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Abstract

We present theoretical results when applying the Cartesian product of two Kuramoto models on
different network topologies. By a detailed mathematical analysis, we prove that the dynamics on the
Cartesian product graph can be described by the canonical equations as the Kuramoto model. We
show that the order parameter of the Cartesian product is the product of the order parameters of the
factors. On the product graph, we observe either continuous or discontinuous synchronization
transitions. In addition, under certain conditions, the transition from an initially incoherent state toa
coherent one is discontinuous, while the transition from a coherent state to an incoherent one is
continuous, presenting a mixture state of first and second order synchronization transitions. Our
numerical results are in a good agreement with the theoretical predictions. These results provide new
insight for network design and synchronization control.

1. Introduction

Synchronization in nonlinear sciences is an emergent property that occurs in a broad range of dynamical
systems, including neural signaling, the beating of the heart, fire-fly light waves, or power grids [1]. Kuramoto
phase model is a paradigmatic example in synchronization analysis [2, 3]. This model consists of self-sustained
phase oscillators rotating at heterogeneous intrinsic frequencies coupled through the sine of their phase
differences [4, 5]. A transition from an initially incoherent state to a fully coherent state takes place when the
coupling strength exceeds a critical threshold, which explains many collective behaviors in nature, science,
society and technology [1, 3]. There have been rapid developments in the study of the Kuramoto model focusing
on the effects of network structures on synchronization, e.g., from the traditional all-to-all coupling to
heterogeneous complex network topologies [6, 7]. In the case of complex network structures, several models
have been proposed to study effects of small-world structures, communities, degree correlations and multi-layer
network structures [8]. Recent findings of the Kuramoto model on different network topologies have been
reviewed in [9].

Itis important to emphasize that most likely continuous synchronization transitions can be observed in
these Kuramoto models on top of networks. Namely, the order parameter which characterizes the degree of
synchronization grows continuously when the coupling strength passes the critical threshold. In other words,
when the coupling strength is increased progressively, the sizes of the synchronized clusters grow gradually [10].
The findings of discontinuous phase transition to synchronization (also known as abrupt explosive
synchronization) have triggered several rapid investigations [ 11-14], which is a consequence of correlations
between network structure and local dynamics. The most intriguing phenomenon is that hysteresis has been
largely observed in explosive synchronization [11]. More specifically, the network shows an explosive jump from
an incoherent state to a coherent one when the coupling strength is increased adiabatically, which is
conveniently called forward continuation curve below. In addition, it shows a sudden drop from the coherent
state to the incoherent state when the coupling strength is decreased progressively (backward continuation
curve). There is a clear hysteresis area because these two curves (forward and backward) do not overlap. In the
case of continuous synchronization transitions, the forward and backward curves are overlapped. Hysteresis is a
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Figure 1. Panel (a): Cartesian product of two factors (chains) G; and G,. Panel (b) product of two phase oscillators using the
Kronecker sum.

fundamental property of a first order phase transition, which shares some analogies with explosive percolation
[15]. The hysteresis behavior at the onset of synchronization has been widely observed in various situations, such
as scale-free networks [11, 16], electronic circuits [12, 17], time delayed systems [ 18], and a second order
Kuramoto model [19]. Recent studies also focused on the importance of the frequency distribution [20], noise
effects [21], various generalizations of the coupling patterns [22, 23], and multi-layer networks [14].

Usually, the continuous and discontinuous synchronization transitions are separately discussed in the
literature [15], because of the different requirements of network configurations and local dynamics. Here, we
propose an algorithm based on graph product operation, which allows for discussing continuous and
discontinuous synchronization transitions in a unified framework. In particular, we construct the Kuramoto
model by the Cartesian product, which is one of the basic operations on a graph [24]. This graph operation helps
to find hysteretic synchronization transitions with more intriguing phenomena. In particular, we find that the
forward transition curve is discontinuous while the backward transition is continuous. Note that the effects of
graph operations on the synchronization behavior remained largely unclear, although some discussions on the
synchronizabilities have been presented in terms eigenspectra [25, 26]. To the best of our knowledge, our work is
the first attempt to address the effects of the Cartesian product on the synchronization behavior of the Kuramoto
model, resulting in a mixture state of both continuous and discontinuous transitions.

