x and a bi-Lipshitz mapping Ψ with Ψ(x) = 0, suh that
Ψ(U ∩ (Λ ∪ Υ)) is either K− or K− ∪ Σ or K− ∪ Σ0.We �rst observe that

∂Λ = Υ ∪ (∂Λ \ Υ)◦ ∪
[
(∂Λ \ Υ) ∩ Υ

]
, (5.2)where the losure and the interior are again taken with respet to the topology of

∂Λ. In the following we will treat these three ases separately.Let x ∈ Υ. Sine Υ was supposed to be open, there is an open set U1 ⊂ R
d thatontains x and satis�es U1 ∩ ∂Λ ⊂ Υ. Furthermore, as Λ is a Lipshitz domain,there is another open neighborhood U2 ⊂ R

d of x and a bi-Lipshitz transform
Φ from U2 onto the (open) ube K, suh that Φ(x) = 0, Φ(Λ ∩ U2) = K− and
Φ(∂Λ∩U2) = Σ. Sine Φ is in partiular a homeomorphism, the set Φ(U1∩U2) is anopen neighborhood of 0 and it is ontained in K. Thus, it ontains a homothety tKof K for some t > 0. If we de�ne U := Φ−1(tK), then Φ|U is a bi-Lipshitz mappingfrom the open neighborhood U of x onto tK, suh that Φ(U ∩ (Λ ∪ Υ)) is the set
t(K− ∪ Σ). Combining Φ with a homothety, we get a bi-Lipshitz mapping Ψ from
U onto K that satis�es Ψ(x) = 0 and Ψ(U ∩ (Λ ∪ Υ)) = K− ∪ Σ.Analogously, one proves for the (relatively) inner points x ∈ (∂Λ \Υ)◦ the existeneof a neighborhood U and a bi-Lipshitz mapping Ψ onto the open ube K suh that
Ψ(x) = 0 and Ψ(U ∩ (Λ ∪ Υ)) is the set K−.It remains to onsider the points of (∂Λ\Υ)∩Υ. Let x be an element of this set. As Λis a Lipshitz domain, there is an open neighborhood O of x in R

3 and a bi-Lipshitz



Hölder ontinuity 17mapping Φ from O onto the ube K ⊂ R
3, suh that Φ(x) = 0, Φ(Λ∩O) = K− and

Φ(∂Λ ∩ O) = Σ. Exploiting ii), we �nd another open neighborhood N of x and abi-Lipshitz mapping κ, suh that κ(Υ ∩ (∂Λ \ Υ) ∩ N ) = ]−1, 1[. Without loss ofgenerality we may assume κ(x) = 0 ∈ R.Our job is now to ombine the good properties of Φ and κ. In order to do so, we �rstde�ne a smaller neighborhood of x that is ontained in O∩N . Sine Φ(O∩N ) is anopen neighborhood of 0 ∈ R
3, we �nd a number t ∈ ]0, 1[, suh that tK ⊂ Φ(O∩N )and we set X := Φ−1(tK). Clearly, X then is an open neighborhood of x that isontained in O ∩N . Additionally, one has

Φ(Λ ∩ X ) = Φ(Λ) ∩ tK = Φ(Λ ∩O) ∩ tK = K− ∩ tK = tK−and
Φ(∂Λ ∩ X ) = Φ(∂Λ ∩ O) ∩ tK = Σ ∩ tK = ]−t, t[ × ]−t, t[ × {0}.We de�ne P : R

3 → R
2 as the anoni projetion onto the �rst two omponentsand Φ̂ := PΦ with X ∩ ∂Λ as its domain of de�nition. Note that by the aboveonsiderations Φ̂ : X ∩ ∂Λ → ]−t, t[ × ]−t, t[ × {0} is a bi-Lipshitz mapping with

Φ̂(x) = 0 ∈ R
2. Let ]s−, s+[ ⊂ ]−1, 1[ be the maximal interval ontaining 0, suhthat Φ̂κ−1(]s−, s+[) ⊂ ]−t, t[ × ]−t, t[ and denote the set Φ̂κ−1(]s−, s+[) by C. It isnot hard to see, that C is the onneted omponent of Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)), whihontains 0 ∈ R
2 within Φ̂(X ∩ ∂Λ) = ]−t, t[ × ]−t, t[. We laim:

Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)) \ C has a positive distane to 0 ∈ R
2. (5.3)In fat, the elements of Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)) \ C orrespond to numbers from theset ]−1, s−] ∪ [s+, 1[ with respet to the mapping κΦ̂−1. Sine κ is bi-Lipshitz, theimage of this set under κ−1 has a positive distane to x. From this (5.3) follows fromthe bi-Lipshitz property of Φ̂.Let θ be the (bi-Lipshitz) mapping Φ̂κ−1 : ]s−, s+[ → C. We will identify ]s−, s+[ bymeans of the (bi-Lipshitz) embedding R ∋ x 7→ (x, 0) ∈ R

2 with the set ]s−, s+[ ×
{0}. Then by a deep lying theorem of Tukia, f. [53, Thm. B℄, there exists abi-Lipshitz extension of θ whih maps R

2 onto itself that we will denote by Θ.Note that Θ maps ]s−, s+[ × {0} onto C and, in partiular, Θ(0) = 0 ∈ R
2. As

Φ̂(X ∩ ∂Λ) = ]−t, t[ × ]−t, t[ is open in R
2 and due to (5.3) one �nds an ǫ ∈

]0,min{−s−, s+, t}], suh that
[
Φ̂

(
X ∩ Υ ∩ (∂Λ \ Υ)

