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An effective bulk-surface thermistor model for
large-area organic light-emitting diodes

Annegret Glitzky,Matthias Liero, Grigor Nika

Abstract

The existence of a weak solution for an effective system of partial differential equations describing the electrothermal
behavior of large-area organic light-emitting diodes (OLEDs) is proved. The effective system consists of the heat equation
in the three-dimensional bulk glass substrate and two semi-linear equations for the current flow through the electrodes
coupled to algebraic equations for the continuity of the electrical fluxes through the organic layers. The electrical problem
is formulated on the (curvilinear) surface of the glass substrate where the OLED is mounted. The source terms in the
heat equation are due to Joule heating and are hence concentrated on the part of the boundary where the current-flow
equation is posed. The existence of weak solutions to the effective system is proved via Schauder’s fixed-point theorem.
Moreover, since the heat sources are a priori only in L1, the concept of entropy solutions is used.

1 Introduction

Large-area light-emitting diodes made of organic semiconductor materials are thin-film multilayer devices showing pro-
nounced self-heating and brightness inhomogeneities at high currents [12, 35]. Since high currents are required in lighting
applications, a deeper understanding of the mechanisms causing these inhomogeneities is necessary.

In organic semiconductor materials, charge carriers move via temperature-activated hopping transport through an en-
ergetically random energy landscape [22]. By applying a voltage to an organic semiconductor device a current flow is
induced which leads to a power dissipation by Joule heating and hence a temperature rise. The increase in temperature
improves the conductivity in organic materials leading in turn to the occurrence of higher currents [21, 23]. Thus, a pos-
itive feedback loop develops that could result in complete destruction of the device by thermal runaway if the generated
heat cannot be dispersed into the environment. The temperature dependence of the conductivity is often modeled by an
exponential law of Arrhenius type [13] (see also (2.5)), which features an activation energy related to the energetic disor-
der in the organic material. For sufficiently high activation energies, the electrothermal interaction can lead to S-shaped
current-voltage characteristics with regions of negative differential resistance [12, 13]. The latter means that currents in-
crease despite of decreasing voltages. Moreover, in [12, 20] it is demonstrated experimentally that the complex interplay
of temperature-activated transport of the charge carriers and heat flow in the device leads to inhomogeneous current dis-
tributions resulting in inhomogeneous luminance. Devices, whose resistance strongly depends on temperature, are called
thermistors and have attracted great interest concerning mathematical modeling, analysis, and optimization, see e.g. [37,
3, 19, 8, 36, 18].

In the current work, we prove the existence of solutions to an effective electrothermal model with bulk-surface coupling
(see (2.1)). The model describes the current flow in a large-area thin-film OLED and the induced heat flow in the substrate
on which the OLED is mounted. In particular, the electrically relevant Joule heat-producing processes take place in the
(curvilinear) two-dimensional OLED domain, while the heat flow happens in the larger, three-dimensional domain occupied
by the glass substrate and gives strong feedback to the current-flow equation in the OLED domain e.g. via an Arrhenius
law. For the planar situation, this effective model was derived in [17] from a fully three-dimensional thermistor system,
which in turn was introduced in [26], by considering the limit of vanishing thicknesses of the various OLED layers including
the electrodes. The fully three-dimensional thermistor system in [26] is based on the heat equation for the temperature
coupled to a p(x)-Laplace-type equation for the electric driving potential with mixed boundary conditions. It was extended
in [6] to include more general conductivity laws with p(x)-growth. The p(x)-Laplacian, with discontinuous x 7→ p(x),
allows us to take into account different non-Ohmic electrical behavior of the different organic layers (see, e.g., [25, 26]).
The model recovers the experimentally observed S-shaped current-voltage characteristics and explains the development
of luminance inhomogeneities in OLEDs [21, 20].

In the effective model, which is discussed here, the description of the current flow through the OLED is reduced to a
system of two semilinear PDEs for the lateral current flow in the electrodes and algebraic equations describing the vertical
flow through the several organic layers on the two-dimensional OLED domain. In particular, the nonlinear functions in the
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algebraic equations are given by the vertical component of the flux functions used in the fully three-dimensional model
(see Remark 2.1 for a brief outline of the derivation). The Joule heat produced by the current flow through the actual OLED
device enters as a surface source at the part of the substrate boundary where the OLED is mounted. Thus, the system
falls in the class of coupled bulk-surface PDEs which are often found in the modeling of biological systems in the form of
reaction-diffusion equations [2, 32, 29]. In [1], a linear, elliptic bulk-surface system on complicated geometries is analyzed
using a diffuse interface type approximation. Complicated geometries also appear in cases of bent OLEDs used e.g. in
the automotive sector. A similar system is considered in [11] (see also [30]), where existence and uniqueness follow from
standard elliptic theory. Moreover, the numerical discretization of bulk-surface PDEs is discussed therein.

The well-posedness of solutions for the fully three-dimensional thermistor system can be found in [6, 7, 15] and in [27, 28]
for the time-dependent case. The main challenge is the source term in the heat equation which is a priori only in L1. While
the results in [15] are restricted to two spatial dimensions and are based on the deriation of higher integrability properties
of the driving potential to treat the right-hand side in the heat equation in Lq , with some q > 1, the papers [6, 7] deal
with arbitrary spatial dimensions and use the theory of entropy solutions (cf. [4]) to overcome the lack of integrability of the
Joule heat term. Also in the present text, the theory of entropy solutions (cf. also Definition 3.1) and Schauder’s fixed point
theorem are used. The fixed-point map is constructed by considering the current-flow and the heat equation separately:
For a given T̃ ∈ N , withN being a suitable subset of temperature distributions (see (5.1)), we uniquely solve the current-
flow equation. Using the solution of the latter as well as T̃ in the boundary Joule heat term yields an entropy solution T of
the heat equation. The fixed-point of this map together with the associated unique solution of the current-flow equation is
a solution of the effective thermistor system. To establish the required properties of the fixed-point map Q : T̃ 7→ T and
the setN , i.e. continuity and compactness, respectively, suitable a priori estimates for the subproblems are derived.

Finally, let us mention that a more detailed description of charge-carrier transport coupled to heat flow is achieved by con-
sidering energy-drift diffusion equations, where the Poisson equation for the electrostatic potential and continuity equations
for charge carrier densities are coupled to the heat equation [9]. In the latter, additional sources due to the recombination of
charge carriers appear. As demonstrated in [10], also energy-drift-diffusion models for organic semiconductor devices cap-
ture the relevant electrothermal phenomena such as S-shaped current-voltage curves with regions of negative differential
resistance, for analytical results see [16].

The outline of the paper is as follows: In Section 2, we introduce the effective electrothermal model for OLEDs derived in
[17]. Section 3 contains the assumptions on the data, a reformulation of the model in terms of potential differences as well
as the corresponding notion of solution, and the main result of the paper, i.e. the existence result, in Theorem 3.1. Results
concerning the electric and thermal subproblems are derived in Section 4. Finally, the proof of Theorem 3.1 is presented
in Section 5.