Let us start by considering the Kuramoto model on a complex network. We consider n phase oscillators on
top of a complex network G in the following framework without loss of generality

dé; - . .
T =wi+ A Aysin(0; — 60), (=12, -,n), (D)

j=1

where wj are the natural frequencies taken from a certain distribution, A is the coupling strength, and Ajjis the

adjacency matrix of the network. Oscillator iis coupled with j if there is a link between node i and j, namely,

Ajj = 1.Otherwise, A;; = 0 means that i and jare not connected. The Kuramoto order parameter R is defined as
n

1 S elf

n i )

R = > (2)

where the notation ||, denotes the time average of the absolute value over ¢ > 1. Small values of R indicate
incoherent behavior. In contrast,as R — 1 we encounter a highly coherent state.

2. Product of Kuramoto models

We start by introducing the method of Cartesian product of graphs, which is an important way to construct a
bigger graph and plays an important role in network design and analysis.

Given two nonempty graphs G; = (W}, E)) and G, = (V}, E,), the Cartesian product G;JG, of the two
graphs is a graph such that: (i) the vertex set of G;[JGj is the Cartesian product V; x V5. For example, given
vertices i of G; and k of G,, we denote the vertex of G,[JG, as (ik); (ii) two vertices (ik) and (jI) are connected in
G;0G, ifand onlyif (a) i = jand kis adjacent with /in G,, or (b) k = land iis adjacent with jin G;. The graphs
Gi and G; are called factors of the product G,JG, [24]. In figure 1(a), we give an example of the Cartesian
product of two chains and the resulting graph is a regular lattice. Further examples of the Cartesian product
graphs are illustrated by two factor subgraphs of stars (Figure 2(a)), two rings (Figure 2(e)), and one star and one
ring (figure 2(i)).

The Cartesian product of graphs is a commutative, associative binary operation on graphs [27]. [t has many
useful properties, most of which can be derived from the factors. In particular, the adjacency matrix of G;JG, is

2
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Figure 2. Numerical results for synthetic synchronization transitions. Panels (a)—(d): discontinuous transitions, (e)-(h) continuous
transitions, and (i)—(l) mixture of continuous transition for the backward direction and discontinuous transition for the forward
direction. Equal sizes for factor graphs G, and G, are used (1, = n, = 10). Cartesian product graph G,0JG, of (a): two stars; (e) two
rings; and (i) G, is astar and G, is aring. Panels (b), (f) and (j) are order parameters for synchronization transition curves on the factor
G), where the red curve is the forward curve and the blue is the backward curve. The similar curves for factor G, are shown in panels
(), (g) and (k). Panels (d), (h) and (1) are order parameters for synchronization transition curves on the product G,0G, graph.
Vertical dashed lines are theoretical predictions as summarized in table 3.

the Kronecker sum of the adjacency matrices of G and G,, namely, A(G,;00G,) = A(G)) ® A(G,) (see
appendix A for details on the Kronecker product and sum of matrices).

Theorem. Given two independent Kuramoto models on factor graphs G, and G, (ny oscillators on Gy and n,
oscillators on G, respectively), the definition of the phase of the node (ik) as O, = 05" + 02 yields the canonical
equations of the Kuramoto model on the Cartesian product graph G,0G,. The natural frequency of oscillator (ik) is
wity = Wi + WP and the nyn, oscillators are coupled through the sine functions of their phase differences.