)
\ C

]
∩ Θ

(
]−ǫ, ǫ[ × ]−ǫ, ǫ[

)
= ∅ (5.4)and simultaneously

Θ
(
]−ǫ, ǫ[ × ]−ǫ, ǫ[

)
⊂ ]−t, t[ × ]−t, t[
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C = Θ (]s_, s+[)
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Figure 3: Φ̂(X ∩ ∂Λ) and Θ−1
(
Φ̂(X ∩ ∂Λ)

)holds, see Figure 3.This ǫ will provide us a suitable neighborhood U of x to omplete our task. In fat,we set Z := Θ
(
]−ǫ, ǫ[ × ]−ǫ, ǫ[

) and U := Φ−1(Z × ]−ǫ, ǫ[). For the bi-Lipshitzmapping Ψ we de�ne �rst the mapping ξ on Z × ]−ǫ, ǫ[ by
ξ(y1, y2, y3) := (Θ−1(y1, y2), y3)and then set Ψ := 1

ǫ
(ξ ◦Φ) on U . Note that Φ(U) is exatly Z × ]−ǫ, ǫ[ by onstru-tion, whih implies that everything is well de�ned. Furthermore, U is obviously aneighborhood of x and sine ξ and Φ are bi-Lipshitz mappings, Ψ is of the samequality.Regarding the desired mapping properties of Ψ, we already see

Ψ(x) = ξ(Φ(x))/ǫ = ξ(0)/ǫ =
(
Θ−1(0, 0), 0

)
/ǫ = 0and

ǫΨ(U) = ξ(Z × ]−ǫ, ǫ[) = Θ−1(Z) × ]−ǫ, ǫ[ = ǫK.Sine U ⊂ O, we get
ǫΨ(U ∩ Λ) = ξ

(
(Z × ]−ǫ, ǫ[) ∩ Φ(Λ ∩ O)

)
= ǫK ∩ ξ(K−)

= ǫK ∩
(
Θ−1(]−1, 1[2) × ]−1, 0[

)
.Observing Θ(]−ǫ, ǫ[× ]−ǫ, ǫ[) ⊂ ]−t, t[× ]−t, t[ ⊂ ]−1, 1[2 and thus ]−ǫ, ǫ[× ]−ǫ, ǫ[ ⊂

Θ−1(]−1, 1[2), this yields
Ψ(U ∩ Λ) = K−. (5.5)For the boundary of Λ we get by analogous onsiderations
Ψ(U ∩ ∂Λ) = Σ, (5.6)



Hölder ontinuity 19so the only thing left to prove is Ψ(U ∩ Υ) = Σ0.First, we fous on the interfae U ∩ Υ ∩ (∂Λ \ Υ) and show that this is mapped tothe line ]−1, 1[ × {0} × {0}, i.e. the boundary of Σ0 in Σ. Then, in a seond step,we will show that Ψ(U ∩Υ) must be exatly one of the half squares Σ0 or −Σ0. We�rst observe
Θ−1

(
Z ∩ Φ̂(X ∩ Υ ∩ (∂Λ \ Υ))

)

= Θ−1
(
Z ∩

[
Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)) \ C

])
∪ Θ−1

(
Z ∩ Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)) ∩ C

)
.Now, the left part of this union is empty thanks to (5.4). Using Z = Θ(]−ǫ, ǫ[ ×

]−ǫ, ǫ[) and C ⊂ Φ̂
(
X ∩ Υ ∩ (∂Λ \ Υ)

), we thus obtain
Θ−1

(
Z ∩ Φ̂(X ∩ Υ ∩ (∂Λ \ Υ))

)
= (]−ǫ, ǫ[ × ]−ǫ, ǫ[) ∩ Θ−1(C)

= (]−ǫ, ǫ[ × ]−ǫ, ǫ[) ∩ (]−ǫ, ǫ[ × {0})
= ]−ǫ, ǫ[ × {0}. (5.7)Having in mind that Φ(X ∩ Υ ∩ (∂Λ \ Υ)) = Φ̂(X ∩ Υ ∩ (∂Λ \ Υ)) × {0} and

U = Φ−1(Z × ]−ǫ, ǫ[), this implies
ǫΨ

(
U ∩ Υ ∩ (∂Λ \ Υ)

)
= ξ

(
Φ

(
X ∩ Υ ∩ (∂Λ \ Υ)

)
∩ Φ(U)

)

= Θ−1
(
Φ̂

(
X ∩ Υ ∩ (∂Λ \ Υ)

)
∩ Z

)
× {0}

= ]−ǫ, ǫ[ × {0} × {0}and thus
Ψ

(
U ∩ Υ ∩ (∂Λ \ Υ)

)
= ]−1, 1[ × {0} × {0}. (5.8)Now, we laim:

(∗) (5.6) and (5.8) imply, that Ψ(U ∩Υ) is either ]−1, 1[× ]−1, 0[×{0} or ]−1, 1[×
]0, 1[ × {0}.Firstly, (5.6) and (5.8) imply that at least one of the two sets in this laim mustontain a point from Ψ(U ∩Υ). Let in this spirit A be any of the two sets ]−1, 1[×

]−1, 0[×{0} or ]−1, 1[×]0, 1[×{0}, whih ontains at least one point from Ψ(U∩Υ).Both the sets Ψ(U∩Υ) and Ψ(U∩(∂Λ\Υ)◦) are open in Ψ(U∩∂Λ) and, onsequently,the � mutually disjoint � sets Ψ(U ∩Υ)∩A and Ψ(U ∩ (∂Λ\Υ)◦)∩A are open in A.Sine by (5.8) no points from Ψ(U ∩Υ ∩ (∂Λ \Υ)) an lie in A, we have, aordingto (5.2) and (5.6), the identity
(Ψ(U ∩ Υ) ∩ A) ∪ (Ψ(U ∩ (∂Λ \ Υ)◦) ∩A) = Ψ(U ∩ ∂Λ) ∩ A = A. (5.9)

