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HOLDER CONTINUITY

Abstract

The well known De Giorgi result on Holder continuity for solutions of the
Dirichlet problem is re-established for mixed boundary value problems, pro-
vided that the underlying domain is a Lipschitz domain and the border be-
tween the Dirichlet and the Neumann boundary part satisfies a very general
geometric condition. Implications of this result for optimal control theory are
presented.
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1 Introduction

In the last decades it has been anticipated in applied analysis that many elliptic
problems originating from science, engineering, and technology possess nonsmooth
data. This means that they often live on nonsmooth domains, the coefficients are
nonsmooth and, thirdly, they often exhibit mixed boundary conditions, see [3], [43]
and the references cited therein, see also |45] and [22|. In this paper we prove the
Hélder continuity for the solution u of

d
j=1

where ¢ is larger than the space dimension, and mixed boundary conditions are
incorporated, see Theorem 3.3. The result is to be seen in the tradition of Stampac-
chia’s paper [49] (see also [40, 41]), where Holder continuity already was achieved
for mixed boundary value problems, but under rather technical conditions — difficult
to verify in applications. Here, we generalize the Stampacchia result in space di-
mensions d = 2,3 and 4 to Lipschitz domains, provided that the Dirichlet boundary
part satisfies a very general compatibility condition purely topological in nature
and easy to check at least for d = 2, 3, see Theorem 5.2 and Theorem 5.4 below.
Note that the admissible distributional right hand sides in (1.1) allow for jumps
in the conormal derivative of solutions across internal interfaces. This means,
e.g. in electrostatics, that the jump in the normal component of the displacement
vy -eVyp —rv_-eVp across a prescribed interface equals the surface charge density
on the interface, and this surface charge density is represented by a distribution on
the underlying domain €.

Divergence type operators as in (1.1) are of fundamental significance in many ap-
plication areas. This is the case not only in mechanics (see |38, Ch. IV/V]), ther-
modynamics (see [48]) and electrodynamics (see [47]) of heterogeneous media, but
also in mining, multiphase flow, mathematical biology (see [20, 6]) and semicon-
ductor device simulation (see [45, 22, 24|), in particular quantum electronics (see
155, 5, 36, 54, 39]).

The non-homogeneous coefficient function p represents varying material properties
as the context requires. It may be thermal conductivity in a heat equation (see |48,
§21|) or dielectric permittivity in a Poisson equation, or diffusivity in a transport
equation (see for instance [45, §2.2] for carrier continuity equations) or effective
electron mass in a Schrodinger equation (see [36]).

Continuity of solutions to (1.1) plays an important role for the discussion of state-
constrained optimal control problems (see for instance [8]). Hence it is rather natu-
ral to use the above mentioned result for the discussion of semilinear elliptic control
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problems with pointwise inequality constraints on the state, which is done here in
a very general setting. Such problems have been discussed by numerous authors
before (see for instance [8, 1, 12| and the references therein). Concerning second-
order sufficient optimality conditions, some progress has recently been made in a
contribution of Casas et. al [11|. Here we show that, based on the regularity results
of Theorem 3.3, the analysis, developed in [11], is also applicable to problems with
mixed boundary conditions, which are not considered in [11]. Thus the consideration
of mixed boundary conditions for semilinear elliptic state-constrained optimal con-
trol problems represents the genuine contribution of this paper from the viewpoint
of optimal control theory.

The outline of the paper is as follows: first we introduce some notation. In Section 3
we formulate our regularity result, which is proved in Section 4. In Section 5 we
give an alternative characterization for Groger’s regular sets, which represent the
geometric setting for the domains under consideration and the associated Dirichlet
boundary parts, in the 2d and 3d case. Finally, the relevance of the Holder property
for the discussion of semilinear elliptic optimal control problems with pointwise state
constraints is pointed out in Section 6.

2 Notation

Throughout this paper,  C R? always denotes a bounded Lipschitz domain (see
|31, Ch. 1.2| for the definition) and I' C 09 is an open part of its boundary. In
particular, we often use the cube K := {x € R? : —1 < x; < 1for 1 < j < d}, the
half cube K_ := {x € K : z4 < 0}, its upper plate ¥ := {x € K : z4 = 0} and,
lastly, the half of this, ¥y := {x € ¥ : 241 < 0}. The symbol C'*(2) stands for the
usual Holder space on €, see [35] or [51]. W1P(Q) denotes the Sobolev space on
consisting of those LP(2) functions whose first order distributional derivatives also
belong to LP(€) (see |31] or [42]). We use the symbol WP (Q) for the closure of

{vlg : v e C>®(R%), supp v N (0Q\T) = 0}

in W1P(Q). Note that Q enjoys the extension property for WH?(£2) in view of being
a bounded Lipschitz domain, see |23, Thm. 3.10| or [42, Ch. 1.1.16|. Thus, in case
of T' = 99 the space WAP(Q) is identical with the usual Sobolev space W'?(€). If
' = () we write as usual W,”(Q) instead of le’p(Q). W;l’p,(ﬂ) denotes the dual to
WEP(Q) and W#(Q) denotes the dual to Wy?(Q2), when 1 + L = 1 holds. If ©
is understood, then we sometimes abbreviate lech, Wol’p and W~=1P respectively.
Please notice that all functional spaces under consideration are regarded as complex
ones. By (-,-)x we indicate the duality between a Banach space X and its dual.

Finally, v denotes a generic constant not always of the same numerical value.
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3 The regularity result

Definition 3.1. Let A C R? be a bounded domain and T a (relatively) open part
of its boundary 0A. Then we call AUTY regular (in the sense of Groger [29]), if for
every x € OA there are two open sets Uy, Vi C R? and a bi-Lipschitz transform W,
from U, onto Vy, such that x € Uy, ¥, (x) = 0 and Uy (L{X N(AU T)) either coincides
with K_ or with K_ U X or with K_ U X.

Assumption 3.2. Let p be a Lebesgue measurable, essentially bounded function
on (), taking its values in the set of real d x d matrices, that additionally satisfies
the usual (strong) ellipticity condition

y- p(X)y Z L|Y|2> y € Rd? (31)

for almost all x € € and some ¢ > 0.

Given a coefficient function p, satisfying this assumption, we define the operator

V- pV +1:Wr3Q) — Wi %(Q) by

(=V - pVu+o, w>w;1,2 = /(va Vw +ow) dx, v, w € WH(9Q). (3.2)
0

Then our first main result reads as follows.

Theorem 3.3. Suppose 2 < d < 4 and q > d. Suppose further that Q U T is
reqular and that Assumption 3.2 is satisfied. Then there is an a > 0, such that
(=V - pV + 1)~ maps Wy "4(Q) continuously into C*(£2).

Remark 3.4. a) The cases I' = () (Dirichlet boundary condition) and T' = 9
(Neumann boundary condition) are explicitly allowed.
b) It is not hard to see that the right hand side of (1.1) defines an element of

Wi (). Conversely, any element from Wy "(Q) may be represented this way, see
|56, Ch. 4.3].

Corollary 3.5. The result of Theorem 3.3 carries over to problems with Robin
boundary conditions on T, if the representing function s is from L>®(T', o) (o being
the induced boundary measure on I, cf. [33, Section 3]).

Corollary 3.6. Let a non-negative function V- € L*(Q) be given. Moreover, assume
that, if meas(02\T") = 0, then there is a subset Q. of Q of positive measure, where
V' is strictly positive. Then, similarly to Corollary 3.5, Theorem 3.3 also applies to
problems of the form —V - pVv+ Vv =f, f € Wr_l’q(Q).

Corollary 3.7. Let D, denote the domain of the mazimal restriction of =V -pV +1
to the space Wr_l’q(Q). Then, under the suppositions of Theorem 3.3, even the

complex interpolation space [Dq,Wr_l’q]T continuously embeds into a Hélder space
CP(Q), if T and 3 are sufficiently close to 0.
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Remark 3.8. Corollary 3.7 may be of use for the treatment of parabolic equations,
see [46, 2, 44].