Proof. An example of constructing Cartesian product from two chain models is shown in figure 1(b). For two
independent graphs G, and G,, the adjacency matrices are A" and A® respectively. The Kuramoto models on
the respective factors are written as

ot m

Gri == =’ + A AP sin@P — 0, (=1,2 - m), 3)
j=1
d9(2) 1,

G, : dl’f = W@ + A ADsin(0? — 09), (k=1,2,-, ). (4)
=1

We define 0y = 951) + 95(2), then the time derivatives of the phases ;) on the Cartesian product G, ]G, are
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do,; do® 4o
(ik) — i + k

dt dt dt ©)
=uwi + AiA;j”sin(eg“ -0 + W + AiA,Elz) sin(0 — 0
j=1 I=1
=uw’ + W@ + Afj fjA,g.D(sk, sin(0) — 0" + 0 — 0) (©6)
j=11=1
A S 54 sin(0D — 60 + 6P — 62 @
i=1I1=1
=w® + @ +J/\ZA1§-”6H sin(@ny — Ow) + A 5 AL sin(O — Oiny) (8)
() Gl
=W+ WP+ XY AN S+ AT sin(0y — Oy )
(i

The result of equation (9) has exactly the same expression as the equation of the Kuramoto model. Furthermore,
it is easy to recognize that the natural frequencies are wiy = w{" + wi.

Remark 1. There are no interactions between the two factors G, and G, and the dynamics of oscillators on G;
evolves independently with oscillators on G,. The oscillator dynamics on the Cartesian product graph GG, is
reconstructed by means of the summation of the respective phases on G, and G,. The advantage of defining the
phase of the node on the product graph as the summation of the respective phases of the factor subgraphs yields the
canonical equations of the Kuramoto model on G,JG,. In addition, the Cartesian product operation can be easily
generalized to the case of 1 subgraphs because G;[JG, and G,JG; are isomorphic (the operation is commutative).
Furthermore this operation is associative. For instance, given three factor subgraphs G, G, and G3, the phase
summation of three factors results in the traditional equations as the Kuramoto model on the product graph as
(G,0G,)0G; and G,0(G,0G;) are isomorphic. With the commutative and associative properties of the phase
summation, we generalize the theorem to the case of 7 factor subgraphs straightforwardly.

Lemma. The order parameter R on the Cartesian product graph of G;L1G, is the product of the order parameters Ry
and R, of two independent factors, namely, R = R R,.

Proof. The order parameter R on the Cartesian product graph is computed as follows:

1 )
R=|—> e (10)
mmny <]l>
n n
—| L SSheion-op) (11)
mmy j=1=1
1 moo. 1 n o
= = Sne | | =S e (12)
m =1 M =1
=R R4 (13)

Therefore, we prove that the order parameter R is fully determined by the two factors R, and R,. Furthermore, R
does not converge if any of the order parameters of the two factors (either R, or R;) does not converge.

In addition, for n factor subgraphs, it is straightforward to show that the order parameter R on the product
graph is the order parameters of n factors. For instance, given three factors G;, G, and Gs, the order parameter R
of the product G;LJG,00G;is R = RiRyR;.

3. Kuramoto model on star and ring structures

Before showing the main results of this work, we discuss the synchronization transitions when implementing the
Kuramoto models on single star and ring structures (see appendix E for further results on chain structures and
appendix F for trees). Both stars, rings, chains and trees of oscillators have been studied extensively in
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synchronization analysis because they are considered to be motifs to build complex networks [28—35]. Here, we
show the critical coupling threshold values for synchronization on these topologies.

First, taking into account different network topologies, we rewrite the Kuramoto model (equation (1)) in terms of
link representation in the following. Assume that there are n nodes and m links in a network which is represented by
the adjacency matrix A € R"*". In general, the link incidence matrix B € R™*" of a directed network is defined as

+1 i is the starting node of link «,
B,i =40 otherwise, (14)
—1 i is the end node of link «,

where v is the link and 7 is the oscillator. Note that no difference appears when using the above matrix B to
represent an undirected network. Therefore, the Kuramoto model (equation (1)) is rewritten in the following
compact matrix form

49 _ w — ABTsin B, (15)
dt
where 8 = (0, 05, ..., 0,)7, w = (W), Wy, ..., w,)', and Tis the transpose operation to the corresponding
vectors. Furthermore, the sine function acts on the phase vector one by one, e.g., we
define sin(6;, 6,, 65)T £ (sin 6, sin6,, sin 6;)7 .