2 An effective electrothermal model for OLEDs

We consider the case that a thin-film OLED is deposited on a surface part of a bulk substrate material. In particular, the
latter is assumed to occupy the domain Ω ⊂ R3 such that there exists a boundary part ω ⊂ ∂Ω being C2 regular
and having positive surface measure (for more detailed assumptions see Subsection 3.1). In the situation of a flat surface
ω, it was assumed in [17] that the electrically active OLED is deposited on top of ω and occupies a cylindrical domain of
thickness h > 0 withN > 2 sublayers. An effective electrothermal model was derived by considering the limit of vanishing
thickness h ↓ 0, see Remark 2.1.

The effective model consists of two equations for the lateral current flow in the top and bottom electrode and algebraic
equations for the vertical current flow through the organic layers, each given on ω, as well as the heat equation in Ω with
boundary sources on ω, viz.

−∇ω · (σ−sh∇ωϕ
1)− F 2(T, ϕ2 − ϕ1) = 0 on ω, (2.1a)

F k(T, ϕk − ϕk−1)− F k+1(T, ϕk+1 − ϕk) = 0 on ω, k = 2, . . . , N−2, (2.1b)

−∇ω · (σ+
sh∇ωϕ

N−1) + FN−1(T, ϕN−1 − ϕN−2) = 0 on ω, (2.1c)

−∇ · (λ(x)∇T ) = 0 in Ω. (2.1d)

Here,∇ω describes the surface gradient on ω, σ+
sh, σ

−
sh > 0 are the sheet conductivities of the top and bottom electrode,

and the functions F k : [Ta,∞) × R → R describe the vertical current flow through the different layers of the OLED,
k = 2, . . . , N−1, with Ta > 0 being a fixed ambient temperature. In summary, we have to determine the temperature T
in the glass substrate and N−1 potentials ϕk, k = 1, . . . , N−1, representing the electrostatic potentials in the top and
bottom electrodes and interfacial potentials between the different layers of the OLED.
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On open subsets γ+, γ− of ∂ω with positive one-dimensional Hausdorff measure, we formulate Dirichlet boundary con-
ditions for ϕ1 and ϕN−1 in (2.1a) and (2.1c), respectively, while on the remaining part of ∂ω homogeneous Neumann are
supposed, where νω ∈ R2 denotes the outer unit normal vector on ∂ω, namely

ϕ1 = ϕD− on γ−, σ−sh∇ωϕ
1 · νω = 0 on ∂ω \ γ−, (2.2a)

ϕN−1 = ϕD+ on γ+, σ+
sh∇ωϕ

N−1 · νω = 0 on ∂ω \ γ+. (2.2b)

The heat equation (2.1d) in the substrate Ω is supplemented by the following nonlinear boundary conditions modeling
Joule heating

−λ(x)∇T · ν =

{
κ(x)(T − Ta) on ∂Ω \ ω,
κ(x)(T − Ta)−Hω on ω

(2.3)

with outer unit normal vector ν ∈ R3 on ∂Ω and surface heating term Hω = Hω(x, T, ϕ1, . . . , ϕN−1) on that part
ω ⊂ ∂Ω of the surface of the substrate where the OLED is mounted,

Hω = σ−sh
∣∣∇ωϕ1

∣∣2 + σ+
sh

∣∣∇ωϕN−1
∣∣2 +

N−1∑
k=2

F k(T, ϕk − ϕk−1)(ϕk − ϕk−1). (2.4)

Remark 2.1 We briefly discuss the origin of the model in (2.1)–(2.4), for details and the derivation in the case of an
OLED mounted on a flat surface part of the substate see [17]. We assume that the OLED occupies the cylindrical domain
ΩOLED := ω̃ × (0, h), such that ω = ω̃ × {0}. It is further subdivided into the bottom electrode Ω1 := ω̃ × (0, ĥ1),

N−2 organic layers Ωk := ω̃ × (ĥk−1, ĥk), k = 2, . . . , N−1, and the top electrode Ω+ := ΩN = ω̃ × (ĥN−1, ĥN )

such that h = ĥN , see Fig. 1. In this setting, the layer thicknesses hk := ĥk− ĥk−1 are assumed to satisfy hk = hk∗ε
ρk

with ρk > 0, hk∗ > 0, k = 1, . . . , N , where the parameter ε := ĥN/diam(ω̃) denotes the ratio between thickness

and diameter of the OLED. The electrical contact of the OLED is realized by Dirichlet contacts at Γ− = γ̃− × (0, ĥ1)

and Γ+ = γ̃+ × (ĥN−1, ĥN ), respectively, where γ̃−, γ̃+ are subsets of ∂ω̃ with positive one-dimensional Hausdorff
measure and γ± = γ̃± × {0}.

Ωsub

ΩOLED = ω̃ × (0, ĥN )

Ω1

Ω2

Ω3
Ω4

Ω5Γ+

Γ−

ω = ω̃ × {0}

x1

x3
x2

dimension
reduction

Ω := Ωsub

γ+
γ−ω

Figure 1: Left: Schematic picture of an OLED mounted on a glass substrate Ωsub at ω = ω̃ × {0}. The OLED domain
ΩOLED consists of N layers (N = 5 in the picture). The bottom and top layer Ω1 and ΩN represent the electrodes with
Dirichlet boundaries Γ− and Γ+ (green) for the potential where the voltage is applied. Right: Considered domain in the
effective model. Current flow is described by equations on the grey area ω with Ohmic contacts at γ− and γ+ realizing
the contacting of the OLED. The heat flow equation is formulated in Ω with boundary source term at ω.

As derived in [26], the full three-dimensional p(x)-Laplace thermistor model for organic LEDs has the form

−∇ · SOLED(x, T,∇ϕ) = 0 in ΩOLED,

−∇ · (λ(x)∇T ) =

{
SOLED(x, T,∇ϕ) · ∇ϕ in ΩOLED

0 in Ωsub
,

where the flux function SOLED : ΩOLED × [Ta,∞)× R3 → R3 in the different layers of the OLED is given by

SOLED(x, T, z) =


S1(T, zh1 ) x ∈ Ω1

Sk(T, hkz) x ∈ Ωk, k = 2, . . . , N−1,

SN (T, z
hN

) x ∈ ΩN .

In the lower and upper electrodes Ω1 and ΩN , respectively, there is no temperature dependence and a linear current law
with so called sheet conductivities σ−sh = σ0h

1 and σ+
sh = σ0h

N , σ0 > 0, respectively, is assumed, viz.

S1(T,w) = σ−shw, SN (T,w) = σ+
shw.
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According to [26, 17], it is reasonable to assume power laws in the organic layers Ωk, e.g. the flux functions Sk take the
form

Sk(T,w) = Jref exp
[
−Eka

( 1

T
− 1

Ta

)]∣∣∣ w
Vref

∣∣∣pk−2 w

Vref
, k = 2, . . . , N−1, (2.5)

where Jref > 0 and Vref > 0 are reference current density and reference voltage, respectively. Moreover, pk ∈ (1,∞)
denotes the power law exponent for the current flow and Eka is the (scaled) activation energy associated with the material
of the organic layer Ωk.

