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Abstract. Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected
people and damages of USD 29 billion on average per year over the last 20 years. While data on observed
cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain
information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified
wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on
available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the
number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for
temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns
(TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT)
cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al.,
2017¢). It is considered key information to (1) assess the contribution of climatological versus socioeconomic
drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in
exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-
based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or
migration.

We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure
obtained from reported wind fields available since 1988 for the United States.

We expect that the free availability of the underlying model and TCE-DAT will make research on tropical
cyclone risks more accessible to non-experts and stakeholders.

Tropical cyclones (TCs) are among the most harmful natural
disasters worldwide, with USD 29 billion of direct damages
and 22 million people affected on average each year (Guha-
Sapir, 2017). In addition to these direct damages tropical cy-
clones have the potential to exercise negative influence on
long-term development such as dampening of economic out-
put (Hsiang, 2010; Hsiang and Jina, 2014), e.g., by reduced
education achievements, mortality, and displacement, but can
also cause indirect benefits such as alleviating drought.

Published by Copernicus Publications.

Direct economic losses from TCs show a positive trend
over time (MunichRe, 2015) whose attribution to increasing
exposure, changing vulnerability, and more extreme hazards
is heavily debated (Pielke et al., 2008; Estrada et al., 2015).
The attribution is particularly relevant for future projections
of TC impacts given expected changes in population numbers
and patterns (Jones and O’Neill, 2016), potential increases in
hazards under unchecked climate change (Emanuel, 2013),
and the future evolution of vulnerabilities (Bakkensen and
Mendelsohn, 2016; Geiger et al., 2016, 2017a). Options to
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gain a better understanding of TC induced societal risks
strongly depend on high-quality observational TC and so-
cioeconomic records. However, availability of data strongly
varies over time and space, is limited to certain regions only
(Anderson, 2017; Anderson et al., 2017), and data sets can be
subject to various reporting biases (Guha-Sapir and Below,
2002; Wirtz et al., 2014). Working with these issues can be
tedious and even beyond the scope of a researcher’s exper-
tise. Moreover, standardized methods of data selection and
preparation facilitate the reproducibility and comparability
of research results and also accelerate scientific discovery.

To overcome current limitations, we here provide a glob-
ally consistent data set of TC exposure, named TCE-DAT.
Exposure in TCE-DAT is defined per TC event as the num-
ber of potentially affected people and the sum of potentially
affected assets purely due to TC maximum wind speed. Ad-
ditional impact categories to quantify exposure could account
for duration or gustiness of strong winds, TC-related pre-
cipitation, and or storm surges. TCE-DAT covers the period
from 1950 to 2015 and provides estimates of exposed popu-
lation and exposed assets by 2713 individual landfalling TCs
with at least 34-knot (kn) 1 min sustained wind speed above
land documented by the International Best Track Archive for
Climate Stewardship (IBTrACS) (Knapp et al., 2010). The
data set is created using only publicly available data sources
and running the open-source economics of climate adapta-
tion (ECA) tool CLIMADA (Bresch, 2014; Gettelman et al.,
2017).

To allow for an assessment of purely physically driven
changes in exposure we also provide estimates of the num-
ber of people and the sum of assets exposed given fixed 2015
distributions of population and assets. In this regard TCE-
DAT extends and complements estimates from the Global
Assessment Report on Disaster Risk Reduction (GAR 2015)
(UNISDR, 2015), which provides a statistical assessment of
exposure given fixed socioeconomic conditions.

In combination with reported damages and number of peo-
ple affected from other sources, e.g., EM-DAT (Guha-Sapir,
2017) and NATCAT (MunichRe, 2015), TCE-DAT allows for
a convenient assessment of historical vulnerabilities finally
translating hazard (wind intensities) and exposure into dam-
ages or people affected as indicators of societal risks.

In the following we describe the input data sets and our
methodology used to create TCE-DAT. We then validate
our findings based on exposed population estimates for the
United States. We conclude by discussing potential appli-
cations of TCE-DAT and comment on its limitations and
sources of uncertainty.