4 Proof of the regularity result

Let us start by commenting on the philosophy of the proof: the problem will be
localized by means of a suitably chosen partition of unity, afterwards transformed
by bi-Lipschitz mappings and, if necessary, by reflection. In any case one ends up
with a Dirichlet problem on either a ball, the half cube K_ or the cube K. Then a
well known regularity result (see Proposition 4.3) may be applied.

In order to perform this procedure we first quote two results from the literature and
afterwards establish some auxiliary results, which will justify the required technical
steps.

4.1 Known results

Proposition 4.1 ([30], see also [29]). Suppose that p satisfies Assumption 3.2. If
QUT is regular, then there is a qo > 2 such that for all ¢ € [2,qo[ the operator
—V - pV + 1 provides a topological isomorphism between W(Q) and Wy (€).
Remark 4.2. It is clear by Sobolev embedding that in the two dimensional case
the assertion of Theorem 3.3 already follows from Proposition 4.1.

Proposition 4.3 (see |37, Ch. II1.14], |35, Thm. C.2|, [13, Ch. 4], see also |15]). Let
A be a ball or a cuboid and let the coefficient function w (mutatis mutandis) satisfy
Assumption 3.2. If ¢ > d, then there is an « > 0, such that

(~V-wV) " WTN(A) — C(A) (4.1)
18 continuous.

Remark 4.4. Usually, Proposition 4.3 is proved only for real spaces, but it is
straightforward to extend this to the complex case: one considers for any element

T of the complex Sobolev space Wr_l’q the linear forms TET* and ng.T*, where T™

is defined by 7™y := ﬁ Obviously, both take real values when applied to real
T+T*
2

corresponding real spaces.

functions and satisfy + z% = T. Thus, one may use the result for the

4.2 Auxiliary Results

Lemma 4.5. Let QUT be reqular and let U C R be open, such that Qs :== QNU
s also a Lipschitz domain. Furthermore, we put I'y := ' NU and fix an arbitrary
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function n € CP(RY) with suppn C U. Then for any q € [1,00] we have the
following assertions.

i) If v € Wr(Q), then nula, € WE(QW).

ii) Let for any v € L*(Q) the symbol © indicate the extension of v to Q0 by zero.
Then the mapping
WAH(QL) 3 0 70

L . 1 . .
has its image in Wp'*(Q) and is continuous.

Proof. For the proof of both points we will employ the following well known set
inclusion (cf. [16, Ch. 3.8]):

OQNU)U(QNaU) C 00, C (IQNU) U (QN ). (4.2)
i) First one observes that the multiplication with 7 and the restriction is a con-

tinuous mapping from Wyr%(Q) into Wh9(Q,). Thus, it suffices to show the
assertion only for elements of the dense subset

{vlo : ve C™®RY), suppv N (IQ\T) =0},
what we will do now. One has by (4.2)
supp(7v) N (82 \ Ta) C suppy N suppv N [((fm NU)U@Nau))\ (TN u)} .
Since (2N aU) N (T NU) = (), we see

(anU)yu@nau)) \ (TnU) = ((QnU)\ T nU)) U ((Qnau)\ (T'NU))
= ((0Q\T)NU) U QN ).

This, together with suppn C U yields

supp(nv) N (0% \ Ts) C suppy Nsuppv N ((0Q\ ) NU) = 0.

ii) Let v € Cg°(R?) with suppv N (992, \ I'y) = 0. Since by the right hand side of
(4.2) we have

IWN\Te D2 (OQNU)\Te =UN(OQ\T),

it follows suppv N (L{ N (092 \ F)) = (). Combining this with suppn C U, we
obtain
supp(nv) N (OQ\T) = supp(nv) N (U N (0Q\T) =0,

so nulg € Wr(Q). Furthermore, it is not hard to see that Invllwieq) <
Yllvllwrag,), where the constant -, is independent from v. Thus, the assertion
follows, since {v]g, : v € C(RY), supp(v) N (92 \ T's) = 0} is dense in
Wr(Q,) and WH(Q) is closed in W4(Q). O
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Lemma 4.6. Let ), I', U, n, Qs and I'y be as in the foregoing lemma. Denote by
pe the restriction of the coefficient function p to Qe and let the operator —V - paV :
WI}_z(Q.) — Wil’z(Q.) be defined analogously to (3.2). Assume v € W?(Q) to be
the solution of

V- pVutuv=fecW. Q). (4.3)
Then the following holds true.
i) For all g € |1,00][ the linear form

f' F W <.fa %)W;l’z(gy

where nw again means the extension by zero to the whole Q, is well defined
and continuous on W (Q), whenever f € Wi (Q).

ii) If we denote the linear form

eriz(Q.) Sw— /vp.Vn - Vw dx,
Qe

by T, then u := nvl|q, satisfies

=V peVu = —nula, — peVvla, - Vo, + T, + fo =t f°. (4.4)

iii) Assume now 2 < d < 4. If f € W{l’q(Q) for a q > d, then there is a p > d
such that f* € Wr_.l’p(Q.). Moreover, the mapping Wi (Q) > f — f* €
W "P(Q) s continuous.

Proof. i) The mapping f — f, is the adjoint to v — nv, which maps by the
preceding lemma erlql(Q.) continuously into WI}’q/(Q).

ii) For every w € WI}?(Q.) we have

(=V - peVu, w>W;1,2(Q.) + /m;w dx = /p.V(m;) -Vwdx + /nvw dx

QW Qe Q
:/vp.Vn-dex+/np.Vv-dex+/vﬁ@dx
L] Q.
:/vp.Vn-dex—l—/p.Vv-V(nw)dx—/wp.Vv-Vndx+/vo7Tudx
L] L] [ ] Q

and by (4.3) we see

/p.Vv-V(nw)dx+/vﬁTudx=/va-V(%)dx+/vﬁTudx
Q

Qe Q Q

= <f> %)W;l’z(ﬂ)‘
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Applying the definition of T, and f, and afterwards subtracting fQ. nuw dx
from both sides yields the assertion.

iii) We regard the terms in (4.4) from left to right. For the first summand the
assertion is obvious.

According to Proposition 4.1 there is an € > 0 such that the solution v of
—V-pVu+v = fis from WE*T(Q), what implies Vo € L*7(Q). Furthermore,
|Vn| € L*(Q,) and |p,Vv| € L?¢(Q,). Consequently we have p,Vv - Vn €
L*7¢(Q,). Now, whenever 1/p > (d —2 —¢€)/(d(2+¢)) we have the embedding
L*(Q,) — WF_.l’p(Q.). Since we restricted the dimension to 2 < d < 4, there
is always a p > 4 > d satisfying that condition, so the second term is also fine.

On the other hand, we have v € W *™(Q) «— L**9(Q) for a § = §(d) > 0.
Thus, concerning 7),, we can estimate

(T w)yeavsy ] < Iollzassian) Iolimiaucomsy IVl lollyacosor g
The claim on f, follows from i), while the proof of the last assertion is implicitly
contained in the above considerations. ]

Remark 4.7. Tt is the lack of integrability of the gradient of v (see the counterex-
ample in [18, Ch. 4]) together with the quality of the needed Sobolev embeddings,
which prevents the applicability of this localization procedure to higher dimensions
and thus limits our central result to the dimensions up to 4.

The reader may wonder why we start with the operator —V-pV +1 and consider the
operator —V - p,V after the localization. The reason for this is the following: in or-
der to include the pure Neumann case one should consider the operator —V - pV +1.
On the other hand, the resulting localized operators —V - p,V exhibit in any case
a nontrivial Dirichlet boundary part (making them invertible) and the subsequent
transformation techniques are technically simpler for the pure operator —V - p,V.

Proposition 4.8. Let A C RY be a bounded Lipschitz domain and Y be an open
subset of its boundary. Assume that ¢ is a mapping from a neighborhood of A into R?

that is bi-Lipschitz. Let us denote ¢(N) =: Ay and ¢(Y) =: Tn. Then the following
is true.

i) For any p € |1,00[, the mapping ¢ induces a linear, topological isomorphism
s Wyl (M) = WrP(A),

which is given by (®,f)(x) = f(¢(x)) = (f 0 ) (x).

i) @7, is a linear, topological isomorphism between Wy'P(A) and W{Al’p(AA).
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iii) If w is a bounded, measurable function on A, taking its values in the set of
d x d matrices, then
V- wVe, =V w,V (4.5)
with
o 1
| det(Do) (671 ()

for almost all y € Ay. Here, D¢ denotes the Jacobian of ¢ and det(D¢) the
corresponding determinant.

waly) }<D¢><¢-1<y>> W(7'y)) (Do) (971 (y))  (4.6)

iv) If w satisfies Assumption 3.2, then w, also does.