As demonstrated in [17], in the effective electrothermal model obtained for the limit ε→ 0, only the third component of the
flux function F̃ k(T,w) := (Sk(T,w))3,w ∈ R3, stays of relevance for the description of the organic layers. Moreover, in
the limit of vanishing layer thickness, the potential ϕ becomes constant in vertical direction in the top and bottom electrode
and piecewise affine in the organic layers. Thus, it can be identified with a tuple (ϕ1, . . . , ϕN−1) and with the definition

F k(T, v) := F̃ k(T, (0, 0, v)) =
(
Sk(T, (0, 0, v))

)
3
, v ∈ R,

we arrive at the effective model (2.1) – (2.4) investigated in the present work.

3 Preliminaries and main result

3.1 Assumptions on the data

In this subsection, we collect the essential assumptions for the analytical investigations:

(A1) The domain Ω ⊂ R3 is a bounded Lipschitz domain and ω ( Γ := ∂Ω is a compact, connected C2 manifold
having positive two-dimensional Hausdorff measure (i.e. H2(ω) > 0) and with boundary ∂ω; γ+, γ− are open
subsets of ∂ω with positive one-dimensional Hausdorff measure.

(A2) The Dirichlet data satisfy ϕD+ , ϕ
D
− ∈ L∞(ω) ∩H1(ω), σ−sh and σ+

sh are positive constants.

(A3) Let pi ∈ (1,∞), i = 2, . . . , N−1, and p− := min{pi : i = 2, . . . , N−1}, p+ := max{pi : i =
2, . . . , N−1}. The functions F i : R+ × R → R are continuous and there are c1, c2, c3 > 0 such that for
all T ∈ [Ta,∞)

F i(T, v) · v ≥ c1|v|pi − c2 ∀v ∈ R, (3.1)

|F i(T, v)| ≤ c3(1 + |v|)pi−1 ∀v ∈ R. (3.2)

Moreover, the functions F i(T, ·) are strictly monotone,(
F i(T, v1)− F i(T, v2)

)
· (v1 − v2) > 0 ∀v1 6= v2 ∈ R and F i(T, 0) = 0, (3.3)

for i = 2, . . . , N−1.

(A4) The constant Ta > 0 is the ambient temperature. The heat conductivity λ satisfies λ ∈ L∞(Ω) and λ ≥ λ0 > 0
a.e. in Ω. The heat transfer coefficient κ is such that κ ∈ L∞+ (Γ) and κ ≥ κ0 > 0 a.e. on ω.

For p ∈ [1,∞], we use the classical Lebesgue spaces Lp(Ω) and Sobolev spaces W 1,p(Ω). By H1(Ω) we denote the
usual Hilbert space.H1

γ−(ω) andH1
γ+(ω) are the subspaces ofH1(ω) functions vanishing on γ− and γ+, respectively.

Moreover, according to assumption (A4), the estimates

α‖T‖2H1 ≤
∫

Ω

λ|∇T |2dx+

∫
Γ

κT 2dΓ ≤ α‖T‖2H1 , T ∈ H1(Ω) (3.4)

with constants α, α > 0 are satisfied.

In our estimates, positive constants, which may depend at most on the data of our problem, are denoted by c. In particular,
we allow them to change from line to line.
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3.2 Reformulation of the problem and concept of solution

Since the functions F k used in (2.1) only depend on the potential differences (voltages)

vk := ϕk − ϕk−1, k = 2, . . . , N−1, (3.5)

it is natural to work with the unknowns vk and the potentials ϕ1 and ϕN−1 needed in (2.1a) and (2.1c). However, we then
haveN unknowns forN−1 equations. We eliminate one unknown vk0 as follows: Let k0 be an index with pk0 = p−, see
assumption (A3). We obtain

vk0 = ϕk0 − ϕk0−1 = ϕN−1 − ϕ1 −
∑
k 6=k0

vk, (3.6)

where here and in the following ‘k 6= k0’ stands shortly for ‘k = 2, . . . , N−1, k 6= k0’. For the weak formulation of the
current-flow equations in (2.1) we use the vector of variables

z := (ϕ1, v2, . . . , vk0−1, vk0+1, . . . , vN−1, ϕN−1) ∈ zD + Z, (3.7)

where
Z := H1

γ−(ω)×
∏
k 6=k0

Lpk(ω)×H1
γ+(ω) and zD = (ϕD− , 0, . . . , 0, ϕ

D
+).

The quantity vk0 is only used as auxiliary variable. Note that according to (3.6), assumption (A2), andH1(ω) ↪→ Lp(ω) for
all p ∈ [1,∞) in two spatial dimensions, it is guaranteed that vk0 = ϕN−1 − ϕ1 −

∑
k 6=k0 v

k ∈ Lp−(ω) = Lpk0 (ω)

and therefore F k0 is well defined for such second arguments . For arbitrary fixed T from the set of relevant (surface)
temperature distributions

Θ := {T ∈ L1(ω) : T ≥ Ta a.e. in ω}, (3.8)

we introduce the operatorAT : zD + Z → Z∗ and consider the following problem: Find z ∈ zD + Z such that

〈AT (z), z〉Z :=

∫
ω

{
σ−sh∇ωϕ

1 · ∇ωϕ1 + σ+
sh∇ωϕ

N−1 · ∇ωϕN−1 +
∑
k 6=k0

F k(T, vk)vk
}

dx′

+

∫
ω

F k0(T, ϕN−1 − ϕ1 −
∑
k 6=k0

vk)
[
ϕN−1 − ϕ1 −

∑
k 6=k0

vk
]
dx′ = 0

(3.9)

for all z = (ϕ1, . . . , ϕN−1) ∈ Z∗ (and associated vk), which corresponds to finding a weak solution z ∈ zD +Z to the
system (2.1a), (2.1b), (2.1c) with boundary conditions (2.2) for the fixed temperature distribution T ∈ Θ.

We rewrite the surface heat source Hω defined in (2.4) in the variables z introduced in (3.7) with (3.6) as

Hω = Hω(T, z) = σ−sh|∇ωϕ
1|2 + σ+

sh|∇ωϕ
N−1|2 +

N−1∑
k=2

F k(T, vk)vk. (3.10)

To formulate our concept of solution for the full problem, we define form > 0 the truncation function Cm : R→ [−m,m]
by

Cm(s) := max{−m,min{s,m}} (3.11)

and introduce V1,2(Ω) := {T : Ω→ R measurable, Cm(T ) ∈ H1(Ω) ∀m > 0}.