Itis straightforward to show that the compact form representation of the Kuramoto model (equation (15)) is
identical to the canonical equations (equation (1)) (in appendix B, we show the equivalence for the two
expressions). We then compute the average phase of all oscillators as § = %Zf;l 6;, which further suggests that
the population rotates at the same average frequency @ as follows

a) n n n n
o _ 1 %:lzwi+3zzsin(9j—9i):w. (16)

dt ni- dt nis ni =

Synchronization is achieved when the phase difference between all oscillators is a constant. Therefore, the
synchronization condition is equivalently represented by

M:w—w—)\BTsinBOZO, (17)
dt
where 8 = (0, 0, ---, 0)T, @ = (©, @, ---, ©)! representing each oscillator has the same frequency as the
population averaged frequency. Thus, synchronization suggests that there is a solution 0 in the following equation:
ABT sinBO = w — @. (18)

In appendix D, we provide detailed discussions on the existence and uniqueness of the solutions to the linear
equation (18). In addition, we prove that a solution always exists for connected networks. We summarize the
results for two typical networks in terms of the following corollaries:

Corollary 1. For n oscillators coupled in a star topology, the necessary condition of synchronization is
A2 A = maxpgicalw; — @], where @ is the average frequency and the maximum function runs over all leaf nodes i.

Proof. The hub node in the network has index 1 and leaf nodes are 2, 3, ..., n. The incidence matrixis

1 =10 .. 0
S (19)
10 0 .. -1

and the Moore—Penrose pseudo-inverse (see appendix C for definitions) reads

1 _n-1 1 1

n n n n

1 1 _n-1 1

BT =|=» n n n (20)
1 1 1 n—1
n n n n
In addition, we have

W — wy
W — w3

BtTw = : . (21
W — Wy
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A necessary condition for synchronization is

A= A\ = ||BTwl|l = max,|[BTTw],| = max|w; — @, (22)
B

SISn

where the maximum function runs over all leaf nodes i.

Remark 2. If all leaf nodes have the same frequency w, = w3 = - = w, = wandthehubnodehas

w; = (n — 1)w, we obtain the synchronization threshold A\, = ”—;2w which is the same as reported in [13, 36].
Remark 3. The Kuramoto model on either a star or a chain can be generalized to a more general framework of a
tree structure. The necessary condition to synchronization of the Kuramoto model on a tree is

Ac 2 maxi<a<mldica, (Wi — @)|, where the maximum function runs over all links that are included in the

connected component A,, iflink o is removed. The details are provided in appendix F.

Corollary 2. For n oscillators coupled in a ring, if n is an even number and w; = —wjy /2, a necessary condition for
synchronizationis A > X\, = |B*Tw||,, = max|[B*Tw],|, where the maximum function runs over all links c.

Proof. The incidence matrix is

—1 0 0 1
1 -1 0 0
B=[0 1 7o 0 (23)

and the Moore—Penrose pseudo-inverse reads

_n—l _n—3 _n—S n—3 n—1
2n 2n 2n 2n 2n
n—1 _nfl _n73 n—>5 n—3
BT = 2n 2n n T 2n 2n . (24)
71173 n—>5 77177 n—1 71171
2n 2n T 2n 2n
) ) —1 ~3 —1
For the notation convenience below, we denote the firstrow of BTT as b = (—"2 , —"2 , "2 ).Then,
n n n

the second row of B*T has a recursive relationship by putting the last entry to the beginning of b. Introducing a
permutation matrix P that shifts the last entry to the beginning, the second row is denoted as bPT. With this
notation, we re-write the Moore—Penrose pseudo-inverse as

BT = (b7, PbT, P%WT, ..., P~ 1pT)T, (25)
In addition, we have
BtTw = (WTbT, WTPHT, WTPWT, .., TP 1pT)T, (26)

Note that the summation of the phase difference between two neighboring oscillators along the ring structure is
zero. We consider a special case that nis an even number and w; = —wj. /2, which is equivalent to that

. . . B*Tw . ..
P"/%w = —w.This means that summation of all terms of arcsin—-—is zero. Therefore, a necessary condition
for synchronization is

Ae = |[B*Tw||n = max,|[BTTwl,], (27)

where the maximum function runs over all links cv. f

Remark 4. Suppose w; = sin%ﬂiandn = 10,wehave A\, = sing + sinz?7T ~ 1.539.