Proof. The proof of i) is contained in [26, Thm. 2.10)|. Assertion ii) follows from i)
by duality, while iii) is well known, see |32] for an explicit verification or [4, Ch. 0.8].
Finally, iv) is implied by (4.6) and the fact that for a bi-Lipschitz ¢ the Jacobian
D¢ and its inverse (D¢)~! are essentially bounded (see [19, Ch. 3.1]). O

The next lemma makes clear that within the class of bi-Lipschitz transformations
one only needs the two local model sets K_ and K_ U X, if one dispenses with the
condition W, (x) = 0 (cf. Definition 3.1):

Lemma 4.9. There is a bi-Lipschitz mapping ¥ : R? — R? which maps K_ U %
onto K_ U .

Proof. Let us first consider the case d = 2. We define on the lower halfspace {(z,y) :
y <0}

(x—y/2,y/2), Hr<Oy>w,
(x/2,—x/2+y), ifzx<0,y<cx,
(x/2,2/2 +y), ifer >0,y <—x,
(xr+y/2,y/2), ifz>0y>—uz.

xi(z,y) == (4.7)

Observing that y; acts as the identity on the z-axis, we may define y; on the
upper half space {(x,y) : y > 0} also as the identity and thus obtain a globally
bi-Lipschitz transformation y; from R? onto itself that transforms K_UYX onto the
triangle shown in Figure 1.

Next, we define the bi-Lipschitz mapping y» : R> — R? by

(r,z+2y+1), if x <0,

4.8
(x,—x+2y+1), ifzx>0, (48)

.

in order to get the geometric constellation in Figure 2.
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Figure 1: K_ U and x;(K_ U X)

Figure 2: xo(p1(K_Uy))
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If 9 is the (clockwise) rotation by /4, we thus achieved that x := Ux2x; : R? — R?
is bi-Lipschitz and satisfies

X(E_US0) = {(z0) : —%<x<%, —%<y§%}.

Let ¢ : R? — R? be the affine mapping (z,y) — (2, %y —3). Then U, := ¢x
maps K_ U Y bi-Lipschitzian onto K_ U X in the 2d case.

If d > 2, one simply puts ¥(xq,...,2q) = (T1,..., 42, Vo(Tg_1,Zaq))- O
Proposition 4.10. Let for any x = (11,...,74) € R? the symbol x_ denote the
element (x1,...,xq-1,—%q). Further, for a d X d matriz o, we define the matriz o~
by

Ok, Ik <d,
0k =1 —0jks Hj=dandk#dork=dandj+#d, (4.9)
0j ks ifj =k =d.
Let w be a bounded, measurable function on K_ taking its values in the set of real,
symmetric d X d matrices. We define the matrixz valued function w on K by

w(x), ifx e K_,
w(x) = (w(x_))_, if x_ e K_| (4.10)
0, ifx e .

Then we have the following assertions for every p € |1, 00l.

i) If v € WEP(K_) satisfies —V -wVip = f € Wy "P(K_), then =V -0V = f €
W=LP(K) holds for i with

n 1/}(X>7 ZfX € K—7
Y(xo), ifx- €K,

and f defined by (f, ©)w-rwk) = (f, 0lx_ +(p_|K7>W£1,p(K7). Here, the func-
tion @_ is defined by p_(x) := p(x_).

ii) The mapping Wy, "P(K_) 3 f — f € W'(K) is continuous.

Proof. i) It is known that ¢ belongs to Wa?(K), see [23, Lemma 3.4]. Thus,
it remains to show —V - @Vi) = f as an equation in W~'?(K). Since every
test function from Wol’p(K) may be split up into a symmetric and an anti-
symmetric part, we may look at these two cases separately. For every anti-
symmetric ¢ € WaP(K). ie. p(x_) = —(x), the symmetry of &, ¢ and f
yields immediately

~ ~

(=V -V, 90>W(;1’p(K) =0=(/, 90>W(;1’p(K)'
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In the case of symmetric functions ¢ the assertion is obtained by the defini-
tions of ¢, f,—V - wV, =V - @V and straightforward calculations, based on
Proposition 4.8 when applied to the transformation x — x_.

ii) The operator f — f is the adjoint to ¢ — (p|x_ + ¢_|k_). O

4.3 Core of the proof

By Definition 3.1 and Lemma 4.9, for every x € 02 there is an open neighborhood
U, of x, an open set Wy and a bi-Lipschitz mapping ¥, from U, onto W, such that
\Ifx((QUF)ﬂUX) equals either K_ or K_UX. Take for every point x €  a ball B, C €
centered at x. Obviously, the system {U}xecon U {Bx}xeq forms an open covering
of Q. Take a finite subcovering U, . .. Uy, , By, ..., By, and choose a partition of
unity n1, ..., 0, C1, - .., G over Q, which is subordinated to this subcovering.

Assume now f € Wy "%(Q) with ¢ > d and that v is the solution of =V -pVuv+v = f.
Then, according to Proposition 4.6 with I'y = () and Q, = By, every function ij|3xj
satisfies an equation —V - pV((v[p, ) = g, where g; € W=1P(B, ) with p > d and,

J

additionally,
lgillw o) < A Fllwragq) (4.11)
with 7 independent from f. Hence, by Proposition 4.3, we have uv[s, € C*(By,)
for an @ = «(j) > 0 and, moreover,
vl ooy < g lw-roe, ) (112)
Clearly, (4.12) together with (4.11) implies

IGvllca@) = [1Gvls,, llowm.,) < Agsllw-rr@) < ANl 1o (4.13)

Let us now consider the functions n;v for fixed j: putting ; := QMU and I'; :=T'N
Uy, we obtain by Lemma 4.5 i) that each n;v[q; belongs to WI}J2(QJ) Furthermore,
Proposition 4.6 shows that n;v|q, satisfies an equation —V - pV(n;v]q;) = f;, where
fi € Wi 'P(8;) with p > d and, additionally,

illw @) < A F o) (4.14)

with v independent from f. Next we consider the ’transformed’ function (cf. Propo-
sition 4.8 with ¢ = \If;;) Y = @y(nvle;) = (nvle;) o \If;jl on K_, from now on
distinguishing the cases

U, (QUT)NUy,) = K- (4.15)
and

U, (QuD)Niy,) = K_UX. (4.16)
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If (4.15) is true, then I'; := I' N U, C (2 NU,) must be empty, since K_ has
only inner points and inner points pass to inner points and boundary points to
boundary points under a bi-Lipschitz transformation. In particular, this means
nvle, € W,?(Q;). By Proposition 4.8 the function 1; belongs to W, *(K_) and
satisfies an equation —V - wVi; = h; with by = (®,)7'f; € WHP(K_) for the
same p > d as above. Thanks to Proposition 4.8 iv), the coefficient function w again
satisfies Assumption 3.2. Thus, by Proposition 4.3, ¢, € C%(K_), where o depends
on 7, and
[¥5llcar_y < Allhsllw—rp0)

with a and v independent from h;. Transforming back, this gives n;v|q, € C%(Q;)
with
15010, lloaiy) < VI fillw-ro@) < Al v, (4.17)

where the last inequality is just (4.14). As the support of n;v has a positive distance
to 0\ Q;, the function n;v is from C*(Q) with the norm equality ||n;v|ce@) =
In;v]q,l|ca,)- This, together with (4.17) gives the desired estimate, where 7 is
independent from f.