2 Data and methods

2.1 CLIMADA — risk modeling

TCE-DAT builds on various TC and socioeconomic data
sets that are merged and analyzed using CLIMADA, an
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open-source probabilistic natural catastrophe risk assessment
model (Bresch, 2014). For the definition of natural hazard
risk, we follow the definition by the IPCC (2014) where risk
is defined as a function of hazard, exposure, and vulnerabil-
ity, i.e.,

risk = f (hazard, exposure, vulnerability) = (D
probability of hazard x f (intensity of hazard,

exposure, vulnerability),

where the latter three elements constitute severity of the im-
pact. Hazard describes weather events such as storms, floods,
drought, or heatwaves both in terms of probability of oc-
currence and physical intensity (see Sect. 2.3 below). Expo-
sure describes the geographical distribution of people, liveli-
hoods, and assets or infrastructure, or, generally speaking, of
all items potentially exposed to hazards, including ecosys-
tems and their services. In the present case, exposure is de-
termined for each TC separately based on the storm’s wind
field and maximum sustained wind speed (see Sect. 2.2 be-
low). Vulnerability describes how specific exposure will be
affected by a specific hazard, i.e., relates the intensity of a
given hazard with its impact, such as wind damage to build-
ings as a function of wind speed or the effect of a flood on
a local community and its livelihoods. The damage function
hence expresses the specific vulnerability for a given kind of
assets.

While CLIMADA allows for the implementation of dif-
ferent damage functions translating the intensity of the haz-
ard, exposure, and vulnerabilities into damages and people
affected (Gettelman et al., 2017) we only use part of its
functionality to solely estimate exposure by using a step-
like vulnerability function that is zero below a certain wind
speed threshold and unity above. The CLIMADA mod-
ule ISIMIP v1.0 used to generate TCE-DAT can be found
at https://github.com/davidnbresch/climada_module_isimip/
releases/tag/v1.0.

2.2 Socioeconomic data

We use socioeconomic data at the grid level with 0.1° x 0.1°
resolution. For the attribution of exposed population and as-
sets to different countries we use a country mask with equal
resolution.

2.2.1 Spatially explicit population data

Affected population is determined based on the His-
tory Database of the Global Environment (HYDE, ver-
sion 3.2), which is developed under the authority of the
Netherlands Environmental Assessment Agency and pro-
vides (gridded) time series of population and land use
for the last 12000 years (Klein Goldewijk et al., 2010,
2011, 2017). HYDE provides population data with an orig-
inal resolution of 5arcmin (0.083°), decennially up to

www.earth-syst-sci-data.net/10/185/2018/
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Table 1. List of consulted data providers within the IBTrACS archive broken down by ocean basin. Numbers indicate order of priority. The
row “remainder” has lowest priority for all basins and data from this source are only used in very few cases to provide estimates for otherwise
missing data. Abbreviations are the following: HURDAT, Hurricane Databases of the National Hurricane Center; JTWC, Joint Typhoon
Warning Center (available for various basins); ATCF, Automated Tropical Cyclone Forecast; BOM, Bureau of Meteorology (Australia);
newdehli, Regional Specialized Meteorological Center New Dehli, India; CMA, China Meteorological Administration — Shanghai Typhoon
Institute; remainder, [VARIABLE_NAME]_for_mapping variables in IBTrACS data.

Provider North Atlantic  South Atlantic  East Pacific = West Pacific =~ South Pacific = North Indian  South Indian
HURDAT 1 - 1 - - - -
JTWC - - 3 1 1 1 1
ATCF 2 1 2 - - - -
BOM - - - - - - 2
newdehli - - - - 2 -
CMA - - - 2 - - -
remainder 3 2 4 3 2 3 3

2000 and annually up to 2015, and is freely available
at https://doi.org/10.17026/dans-25g-gez3 (Klein Goldewijk,
2017). Where required we linearly interpolate the data to de-
rive annual distributions, and finally aggregate the numbers
to 0.1° resolution.