Definition 3.1 We call a pair (z, T ) with z ∈ zD+Z and T ∈ V1,2(Ω) a (weak) solution to problem (2.1), (2.2), (2.3), (3.7)
if

(i) z solves 〈AT (z), z〉Z = 0 for all z ∈ Z∗ and

(ii) T is an entropy solution to the heat equation, i.e.∫
Ω

λ∇T · ∇Cm(T − θ) dx+

∫
Γ

κ
(
T − Ta

)
Cm(T − θ) dΓ ≤

∫
ω

Hω(T, z)Cm(T − θ) dx′

for all m > 0 and all θ ∈ H1(Ω) ∩ L∞(Ω).

Remark 3.1 The notion of solution introduced in Definition 3.1 is adapted from [5] (see also [31]) to the present case with
nonlinear boundary conditions. We prove in Section 5 that solutions (z, T ) satisfy T ∈ W 1,q(Ω) for any q ∈ [1, 3/2).
Moreover, T is a weak solution to the heat equation in the sense∫

Ω

λ∇T · ψ dx+

∫
Γ

κ
(
T − Ta

)
ψ dΓ =

∫
ω

Hω(T, z)ψ dx′ ∀ψ ∈W 1,q′(Ω) ∩ L∞(Ω), (3.12)

where 1/q + 1/q′ = 1.
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3.3 Main result

Theorem 3.1 We assume (A1)– (A4). Then the problem (2.1), (2.2), (2.3), (2.4) has a (weak) solution (z, T ) in the sense
of Definition 3.1 with z ∈ zD + Z and T ∈W 1,q(Ω) for all q ∈ [1, 3/2). In particular, T is a weak solution in the sense
of (3.12).

The proof of Theorem 3.1, presented in Section 5, is based on the construction of a suitable fixed-point map for the
temperature distribution T and Schauder’s fixed-point theorem. For the construction of the fixed-point map, we consider
the electric and thermal problem, i.e. (2.1a)-(2.1c) and (2.1d) separately. Results for the subproblems are collected in
Section 4.

We emphasize that this method does not give uniqueness of fixed points and hence of solutions. However, for our problem
at hand, uniqueness of solutions cannot be expected due to the hysteretic behavior caused by the positive feedback
with respect to temperature described in the introduction. Even in the spatially homogeneous setting of self-heating in
organic devices (see [13] and [26, Sect. 2.1]) S-shaped current-voltage characteristics occur. Here, in a certain range
of applied voltages, three different currents are possible for the same applied voltage. Moreover, for spatially resolved
electrothermal p(x)-Laplace thermistor models the simulations produce S-shaped current-voltage relations that coincide
with experimental measurements excluding a general uniqueness result, see, e.g., [20, 25].

4 Existence results for subproblems

4.1 Unique solution to the current flow problem

Theorem 4.1 Let T ∈ Θ (defined in (3.8)) be a fixed given function. Under the assumptions (A1)– (A4), problem (3.9)
has exactly one solution z ∈ zD+Z . Furthermore, there are constants cϕ > 0, cv > 0, cF > 0, and cH > 0 depending
only on the data but not on T ∈ Θ, such that

‖ϕ1‖H1(ω), ‖ϕN−1‖H1(ω) ≤ cϕ, ‖vk‖Lpk (ω), ‖ϕN−1−ϕ1−
∑
k 6=k0

vk‖Lpk0 (ω) ≤ cv, (4.1a)

‖F k(T, vk)‖
Lp
′
k (ω)

, ‖F k0(T, ϕN−1−ϕ1−
∑
k 6=k0

vk)‖
L
p′
k0 (ω)

≤ cF with 1
pk

+ 1
p′k

= 1, (4.1b)

‖Hω(T, z)‖L1(ω) ≤ cH . (4.1c)

Proof. 1. Uniform bounds. The desired bounds in (4.1a) follow from testing the equationAT z = 0 with z−(ϕD− , 0, . . . , 0, ϕ
D
+)

and taking into account the properties (3.1) and (3.2) as well as the fact that ϕD− , ϕ
D
+ ∈ H1(ω). Additionally, we used for

k0 that∫
ω

F k0(T, ϕN−1−ϕ1−
∑
k 6=k0

vk)(ϕD+−ϕD−) dx′

≤ c3
∫
ω

(1 + |ϕN−1−ϕ1−
∑
k 6=k0

vk|)pk0−1|ϕD+−ϕD− |dx′

≤ c‖ϕN−1−ϕ1−
∑
k 6=k0

vk‖pk0−1

L
pk0
‖ϕD+ − ϕD−‖Lpk0 + c‖ϕD+ − ϕD−‖L1

and applied Young’s inequality. Moreover, exploiting the growth condition in (3.2) and (4.1a) we obtain the estimates in
(4.1b).

The estimate of the Joule heat termHω(T, z) in (4.1c) defined in (3.10) then follows immediately by ‖F k(T, vk)vk‖L1(ω) ≤
‖F k(T, vk)‖

Lp
′
k (ω)
‖vk‖Lpk (ω) ≤ cF cv and

‖Hω(T, z)‖L1(ω) ≤ σ−sh‖ϕ
1‖2H1(ω) + σ+

sh‖ϕ
N−1‖2H1(ω) +

∑
k 6=k0

‖F k(T, vk)vk‖L1(ω)

+ ‖F k0(T, ϕN−1 − ϕ1 −
∑
k 6=k0

vk)(ϕN−1 − ϕ1 −
∑
k 6=k0

vk)‖L1(ω) ≤ cH .
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2. Unique solvability. Due to the strict monotonicity assumption in (3.3) and (A2), the operator AT is strictly monotone.
Moreover, AT is also demi-continuous, i.e. for zn − z → 0 in Z we have AT zn − AT z ⇀ 0 in Z∗. Indeed, let
zn − z → 0 in Z and z = (ϕ1, v1, . . . , vk0−1, vk0+1, . . . , vN−1, ϕN−1) ∈ Z be arbitrarily chosen. Arguing as in
Step 1 yields that the sets {F k(T, vkn)} are bounded and weakly compact in Lp

′
k(ω), k = 2, . . . , N−1. To establish

the weak convergence F k(T, vkn) ⇀ F k(T, vk) in Lp
′
k(ω), it is sufficient to verify for each convergent subsequence

{F k(T, vknl)} of {F k(T, vkn)} that F k(T, vknl) ⇀ F k(T, vk) in Lp
′
k(ω), see e.g. [14, Lemma 5.4, Chapter 1]. Note

that the same arguments can be applied also for k0 and vk0nl defined via (3.6). Let w ∈ Lp′k(ω) be the weak limit of such
a subsequence {F k(T, vknl)}. Since vkn → vk in Lpk(ω) there exists a further subsequence {vknlj } of {vknl} such that

vknlj
converges a.e. in ω to vk. Since F k is a continuous function, it follows that F k(T, vknlj

)→ F k(T, vk) a.e. in ω. As

a subsequence of {F k(T, vknl)} the sequence {F k(T, vknlj
)} has the weak limit w in Lp

′
k(ω). Using [14, Lemma 1.19,

Chap. 2], we obtain F k(T, vk) = w, and thus for the entire sequence F k(T, vkn) ⇀ F k(T, vk) in Lp
′
k(ω) and∫

ω

(
F k(T, vkn)− F k(T, vk)

)
vk dx′ → 0, k = 2, . . . , N−1.