Let us now consider the case (4.16). Analogously as before Proposition 4.8 yields
that 1; belongs to Wy?(K_) and satisfies an equation —V - wV; = h; with h; €
Wy "P(K_) and p > d, where w again satisfies Assumption 3.2. Now, we apply the
reflection principle from Proposition 4.10. This leads to a homogeneous Dirichlet
problem —V'(;}V"Z}j = ij, where izj € W~LP(K). But then Proposition 4.3 gives ’l/AJj €
C*(K) and ||15j||ca(K) < ’}/H;leWfl,p(K) (v depending on j). Clearly, this, together
with Proposition 4.10 ii), implies |[¢);||ce(x_) < fy”thng,p(Ki) and, consequently,

Invleslle@,) < Hfsllwzrr@,) < AFllwroq)-

Thus, we get n;v € C*(Q2) and ||n;v]|ce@) < 7||f||W;1,q(Q) with v independent from
f as in the previous case. Passing to the minimal «(7), this finishes the proof of
Theorem 3.3.

Proof of Corollary 3.5. As is well known (|14, Ch. 1.2], [21, Ch IL.2]), in case of a
Robin boundary condition the operator is defined via the bilinear form

Wr2(Q) x WH(Q) 3 (v, w) — /va -Vwdx + /vwdx + /%vw do
Q

Q T

for some 3 € L>®(I",0). It is easy to see that the linear mapping T : L>(T",0) —
W (Q), given by

(Tw, ‘P)W;LP(Q) = /%w90 do,

T
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is well defined and continuous. Denoting the domain of —V - pV 41 again by D,,
we have by Theorem 3.3 the compact embedding D, — C%(§2) — L>(I', o). Hence,
the mapping 7' is relatively compact with respect to —V - pV + 1 and a classical
perturbation theorem |34, Ch. IV.1.3| applies. O

Proof of Corollary 3.6. We argue analogously to the proof of Corollary 3.5. Here,
T : L®(Q) — Wi Y(Q) is defined by

<T1/}7SO>W1:1,q(Q) = /Vqﬁ@ dx.

Q

Then, due to the compact embedding D, — L*(2), the same perturbation argu-
ment as above yields that the domain of the maximal restriction of =V -pV +V to
W H9(Q) coincides with D,. Together with the coercivity of the associated bilinear
form that follows from the assumptions on V stated in Corollary 3.6, this gives the
assertion. ]

Proof of Corollary 3.7. Applying a well known re-iteration result on complex inter-
polation (see [51, Ch 1.9.3]), we obtain for 7 € ]0, 1|

[Dg, W (D)3 = [Dy, [Dg, Wr Q)] (4.18)

1
3
But the embedding Wy Q) — W ?*(Q) gives D, — Wr*(Q). Together with
D, — C*(Q2), we obtain by (4.18)

I
2

[Dy, W 1(Q)]5 < [C(Q), Wp*(), Wy ()]

2

.

One identifies the interpolation space [Wr?(Q), WF_M(Q)]% as the space L*(Q) (see
[51, Ch. 1.18.10]), what gives

1
2

[Dg, W (@) = [C(9), L)) (4.19)

3
This latter interpolation space is known to embed into another Holder space C”(€2),
if 7 > 0 is chosen sufficiently small (see [27, Ch. 7|, see also [52]). O

Remark 4.11. If the coefficient matrices are symmetric, the Holder continuity of
the solution for (1.1) may be deduced from the results of [28| and |25] by means of
suitable (but nontrivial) embedding theorems. Unfortunately, this is not carried out
there.

5 Alternative characterization for regular sets

Groger’s concept of regular sets [29] turned out to be a powerful tool for the treat-
ment of mixed boundary value problems. Not only his regularity result 29|, based
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on this, is exploited in some tens of papers; but the regular sets proved also to be
an adequate frame for establishing interpolation results for function spaces which
include a trace zero condition on part of the boundary, see |26]. Moreover, it allowed
to recover resolvent estimates and thus provided tools for the treatment of parabolic
equations, which incorporate mixed boundary conditions, see [30|, |27]. All of this
shows that the concept of regular sets in itself deserves some investigation in order
to simplify things.

In this spirit, the aim of this chapter is to prove that for two and three space
dimensions the property of a set A U Y to be regular in the sense of Groger (see
Definition 3.1) can be characterized by A being a Lipschitz domain and a certain
topological property of T (to be specified in a moment). The point is that the
resulting conditions usually can be checked ’by appearance’ in contrast to the
original definition. Let us explicitly mention that the underlying class of Lipschitz
domains is broad enough to contain e.g. the case of two balks, lying on each other
with an angle # 7, which together do not form a domain with Lipschitz boundary.
We start with the following observation.

Theorem 5.1. If AUY is reqular, then A is a Lipschitz domain.

Proof. Let x € OA. Then there is, due to the definition, an open neighborhood
U of x and a bi-Lipschitz mapping ¥ : & — R9, such that ¥(x) = 0 holds and
T(UN(AUT)) equals KUY, where ¥ =) or ¥ = ¥ or ¥ = . This means

TUNAUTD) =B(UNADUUNT)=K_UX (5.1)

and since inner points pass to inner points and boundary points to boundary points
under a bi-Lipschitz transformation, (5.1) implies U(U NA) = K_ in all three cases.
Hence, U may serve as the local chart neighborhood required in the definition of a
Lipschitz domain, see [31, Def. 1.2.1.2]. O

We first deal with the easier case of d = 2.

Theorem 5.2. Let A C R? be a bounded Lipschitz domain and T C OA be an
open part of the boundary. Then AU is reqular in the sense of Griger, iff the set
T N (OA\ Y) is finite and no connected component of N\ Y consists of a single
point.

Proof. In view of Theorem 5.1 and an application of the definition for regular sets
it is clear that the condition is necessary. Sufficiency follows from the Lipschitz
domain property and the fact that any point x € A can only lie in T, TN (OA\ T)
or in the (relative) interior of OA \ T. O
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Remark 5.3. It is not hard to see that the given condition is equivalent to the
following: T is a finite union of open arc pieces from JA and A\ T is a finite union
of (nondegenerate) closed arc pieces.

Now we come to an intrinsic characterization of regular sets in R3, which we regard
as the second essential result of this work.

Theorem 5.4. Let A C R3 be a bounded Lipschitz domain. Assume Y to be an
open subset of ON. Then AU is reqular in the sense of Griger, iff the following
two conditions are satisfied.

i) ON\ T is the closure of its interior (within OA).

i) For any x € T N (OA\ Y) there is an open neighborhood N of x and a bi-
Lipschitz mapping k : NN TN (OA\ T) — ]—1,1[.

Proof. According to the definition of regular sets the conditions are necessary.

In order to prove sufficiency, we have to show that for every x € OA there is an
open neighborhood U of x and a bi-Lipschitz mapping ¥ with U(x) = 0, such that
U(UN(AUT)) is either K_ or K_UY or K_ U .

We first observe that
ON=TU(OQA\T)°U [(8[\ \T)N T], (5.2)

where the closure and the interior are again taken with respect to the topology of
OA. In the following we will treat these three cases separately.

Let x € T. Since T was supposed to be open, there is an open set U; C R that
contains x and satisfies & N OA C Y. Furthermore, as A is a Lipschitz domain,
there is another open neighborhood U, C R? of x and a bi-Lipschitz transform
® from U, onto the (open) cube K, such that ®(x) = 0, ®(ANU) = K_ and
O(OANUy) = X. Since P is in particular a homeomorphism, the set ®(U; NUy) is an
open neighborhood of 0 and it is contained in K. Thus, it contains a homothety t /K
of K for some t > 0. If we define U := ®~1(¢tK), then ®|; is a bi-Lipschitz mapping
from the open neighborhood U of x onto tK, such that ®(U N (AU TY)) is the set
t(K_UZX). Combining ® with a homothety, we get a bi-Lipschitz mapping ¥ from
U onto K that satisfies U(x) =0 and V(U N(AUT)) = K_UX.

Analogously, one proves for the (relatively) inner points x € (A \ T)° the existence
of a neighborhood U and a bi-Lipschitz mapping W onto the open cube K such that
U(z) =0and V(UN(AUT)) is the set K_.

It remains to consider the points of (OA\T)NT. Let x be an element of this set. As A
is a Lipschitz domain, there is an open neighborhood O of x in R? and a bi-Lipschitz
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mapping ® from O onto the cube K C R?, such that ®(x) = 0, ®(ANO) = K_ and
®(0OA N O) = X. Exploiting ii), we find another open neighborhood A of x and a
bi-Lipschitz mapping &, such that x(T N (OA\ T) NN) = ]—1,1[. Without loss of
generality we may assume k(x) =0 € R.