A is onneted, therefore (5.9) an only be true if Ψ(U ∩ (∂Λ \ Υ)◦) ∩ A = ∅. Thismeans: if any of the two sets ]−1, 1[× ]−1, 0[×{0} and ]−1, 1[× ]0, 1[×{0} ontains



20 R. Haller-Dintelmann, C. Meyer, J. Rehberga point from Ψ(U ∩ Υ), then it is a subset of Ψ(U ∩ Υ). But then the other annotontain a point from Ψ(U ∩ Υ), beause in this ase it also would be a subset of
Ψ(U ∩Υ), whih annot be true in view of (5.8) and our supposition that ∂Λ \Υ isthe losure of its interior. This proves the laim (∗).Together with (5.5) this gives Ψ(U ∩ (Λ ∪ Υ)) = K− ∪ Σ0 or Ψ(U ∩ (Λ ∪ Υ)) =

K−(∪−Σ0). In the �rst ase we have �nished the proof, in the seond we ompose
Ψ with a re�etion at the x-z-plane to onlude.Corollary 5.5. If Λ ⊂ R

3 is a Lipshitzian polyhedron and Υ∩ (∂Λ \Υ) is a �niteunion of line segments, then Λ ∪ Υ is regular.Remark 5.6. Theorem 5.4 makes preise an old suggestion of Gröger, see [29,Remark 1℄. Unfortunately, the given intrinsi haraterization is restrited to thedimensions 2 and 3, beause there is no analogue of the Tukia theorem in dimensionsabove 2. Nevertheless, the by far most important ases onerning appliations areovered.6 Appliation to semilinear ellipti optimal ontrolproblemsIn the subsequent we will employ the results of the previous setions, in partiularTheorem 3.3, to derive neessary and su�ient optimality onditions for the fol-lowing semilinear ellipti optimal ontrol problem with pointwise state and ontrolonstraints and jumping boundary onditions:
(P)





minimize J(y, u) :=

∫

Ω

L(x, y(x)) dx +

∫

Γ

l(x, y(x), u(x)) dσsubjet to −∇ · a∇y + b(x, y) = f in Ω

∂ny = u on Γ

y = 0 on ∂Ω \ Γand umin(x) ≤ u(x) ≤ umax(x) a.e. on Γ

g(x, y(x)) ≤ 0 for all x ∈ Ω.As already mentioned in the introdution, neessary and su�ient optimality on-ditions for semilinear ellipti ontrol problems have been addressed by numerousauthors before (f. for instane [8, 12, 11℄ and the referenes therein). In partiular,we refer to the reent ontribution of Casas et al. [11℄, where an optimal ontrolproblem is analyzed that is very similar to (P), but does not ontain mixed bound-ary onditions. However, as we will see in the following, with the results of Setion 3at hand, the analysis of [11℄ an easily be adapted to (P).



Hölder ontinuity 21Note that mixed boundary onditions play an important role in various applia-tions. A typial example is the optimal ontrol of an eletri potential in a on-duting material by adjusting the diret urrent induing the potential. In thestationary ase, this problem is modelled by the eletrostati equation, an elliptiPDE with homogeneous Neumann boundary onditions at isolated surfaes, homo-geneous Dirihlet onditions at the anode and inhomogeneous Neumann boundaryonditions at the athode, where the ontrol enters the system (see for instane [17℄).Hene, the arising problem is overed by the general problem (P). We point out thatstate-onstrained optimal ontrol problems with mixed boundary onditions and dis-tributed ontrol an be disussed analogously to the following investgation of (P).However, to keep the disussion onise, we do not onsider distributed ontrolshere.In addition to Assumption 3.2 for the oe�ient funtion a, we require the followingonditions to be satis�ed by the quantities in (P):Assumption 6.1. The domain Ω ⊂ R
d, d ≤ 4, is a bounded Lipshitz domain,

Γ ⊂ ∂Ω is an open part of its boundary and ∂Ω\Γ has positive measure. Moreover,
Ω∪Γ is regular in the sense of Gröger (f. Theorems 5.2 and 5.4 for the two and threedimensional ase). The funtion b : Ω × R → R is twie ontinuously di�erentiablew.r.t. the seond variable and monotone inreasing, i.e., ∂b

∂y
(x, y) ≥ 0 a.e. in Ω.Furthermore, there is an s > d/2 suh that

b(·, 0) ∈ Ls(Ω) and f ∈ Ls(Ω).Moreover, for all M > 0 there is a onstant Cb,M > 0, suh that
∣∣∂b
∂y

(x, y1)
∣∣ +

∣∣∂
2b

∂y2
(x, y1)

∣∣ ≤ Cb,M and
∣∣∂

2b

∂y2
(x, y2) −

∂2b

∂y2
(x, y1)

∣∣ ≤ Cb,M |y2 − y1|for almost all x ∈ Ω and all y1, y2 ∈ R with |y1|, |y2| ≤ M .Assumption 6.2. The funtion l : Γ × R × R → R is a Carathéodory funtion oflass C2 w.r.t. the seond and third variables. In addition, l is onvex w.r.t. thethird variable. Moreover, l(·, 0, 0) ∈ L1(Γ) and for all M > 0 there exist a onstant
Cl,M > 0 and a funtion ψl,M ∈ L2(Γ) with

∣∣ ∂l
∂y

(x, y1, u1)
∣∣ +

∣∣ ∂l
∂u

(x, y1, u1)
∣∣ ≤ ψl,M(x) , |D2

(y,u)l(x, y1, u1)| ≤ Cl,M

|D2
(y,u)l(x, y2, u2) −D2

(y,u)l(x, y1, u1)| ≤ Cl,M (|y2 − y1| + |u2 − u1|)
(6.1)for almost all x ∈ Γ and all |y1|, |y2|, |u1|, |u2| ≤M . Here, D2