Moreover, from ϕkn → ϕk in H1(ω), k = 1, N−1, it follows that∫
ω

σ−sh∇ω(ϕ1
n − ϕ1) · ∇ωϕ1 dx′ → 0,

∫
ω

σ+
sh∇ω(ϕN−1

n − ϕN−1) · ∇ωϕN−1 dx′ → 0.

In summary, 〈AT zn−AT z, z〉Z → 0 for all z ∈ Z and thusAT zn−AT z ⇀ 0 in Z∗ as zn− z → 0 in Z . Obviously,
the demi-continuity ensures the hemi-continuity ofAT .

Next, we verify the coercivity ofAT . We find σ−sh∇ωϕ1·∇ω(ϕ1−ϕD−) ≥ σ−sh
2 |∇ω(ϕ1−ϕD−)|2−c|∇ωϕD− |2, σ+

sh∇ωϕN−1·
∇ω(ϕN−1 − ϕD+) ≥ σ+

sh

2 |∇ω(ϕN−1 − ϕD+)|2 − c|∇ωϕD+ |2, and F k(T, vk)vk ≥ c1|vk|pk − c2, k 6= k0. Moreover,
exploiting (3.1) and (3.2) as well as Young’s inequality, we estimate

F k0
(
T, ϕN−1−ϕ1−

∑
k 6=k0

vk
)(
ϕN−1−ϕD− − ϕ1+ϕD+ −

∑
k 6=k0

vk
)

≥ c1
∣∣∣ϕN−1−ϕ1−

∑
k 6=k0

vk
∣∣∣pk0 − c2 − c3(1 +

∣∣∣ϕN−1−ϕ1−
∑
k 6=k0

vk
∣∣∣)pk0−1

|ϕD− − ϕD+ |

≥ −c2 − c|ϕD− − ϕD+ |pk0 − c|ϕD− − ϕD+ | ≥ −c.

Combining the previous estimates, by (A1), (A2) we derive

〈AT z, z − zD〉Z

≥ c
(
‖ϕ1 − ϕD−‖2H1

γ−
(ω) + ‖ϕN−1 − ϕD+‖2H1

γ+
(ω) +

∑
k 6=k0

‖vk‖pkLpk (ω)

)
− c. (4.2)

Having in mind that all exponents pk, k = 2, . . . , N−1, are strictly greater than 1, we divide the previous estimate (4.2)
by ‖z − zD‖Z and obtain that the right-hand side tends to +∞ if ‖z − zD‖Z →∞ which ensures the coercivity of the
operatorAT .

Now we are in the position to apply the theorem of Browder and Minty (see [34, p. 65]) that ensures the existence of a
solution to (3.9). Finally, the strict monotonicity ofAT supplies the uniqueness result. �

4.2 Unique entropy solution of the heat equation

To show the existence of solutions to the heat equation with source term g ∈ L1(Γ), Γ := ∂Ω, in the Robin boundary
condition, we work with the concept of entropy solutions. For Dirichlet boundary conditions this theory can be found in the
survey [31], for nonlinear problems see [5, 24].

Let the stationary heat equation with Robin boundary conditions and right-hand side f ∈ L1(Ω) as well as boundary data
g ∈ L1(Γ),

−∇ · (λ(x)∇T ) = f(x) in Ω,

−λ(x)∇T · ν = κ(x)T − g(x) on Γ
(4.3)
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be given. In our case we have

f(x) ≡ 0, g(x) =

{
κ(x)Ta x ∈ Γ \ ω,
κ(x)Ta +Hω(x) x ∈ ω.

Definition 4.1 Let f ∈ L1(Ω), g ∈ L1(Γ). A function T ∈ V1,2(Ω) is called an entropy solution to (4.3) if∫
Ω

λ∇T · ∇Cm(T − θ) dx+

∫
Γ

(κT − g)Cm(T − θ) dΓ ≤
∫

Ω

fCm(T − θ) dx (4.4)

for all m > 0 and all θ ∈ H1(Ω) ∩ L∞(Ω). (For Cm and V1,2(Ω) see (3.11).)

The next two results are given in [7, Theorem 3.3 and Appendix A] and [7, Lemma 3.4].

Theorem 4.2 We assume (A1) and (A4). Let f ∈ L1(Ω), g ∈ L1(Γ). Then, there exists a unique entropy solution T to
(4.3). This entropy solution belongs to W 1,q(Ω), for all 1 ≤ q < 3

2 . Moreover, there is a constant cq > 0 not depending
on f and g such that

‖T‖W 1,q(Ω) ≤ cq
(
‖f‖L1(Ω) + ‖g‖L1(Γ)

)
, 1 ≤ q < 3

2 .

Lemma 4.1 We assume (A1) and (A4). Let f l → f in L1(Ω), gl → g in L1(Γ). Then the corresponding entropy
solutions T l to (4.3) converge weakly in W 1,q(Ω), 1 ≤ q < 3

2 , to the entropy solution T for data f and g.

Lemma 4.2 We assume (A1) and (A4). Let f ∈ L1
+(Ω) and g = κTa + h with Ta = const > 0 and h ∈ L1

+(Γ).
Then, the entropy solution T to (4.3) satisfies T ≥ Ta a.e. in Ω as well as T ≥ Ta a.e. on ω.

Proof. Let fn := Cn(f) ∈ L∞(Ω), gn := Cn(g) = Cn(κTa + h) and let Tn ∈ H1(Ω) be the unique weak solution
to (4.3) with data fn and gn. Note that gn ≥ κTa, thus, for −(Tn − Ta)− = min{Tn − Ta, 0} we obtain∫

Γ

(κTn − gn) min{T − Ta, 0}dΓ =

∫
Γ

{
κ(Tn − Ta) + κTa − gn

}
min{T − Ta, 0} dΓ

≥
∫

Γ

κ[(Tn − Ta)−]2 dΓ.

Therefore, the test of (4.3) for Tn by −(Tn − Ta)− yields∫
Ω

λ|∇(Tn − Ta)−|2 dx+

∫
Γ

κ((Tn − Ta)−)2 dΓ ≤ 0

implying that Tn ≥ Ta a.e. in Ω. Since κ ≥ κ0 > 0 a.e. on ω ⊂ Γ (cf. (A4)), we also find Tn ≥ Ta a.e. on ω.