2.2.2 Spatially explicit assets data

The spatially explicit assets data set is created based on
spatially explicit GDP data (in 2005 PPP USD), available
decennially between 1850 and 2100 (Frieler et al., 2017,
Geiger, 2017; Geiger and Frieler, 2017; Geiger et al., 2017b;
Murakami and Yamagata, 2017). Data from 2010 onwards
are based on national GDP time series according to the
Shared Socioeconomic Pathways (SSP2) (Dellink et al.,
2017; Frieler et al., 2017; Geiger et al., 2017b). Grid-level
GDP is downscaled from national GDP estimates, using spa-
tially explicit population estimates and multiple other pre-
dictors, e.g., distance to cities and to the coast, road net-
work densities, and others (Murakami and Yamagata, 2017).
GDP data, provided with an original resolution of 5 arcmin
(0.083°), are linearly interpolated to derive annual distribu-
tions for the years from 1950 to 2015. Finally, data are ag-
gregated to 0.1° resolution in the same way as the population
data.

To estimate assets distributions from the GDP data we use
the Global Wealth Databook 2016 assembled by Credit Su-
isse (CreditSuisse, 2016) to derive national assets / GDP ra-
tios for the year 2016 for 181 countries. Ratios for missing
countries are approximated based on geographically close
countries with similar GDP per capita values. Due to a lack
of reported asset distributions for other years we assume
national assets/GDP ratios to be constant over the consid-
ered time period (1950-2015). The decennially gridded GDP
at original resolution and the national assets /GDP ratios
are freely available at https://doi.org/10.5880/pik.2017.007
(Geiger et al., 2017b).

www.earth-syst-sci-data.net/10/185/2018/

2.3 Hazard data and wind field modeling
2.3.1 Hazard data

IBTrACS provides the most comprehensive global data set
of historical tropical cyclone activity (Knapp et al., 2010).
We rely on the latest version (v03r09), which includes trop-
ical cyclones records up to the end of 2015. IBTrACS com-
bines TC data from various regional specialized meteoro-
logical centers (RSMCs). However, historical TC records
from the National Hurricane Center (NHC) of the United
States (known as HURDAT), available for the North Atlantic
and eastern Pacific, and the Joint Typhoon Warning Center
(JTWC), available for the remainder of the world, are re-
garded most accurate (Holland and Bruyere, 2014). When-
ever possible, we sub-select HURDAT and JTWC data from
IBTrACS data, relying on other providers for otherwise miss-
ing events only (see Table 1).

The IBTrACS archive originally contains 7019 entries be-
tween 1950 and 2015 (3662 between 1980 and 2015). We
select 5719 TCs between 1950 and 2015 (3577 TCs between
1980 and 2015) where all information required to estimate
the associated wind fields is available (see Table 2 for the
list of required variables) to subsequently filter 2713 events
with landfall. Note that most incomplete data entries occur
prior to 1980, and in particular for very weak events mostly
without landfall. We here define a TC to make landfall if at
least one grid cell (of the hazard grid) of the TC’s simulated
wind field is above land with at least 34 kn maximum winds,
thereby counting no direct hits as landfalls. This landfall
definition also depends on the resolution of the underlying
grid. We here use a country mask of 0.1° x 0.1° resolution
(360 arcsec) that is upscaled from an original resolution of
150 arcsec to provide best possible coverage of the coastline.
To further reduce inconsistencies with the socioeconomic
gridded data we globally extend the land area of the hazard
grid by one grid cell (0.1°) into the oceans. Thus, we artifi-
cially increase the number of landfalls but, conversely, min-
imize the number of socioeconomically relevant grid cells
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Table 2. Input variables for HollandO8 wind field model as implemented in CLIMADA.