Our job is now to combine the good properties of ® and . In order to do so, we first
define a smaller neighborhood of x that is contained in ONN. Since ®(ONN) is an
open neighborhood of 0 € R3, we find a number ¢ € ]0, 1, such that tK C ®(ONN)
and we set X := ®7!(tK). Clearly, X' then is an open neighborhood of x that is
contained in O N N. Additionally, one has

PANX)=DP(A)NtK =P(ANO)NtK = K_NtK =tK_

and
POANX)=POANO)NtK =XNtK = |—t,t[ x |-t t[ x {0}.

We define P : R® — R? as the canonic projection onto the first two components
and & := P® with X N IA as its domain of definition. Note that by the above
considerations ® : X N OA — |—t,t[ x |—t,t[ x {0} is a bi-Lipschitz mapping with
d(x) = 0 € R% Let |s_,s.[ C |—1,1[ be the maximal interval containing 0, such
that ®x~'(]s_, s4[) C |—t,t[ x ]—t,t[ and denote the set ®x~'(]s_,s.[) by C. It is
not hard to see, that C is the connected component of ®(X NT N (JA \ 1)), which
contains 0 € R? within ®(X NIA) = |—t,t[ x |—t,t[. We claim:

(X NTN@OA\T))\C has a positive distance to 0 € R2. (5.3)

In fact, the elements of ®(X NYT N (A \ 1))\ C correspond to numbers from the
set |—1,s_] U [s4, 1| with respect to the mapping k®~L. Since k is bi-Lipschitz, the
image of this set under k! has a positive distance to x. From this (5.3) follows from
the bi-Lipschitz property of P.

Let 6 be the (bi-Lipschitz) mapping drt Js—,s+[ — C. We will identify |s_, s, [ by
means of the (bi-Lipschitz) embedding R 3 z — (z,0) € R? with the set |s_,s,[ X
{0}. Then by a deep lying theorem of Tukia, cf. [53, Thm. B], there exists a
bi-Lipschitz extension of § which maps R? onto itself that we will denote by O.

Note that © maps ]s_,s.[ x {0} onto C and, in particular, ©(0) = 0 € R% As
O(X NOA) = ]—t,t] x |—t,t[ is open in R? and due to (5.3) one finds an e €
10, min{—s_, s4,t}], such that

[@(XxNTNOA\T))\C]NO(—¢ e[ x]—e.€]) =0 (5.4)
and simultaneously

O(]—€ €[ x |—€,€]) C]—t,t[ x |—t, 1]
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Figure 3: ®(X N AA) and @_l(é(.}\f NOA))

holds, see Figure 3.

This € will provide us a suitable neighborhood U of x to complete our task. In fact,
we set Z := O(]—e, €[ x |—¢,¢[) and U := ®1(Z x ]—¢,¢[). For the bi-Lipschitz
mapping ¥ we define first the mapping £ on Z x |—¢, €[ by

g(ylv Yo, y3) = (G_l(ylu y2)7 y3)

and then set ¥ := ({0 ®) on Y. Note that ®(f) is exactly Z x ]—¢, €[ by construc-
tion, which implies that everything is well defined. Furthermore, i/ is obviously a
neighborhood of x and since £ and ® are bi-Lipschitz mappings, ¥ is of the same
quality.

Regarding the desired mapping properties of ¥, we already see

U(x) = £(®(x))/e = £(0)/e = (©77(0,0),0) /e =0

and
eV(U) =E(Z x]—€,¢]) = O7H(Z2) x |—¢€,¢[ = €K.

Since U C O, we get
eVUNA)=E((Zx]—€6e)NPANO)) =eK NEK-)
=eK N (071(-1,1[%) x ]-1,0[).

Observing O(]—¢, e[ x |—¢, €[) C |—t,t[ x |—t,t[ € |=1,1[* and thus |—¢, e[ x |—¢, e[ C
©~1(]—1,1[), this yields
VUNA)=K_. (5.5)

For the boundary of A we get by analogous considerations

V(UNIA) =3, (5.6)
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so the only thing left to prove is W(U N T) = X,.

First, we focus on the interface 4 N T N (DA \ T) and show that this is mapped to
the line |—1,1[ x {0} x {0}, i.e. the boundary of ¥, in ¥. Then, in a second step,
we will show that W(U NYT) must be exactly one of the half squares 3 or —%,. We
first observe

@—1(chi>(x TN (OA\T)))
O ZN[PXNTNEA\T)\CHUOHZNIXNTN@OA\T))NC).

Now, the left part of this union is empty thanks to (5.4). Using Z = O(]—e¢, €] x
|—€,€]) and C C @(X NY N(A\ T)), we thus obtain

O 1 (Z2NdXNTN(OA\T))) = (—€ €l x |—.) NO(C)

(J—€, e[ x ]—€,€[) N (]—¢, [ x {0})
|—e, e[ x {0}. (5.7)

A

Having in mind that @ X N T N (OA\ T)) = (X NT N (OA\ T)) x {0} and
U=>(Z x]—¢,¢|), this implies

eV(UNTNOA\T)) =&(@(XNTN(OA\T))NOU))
— 0 (d(XNTN(OA\T)) N Z) x {0}
= ]—e, e[ x {0} x {0}

and thus
(UNTNOA\T)) =]-1,1[ x {0} x {0}. (5.8)

Now, we claim:

() (5.6) and (5.8) imply, that W(UNT) is either |—1,1[x]—1,0[x {0} or |—1, 1[
10, 1] x {0}.

Firstly, (5.6) and (5.8) imply that at least one of the two sets in this claim must
contain a point from W(U NY). Let in this spirit A be any of the two sets |—1, 1[ x

|—1,0[x {0} or |=1,1[x]0, 1[x {0}, which contains at least one point from W (UNT).
Both the sets ¥(UNY) and W(UN(OA\Y)°) are open in W(UNIA) and, consequently,
the — mutually disjoint — sets U(UNT)NA and V(U N(OA\ T)°)NA are open in A.
Since by (5.8) no points from WU NYT N (OA\ T)) can lie in A, we have, according
o (5.2) and (5.6), the identity

(TUNT)NAUTUNOA\NT))NA) =TUNIAN)NA=A. (5.9)

A is connected, therefore (5.9) can only be true if U(U N (OA\ T)°)N.A = (. This
means: if any of the two sets |—1,1[ x|—1,0[ x {0} and |—1,1[ x]0, 1[x {0} contains
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a point from ¥(U NT), then it is a subset of W(U NT). But then the other cannot
contain a point from ¥(U N T), because in this case it also would be a subset of
U (U NT), which cannot be true in view of (5.8) and our supposition that OA\ T is
the closure of its interior. This proves the claim (x).

Together with (5.5) this gives WU N(AUT)) = K_UXyor YUN(AUT)) =
K_(U—3). In the first case we have finished the proof, in the second we compose
U with a reflection at the z-z-plane to conclude. ]

Corollary 5.5. If A C R? is a Lipschitzian polyhedron and T N (OA\Y) is a finite
union of line segments, then AU T is reqular.

Remark 5.6. Theorem 5.4 makes precise an old suggestion of Groger, see [29,
Remark 1|. Unfortunately, the given intrinsic characterization is restricted to the
dimensions 2 and 3, because there is no analogue of the Tukia theorem in dimensions
above 2. Nevertheless, the by far most important cases concerning applications are
covered.

6 Application to semilinear elliptic optimal control
problems

In the subsequent we will employ the results of the previous sections, in particular
Theorem 3.3, to derive necessary and sufficient optimality conditions for the fol-
lowing semilinear elliptic optimal control problem with pointwise state and control
constraints and jumping boundary conditions:

[ inimize  J(y,u) — / L(x, y(x)) dx + / (%, y(x), u(x)) do

o) T
subject to =V -aVy+b(x,y)=f in{
(P) Owy=u onl

y=0 onoQ\T

and  Upin(X) < u(X) < Upax(x) ae.on I’

g(x,y(x)) <0 forallx € Q.