(y,u)l denotes the Hessianof l w.r.t. (y, u). Furthermore, L : Ω × R → R ful�lls analogous onditions, i.e. it



22 R. Haller-Dintelmann, C. Meyer, J. Rehbergis of lass C2 w.r.t. the seond variable, L(·, 0, 0) ∈ L1(Ω) and for all M > 0 thereexist CL,M > 0 and ψL,M ∈ L2(Ω) with
∣∣∂L
∂y

(x, y1)
∣∣ ≤ ψL,M(x) , | ∂

2

∂y2
L(x, y1)| ≤ CL,M

| ∂
2

∂y2
L(x, y2) −

∂2

∂y2
L(x, y1)| ≤ CL,M |y2 − y1|

(6.2)for almost all x ∈ Ω and all |y1|, |y2| ≤M .Assumption 6.3. The bounds in the ontrol onstraints satisfy umin, umax ∈ L∞(Γ)with umin(x) < umax(x) a.e. in Ω. Moreover, g : Ω× R → R is ontinuous and twieontinuously di�erentiable w.r.t. the seond variable. In addition, ∂g
∂y

and ∂2g
∂y2 areontinuous on Ω̄ × R, and g(x, 0) < 0 is satis�ed on ∂Ω \ Γ.Note that the last onditions in Assumption 6.3 allow for the existene of a Slaterpoint, whih is essential for the derivation of �rst-order neessary onditions (seeAssumption 6.16 below).6.1 Disussion of the state equationWe start the disussion of (P) with the analysis of the state equation, i.e.

−∇ · a∇y + b(x, y) = f in Ω

∂ny = u on Γ

y = 0 on ∂Ω \ Γ.

(6.3)De�nition 6.4. Let q ∈ [2,∞[ and s, r ∈ R satisfy s > 1 and let r > 1, if d = q = 2,and s ≥ dq/(d + q) and r ≥ (d − 1)q/d, otherwise. Moreover, let ϕ ∈ Ls(Ω) and
ψ ∈ Lr(Γ) be given. Then we denote the elements of W−1,q

Γ (Ω), assoiated to ϕ and
ψ, by ϕ̃ and ψ̃, i.e.
〈ϕ̃ , w〉W−1,q

Γ (Ω) :=

∫

Ω

ϕw dx, 〈ψ̃ , w〉W−1,q
Γ (Ω) :=

∫

Γ

ψ w dσ, w ∈W 1,q′

Γ (Ω). (6.4)Sine embedding and trae theorems guarantee w ∈ Ls
′

(Ω) and τΓw ∈ Lr
′

(Γ), if
w ∈W 1,q′

Γ (Ω), the integrals in (6.4) are �nite and, hene, ϕ̃ and ψ̃ are well de�ned.De�nition 6.5. Suppose that f ∈ Ls(Ω), s > 2d/(d + 2), and u ∈ Lr(Γ), r >

(2d− 2)/d. Then a funtion y ∈ W 1,2
Γ (Ω) ∩ L∞(Ω) is said to be a solution of (6.3),if it ful�lls the operator equation

−∇ · a∇y + b̃(y) = f̃ + ũ in W−1,2
Γ (Ω), (6.5)



Hölder ontinuity 23where f̃ , ũ ∈ W−1,2
Γ (Ω) are de�ned aording to De�nition 6.4 and b̃ : L∞(Ω) →

W−1,2
Γ (Ω) is analogously given by

〈b̃(y) , w〉W−1,2
Γ (Ω) :=

∫

Ω

b(x, y(x))w(x) dx, w ∈W 1,2
Γ (Ω).Note that, due to Assumption 6.1, the Nemyzki operator Φb(y) := b(·, y(·)) is on-tinuous from L∞(Ω) to Ls(Ω), s > 2d/(d+ 2), so b̃ is well de�ned.Theorem 6.6. Let f ∈ Ls(Ω) with s > d/2 and u ∈ Lr(Γ) with r > d − 1.Then, under Assumption 6.1, there exists a unique solution of (6.3) in the sense ofDe�nition 6.5. Moreover, there is an α > 0 suh that this solution belongs to Cα(Ω).Proof. The existene of a unique solution in W 1,2

Γ (Ω) ∩ L∞(Ω) is standard (f. forinstane [8℄ or [1℄ and the referenes therein). For onveniene of the reader, wereall the main arguments. First, one onsiders a modi�ed nonlinearity given by
bk(y) :=





b(k), if y > k,

b(y), if − k ≤ y ≤ k,

b(−k), if y < −k,with some k > 0. For a nonlinearity of this form, Browder and Minty's theoremfor monotone operators immediately implies the existene of a unique solution in
W 1,2

Γ (Ω). Then a lassial argument in the spirit of Stampahia [50℄ yields
‖y‖L∞(Ω) ≤ c∞

(
‖f‖Ls(Ω) + ‖u‖Lr(Γ) + 1

)with a onstant c∞ independent of f and k. It is easily veri�ed that the mixedboundary onditions do not in�uene the analysis in [50℄.Hene, if we hoose k ≥ ‖y‖L∞(Ω), then the solution of the trunated problemoinides with the one of (6.3). It remains to verify the Hölder ontinuity of y,whih follows from Theorem 3.3 together with a lassial bootstrapping argument.To see this, rewrite (6.5) as
(−∇ · a∇ + 1)y = g (6.6)with g := f̃ + ũ− b̃(y)+ ỹ and ỹ aording to De�nition 6.4. Due to f, b(y) ∈ Ls(Ω),

s > d/2, u ∈ Lr(Γ), r > d − 1, and y ∈ L∞(Ω), Sobolev embedding theorems givethat g ∈W−1,q
Γ (Ω) for a q > d. Therefore, Theorem 3.3 implies y ∈ Cα(Ω).De�nition 6.7. For the rest of this setion, let s > d/2 and r > d − 1 be �xed,but arbitrary. Moreover, f is a �xed inhomogeneity in Ls(Ω) (f. Assumption 6.1).Based on Theorem 6.6, we introdue the ontrol-to-state operator S : Lr(Γ) →

W 1,2
Γ (Ω) ∩ Cα(Ω), mapping u to the solution of (6.3).