Variable short name  Variable long name Further details

cgps current TC center lat/long coordinates -

ngps TC center lat/long coordinate at next time step  —

tint time between time steps usually 6 h

pcen minimum central pressure in mbar

prepcen minimum central pressure at previous time step  required to calculate pressure gradient

vmax 1 min maximum sustained wind speed only used if pcen not given
penv environmental pressure at outer closed isobar if unavailable set to 1010 mbar
rmax radius of maximum winds extrapolated from pcen if not given; based on

cubic fit of IBTrACS data

that would be labeled as water otherwise. This procedure is
particularly relevant for small islands and coastal cities for
which the calculation of exposure would otherwise result in
a gross underestimation.

2.3.2 Wind field modeling

The IBTrACS archive only contains TC center coordinates
and other physical variables on a 6 h snapshot basis. A wind
field model is required to generate continuous wind fields
that — based on IBTrACS variables — provides realistic dis-
tributions of surface winds around the TC center. The spatial
extent of a TC is usually described as the sum of the follow-
ing components: (1) a static circular wind field for each track
coordinate, and (2) the translational wind speed component
that arises from the TC movement. To estimate the first com-
ponent several models have been proposed; see, for example,
Holland (1980, 2008), Holland et al. (2010), and Chavas et
al. (2015). Here, we apply the improved wind field model by
Holland (2008) (named HollandO8 in the following), which
has been successfully applied in other studies, e.g., Peduzzi
et al. (2012). The maximum surface wind v, defined by Hol-
land08’s pressure-gradient model is given as

b 0.5
U = (—S Ap(r/rm)) : )
pe

where p is air density, e is the base of natural logarithms,
Ap is the pressure drop to the cyclone center as a function
of radial distance r in units of radius of maximum winds ry,,
and bg is a quantity that depends on higher powers of Ap,
the temporal change in pressure, and the TC’s translational
speed and latitude; see Holland (2008) for further details.
The second component is added to the first one by quan-
tifying the mean TC’s translational wind speed between two
consecutive track coordinates (via an optimized Haversine
formula) and vectorial addition of both wind speed compo-
nents. We incorporate that the effect of the translational wind
speed decreases with distance from the TC center by multi-
plying the translational component by an attenuation factor
given as the ratio between the distance to center and rmax;
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see also Peduzzi et al. (2012). Although this attenuation fac-
tor can be thought to resemble surface friction effects, we
neither explicitly account for surface friction and the result-
ing reduction and rotation in the translational speed’s magni-
tude and direction, respectively (Lin and Chavas, 2012), nor
do we incorporate that the magnitudes of the motion-induced
asymmetries at the surface do not necessarily increase pro-
portionally with the translation speed (Uhlhorn et al., 2014).

Our implementation of the HollandO8 model (includ-
ing the translational TC movement) is freely available
within the CLIMADA ISIMIP module (https://github.com/
davidnbresch/climada_module_isimip/releases/tag/v1.0),
which has been used to generate the provided data set. The
input variables required to run the Holland0O8 model are
summarized in Table 2.

The HollandO8 model works best in the tropics; for TCs
with subtropical transition that potentially enter the wester-
lies of the mid-latitudes we limit the translational wind speed
component to 30kn, thereby removing fast-moving storms
that lack TC characteristics.

The present implementation of the HollandO8 wind field
model generates a complete wind profile for each TC by sav-
ing its lifetime’s maximum wind speed at each spatial loca-
tion; 1 min sustained wind speeds below 34kn (17.5ms™ ")
are discarded (see Fig. 1).

2.4 The global TC exposure data set (TCE-DAT)
2.4.1 Overview of TCE-DAT

The final TCE-DAT is freely available in Geiger et
al. (2017¢). It is created by overlaying the estimated winds
fields and the distributions of assets and population. We pro-
vide spatially explicit exposure data for each TC but also
aggregated data of all nonzero country- and TC-specific ex-
posure values. Two data types are included in TCE-DAT:
(1) TCE-hist, where socioeconomic information matches the
year of landfall, and (2) TCE-2015, where socioeconomic
patterns are fixed at 2015 values. Aggregated TCE-DAT pro-
vides estimates of exposed population and exposed assets
by event and by country for 34, 64, and 96kn wind speed

www.earth-syst-sci-data.net/10/185/2018/
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Figure 1. Example wind fields for Hurricane Katrina affecting the United States in 2005 (a) and Typhoon Haiyan affecting the Philippines
in 2013 (b) as generated using the HollandO8 wind field model. The color bar ticks highlight the relevant wind speed thresholds from the