4. Product of synchronization transitions

In the following, we first summarize the results of the synchronization transitions of the Kuramoto model on a
single network (star and ring).

(i) For n oscillators coupled in a star structure.
We consider the special case of explosive transitions to synchronization [13, 36]. In particular, we assume
that the hub node has the frequency w; = (n — 1)w and all leaf nodes have the same frequency
W, = wj = -+ = w, = w.Anecessarycondition for synchronization yields the critical coupling

6
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Table 1. Hysteresis area A\ on G,0JG, if
both factors G, and G, are stars.

Regime Mo> Mo< A

)‘Igl > /\?z >‘{1 - Alfjl )\{2 - >\lc)1
My < A, M= M, A, =

Table 2. Synchronization types on G,0JG; if factor G isastar and G, isaring.

Case A < N A< g < N A2 > N,
Thresholds A/, AL of G, M, of Gyand A, of G, A2 of G,
Sync type Only discontinuous Discontinuous transition for the forward curve and con- Only continuous
transitions tinuous transition for the backward curve transitions
threshold \2 = %w [13, 36]. Starting from an incoherent state and increasing the coupling strength, the
. .. . . .. . n—2
network experiences a transition to synchronization at the critical coupling /\{ = 5—1[36]. Both

synchronization transitions are discontinuous and the crucial property of the two transition thresholds is
that \/ > AY, which leads to a clear hystereticarea AX = X/ — \!. We refer the readers to the [13, 36] for
the detailed derivations of the critical coupling A/ for the forward transition to synchronization.

(i) For n oscillators coupled on a ring structure.
According to corollary 2, we consider the special case that there is an even number of 1 oscillators and
frequencyis w; = —wjy /2. The system presents a continuous synchronization transition at \.. No
hysteresis exists since both the backward and forward transition curves are overlapped.

In this work, we focus on the dynamics of the Kuramoto model when performing the Cartesian product
from two factor graphs. It is certainly an interesting topic to discuss the structural properties of the resulting
product graph, which however is outside the scope of the present work. Given two independent networks of
phase oscillators on G; and G, (e.g., Gy is astar and G, is aring), the synchronization transitions on the Cartesian
product G;JG, graph are summarized in the following:

(i) A discontinuous synchronization transition is obtained if both G; and G, are star networks.
Suppose that A%, A/, are two threshold values for G, and, furthermore, A/, > A%, which yields the
hysteretic size AX; = A, — AY. Ina full analogy, thresholds for G, are assumed tobe A/, > A!, and
AXp = )\sz — Ab,. On the Cartesian product G,[1G,, we obtain discontinuous synchronization transition
and the hysteretic area A\ is summarized in table 1.

(if) A continuous synchronization transition is obtained if both G; and G, are ring networks.
Suppose that A is the critical coupling threshold value for G,, and respectively, A, is for G,. The critical
coupling on the product graph G,00G, is A, = max{ ., A}

(iii) A mixture of continuous and discontinuous synchronization transition is obtained if Gy is a star and G, is a
ring network.
Again, we suppose that A2, )\[1 are two thresholds for G and the hysteresis sizeis AX = )\[1 — A2 For G,,
the threshold is ;. On the product G,JG,, the synchronization transitions are summarized in table 2. If
Az is smaller than AY), both the forward and backward curves collide with the synchronization transitions
on G;. Namely, only discontinuous transitions are observed for G;JG,.
If A2, < A\ < A}, the forward transition is discontinuous at \/; and the backward transition is continuous
at A\ . If A\, > )\{1, only continuous transitions are possible at \A,. For the numerical studies below, we

consider the case of I} < Ao, < /\f1 when we observe a mixture state of synchronization transitions.