\
As already mentioned in the introduction, necessary and sufficient optimality con-
ditions for semilinear elliptic control problems have been addressed by numerous
authors before (cf. for instance [8, 12, 11| and the references therein). In particular,
we refer to the recent contribution of Casas et al. |[11]|, where an optimal control
problem is analyzed that is very similar to (P), but does not contain mixed bound-
ary conditions. However, as we will see in the following, with the results of Section 3
at hand, the analysis of |11] can easily be adapted to (P).
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Note that mixed boundary conditions play an important role in various applica-
tions. A typical example is the optimal control of an electric potential in a con-
ducting material by adjusting the direct current inducing the potential. In the
stationary case, this problem is modelled by the electrostatic equation, an elliptic
PDE with homogeneous Neumann boundary conditions at isolated surfaces, homo-
geneous Dirichlet conditions at the anode and inhomogeneous Neumann boundary
conditions at the cathode, where the control enters the system (see for instance [17]).
Hence, the arising problem is covered by the general problem (P). We point out that
state-constrained optimal control problems with mixed boundary conditions and dis-
tributed control can be discussed analogously to the following investgation of (P).
However, to keep the discussion concise, we do not consider distributed controls
here.

In addition to Assumption 3.2 for the coefficient function a, we require the following
conditions to be satisfied by the quantities in (P):

Assumption 6.1. The domain Q@ C R? d < 4, is a bounded Lipschitz domain,
' C 09 is an open part of its boundary and 092\ I" has positive measure. Moreover,
QUT is regular in the sense of Groger (cf. Theorems 5.2 and 5.4 for the two and three
dimensional case). The function b : Q x R — R is twice continuously differentiable
w.r.t. the second variable and monotone increasing, i.e., g—Z(X, y) > 0 a.e. in Q.
Furthermore, there is an s > d/2 such that

b(-,0) € L*(Q2) and [ e L°(Q).

Moreover, for all M > 0 there is a constant Cj, 5y > 0, such that

ob 9%b
‘@(Xa yl)} + ‘a—yQ(Xa y1)} < Cypn and

02 0%b
}a—y2(X, Ya) — 8—y2(x’ yl)} < Cym ly2 — 1

for almost all x € 2 and all y;,yo € R with |y1], |y2| < M.

Assumption 6.2. The function [ : I' X R x R — R is a Carathéodory function of
class C? w.r.t. the second and third variables. In addition, [ is convex w.r.t. the
third variable. Moreover, I(-,0,0) € L(T") and for all M > 0 there exist a constant
Cia > 0 and a function ¢ 5y € L*(T) with

ol ol 9
}a_y(xvylvul)} + ‘%(valuul)} del,M(X)u ‘D(y,u)l(xvlylaul” < Cl,M (61)
| D, (%, 42, u2) — DEy o 1, 1, ua)| < Cor (ly2 — v | + ug — )

for almost all x € T" and all |y1], |ya|, |u1], |uz] < M. Here, D(Zy ! denotes the Hessian
of l w.r.t. (y,u). Furthermore, L : Q x R — R fulfills analogous conditions, i.e. it
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is of class C? w.r.t. the second variable, L(-,0,0) € L'(Q) and for all M > 0 there
exist O > 0 and ¥y, € L?(Q) with

OL 9?2
‘8_y(xv Z/l)‘ < m(x), |8—y2L(X’ )| < Crm

5 5 (6.2)

0
|8—y2L(X’ Yo) — 8—y2L(X, y)l < Crarly2 — yi

for almost all x €  and all |yy], |y2| < M.

Assumption 6.3. The bounds in the control constraints satisfy iy, Umax € L°(T)

With Ui (X) < Umax(X) a.e. in Q. Moreover, g : 2 x R — R is continuous and twice

. . . . " 2
continuously differentiable w.r.t. the second variable. In addition, g—z and g—yg are

continuous on 2 x R, and g(x,0) < 0 is satisfied on 9Q \ T.

Note that the last conditions in Assumption 6.3 allow for the existence of a Slater
point, which is essential for the derivation of first-order necessary conditions (see
Assumption 6.16 below).

6.1 Discussion of the state equation

We start the discussion of (P) with the analysis of the state equation, i.e.

—V-aVy+bx,y)=f inQ
Opy=u onl (6.3)
y=0 ondQ\T.

Definition 6.4. Let ¢ € [2,00[ and s,t € R satisfy s > 1 and let v > 1, if d = ¢ = 2,
and § > dq/(d + q) and v > (d — 1)q/d, otherwise. Moreover, let ¢ € L?(2) and
¢ € L¥(T") be given. Then we denote the elements of W (), associated to ¢ and

¥, by ¢ and 1), i.e.

(P, w>W;1,q(Q) = /gpwdx, (), w)W{l,q(Q) = /wwda, w E Wﬁ’q/(Q). (6.4)
0 T

Since embedding and trace theorems guarantee w € L% (Q) and mmw € L¥(T), if
(UNS Wé’q/(Q), the integrals in (6.4) are finite and, hence, ¢ and 1 are well defined.

Definition 6.5. Suppose that f € L?(Q2), s > 2d/(d + 2), and u € LY(I'), v >
(2d — 2)/d. Then a function y € W?(Q) N L>®°(9Q) is said to be a solution of (6.3),
if it fulfills the operator equation

—V-aVy+bly)=f+a in W"Q), (6.5)
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where £, € Wi '*(Q) are defined according to Definition 6.4 and b : L®(Q) —
W;l’z(ﬂ) is analogously given by

(6) whyraey = [ bxp) wix) s, w e WD),

Note that, due to Assumption 6.1, the Nemyzki operator ®(y) := b(-,y(+)) is con-
tinuous from L>(Q) to L*(Q2), s > 2d/(d + 2), so b is well defined.

Theorem 6.6. Let f € L*(Q2) with s > d/2 and v € L"(I') with r > d — 1.
Then, under Assumption 6.1, there exists a unique solution of (6.3) in the sense of
Definition 6.5. Moreover, there is an « > 0 such that this solution belongs to C*(2).

Proof. The existence of a unique solution in W2*(2) N L>(Q) is standard (cf. for
instance [8] or [1] and the references therein). For convenience of the reader, we
recall the main arguments. First, one considers a modified nonlinearity given by

b(k), ify>k,
bp(y) == ¢ bly), if —k<y<k,
b(—k), ify< —Fk,

with some £ > 0. For a nonlinearity of this form, Browder and Minty’s theorem
for monotone operators immediately implies the existence of a unique solution in
W?(Q). Then a classical argument in the spirit of Stampacchia |50] yields

1yl ) < coo (1 f]lLs) + [Jullr@y + 1)

with a constant c,, independent of f and k. It is easily verified that the mixed
boundary conditions do not influence the analysis in [50].

Hence, if we choose k > ||y|/z=(q), then the solution of the truncated problem
coincides with the one of (6.3). It remains to verify the Holder continuity of y,
which follows from Theorem 3.3 together with a classical bootstrapping argument.
To see this, rewrite (6.5) as

(~V-aV+1y=g (6.6)

with ¢ :== f+1a—b(y)+7 and § according to Definition 6.4. Due to f,b(y) € L*(9Q),
s>d/2,ue L'(I'), r >d—1, and y € L*>*(Q), Sobolev embedding theorems give
that g € Wy "%(Q) for a ¢ > d. Therefore, Theorem 3.3 implies y € C*(Q). O

Definition 6.7. For the rest of this section, let s > d/2 and r > d — 1 be fixed,
but arbitrary. Moreover, f is a fixed inhomogeneity in L*(Q) (cf. Assumption 6.1).
Based on Theorem 6.6, we introduce the control-to-state operator S : L"(I') —
W*(Q) N C*(€), mapping u to the solution of (6.3).
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Lemma 6.8. Suppose that there is a sequence {uy} converging weakly to u in L"(T).
Then S(uy) — S(u) in WH?(Q) N C*(Q).