Saffir—Simpson scale in knots.
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Figure 2. Annual numbers of TC landfalls by ocean basin. The number of TC landfalls varies greatly due to the stochastic occurrence of
landfalls, natural variability, and reporting biases (prior to 1980, indicated by vertical gray line). Ocean basin abbreviations are as follows:
NA, North Atlantic (red); EP, east Pacific (orange); WP, west Pacific (yellow); SP, South Pacific (light blue); NI, north Indian (blue); SI,

south Indian (dark blue). South Atlantic is excluded (2 TCs).

thresholds, corresponding to the Saffir—Simpson hurricane
scale classification of tropical storm, hurricane, and major
hurricane, respectively. TCE-DAT at the grid level provides
exact wind speed information and exposed population and
assets for each grid coordinate above land. Note that TCE-
2015 contains 23 additional entries compared to TCE-hist.
This is due to the fact that population and assets distributions
have advanced over time and would have been exposed if all
historical TCs were to make landfall in 2015 (as assumed in
TCE-2015), while they were not exposed historically.

Due to technological innovations the reporting of TCs in
the IBTrACS database has improved significantly over time,
reaching comprehensive global coverage by 1980 (see also
Fig. 2). Compared to basin-wide TC activity, the number of
landfalling TCs is smaller and shows greater variability due
to underlying climate variability, e.g., driven by the El Nifio—
Southern Oscillation (ENSO). When using TCE-DAT to an-
alyze trends in TC risk (see Fig. 3), one should be aware of
potential underreporting in IBTrACS for earlier periods that
might even affect landfalling TCs and can be one reason for
trends.

www.earth-syst-sci-data.net/10/185/2018/

2.4.2 Limitations of TCE-DAT

We ask each user to consult the list of limitations of TCE-
DAT before working with the data.

The IBTrACS archive is the most comprehensive data set
of TC activity today. However, before the invention of re-
mote sensing technologies, TC coverage in IBTrACS data is
incomplete (see Fig. 2). In particular the Indian Ocean and
the southern Pacific Ocean should be treated with care for all
events before 1980.

The Holland08 wind field model (as well as other available
wind field models) provides a rather generic setup to derive
wind fields based on statistical properties of observed TCs.
The wind field generated by the model represents a gross ap-
proximation of the actually realized wind field. Wind fields
of “standard” TCs are more accurately captured by wind
field models than TCs with very unusual properties, e.g.,
Superstorm Sandy in 2012, whose extension was unusually
huge despite its rather weak winds. Therefore, one should
be aware of outliers when analyzing single storm properties
from TCE-DAT. Furthermore, our methodology defines ex-
posure solely using the storm’s wind field and maximum sus-
tained wind speed. We do not account for additional people
and assets in regions that might still be exposed to, for exam-

Earth Syst. Sci. Data, 10, 185-194, 2018
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Global TC-exposed population and assets for varying wind speed thresholds
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Figure 3. Annual global TC exposure for different thresholds of wind speed (34 kn, red; 64 kn, orange; 96 kn, yellow). Dashed lines: estimates
based on fixed 2015 patterns of population and assets (TCE-2015); solid lines: estimates based on the historical evolution of population and

assets patterns (TCE-hist).

ple, severe precipitation and/or storm surges. This is particu-
lar relevant for TCs that cause damage but whose wind field
never touches land directly. The same is true for offshore ac-
tivities (e.g., oil platforms, ships), whose assets remain unre-
solved by our methodology.