24 R. Haller-Dintelmann, C. Meyer, J. RehbergLemma 6.8. Suppose that there is a sequene {uk} onverging weakly to u in Lr(Γ).Then S(uk) → S(u) in W 1,2
Γ (Ω) ∩ Cα(Ω).Proof. With Theorem 3.3 at hand, the arguments are standard (f. for instane [11℄).Nevertheless, let us reall the basi ideas. In all what follows we use the notation

yk := S(uk) and y := S(u). The weak onvergene of {uk} implies the uniformboundedness of this sequene in Lr(Γ) giving in turn that {yk} is uniformly boundedin C(Ω). Hene, {yk} and {Φb(yk)}, with Φb as de�ned above, onverge weakly in
Ls(Ω) with s > d/2, to some zy and zΦ, respetively. Now de�ne the sequene
{gk} in W−1,q

Γ (Ω) by gk := f̃ + ũk − b̃(yk) + ỹk. Due to the ompat embedding
Ls(Ω) →֒ W−1,q

Γ (Ω) and the ompatness of the trae operator τΓ : W 1,q′

Γ (Ω) →
Lr′(Γ), weak onvergenes of {uk}, {yk}, and {Φb(yk)} imply strong onvergene of
{gk} inW−1,q

Γ (Ω) to g := f̃ + ũ− z̃Φ + z̃y, where z̃Φ and z̃y again denote the elementsin W−1,q
Γ (Ω) assoiated to zΦ and zy, respetively. Now onsider again the auxiliaryequation (6.6) with gk as inhomogeneity. Theorem 3.3 then implies

yk → η := (−∇ · a∇ + 1)−1g in W 1,2
Γ (Ω) ∩ Cα(Ω).This in partiular guarantees yk → η in L∞(Ω) and, hene, Φb(yk) → Φb(η) in Ls(Ω),

s > d/2, as well as ỹk → η̃ and b̃(yk) → b̃(η) in W−1,q
Γ (Ω). Consequently, η is thesolution of (6.3) assoiated to u, whih implies yk → y in W 1,2

Γ (Ω) ∩ Cα(Ω).Now, we turn to the linearized version of (6.3). Given a ȳ ∈ L∞(Ω), the linearizedstate equation reads as
−∇ · a∇y + b̃′(ȳ)y = h̃ in W−1,2

Γ (Ω), (6.7)where h̃ ∈W−1,2
Γ (Ω) and b̃′(ȳ) : W 1,2

Γ (Ω) →W−1,2
Γ (Ω) is de�ned by

〈b̃′(ȳ)y , w〉W−1,2
Γ (Ω) :=

∫

Ω

∂b

∂y
(x, ȳ(x))y(x)w(x) dx, w ∈W 1,2

Γ (Ω).Note that Assumption 6.1 implies ∂b
∂y

(x, ȳ(x)) ∈ L∞(Ω) and that, due to the mono-toniity of b, ∂b
∂y

(x, ȳ(x)) ≥ 0 holds true a.e. in Ω. Hene, an immediate onsequeneof Corollary 3.6 is the followingLemma 6.9. Let ȳ ∈ L∞(Ω) be given. For every h̃ ∈ W−1,2
Γ (Ω) there is a uniquesolution y ∈ W 1,2

Γ (Ω) of (6.7). Furthermore, if h̃ ∈ W−1,q
Γ (Ω) for some q > d, then

y ∈ W 1,2
Γ (Ω) ∩ Cα(Ω) for some α > 0.In view of Assumption 6.1, the Nemyzki operator Φb(y) = b(·, y(·)) learly is twieontinuously Fréhet di�erentiable in L∞(Ω). Thus, together with Lemma 6.9, theimpliit funtion theorem implies the following result (for a detailed proof see forinstane [10℄).



Hölder ontinuity 25Theorem 6.10. Under Assumption 6.1 the ontrol-to-state operator S is twie on-tinuously Fréhet di�erentiable from Lr(Γ) to W 1,2
Γ (Ω) ∩ Cα(Ω). Its �rst derivativeat ū ∈ Lr(Γ) in diretion h ∈ Lr(Γ) solves

−∇ · a∇y + b̃′(ȳ)y = h̃ in W−1,2
Γ (Ω), (6.8)where ȳ = S(ū) and h̃ denotes the element ofW−1,2

Γ (Ω) assoiated to h. Furthermore,
η = S ′′(ū)[h1, h2], hi ∈ Lr(Γ), i = 1, 2, is the solution of

−∇ · a∇η + b̃′(ȳ)η = −b̃′′(ȳ)y1y2 in W−1,2
Γ (Ω) (6.9)with yi = S ′(ū)hi, i = 1, 2, i.e. the solution of (6.8), and

〈b̃′′(ȳ)y1y2 , w〉W−1,2
Γ (Ω) :=

∫

Ω

∂2b

∂y2
(x, ȳ(x))y1(x)y2(x)w(x) dx, w ∈W 1,2

Γ (Ω).Note that, due to hi ∈ Lr(Γ), i = 1, 2, Lemma 6.9 yields yi ∈ L∞(Ω). In addition,Assumption 6.1 implies ∂2b
∂y2 (·, ȳ(·)) ∈ Ls(Ω), so b̃′′(ȳ)y1y2 is well de�ned.6.2 An adjoint equation involving measuresIt is well known that the Lagrange multipliers assoiated to pointwise state on-straints are in general only regular Borel measures, whih appear as inhomogeneityin the adjoint equation (f. for instane [8℄). Before we are in the position to dis-uss suh an equation, the set Dq, introdued in Corollary 3.7, has to be investi-gated in more detail. Reall that Dq denotes the domain of the maximal restritionof −∇ · a∇ + 1 to W−1,q