Proof. With Theorem 3.3 at hand, the arguments are standard (cf. for instance [11]).
Nevertheless, let us recall the basic ideas. In all what follows we use the notation
yr = S(ug) and y := S(u). The weak convergence of {us} implies the uniform
boundedness of this sequence in L"(I") giving in turn that {y,} is uniformly bounded
in C(Q). Hence, {yx} and {®,(y,)}, with ®, as defined above, converge weakly in
L#(2) with s > d/2, to some z, and zg, respectively. Now define the sequence
{gr} in W:"(Q) by gp == f + @ — b(yx) + G- Due to the compact embedding
L3(Q) — W () and the compactness of the trace operator 7 : Wﬁ’q/(Q) —
L™ (T'), weak convergences of {uz}, {yx}, and {®;(yx)} imply strong convergence of
{gr} in W "9(Q) to g := f+@— Zp+ 2, where Zp and 2, again denote the elements
in W{l’q(Q) associated to z¢ and z,, respectively. Now consider again the auxiliary
equation (6.6) with gy as inhomogeneity. Theorem 3.3 then implies

Y — 1= (=V-aV+1)"lg in W*(Q)NC*Q).

This in particular guarantees y, — nin L>(Q2) and, hence, ®y(yx) — Pp(n) in L*(2),
s > d/2, as well as g — 7 and b(yx) — b(n) in W5 "%(Q). Consequently, 7 is the
solution of (6.3) associated to u, which implies g, — y in W2?(Q) N C*(Q). O

Now, we turn to the linearized version of (6.3). Given a y € L>(f2), the linearized
state equation reads as

—V-aVy+U(@Gy=h in Wz"%(Q), (6.7)

where h € W "*(Q) and ¥/(7) : Wr?*(Q) — Wy "*(Q) is defined by

= ab,
'@y, w12 = gy S Iy wix)dx, - we W ().
Q
Note that Assumption 6.1 implies g—Z(X, g(x)) € L>(€2) and that, due to the mono-
tonicity of b, g—Z(X, 7(x)) > 0 holds true a.e. in Q. Hence, an immediate consequence

of Corollary 3.6 is the following

Lemma 6.9. Let j € L>®(Q) be given. For every h € Wi "*(Q) there is a unique
solution y € W1}2(Q) of (6.7). Furthermore, if h € Wr_l’q(Q) for some q > d, then
y € Wp(Q) N C¥(Q) for some a > 0.

In view of Assumption 6.1, the Nemyzki operator ®,(y) = b(-,y(-)) clearly is twice
continuously Fréchet differentiable in L>°(£2). Thus, together with Lemma 6.9, the
implicit function theorem implies the following result (for a detailed proof see for
instance [10]).
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Theorem 6.10. Under Assumption 6.1 the control-to-state operator S is twice con-
tinuously Fréchet differentiable from L™(T") to Wllz(Q) NCY(Q). Its first derivative
at u € L"(T") in direction h € L™(I") solves

—V - aVy+U @Gy =h in W), (6.8)

where §j = S(@) and h denotes the element of Wy "*(Q) associated to h. Furthermore,
n = S"(w)lhy, he], h; € L"(T"), i = 1,2, is the solution of

=V aVn+ ¥ (@ ==V @nye in Wy Q) (6.9)
with y; = S'(a)h;, i = 1,2, i.e. the solution of (6.8), and
- d%b

O @y, w12y = a2 5 TN (x)g2(x) wx) dx, w € Wp(Q).

Note that, due to h; € L"(I'), i = 1,2, Lemma 6.9 yields y; € L>(£2). In addition,

Assumption 6.1 implies g—;é’(~,z?(~)) e L5(Q), so V' (§)y1ys is well defined.

6.2 An adjoint equation involving measures

It is well known that the Lagrange multipliers associated to pointwise state con-
straints are in general only regular Borel measures, which appear as inhomogeneity
in the adjoint equation (cf. for instance [8]). Before we are in the position to dis-
cuss such an equation, the set D,, introduced in Corollary 3.7, has to be investi-
gated in more detail. Recall that D, denotes the domain of the maximal restriction
of =V -aV +1 to Wr_l’q(Q). Throughout this section we use the abbreviation
Ay == =V -aV +V, where V € L>(Q) denotes a given, non-negative function.
Since |9Q \ T'| > 0 by Assumption 6.1, Ay : D, — W 9(Q) is continuously invert-
ible.

Lemma 6.11. The space (D, ||.||p, = | =V -aV.+. ||W;1,q(9)) is a Banach

1 , :
space. Moreover, W*(Q) is dense in D,,.

Proof. Clearly, since Ay = =V -aV + 1 is linear and injective, |. | p, indeed rep-
resents a norm on [, and is equivalent to the graph norm on D,. Moreover, the
completeness of D, follows from the closedness of A; : D, — Wr_l’q(Q), which
holds since A; is continuously invertible by Corollary 3.6. In order to show the
density of W9(Q), consider the restriction of A; to functions in Wr%(Q), denoted
by Ay : Wr9(Q) — W (). Due to the continuous invertibility of A;, the space
W9(Q) is dense in D, if R(A;) is dense in W "9(Q), where R(A;) denotes the
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range of A;. Since R(A;) = ker(A%)*, R(A,) is dense in Wy "4(Q), iff ker(A*) = 0,
where A% is defined by

(At v, W)y -1 = /(aTVv Vw+vw)dx, ve W (Q),we WH(Q).
Q

Clearly, fl“{ is injective due to the coercivity of the associated bilinear form, giving
in turn the assertion. U

Next, let us consider the following PDE
—V.-a' Vp+Vp=pg inQ
Opp=pr onl (6.10)
p=0 ondQ\T,

where €2 and a are supposed to fulfill the assumptions of Theorem 3.3. Moreover, V'
is a fixed, but arbitrary non-negative function in L>°(Q2). Furthermore, the inhomo-
geneity p is given in M(Q) which is the space of regular Borel measures that can

be identified with the dual of C'(€2) by means of the Riesz representation theorem.
Moreover, pug and ur denote the restrictions of p to €2 and I, respectively. In view
of formal integration by parts, we define solutions to (6.10) as follows.

Definition 6.12. A function p € W7 (Q), ¢ = ¢/(¢—1) < d/(d—1), is said to be
a solution of (6.10), if the equation

/(aTVp Vw4 Vpw)ds = (p, w)ym Ywe Wri(Q) (6.11)
Q

is satisfied.

Lemma 6.13. Let V € L>®(Q), V(x) > 0 a.e. in Q and u € M(Q) be given. Then
there is a unique solution to (6.10) in the sense of Definition 6.12. This solution
satisfies

= s
with a constant v > 0 independent of p.
Proof. The variational formulation (6.11) is equivalent to
A * 1 1,
< vP, w>Wl:1,q’(Q) = <p7 AV w>W1}'q/(Q) = <:u7 w>M(§) Vw e WF q(Q>7 (612)

where, as above, Ay : Wh9(Q) — W () denotes the restriction of Ay to Wp?(€).
Since W(Q) is dense in D, by Lemma 6.11, we see that (6.12) is equivalent to

<pv Ay w>WF1vq/(Q) = <,ua w)M(ﬁ) Vw e Dq = A*Vp =p in DZ
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Here, D; denotes the dual to D,. Moreover, ji is the element in D} associated to

p € M(Q) by

~

<:U’7 w>DE§ = <:U’7 w)M(ﬁ) = w(X) dp Vw € Dy,

EOI\

which is well defined due to D, — C(92) by Theorem 3.3. Now, Corollary 3.6
guarantees (A})~' € B(D;, W7 (Q)). Hence, due to the equivalence of A% p = fi
to (6.11), there is a unique solution in the sense of the above definition and it holds

19l 0y < 1AV i g0y Il
(4, w)p,| (1, w) ]
<75 sup ———— <7 sup —f) =7 lpll pm@)
weDy ||w||Dq weC(Q) ||w||C(Q)
w#0 w#0
which gives the assertion. O

6.3 Necessary and sufficient optimality conditions

With the above results, the analysis of this section is along the lines of [11]. Hence,
we shorten the description, if the arguments are analogous to the ones in [11]. First,
let us introduce the reduced objective functional j : L>°(I') — R and the Lagrange

function £ : L®(T) x M(Q) — R by

ju) = J(S(u),u) = /L(X, S(u)(x))dx+/l(x, S(u)(x),u(x))do,  (6.13)

Q r
L(u, p) := j(u) + /g(x, S(u)(x))dp. (6.14)
Q
Lemma 6.14. Let i € M(Q) be arbitrary. Then the Lagrange function is twice

continuously Fréchet differentiable w.r.t. uw from L>(T) to R. If pasorr = 0, then its
first partial derivative at @ in direction h € L*>(T") is given by