Now, we argue similar to the proof of [7, Lemma 3.5]: Let us fix m > Ta > 0. Since Cm(Tn) → Cm(T ) in L1(Ω) and
L1(ω) as n → ∞ (note that Tn → T in L1(Ω) and L1(ω) due to Lemma 4.1) there is a subsequence {nl} such that
Cm(Tnl)→ Cm(T ) a.e. in Ω and ω. Together with Tnl ≥ Ta a.e. in Ω and ω, this guarantees that Cm(T ) ≥ Ta a.e. in
Ω and ω. This yields especially that T ≥ 0 a.e. in Ω and ω. The choice of m > Ta ensures therefore T ≥ Cm(T ) ≥ Ta

a.e. in Ω and ω. �

5 Proof of the main result

Here we prove our main result, Theorem 3.1, by means of Schauder’s fixed-point theorem. At first, we introduce our fixed-
point map. We work with the set of L1(ω) functions being traces of W 1,6/5(Ω) functions on the substrate Ω and being
greater or equal to the ambient temperature Ta a.e. on the boundary part ω where the OLED is mounted,

N :=
{
T ∈ L1(ω) : ‖T‖W 1,6/5(Ω) ≤ cQ, T ≥ Ta a.e. in ω

}
, (5.1)

where cQ > 0 will be fixed in (5.3). The fixed-point map Q : N → N is defined as follows: For T̃ ∈ N the quantity

T = Q(T̃ ) is the unique entropy solution of

−∇ · (λ∇T ) = 0 in Ω,

−λ∇T · ν = κ(T − Ta)−Hω(T̃ , z) on Γ,
(5.2)
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where Hω is introduced in (3.10) and the vector function z = z(T̃ ) ∈ zD + Z is the unique weak solution to

A T̃ z = 0 (cf. Theorem 4.1). Because of T̃ ∈ N we have that T̃ ∈ Θ (see (3.8)). From (4.1c) in Theorem 4.1 we find

‖Hω(T̃ , z)‖L1(ω) ≤ cH , moreover, it holds that ‖κTa‖L1(Γ) ≤ c. With f := 0 ∈ L1(Ω) and g := κTa +Hω(T̃ , z) ∈
L1(Γ), Theorem 4.2 gives a unique entropy solution T of (5.2) satisfying

‖T‖W 1,6/5(Ω) ≤ c6/5‖κTa +Hω(T̃ , z)‖L1(Γ) ≤ c6/5
(
‖κTa‖L1(Γ) + cH

)
=: cQ (5.3)

for all z = z(T̃ ) with T̃ ∈ N . Finally, by Lemma 4.2 we obtain that T ≥ Ta a.e. in Ω as well as T ≥ Ta a.e. on ω. Thus,

it is validated that T = Q(T̃ ) ∈ N .

Lemma 5.1 Under the assumptions (A1) – (A4) the fixed-point map Q : N → N is continuous with respect to strong
convergence in L1(ω).

Proof. We consider T̃ , T̃n ∈ N with T̃n → T̃ in L1(ω). We denote by zn ∈ zD + Z the unique solution to A T̃n
z = 0

(with T̃n as fixed argument in A • instead of T̃ ). We have to verify that Tn = Q(T̃n) → T = Q(T̃ ) in L1(ω). This is
carried out in four steps.

1. Convergences for subsequences. From Theorem 4.1, the growth properties ofF k (see (3.1) and (3.2)), and Theorem 4.2
we obtain for all zn = z(T̃n) and Tn = Q(T̃n) the uniform estimates

‖ϕ1
n‖H1(ω), ‖ϕN−1

n ‖H1(ω) ≤ cϕ, ‖vkn‖Lpk (ω) ≤ cv,

‖F k(T̃n, v
k
n)‖

Lp
′
k (ω)
≤ cF , 1

pk
+ 1

p′k
= 1, ‖Tn‖W 1,6/5(Ω) ≤ cQ.

(5.4)

These estimates guarantee the existence of limits ϕ̂1, ϕ̂N−1 ∈ H1(ω) with ϕ̂1 − ϕD− ∈ H1
γ−(ω), ϕ̂N−1 − ϕD+ ∈

H1
γ+(ω), and v̂k ∈ Lpk(ω), F̂ k ∈ Lp

′
k(ω), k = 2, . . . , N−1, and T̂ ∈ W 1,6/5(Ω) and, up to a non-relabeled,

subsequence the weak convergences

ϕ1
n ⇀ ϕ̂1 in H1(ω), ϕN−1

n ⇀ ϕ̂N−1 in H1(ω), vkn ⇀ v̂k in Lpk(ω),

F k(T̃n, v
k
n) ⇀ F̂ k in Lp

′
k(ω), Tn ⇀ T̂ in W 1,6/5(Ω).

(5.5)

Let ẑ := (ϕ̂1, v̂2, . . . , v̂k0−1, v̂k0+1, . . . , v̂N−1, ϕ̂N−1) ∈ zD+Z denote the associated tuple. The weak convergences
of ϕ1

n, ϕ
N−1
n , vkn, for k = 2, . . . , k0−1, k0+1, . . . , kN−1, lead to

v̂k0 = ϕ̂N−1 − ϕ̂1 −
∑
k 6=k0

v̂k.

The growth condition (3.2) ensures that |F k(T̃n, v̂
k) − F k(T̃ , v̂k)| ≤ c(1 + |v̂k|)pk−1. Hence, there is an integrable

majorant for the integrand |F k(T̃n, v̂
k) − F k(T̃ , v̂k)|p′k . Since T̃n → T̃ in L1(ω) and F k is continuous, this inte-

grand converges to 0 a.e. on ω for an again non-relabeled subsequence. Therefore, Lebesgue’s theorem on dominated
convergence yields ∫

ω

|F k(T̃n, v̂
k)− F k(T̃ , v̂k)|p

′
k dx′ → 0, k = 2, . . . , N−1.

Using the monotonicity of F k in the second argument and thatA T̃n
zn = 0, we derive

0 ≤ 〈A T̃n
zn −A T̃n

ẑ, zn − ẑ〉

=

∫
ω

(
σ−sh|∇ω(ϕ1

n − ϕ̂1)|2 + σ+
sh|∇ω(ϕN−1

n − ϕ̂N−1)|2

+

N−1∑
k=2

(
F k(T̃n, v

k
n)− F k(T̃n, v̂

k)
)
(vkn − v̂k)

)
dx′

= 0−
∫
ω

(
σ−sh∇ωϕ̂

1 · ∇ω(ϕ1
n − ϕ̂1) + σ+

sh∇ωϕ̂
N−1 · ∇ω(ϕN−1

n − ϕ̂N−1)

+

N−1∑
k=2

F k(T̃n, v̂
k)
)
(vkn − v̂k)

)
dx → 0
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since ∇ωϕ1
n ⇀ ∇ωϕ̂1, ∇ωϕN−1

n ⇀ ∇ωϕ̂N−1 in L2(ω), vkn ⇀ v̂k in Lpk(ω), and F k(T̃n, v̂
k) → F k(T̃ , v̂k) in

Lp
′
k(ω). Due to the (strict) monotonicity of F k in the second argument, we obtain from the convergence of the terms on

the second and third line that
ϕ1
n → ϕ̂1, ϕN−1

n → ϕ̂N−1 in H1(ω), (5.6)

(
F k(T̃n, v

k
n)− F k(T̃n, v̂

k)
)
(vkn − v̂k)→ 0 in L1(ω), k = 2, . . . , N−1, (5.7)