Γ (Ω). Throughout this setion we use the abbreviation
AV := −∇ · a∇ + V , where V ∈ L∞(Ω) denotes a given, non-negative funtion.Sine |∂Ω \ Γ| > 0 by Assumption 6.1, AV : Dq → W−1,q

Γ (Ω) is ontinuously invert-ible.Lemma 6.11. The spae (
Dq, ‖ . ‖Dq

:= ‖ − ∇ · a∇ . + . ‖W−1,q
Γ (Ω)

) is a Banahspae. Moreover, W 1,q
Γ (Ω) is dense in Dq.Proof. Clearly, sine A1 = −∇ · a∇ + 1 is linear and injetive, ‖ . ‖Dq

indeed rep-resents a norm on Dq and is equivalent to the graph norm on Dq. Moreover, theompleteness of Dq follows from the losedness of A1 : Dq → W−1,q
Γ (Ω), whihholds sine A1 is ontinuously invertible by Corollary 3.6. In order to show thedensity of W 1,q

Γ (Ω), onsider the restrition of A1 to funtions in W 1,q
Γ (Ω), denotedby Ã1 : W 1,q

Γ (Ω) → W−1,q
Γ (Ω). Due to the ontinuous invertibility of A1, the spae

W 1,q
Γ (Ω) is dense in Dq, if R(Ã1) is dense in W−1,q

Γ (Ω), where R(Ã1) denotes the
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1)

⊥, R(Ã1) is dense in W−1,q
Γ (Ω), i� ker(Ã∗

1) = 0,where Ã∗
1 is de�ned by

〈Ã∗
1 v, w〉W−1,q′

Γ

:=

∫

Ω

(a⊤∇v · ∇w + vw) dx , v ∈W 1,q′

Γ (Ω), w ∈W 1,q
Γ (Ω).Clearly, Ã∗

1 is injetive due to the oerivity of the assoiated bilinear form, givingin turn the assertion.Next, let us onsider the following PDE
−∇ · a⊤ ∇p+ V p = µΩ in Ω

∂np = µΓ on Γ

p = 0 on ∂Ω \ Γ,

(6.10)where Ω and a are supposed to ful�ll the assumptions of Theorem 3.3. Moreover, Vis a �xed, but arbitrary non-negative funtion in L∞(Ω). Furthermore, the inhomo-geneity µ is given in M(Ω) whih is the spae of regular Borel measures that anbe identi�ed with the dual of C(Ω) by means of the Riesz representation theorem.Moreover, µΩ and µΓ denote the restritions of µ to Ω and Γ, respetively. In viewof formal integration by parts, we de�ne solutions to (6.10) as follows.De�nition 6.12. A funtion p ∈W 1,q′

Γ (Ω), q′ = q/(q− 1) < d/(d− 1), is said to bea solution of (6.10), if the equation
∫

Ω

(a⊤∇p · ∇w + V pw) dx = 〈µ , w〉M(Ω) ∀w ∈W 1,q
Γ (Ω) (6.11)is satis�ed.Lemma 6.13. Let V ∈ L∞(Ω), V (x) ≥ 0 a.e. in Ω and µ ∈ M(Ω) be given. Thenthere is a unique solution to (6.10) in the sense of De�nition 6.12. This solutionsatis�es

‖p‖
W 1,q′

Γ (Ω)
≤ γ ‖µ‖M(Ω)with a onstant γ > 0 independent of µ.Proof. The variational formulation (6.11) is equivalent to

〈Ã∗
V p , w〉W−1,q′

Γ (Ω)
= 〈p , ÃV w〉W 1,q′

Γ (Ω)
= 〈µ , w〉M(Ω) ∀w ∈W 1,q

Γ (Ω), (6.12)where, as above, ÃV : W 1,q
Γ (Ω) → W−1,q

Γ (Ω) denotes the restrition of AV toW 1,q
Γ (Ω).Sine W 1,q

Γ (Ω) is dense in Dq by Lemma 6.11, we see that (6.12) is equivalent to
〈p , AV w〉W 1,q′

Γ (Ω)
= 〈µ , w〉M(Ω) ∀w ∈ Dq ⇔ A∗

V p = µ̂ in D∗
q .



Hölder ontinuity 27Here, D∗
q denotes the dual to Dq. Moreover, µ̂ is the element in D∗

q assoiated to
µ ∈ M(Ω) by

〈µ̂ , w〉D∗
q

= 〈µ , w〉M(Ω) =

∫

Ω

w(x) dµ ∀w ∈ Dq,whih is well de�ned due to Dq →֒ C(Ω) by Theorem 3.3. Now, Corollary 3.6guarantees (A∗
V )−1 ∈ B(D∗

q ,W
1,q′

Γ (Ω)). Hene, due to the equivalene of A∗
V p = µ̂to (6.11), there is a unique solution in the sense of the above de�nition and it holds

‖p‖
W 1,q′

Γ (Ω)
≤ ‖(AV )−1‖B(W−1,q

Γ (Ω),Dq) ‖µ̂‖D∗
q

≤ γ sup
w∈Dq

w 6=0

|〈µ̂ , w〉Dq
|

‖w‖Dq

≤ γ sup
w∈C(Ω)

w 6=0

|〈µ , w〉M(Ω)|
‖w‖C(Ω)