@ = [ [0, 160) + p(x)] ) do (6.15

where y = S(u) and p € er’q/(Q) solves

ob , oL, . 0Og, _ .
—_ . T _ [ — -
V-a' Vp+ ay(y)p o (y) + 8y(y)ug in Q
ol 0
Onp = —(y,u) + —g(?j),up onT (6.16)
dy dy

p= on OQ\ T
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in the sense of Definition 6.12. Moreover, the second derivative of L at u in direc-
tions hy, hog € L>(T") is given by

82£

L Pb,
8u2 p)hihy = /8— u)yr1ys — Pa—yg(XW)ylyz} dx (6.17)

Q

ol 921 o
+ [a—yz (X, 7, 0)1hy2 + Dy (x,9,0)(y1ha + yohy)
I
0?1

+ %( h1h2 / (x, 7, )y y2 dp
Q

Proof. The arguments are standard (cf. |[10]). Nevertheless, we shortly describe the
derivation of (6.15) to see how the associated theory is influenced by the analysis of
the adjoint equation as carried out in Section 6.2. The differentiability of £ is an
immediate consequence of Assumptions 6.1-6.3 and Theorem 6.10. Concerning the
explicit form of g—ﬁ, the chain rule yields

oL oL
%( wh = 8y( )y dx
Q
6.18)
o o Jg , (
N / <a_y(y7u)y+ (5, Wh) o+ (u, 3y D))
r

with § = S(u) and y = 25(@)h, i.e. y € D, solves Ay y = —V - aVy+(5)y=h
in Wp_l’q(Q) According to the analysis of Section 6.2, the variational formulation
of (6.16) is equivalent to

L ol g

(i, vy = | @ uwdct [ G wvdo+(u, 5

Q r

(W) @ Vv E D,

(cf. the proof of Lemma 6.13). Choosing v = y as test function yields

oL g, _
5 ydx+/a 5.0 do + o, SHD)

= <AZ’(g)p> y>D; = <Ab’( Yy, p) Q) T <ﬁa p>Wl:1’q(Q) = /hp do.
T

Inserting this into (6.18) gives (6.15). Finally, (6.17) follows from an analogous
argument. ]
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Definition 6.15. A function u € L*°(T") is called feasible for (P), if it fulfills

Umin (X) < u(X) < Upax(x) a.e.on T
g(x,S(u)(x)) <0 forall x € Q.

Under Assumptions 6.1-6.3 there is at least one (global) solution of (P), provided
that a feasible function exists (see |9, Thm. 8| for the proof).

Let us now turn to necessary optimality conditions for (P). It is well known that cer-
tain constraint qualifications are required to discuss pointwise inequality constraints
on the state as they occur in (P). Here, we rely on the following linearized Slater
condition.

Definition 6.16. Let u € L*(I") be feasible for (P). We say that the linearized
Slater condition is fulfilled at w, if there exists a function @ € L*(I"), such that

Umin(X) < (%) < Umax(x) a.e. on T, (6.19)
9(x,y(x)) + g—zgl(x, 7(x))y(x) <0 forall x € Q, (6.20)

where y = S(u) and y = S'(u)(u — u).

Note that, due to g|ao\r = 0, (6.20) yields g(x, 7(x)) = g(x,0) < 0 for all z € 02\ T’
which is guaranteed by Assumption 6.3. With the existence and regularity results
for the state and the adjoint equation obtained before, the theory of first-order
necessary conditions for (P) is standard. For the corresponding theorem, we define
the Hamiltonian associated to (P), denoted by H :I' x R x R xR — R:

H(Xa Y, U,p) = Z(X> Y, u) +p (u - b(Xv y))

The definition of H allows to formulate the first-order necessary conditions in form
of Pontryagin’s principle. For the corresponding proof we refer to |7].

Theorem 6.17. Suppose that u € L>(I') is a local solution of (P) in the topology of
Le(T), de., j(u) < j(u) for all feasible u with ||u—1tl| oy < €. Furthermore, denote
the state associated to @ by § € W*(Q) N C*(Q). Moreover, let Assumptions 6.1
6.3 hold and let the linearized Slater condition be satisfied at w. Then there exist
a function p € WI}’q,(Q) and a Borel measure pu € M(RQ), such that the adjoint
equation (6.16) is fulfilled in the sense of Definition 6.12 and it holds

/(v(x) —g(x,7(x)))du(x) <0 forallv e C(Q) withv(x) <0Vz e Q (6.21)

Q

H(x,9(x),u(x),p(x)) = teyfﬁi%(x)) H(x,9(x),t,p(x)) a.ce onl, (6.22)

where Uyq (X, 4(x)) := [max{tmin(x), 4(x) — £}, min{umax(x), a(x) + }].
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In [8], it is shown that the Lagrange multiplier associated to the state constraints is
concentrated in the Borel set {x € Q : g(x,y(x)) = 0}, such that ppo\r = 0 since
9(x,0) < 0 on 9\ I' according to Assumption 6.3. Hence, we obtain homogeneous
Dirichlet boundary conditions on 0 \ I" also in the adjoint equation (6.16). The
first-order necessary conditions in Theorem 6.17 can also be formulated in terms of
the Lagrangian (see [11] for details).

In all what follows, let u again be a fixed local optimum with associated state g,
adjoint state p, and Lagrange multiplier x4 such that (6.21) and (6.22) are fulfilled.
For the statement of second-order sufficient conditions accounting for strongly active
sets, we have to restrict to the two dimensional case, since the underlying analysis
heavily relies on the assumption that S : L2(Q) — C(Q) (see |11, Sections 4 and
6.3]). In view of Theorem 6.6, this is not fulfilled in the three and four dimensional
case. We start with the definition of the critical cone associated to u:

C(u) := {h € L*(T') : h satisfies conditions (a), (b), and (c)},

where

g9, : _
a—y(x,y(X))y(X) <0, ifg(xyx)) =0, (b)
99,
[ 515 i) )ux) = 0 (©)
Q
and y = S’(@i)h. Note that y € C(Q) in the two dimensional case. Moreover, the
derivative of the Hamiltonian is given by %—Z(m, y,u,p) = %(X, g,u) + p.

Now, we are in the position to state the second-order sufficient conditions for (P).
With the above results, in particular Lemma 6.8, the corresponding proof is com-
pletely analogous to the one presented in |[11].

Theorem 6.18. Let d = 2, let Assumptions 6.1-6.3 be satisfied and suppose that
@ € L®(T) with associated state § € W*(Q) N C(Q) is feasible for (P). Moreover,
let p € Wll’q/(Q) and p € M(Q) exist such that (6.16), (6.21), and (6.22) are
satisfied. In addition, it is assumed that there are two constants w, ™ > 0 with

S—Z(X,ﬂ(x),ﬂ(x)) >w if %—Z(az,gj(x),ﬂ(x),p(x)) <7, ae onT (6.23)

82_5(@, p)h* >0 for all h € C(u)\ {0}. (6.24)




HOLDER CONTINUITY 31

Then there exist €,0 > 0, such that

: oy, 0 _
j(u) > j(u) + 5 Ju— U||%2(r)
for all feasible w € L>(I') with ||u — @[ ) < €.

Note that, according to Lemma 6.14, £ is only continuously differentiable from
L>(T") to R. However, it is straightforward to see that Assumptions 6.1-6.3 ensure
that 2% and ‘?;T% can be extended from L>(T") to L?(T") using (6.15) and (6.17). This
extension is also used in (6.24). Note further that the sufficient conditions (6.23) and
(6.24) are natural in the sense that they are comparatively close to the necessary
optimality conditions (see [11, Remark 4.2| for details).

Remark 6.19. We point out that the second-order analysis can be extended to the
three dimensional case if distributed controls are applied instead of boundary control,
since L*(Q) — Wy "%(Q) and thus continuous states are obtained with controls in
L3(Q) (see |11, Thm. 4.1]). Nevertheless, up to the authors’ best knowledge, there
is no proof of second-order conditions accounting for strongly active sets in case of
pointwise state constraints and boundary controls in three dimensions.
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