For a numerical simulation purpose, we choose equal sizes n; = n, = 10 for the factors G, and G,. In the
case of star networks, the natural frequency is chosen as w® = (9,1, ---, 1)! for G; and w® = 0.6w" for G,.In
the case of rings, the frequency is chosen as wgl) = sin(27i/m) for G, and wgz) = 0.6sin(27i/n,) for G,. The
choice of natural frequencies yields different critical coupling thresholds for G, and G,, which are listed in table 3
and are further illustrated in figure 2. In particular, we observe discontinuous transitions in both forward and
backward directions if the product graph G;JG, is obtained from two star networks, where we find a clear
hysteresis as shown in figures 2(a)-(d). If the product G,[JG, is reconstructed from two ring networks, only

7
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Table 3. Critical coupling thresholds on G;JG, as shown in figure 2.

Star Ring One star and one ring
G, A =08, M, = 1.84 A = 1.54 AL =080, A, = 1.84
G, A =048, M, = 1.10 Ao = 0.92 A =092
G,0G, A =0.80, N = 1.84 A= 1.54 N=0.92, M = 1.84
Hysteresis Yes No Yes

continuous transitions are observed in figures 2(e)—(h). In addition, if G, is a star and G, is aring, the product
graph GG, presents a mixture state of continuous transition for the backward direction and a discontinuous
one for the forward direction, showing hysteretic behavior as shown in figures 2(i)—(l). In all these cases, the
theoretical predictions for synchronization transitions are perfectly validated by our numerical simulations,
which are highlighted by vertical dashed lines.

5. Discussion

In summary, we have provided theoretical analysis on effects of graph operations on synchronization transitions
in the Kuramoto models, in particular with the Cartesian product. Given two independent Kuramoto models on
different topologies, where the individual systems present either continuous or discontinuous transitions to
synchronization. Taking into account different network topologies (star, chain, ring, and tree), we proposed a
unified framework in obtaining necessary conditions for synchronization in each network structure, which is
based on a detailed analysis of the existence of solutions to linear equations (18). Under the phase summation
assumption, the results as summarized in the theorem and lemma can be easily generalized to the case of n factor
subgraphs because of the commutative and associative properties of the Cartesian product operation.

Rich synchronization transitions have been obtained for the Cartesian product graph. Depending on the
relation between the critical coupling thresholds, there are three different synchronization scenarios on the
Cartesian product graph: (i) both the forward and backward transitions are discontinuous with a clear hysteresis
area, (ii) both the forward and backward transitions are continuous and these two curves are overlapped and,
hence, without hysteresis, and (iii) the forward transition from an incoherent state to a coherent one is
discontinuous and the backward transition from a coherent state to an incoherent one is continuous with a
hysteretic behavior.

In this work, our theoretical approaches are mainly focused on star, chain and ring structures because the
necessary conditions of synchronization transitions have been analytically obtained in the same framework.
From the viewpoint of numerical simulations, the phase summation operation on the Cartesian product
graph can be performed for general network settings as well. For instance, given two independent factors G, and
G, presenting continuous synchronization transitions at respective critical couplings A.; and A,, the
synchronization on the product graph G,0JG, is fully determined by the product R = R, R,. Therefore, the
critical couplingon G;JG, is A\, = max{A., A\2}.

The Cartesian product can be performed recursively, for instance, by Kronecker power, which is one of the
graph operations in generating a big graph from two or more small factor graphs [37]. This generative model
presents some properties that are often observed in real networks, e.g., in heavy-tailed degree distributions and
small diameters etc. From the viewpoint of illustration, it shares some similarities with generating multi-layer
networks [8]. Therefore, our results provide some novel insight in network design and synchronization control.
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Appendix A. Kronecker product and Kronecker sum

Definition (Kronecker product of matrices). Given two matrices AV = [aé”] and A® = [aéz)] of sizesm X n

and r x s respectively, the Kronecker product matrix AV ® A® of dimensions mr X ns is given by

8



10P Publishing

NewJ. Phys. 19 (2017) 123036 CWangetal

aDAD aDAD . aDA®

alVA® aDA» - alhA® ‘

AD @ AD = (A.1)

allA® aNA® . a()A®

Each element of the product matrix is hence represented by A él)A,&z).

Definition (Kronecker sum of matrices). Suppose two matrices A and A® of sizesm x mandn x n
respectively, the Kronecker sum matrix A & A® has dimensions mn x mn, which is given by

AD 3 AP =AY @ I, + I, ® A®, (A2)

where I, I, are identity matrices of dimension m X mand n X nrespectively. Each element of the sum matrix
is hence represented by A,-;l) O + &jA,EIZ), where §;; are Kronecker delta functions.