The socioeconomic data have been carefully assembled
but still gives rise to uncertainties, e.g., caused by linear in-
terpolation between decennial time steps. While there ex-
ists some certainty for population distributions as subnational
population counts have been collected for centuries, the un-
certainty in the distribution of GDP is much larger as re-
ported subnational GDP and assets estimates are still unavail-
able for most countries at present. Additionally, GDP at the
grid level is used to approximate local assets. While this as-
sumption seems reasonable for the spatial resolution used in
this work, there might still exist large discrepancies for spe-
cific grid cells and economic sectors. Furthermore and due
to a lack of data, we use 2016 national assets / GDP ratios to
approximate assets structure for all years between 1950 and
2015. As a consequence, the assets value of fast-developing
countries might be overestimated for earlier years.

3 Validation of exposure estimates

TCs and their impacts are comprehensively studied in the
United States. We therefore use the United States as a test
region to compare TCE-DAT estimates with more compre-
hensive observational records for storm size and in order to
evaluate the reliability of our methodology.

Our validation is based on the extended best track HUR-
DAT (HURDAText) archive. This archive is equally main-
tained by the NHC and — in extension to the regular HUR-
DAT archive — provides size estimates for most North At-
lantic TCs since 1988 for the wind speed thresholds 34, 50,
64 kn, and maximum wind speed) (Demuth et al., 2006). No
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size information is available for intermediate wind speeds.
Data by HURDAText are preprocessed (as described in
Geiger et al., 2016) and compared to results from TCE-DAT
for the variables wind speed at landfall and exposed popula-
tion at 34, 64, and 96 kn for 87 TCs between 1988 and 2012.

The comparison of the TC’s maximum recorded wind
speed above land (Fig. 4a) shows a good qualitative agree-
ment between both data sets with a Pearson correlation of
r = 0.86. Perfect agreement cannot be expected and is pre-
cluded for several reasons. First, the HollandO8 model es-
timates TC wind speed indirectly based on minimum cen-
tral pressure, thereby inhibiting a direct comparison of wind
speeds at landfall. Second, the HURDAText data set provides
observed wind speed in incremental steps (34, 50, 64 kn, and
maximum wind speed). For TCs with no direct landfall of
the storm’s center (near misses) this provides only an ap-
proximate value for the real wind speed. As, however, near
misses also affect people and assets they are also included in
TCE-DAT. Therefore, a single grid cell can decide between
a miss and a near miss and consequently the results strongly
depend on the exact wind field. This also explains why the
actual number of TCs with nonzero exposure slightly varies
between both data sets (see Fig. 4b). The relatively large dif-
ference in numbers of landfall for the 96 kn threshold is due
to the fact that the HURDAText archive does not provide size
estimates for 96 kn directly but rather for the radii of maxi-
mum winds only.! Major TCs that do not hit land with their
maximum winds are thus only included as TCs exceeding
64 kn despite the fact that a fraction of the wind field above
land might well exceed the 96 kn threshold.

In a next step we compare the obtained exposure measures
for different intensity thresholds, both at the individual event

IFor completeness we also decided to compare the 96 kn thresh-
old, being aware that a proper comparison is infeasible as no direct
size estimates exist for this threshold.

www.earth-syst-sci-data.net/10/185/2018/
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Figure 4. Comparison of wind speed at landfall by event (a) and the aggregated number of TCs with nonzero exposure for different wind
speed thresholds (b) between 1988 and 2012 using estimates based on the Holland08 wind field model and the observed HURDAText

database.

and aggregated level (see Fig. 5). This indicates the sensitiv-
ity of exposure measures to different surface wind estimates
by Holland08 and HURDAText.

For 34kn winds we find a good agreement (r = 0.83)
for exposed population between Holland08 and HURDAText
(see Fig. 5a). There are a few outliers where the exposed pop-
ulation based on HURDAText is several orders of magnitude
larger than based on Holland0O8. Such large deviations are,
however, expected as individual storms can strongly deviate
from regular-sized TCs. Superstorm Sandy, which hit the US
east coast in 2012, is a good example: Sandy’s wind field
of tropical storm force was huge in comparison to mean ex-
tensions of comparable events and extended all the way to
Florida despite its landfall location in New Jersey. Similar de-
viations are also reflected in the exposure estimates across all
TCs at 34 kn (see Fig. 5b): while mean affected population is
comparable there are large deviations for higher percentiles.