(for the subsequence). Therefore, keeping in mind that T̃n → T̃ in L1(ω) there exists a subsequence {nl} such that(
F k(T̃nl , v

k
nl

)− F k(T̃nl , v̂
k)
)
(vknl − v̂

k)→ 0, T̃nl → T̃ a.e. in ω. (5.8)

To show now that also vknl → v̂k a.e. in ω, we adapt the idea in [33, p. 50f]. For the subsequence {nl}, we consider

x ∈ ω where [F k(T̃nl(x), vknl(x)) − F k(T̃nl(x), v̂k(x))](vknl(x) − v̂k(x)) → 0, T̃nl(x) → T̃ (x) and vknl(x) and
v̂k(x) are finite. Indeed, if the sequence {vknl(x)} was unbounded, then with r = v̂k(x) we would have(

F k
(
T̃nl(x), vknl(x)

)
− F k

(
T̃nl(x), r

))(
vknl(x)− r

)
= F k

(
T̃nl(x), vknl(x)

)
vknl(x)− F k

(
T̃nl(x), vknl(x)

)
r − F k

(
T̃nl(x), r

)
vknl(x) + F k

(
T̃nl(x), r

)
r

≥ c1|vknl(x)|pk − c2 − c3(1 + |vknl(x)|)pk−1r − c|vknl(x)|+ c1|r|pk − c2
≥ c|vknl(x)|pk − c→∞ for nl →∞,

which would contradict the first convergence in (5.8). Thus, since the sequence {vknl(x)} is bounded, there is a further
(non-relabeled) subsequence and an s ∈ R such that vknl(x) → s. Using the continuity of F k in both arguments, we
obtain (

F k(T̃ (x), s)− F k(T̃ (x), v̂k(x))
)(
s− v̂k(x)

)
= 0.

Because of the strict monotonicity of F k in the second argument (see (3.3)), we conclude that s = v̂k(x). Since s is
determined uniquely, the entire sequence {vknl(x)} converges to s, such that vknl(x) → v̂k(x) a.e. in ω. Additionally,

using again the continuity of F k, this gives F k(T̃ , v̂k) = F̂ k, k = 2, . . . , N−1. In summary, we obtain

〈A T̃ ẑ, z〉 =

∫
ω

{
σ−sh∇ωϕ̂

1 · ∇ωϕ1 + σ+
sh∇ωϕ̂

N−1 · ∇ωϕN−1 +

N−1∑
k=2

F (T̃ , v̂k)vk
}

dx′

= lim
nl→∞

∫
ω

{
σ−sh∇ωϕ

1
nl
· ∇ωϕ1 + σ+

sh∇ωϕ
N−1
nl

· ∇ωϕN−1 +

N−1∑
k=2

F (T̃nl , v
k
nl

)vk
}

dx′

= lim
nl→∞

〈A T̃nl
znl , z〉 = 0 ∀ z ∈ Z.

According to Theorem 4.1, the weak solution to A T̃ z = 0 is unique, which ensures that ϕ̂k = ϕk = ϕk(T̃ ), for

k = 1, N−1, and v̂k = vk = vk(T̃ ), for k = 2, . . . , N−1.

2. Weak convergence zn − z ⇀ 0 in Z of the entire sequence. To prove the weak convergence zn − z ⇀ 0 in
the reflexive Banach space Z for the entire sequence and not only for the subsequence given in (5.5), we use [14,
Lemma 5.4, Chap. 1]. Indeed, we need to verify that for every weakly convergent subsequence znl − z∗ ⇀ 0 with
z∗ := (ϕ∗,1, v∗,2, . . . , v∗,k0−1, v∗,k0+1, . . . , v∗,N−1, ϕ∗,N−1) the identity z∗ = z holds true: If there is a subsequence
znl − z∗ ⇀ 0 in Z then the arguments of Step 1 ensure again non-relabeled subsequences such that ϕ1

nl
→ ϕ∗,1,

ϕN−1
nl

→ ϕ∗,N−1 in H1(ω), and vknl → v∗,k a.e. on ω, F k(T̃nl , v
k
nl

) ⇀ F k(T̃ , v∗,k) in Lp
′
k(ω), k = 2, . . . , N−1.

And z∗ would be a solution to A T̃ z = 0. Since the weak solution to A T̃ z = 0 is unique, we conclude that z = z∗.
Therefore, we obtain the weak convergence zn − z ⇀ 0 in Z for the entire sequence.

3. Improved convergence of subsequences. For a non-relabeled subsequence, we have F k(T̃n, v
k) → F k(T̃ , vk)

for a.a. x ∈ ω (note that T̃n → T̃ a.e. in ω and F k are continuous functions). For an arbitrarily given function u ∈
L∞(ω), the growth condition (3.2) gives via |(F k(T̃n, v

k)− F k(T̃ , vk))u|p′k ≤ c(1 + |vk|)pk‖u‖p
′
k

L∞(ω) an integrable

majorant. Thus, by Lebesgue’s dominated convergence theorem we obtain F k(T̃n, v
k)u → F k(T̃ , vk)u in Lp

′
k(ω) for

this subsequence. Combining this with vkn ⇀ vk in Lpk(ω), by weak-strong convergence it follows∫
ω

F k(T̃n, v
k)(vkn − vk)udx′ → 0.

DOI 10.20347/WIAS.PREPRINT.2757 Berlin 2020



An effective bulk-surface thermistor model for large-area organic light-emitting diodes 11

Since the function u ∈ L∞(ω) was arbitrary, we get F k(T̃n, v
k)(vkn − vk) ⇀ 0 in L1(ω). This guarantees together

with (5.7) and v̂k = vk the weak convergence

F k(T̃n, v
k
n)(vkn − vk) ⇀ 0 in L1(ω). (5.9)

Now, the weak convergence F k(T̃n, v
k
n) ⇀ F̂ k = F k(T̃ , vk) in Lp

′
k(ω), demonstrated in Step 1, and uvk ∈ Lpk(ω)

for all u ∈ L∞(ω) lead to

F k(T̃n, v
k
n)vk ⇀ F k(T̃ , vk)vk in L1(ω).

This guarantees in combination with (5.9) for the subsequence the weak convergence

yn := F k(T̃n, v
k
n)vkn ⇀ F k(T̃ , vk)vk =: y in L1(ω).

Since a weakly-convergent sequence in L1 is equi-integrable, the subsequence {F k(T̃n, v
k
n)vkn} is equi-integrable. The

convergences T̃n(x)→ T̃ (x), vkn(x)→ vk(x) a.e. in ω and the continuity of F k imply for the subsequence

F k(T̃n, v
k
n)vkn → F k(T̃ , vk)vk a.e. on ω, k = 2, . . . , N−1.

For a sequence yn → y a.e. on ω meaning yn converges in measure to y, Vitali’s theorem ensures that the following two
properties are equivalent: (i) The sequence {yn} is equi-integrable and (ii) yn → y in L1(ω). Therefore, we have

F k(T̃n, v
k
n)vkn → F k(T̃ , vk)vk in L1(ω), k = 2, . . . , N−1.