= γ ‖µ‖M(Ω),whih gives the assertion.6.3 Neessary and su�ient optimality onditionsWith the above results, the analysis of this setion is along the lines of [11℄. Hene,we shorten the desription, if the arguments are analogous to the ones in [11℄. First,let us introdue the redued objetive funtional j : L∞(Γ) → R and the Lagrangefuntion L : L∞(Γ) ×M(Ω) → R by
j(u) := J(S(u), u) =

∫

Ω

L(x, S(u)(x)) dx +

∫

Γ

l(x, S(u)(x), u(x)) dσ, (6.13)
L(u, µ) := j(u) +

∫

Ω

g(x, S(u)(x))dµ. (6.14)Lemma 6.14. Let µ ∈ M(Ω) be arbitrary. Then the Lagrange funtion is twieontinuously Fréhet di�erentiable w.r.t. u from L∞(Γ) to R. If µ∂Ω\Γ = 0, then its�rst partial derivative at ū in diretion h ∈ L∞(Γ) is given by
∂L
∂u

(ū, µ)h =

∫

Γ

[ ∂l
∂u

(x, ȳ(x), ū(x)) + p(x)
]
h(x) dσ, (6.15)where ȳ = S(ū) and p ∈W 1,q′

Γ (Ω) solves
−∇ · a⊤ ∇p+

∂b

∂y
(ȳ)p =

∂L

∂y
(ȳ) +

∂g

∂y
(ȳ)µΩ in Ω

∂np =
∂l

∂y
(ȳ, ū) +

∂g

∂y
(ȳ)µΓ on Γ (6.16)

p = 0 on ∂Ω \ Γ



28 R. Haller-Dintelmann, C. Meyer, J. Rehbergin the sense of De�nition 6.12. Moreover, the seond derivative of L at ū in dire-tions h1, h2 ∈ L∞(Γ) is given by
∂2L
∂u2

(ū, µ)h1h2 =

∫

Ω

[∂2L

∂y2
(x, ȳ, ū)y1y2 − p

∂2b

∂y2
(x, ȳ)y1y2

]
dx (6.17)

+

∫

Γ

[ ∂2l

∂y2
(x, ȳ, ū)y1y2 +

∂2l

∂y∂u
(x, ȳ, ū)(y1h2 + y2h1)

+
∂2l

∂u2
(x, ȳ, ū)h1h2

]
dσ +

∫

Ω

∂2g

∂y2
(x, ȳ, ū)y1y2 dµwith yi = S ′(ū)hi, i = 1, 2.Proof. The arguments are standard (f. [10℄). Nevertheless, we shortly desribe thederivation of (6.15) to see how the assoiated theory is in�uened by the analysis ofthe adjoint equation as arried out in Setion 6.2. The di�erentiability of L is animmediate onsequene of Assumptions 6.1�6.3 and Theorem 6.10. Conerning theexpliit form of ∂L

∂u
, the hain rule yields

∂L
∂u

(ū, µ)h =

∫

Ω

∂L

∂y
(ȳ, ū)y dx

+

∫

Γ

( ∂l
∂y

(ȳ, ū)y +
∂l

∂u
(ȳ, ū)h

)
dσ + 〈µ , ∂g

∂y
(ȳ)y〉M(Ω)

(6.18)
with ȳ = S(ū) and y = ∂S

∂u
(ū)h, i.e. y ∈ Dq solves Ab′(ȳ) y = −∇ · a∇y + b̃′(ȳ)y = h̃in W−1,q

Γ (Ω). Aording to the analysis of Setion 6.2, the variational formulationof (6.16) is equivalent to
〈A∗

b′(ȳ) p , v〉D∗
q

=

∫

Ω

∂L

∂y
(ȳ, ū)v dx +

∫

Γ

∂l

∂y
(ȳ, ū)v dσ + 〈µ , ∂g

∂y
(ȳ)v〉M(Ω) ∀ v ∈ Dq(f. the proof of Lemma 6.13). Choosing v = y as test funtion yields

∫

Ω

∂L

∂y
(ȳ, ū)y dx +

∫

Γ

∂l

∂y
(ȳ, ū)y dσ + 〈µ , ∂g

∂y
(ȳ)y〉M(Ω)

= 〈A∗
b′(ȳ) p , y〉D∗

q
= 〈Ab′(ȳ) y , p〉W−1,q

Γ (Ω) = 〈h̃ , p〉W−1,q
Γ (Ω) =

∫

Γ

h p dσ.Inserting this into (6.18) gives (6.15). Finally, (6.17) follows from an analogousargument.



Hölder ontinuity 29De�nition 6.15. A funtion u ∈ L∞(Γ) is alled feasible for (P), if it ful�lls
umin(x) ≤ u(x) ≤ umax(x) a.e. on Γ

g(x, S(u)(x)) ≤ 0 for all x ∈ Ω.Under Assumptions 6.1�6.3 there is at least one (global) solution of (P), providedthat a feasible funtion exists (see [9, Thm. 8℄ for the proof).Let us now turn to neessary optimality onditions for (P). It is well known that er-tain onstraint quali�ations are required to disuss pointwise inequality onstraintson the state as they our in (P). Here, we rely on the following linearized Slaterondition.De�nition 6.16. Let ū ∈ L∞(Γ) be feasible for (P). We say that the linearizedSlater ondition is ful�lled at ū, if there exists a funtion û ∈ L∞(Γ), suh that
umin(x) ≤ û(x) ≤ umax(x) a.e. on Γ, (6.19)

g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))y(x) < 0 for all x ∈ Ω, (6.20)where ȳ = S(ū) and ŷ = S ′(ū)(û− ū).Note that, due to ŷ|∂Ω\Γ = 0, (6.20) yields g(x, ȳ(x)) = g(x, 0) < 0 for all x ∈ ∂Ω \Γwhih is guaranteed by Assumption 6.3. With the existene and regularity resultsfor the state and the adjoint equation obtained before, the theory of �rst-orderneessary onditions for (P) is standard. For the orresponding theorem, we de�nethe Hamiltonian assoiated to (P), denoted by H : Γ × R × R × R → R:

H(x, y, u, p) := l(x, y, u) + p (u− b(x, y)).The de�nition of H allows to formulate the �rst-order neessary onditions in formof Pontryagin's priniple. For the orresponding proof we refer to [7℄.Theorem 6.17. Suppose that ū ∈ L∞(Γ) is a loal solution of (P) in the topology of
L∞(Γ), i.e., j(ū) ≤ j(u) for all feasible u with ‖u−ū‖L∞(Γ) ≤ ε. Furthermore, denotethe state assoiated to ū by ȳ ∈ W 1,2

Γ (Ω) ∩ Cα(Ω). Moreover, let Assumptions 6.1�6.3 hold and let the linearized Slater ondition be satis�ed at ū. Then there exista funtion p ∈ W 1,q′

Γ (Ω) and a Borel measure µ ∈ M(Ω), suh that the adjointequation (6.16) is ful�lled in the sense of De�nition 6.12 and it holds
∫

Ω

(v(x) − g(x, ȳ(x)))dµ(x) ≤ 0 for all v ∈ C(Ω) with v(x) ≤ 0 ∀x ∈ Ω (6.21)
H(x, ȳ(x), ū(x), p(x)) = min

t∈Uad(x,ū(x))
H(x, ȳ(x), t, p(x)) a.e. on Γ, (6.22)where Uad(x, ū(x)) := [max{umin(x), ū(x) − ε},min{umax(x), ū(x) + ε}].



30 R. Haller-Dintelmann, C. Meyer, J. RehbergIn [8℄, it is shown that the Lagrange multiplier assoiated to the state onstraints isonentrated in the Borel set {x ∈ Ω : g(x, ȳ(x)) = 0}, suh that µ∂Ω\Γ = 0 sine
g(x, 0) < 0 on ∂Ω \ Γ aording to Assumption 6.3. Hene, we obtain homogeneousDirihlet boundary onditions on ∂Ω \ Γ also in the adjoint equation (6.16). The�rst-order neessary onditions in Theorem 6.17 an also be formulated in terms ofthe Lagrangian (see [11℄ for details).In all what follows, let ū again be a �xed loal optimum with assoiated state ȳ,adjoint state p, and Lagrange multiplier µ suh that (6.21) and (6.22) are ful�lled.For the statement of seond-order su�ient onditions aounting for strongly ativesets, we have to restrit to the two dimensional ase, sine the underlying analysisheavily relies on the assumption that S : L2(Ω) → C(Ω) (see [11, Setions 4 and6.3℄). In view of Theorem 6.6, this is not ful�lled in the three and four dimensionalase. We start with the de�nition of the ritial one assoiated to ū:

C(ū) := {h ∈ L2(Γ) : h satis�es onditions (a), (b), and ()},where
h(x)





≥ 0, if ū(x) = umin(x),

≤ 0, if ū(x) = umax(x),

= 0, if ∂H
∂u

(x, ȳ(x), ū(x), p(x)) = 0,

(a)
∂g

∂y
(x, ȳ(x))y(x) ≤ 0, if g(x, ȳ(x)) = 0, (b)

∫

Ω

∂g

∂y
(x, ȳ(x))y(x)dµ(x) = 0 ()and y = S ′(ū)h. Note that y ∈ C(Ω) in the two dimensional ase. Moreover, thederivative of the Hamiltonian is given by ∂H

∂u
(x, ȳ, ū, p) = ∂l

∂u
(x, ȳ, ū) + p.Now, we are in the position to state the seond-order su�ient onditions for (P).With the above results, in partiular Lemma 6.8, the orresponding proof is om-pletely analogous to the one presented in [11℄.Theorem 6.18. Let d = 2, let Assumptions 6.1�6.3 be satis�ed and suppose that

ū ∈ L∞(Γ) with assoiated state ȳ ∈ W 1,2
Γ (Ω) ∩Cα(Ω) is feasible for (P). Moreover,let p ∈ W 1,q′

Γ (Ω) and µ ∈ M(Ω) exist suh that (6.16), (6.21), and (6.22) aresatis�ed. In addition, it is assumed that there are two onstants ω, τ > 0 with
∂2l

∂u2
(x, ȳ(x), ū(x)) ≥ ω if ∣∣∣∂H

∂u
(x, ȳ(x), ū(x), p(x))

∣∣∣ ≤ τ, a.e. on Γ (6.23)
∂2L
∂u2

(ū, µ)h2 > 0 for all h ∈ C(ū) \ {0}. (6.24)



Hölder ontinuity 31Then there exist ε, δ > 0, suh that
j(u) ≥ j(ū) +

δ

2
‖u− ū‖2

L2(Γ)for all feasible u ∈ L∞(Γ) with ‖u− ū‖L∞(Γ) < ε.Note that, aording to Lemma 6.14, L is only ontinuously di�erentiable from
L∞(Γ) to R. However, it is straightforward to see that Assumptions 6.1�6.3 ensurethat ∂L

∂u
and ∂2L

∂u2 an be extended from L∞(Γ) to L2(Γ) using (6.15) and (6.17). Thisextension is also used in (6.24). Note further that the su�ient onditions (6.23) and(6.24) are natural in the sense that they are omparatively lose to the neessaryoptimality onditions (see [11, Remark 4.2℄ for details).Remark 6.19. We point out that the seond-order analysis an be extended to thethree dimensional ase if distributed ontrols are applied instead of boundary ontrol,sine L2(Ω) →֒ W−1,q
Γ (Ω) and thus ontinuous states are obtained with ontrols in
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