Appendix B. Equivalence between equations (15) and (1)

Proof. We show the coupling terms of both representations are identical. Suppose two phase oscillators attached
to thelink cvare denoted as " and a—, where o' is the starting point while o~ is the end point respectively. Thus
we have the notation [BO], = 0, — 0,-. Therefore, the coupling term for the node i is expanded as

[BT sinBO); = > Baisin(0y — 04). (B.1)

a=1
If oscillator 7 is the starting point i = «", and jis the end point j = o~

Buisin(0g — 0,-) = sin(0; — 0)). (B.2)

On the other hand, if i is the end point i = o, andjis the starting point j = «~, we have

Byisin(0y — 0,-) = —sin(0; — 0;) = sin(0; — 0)). (B.3)

Therefore the coupling term of node 7is simplified as

Z Bai sin(0a+ — 9(1*) = Z A,’j sin(@i — 9]) (B.4)

a=1 j=1

This proves the statement that the coupling terms are identical in equations (15) and (1). f

Appendix C. Moore-Penrose pseudo-inverse

Here we give a brief introduction to the Moore—Penrose pseudo-inverse, a generalization of the inverse of a
matrix. The Moore—Penrose pseudo-inverse is defined for any matrix and is unique, which brings conceptual
clarity to study the solutions of arbitrary systems of linear equations.

Definitions. Suppose A € R"*" . Then {Ax|x € R"}isalinear subspace of R”, which is called the image space
of A and denotedas Im A. {x € R"|JAx = 0} isalinear subspace of R”, which is called the kernel of A and
denoted as ker A.Inaddition, due to the Fredholm theory, we have (Im A)* = ker A” and (ker A)* = Im AT,
where L is the orthogonal complement space.

For A € R™*", there exists aunique matrix X € R"*" which is called the Moore—Penrose pseudo-inverse
of A ifand only if the following four criteria are satisfied: (i) AXA = A, (ii) XAX = X, (iii) (AX)" = AX, (iv)
(XA)T = XA.We denote the Moore-Penrose pseudo-inverse of A as A*. Note that A™ exists for any matrix A
and furthermore A* is equivalent to the inverse A~!if A has full rank. In addition, we denote the transpose of A*
as A™T and we have (AT)" = (A")T. Additional property of pseudo-inverse is ker A" = ker A

The Moore—Penrose pseudo-inverse theorem is effectively for studying the solution of arbitrary systems of
linear equations. For alinear system Ax = b, A € R"*"and b € R™. (i) No solution exists if
rankA < rank(A, b); (ii) unique solution exists if rankA = rank(A4, b) = n and the solution reads x = A™b;
(iii) infinite number of solutions exist if rankA = rank(A, b) < n and the solutions read
x = Atb + (I — A*A)u where u € R"isanarbitrary vector,and (I — ATA)u € ker A.
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Appendix D. Solutions to linear equations (18)
We first consider a general solution x to the system
Blx=w - @, (D.1)

where x = ) sin BO. A solution always exists if the condition w — @ € Im BT holds, or equivalently if the
condition w — @ ker B holds (Fredholm expression).

Corollary 3. A solution always exists for connected networks.

Proof. For a connected network, we have ker B = span{1}and

1T(w—w)=znjw,-—znjw=0. (D.2)
i=1 i=1

Therefore, the condition w — @_ ker B holds. f
In the following, we consider two cases:

Case 1. rankB” = n — 1 = m, which holds for any tree topology without any loops. Because ker B’ = ker B
and B*T& = 0, a unique solution reads

x = BtTw. (D.3)

Since the incidence matrix B is row full rank, the general solution in terms of 8 to the linear system reads

+Tw

. B
0 = BTarcsin + (I, — B™B)v, (D.4)
where (I, — B"B)v € ker B = span {1}, and v isan arbitrary vector. Note that the arbitrary vector  adds a
constant to each phase component, which is equivalent to use a rotating frame with this constant to the ensemble
of oscillators. Neglecting the term of arbitrary vector v, the synchronized solution reads

. BTw
60 = Btarcsin (D.5)
Since the sine functions are bounded, the existence condition for synchronization is
A2 A= ||BTw||oo = maxa“BTw]al) (D.6)

where the maximum norm runs over all links a.