This gives, together with (5.6) and ϕ̂k = ϕk, k = 1, N−1, from Step 1, for

H̃ω,n := σ−sh|∇ωϕ
1
n|2 + σ+

sh|∇ωϕ
N−1
n |2 +

N−1∑
k=2

F k(T̃n, v
k
n)vkn,

H̃ω := σ−sh|∇ωϕ
1|2 + σ+

sh|∇ωϕ
N−1|2 +

N−1∑
k=2

F k(T̃ , vk)vk

that H̃ω,n → H̃ω in L1(ω). This, in turn, ensures for the functions

gn(x) =

{
κ(x)Ta for x ∈ Γ \ ω
κ(x)Ta + H̃ωn(x) for x ∈ ω

, g(x) =

{
κ(x)Ta for x ∈ Γ \ ω
κ(x)Ta + H̃ω(x) for x ∈ ω

that gn → g in L1(Γ). With Lemma 4.1, we find for the entropy solutions Tn and T of (5.2) with right-hand sides
fn = f = 0, and boundary functions gn and g, respectively, the weak convergence Tn ⇀ T in W 1,6/5(Ω). According
to Theorem 4.2 the solution to (5.2) with right-hand side f = 0 and boundary function g is unique. Therefore, with (5.5)
we obtain Tn = Q(T̃n) ⇀ T̂ = T = Q(T̃ ) in W 1,6/5(Ω), for the subsequence in (5.5).

4. Weak convergence Tn ⇀ T in W 1,6/5(Ω) for the entire sequence and continuity of the fixed point operator Q.
Analogously to Step 2, we have to justify that for each weakly convergent subsequence Tnk ⇀ T ∗ inW 1,6/5(Ω) (reflexive
Banach space) the identity T ∗ = T is fulfilled. We can proceed as in Step 3 to find for not-relabeled subsequences that
Hω(T̃nl , znl) → Hω(T̃ , z) in L1(Ω). Then the uniqueness result of Theorem 4.2 and Lemma 4.1 guarantee Tnl ⇀
T = T ∗ in W 1,6/5(Ω). This ensures the weak convergence of the entire sequence Tn ⇀ T in W 1,6/5(Ω). With the
compact embedding of W 1,6/5(Ω) into L1(ω), we end up with the strong convergence of the entire sequence Tn → T
in L1(ω) which was needed for the continuity of the operator Q. �

Proof of Theorem 3.1. According to the definition of the fixed point setN in (5.1), for all T ∈ N the norm ‖T‖W 1,6/5(Ω)

is uniformly bounded, and the compact embedding of W 1,6/5(Ω) in L1(ω) ensures the desired compactness property of
the convex and nonempty set N ⊂ L1(ω). The continuity of the map Q : N → N was demonstrated in Lemma 5.1.
Thus, Schauder’s fixed-point theorem guarantees a fixed point T = Q(T ) ∈ N . For this T we obtain a unique solution
z ∈ zD+Z toAT z = 0. By Theorem 4.2 the entropy solution T = Q(T ) of (5.2) belongs toW 1,q(Ω) for all q ∈ [1, 3

2 ).
Therefore, the pair (z, T ) is a solution of the coupled problem (2.1), (2.2), (2.3), (3.7).

It remains to show that T is also a weak solution in the sense of Remark 3.1. We proceed as in [31, Theorem 6.5] and fix
h > 0 and ψ ∈W 1,q′(Ω)∩L∞(Ω). Choosing θ = Ch(T )−ψ as test function in the entropy formulation in the second
part of Definition 3.1 yields for all m > 0∫

Ω

λ∇T · ∇Cm
(
T − Ch(T ) + ψ

)
dx+

∫
Γ

κ
(
T − Ta

)
Cm
(
T − Ch(T ) + ψ

)
dΓ

≤
∫
ω

Hω(T, z)Cm
(
T − Ch(T ) + ψ

)
dx′.
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Setting m = ‖ψ‖L∞(Ω) and using Lebesgue’s theorem, we obtain for the right-hand side

lim
h→∞

∫
ω

Hω(T, z)Cm
(
T − Ch(T ) + ψ

)
dx′ =

∫
ω

Hω(T, z)Cm(ψ) dx′ =

∫
ω

Hω(T, z)ψ dx′.

The second term on the left-hand side is treated analogously. Next, we consider the first term on the left-hand side. We
can rewrite the latter (with the same choice for m as before) to get∫

{|T |≤h}
λ∇T · ∇ψ dx+

∫
{|T |≥h}

∇T · ∇Cm
(
T − Ch(T ) + ψ

)
dx.

Since we have T ∈W 1,q(Ω), we can pass to the limit h→∞ in the first term to obtain with Lebesgue’s theorem

lim
h→∞

∫
{|T |≤h}

λ∇T · ∇ψ dx =

∫
Ω

λ∇T · ∇ψ dx.

For the second term, we note that {|T − Ch(T ) + ψ| ≤ m, |T | ≥ h} ⊆ {h−2m ≤ |T | ≤ h+2m}. Thus, we get∫
{|T |≥m}

λ|∇T · ∇Cm
(
T − Ch(T ) + ψ

)
|dx ≤ c

∫
{h−2m≤|T |≤h+2m}

|∇T |(|∇T | + |∇ψ|) dx.

We claim that right-hand side vanishes as h→∞. Indeed, using the test function θ = Ch(T ) in the entropy formulation
gives after rewriting∫

{|T |≤h+m}
λ∇T · ∇T dx ≤

∫
Γ∩{|T |≥h}

κ
(
Ta − T

)
Cm
(
T − Ch(T )

)
dΓ

+

∫
ω∩{|T |≥h}

Hω(T, z)Cm
(
T − Ch(T )

)
dx′

≤ m
∫

Γ∩{|T |≥h}
κ|Ta − T |dΓ +m

∫
ω∩{|T |≥h}

|Hω(T, z)|dx′.

The right-hand side vanishes for h → ∞ (and fixed m) since the integrands are in L1, which proves the claim. Putting
everything together gives ∫

Ω

λ∇T · ψ dx+

∫
Γ

κ
(
T − Ta

)
ψ dΓ ≤

∫
ω

Hω(T, z)ψ dx′.

Finally, exchanging ψ with −ψ shows that actually equality holds, which finishes the proof of Theorem 3.1. �
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[9] P. Degond, S. Génieys, and A. Jüngel. “An existence and uniqueness result for the stationary energy-transport
model in semiconductor theory”. In: C. R. Acad. Sci. Paris Sér. I Math. 324.8 (1997), pp. 867–872.

[10] D. H. Doan, A. Fischer, J. Fuhrmann, A. Glitzky, and M. Liero. “Drift-diffusion simulation of S-shaped current-voltage
relations for organic semiconductor devices”. In: Journal of Computational Electronics 19 (2020), pp. 1164–1174.

[11] C. M. Elliott and T. Ranner. “Finite element analysis for a coupled bulk-surface partial differential equation”. In: IMA
J. Numer. Anal. 33.2 (2013), pp. 377–402.
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