Differences in TC exposure derived from observational
and approximated wind fields become smaller with increas-
ing intensity (Fig. 5c), and the mean numbers as well as
the different percentiles of exposed population across all
landfalling TCs between 1988 and 2012 compare well (see
Fig. 5d). For 96 kn winds the number of TCs available for
comparison is rather small (Fig. Se, f), and there exists an
additional bias as the 96kn wind speed threshold is not
provided in HURDAText explicitly; see discussion above.
Nonetheless, and up to one outlier, we find good agreement
between the exposure estimates from both data sets.

Based on the validation exercise for the United States
we conclude that there exists a good qualitative and quan-
titative agreement between risk estimates drawn from the
observation-based HURDAText and the generic Holland0OS8
wind field data, despite known shortcomings of the Hol-
landO8 wind field model. Consequently, there exists confi-
dence that exposure estimates for other parts of the world
and other time periods can be used to approximate exposure
given the lack of observed wind fields. Due to the generic
wind field modeling approach, however, more confidence

www.earth-syst-sci-data.net/10/185/2018/

should be put into aggregated exposure estimates than single
event exposure, in particular if additional information about
this event is scarce.

4 Data availability

TCE-DAT was produced using publicly available data
only. In particular, the open-source CLIMADA modeling
tool module ISIMIP v1.0 (https://github.com/davidnbresch/
climada_module_isimip/releases/tag/v1.0) was used to gen-
erate TCE-DAT. Gridded population data are freely available
from the HYDE database (Klein Goldewijk, 2017); gridded
GDP data and corresponding national GDP/assets conversion
factors can be found in Geiger et al. (2017b). In addition to
the data sources mentioned above, the already pre-processed
socioeconomic data can also be accessed via the input data
tab available at https://www.isimip.org/. We created a data
collection DOI that assembles all presently available data
sets as well as future amendments to TCE-DAT in Geiger
et al. (2017c). Currently, this data collection DOI hosts the
spatially explicit (Geiger et al., 2017c) and the aggregated
(Geiger et al., 2017c) TCE-DAT repositories.

5 Conclusions

We here provide a new and comprehensive data set TCE-
DAT for global historical TC exposure between 1950 and
2015. The data set contains spatially explicit exposure at
the grid level and aggregated exposed population and ex-
posed assets by event and country for 5335 events based
on 2713 TCs, separating exposure to wind speeds above 34,
64, and 96 kn. This data set provides an assessment by over-
laying estimated wind fields with gridded information about
population and assets. While this approach has some lim-
itations, in particular potentially large deviations from ac-
tually realized exposure for selected events because of the
generic wind field model, it also overcomes various other is-
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Exposed population comparison for varying wind speed thresholds
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Figure 5. Comparison of exposed population by event (a, ¢, e) and across events (b, d, f) for different wind speed thresholds using estimates
from the Holland08 wind field model and the observed HURDAText database. In the right panels, boxes (whiskers) indicate the 25-75 %

(10-90 %) percentile range, while yellow lines are medians.

sues that arise due to biased and/or changing reporting stan-
dards across time and space. Pure data of exposed population
and assets, i.e., relying only on TC properties, are not avail-
able elsewhere. As a further benefit, TCE-DAT was created
using only freely available input data and established meth-
ods and the freely available modeling tool CLIMADA with
module ISIMIP.

In conclusion, this work provides a valuable additional
resource to the community studying TC-related impacts, in
particular for non-experts in this field. It avoids present endo-
geneity issues, in particular relevant for econometric assess-
ments of TC impacts, by creating a TC exposure database
based on physical storm properties. Based on this data set

Earth Syst. Sci. Data, 10, 185-194, 2018

new insights are expected for global and region-specific vul-
nerability assessments and the long-run economic conse-
quences of natural disasters in general.
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