Case 2. rankB! = n — 1 < m, which s typical for a general complex network topology with loop structures.
Considering B*T@ = 0, an infinite number of solutions reads

x=B"Tw+ (I,, — BtTB))u. (D.7)
where u is an arbitrary vector. In terms of 8, the solution reads

BtTw + (I, — B*TB)u
T .

BO = arcsin

(D.8)

Solutions of 8 do not always exist because B is not row full rank. In addition, the summation of phase difference
between two neighboring oscillators along the loop structure is zero, which suggests that the choice of # can not
be arbitrary.

If synchronization exists (A > \,), a general solution of 6 reads

B*Tw + (I,, — B*"TBT)u
A

0 = Btarcsin + (I, — B'B)v. (D.9)
Note that, as in the case (i), the arbitrary vector  adds a constant to each phase component, which is equivalent
to use a rotating frame with this constant to the ensemble of oscillators. Neglecting the term of arbitrary vector
v, the synchronized solution reads

10
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BtTw + (I, — B*TB)u

0 = BTarcsin Y (D.10)
Because sine functions are bounded, the existence of synchronization solutions yields the necessary condition as
A> A= |B"Tw + (I, — BTTB ) u||, (D.11)
where ||-|| is the maximum norm.
Appendix E. Kuramoto model on a chain
Corollary 4. For n oscillators coupled in a chain, the necessary condition of synchronization
isA > A = maxi cken S0 Wi — @)
Proof. The incidence matrix
1 -1 0 .0 0
L FEE (E.1)
o 0 0 ... 1 -1
and the Moore—Penrose pseudo-inverse reads
notoo 11 _1
n n n n
n-2 _n-2 _2 _2
BT = n n n n (E.2)
1 1 1 _ nel
n n n n
In addition, we have
w; — W
Bilw— | w220 (E.3)
@ — wy
Hence the necessary condition of synchronization is
k
Ac = max wi—w|. E.4
o= x| Y ; (E4)

Remark 5. For a special case of three oscillators coupled in a chain, we have the critical coupling strength for
synchronization as A, = max{|w; — @|, |ws — @|} where @ = (w; + wy + w;3) /3, which is the same as the
case of corollary 1.

Appendix F. Kuramoto model on a tree—a universal model for star and chain structures

A tree structure becomes two disjoint components A and B when any link o is removed. We denote the two
oscillators attached to the link o by a in the component A and, respectively, b in the component B. With the
notations of the average phase of all oscillators & and the average frequency @ (equation (16)), the compact form
of synchronization (equation (17)) in the components A and B are expressed as

do; do
SUEE - &) = S (i — @) + Asin(, — 6, F.1
iEA( dr dt) ieA(w 2 Asinh ) (=1
do; do
S~ - S i — @) + Asings — 0y). F.2
ieB( dt dt] ieB(w P Asind 2 (52

Itis sufficient to consider equation (F.1) only since the sum of the above two equations ((F.1) and (F.2)) is zero.

Furthermore, synchronization is achieved when the phase difference between each oscillator and the average
4o, o

phase is a constant, namely, we have Pl 0. Therefore, the equation (F.1) in the component A is rewritten
as
Z(wi — @) + Asin(0, — 6,) = 0, (F.3)
icA
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which is further simplified as

Z(w,- — @) = —Asin(0, — 0,). (F.4)

i€EA

Because the sine function is bounded, the synchronization solution exists if the following condition

A2 A= | S wi— @) (E.5)

ieA
is fulfilled. Performing the same analysis for each link « in the component A, we obtain the necessary condition
for synchronization as

A > max A\, = max Z (w; — @) | . (F.6)

1<a<m 1<as<m icA,

Note that the equation (F.6) has the explicit form of equation (22) for a star and equation (E.4) for a chain,
respectively.
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