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Abstract

We consider an improved Nernst—Planck—Poisson model for compressible electrolytes
first proposed by Dreyer et al. in 2013. The model takes into account the elastic defor-
mation of the medium. In particular, large pressure contributions near electrochemical in-
terfaces induce an inherent coupling of mass and momentum transport. The model con-
sists of convection—diffusion—reaction equations for the constituents of the mixture, of the
Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electri-
cal potential. Cross—diffusion phenomena occur due to the principle of mass conservation.
Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the
system is degenerate parabolic. In this paper we establish the existence of a global—-in—
time weak solution for the full model, allowing for cross—diffusion and an arbitrary number
of chemical reactions in the bulk and on the active boundary.

1 Introduction

Increasing the efficiency of energy storage systems nowadays requires a better understanding
of their fundamental physical principles. Of particular interest are ion transport in electrolytes
for instance in lithium-ion batteries. Classically this transport is modeled by the Nernst-Planck
theory. But the classical Nernst-Planck theory has an important drawback: In the neighbourhood
of interfaces, see [DGM13, DGL14], it is failing for various reasons:

First of all, the classical Nernst-Planck model neglects the high pressures induced by the
Lorentz force which affects the charge transport. Secondly, it does not take into account the
interaction between the solvent and the charged constituents.

A further drawback of the Nernst-Planck theory is the widely used assumption of local charge
neutrality. This assumption completely fails in the vicinity of the boundaries where electric
charges accumulate.

An improved model able to remedy these deficiencies was first proposed in the paper [DGM13].
In [DGL14, DGM15] this improved model was further extended to include (i) finite volume effects
of the constituents, (ii) the viscosity of the mixture and (iii) chemical reactions in the bulk and on
electrochemical interfaces. In the isothermal case, the new model consists of universal balance
equations for mass and momentum and general material-dependent constitutive equations for
the mass fluxes, the stress tensor and the reaction rates. These general constitutive equations
use the driving forces of the system, which are derived from a single free energy function o).
Here we choose a free energy function according to a special constitutive model for electrolytes
proposed in [DGM15, LGD16]. Moreover, we use a generalization of the constitutive equations
for the reaction rates as proposed in [DGM15].



In this paper we establish the existence of a global-in—time weak solution for the presented
model, allowing for cross—diffusion, an arbitrary number of chemical reactions in the bulk and on
an active boundary that represents a one—sided elecrochemical interface. Moreover we consider
different specific volumes of the constituents.

Our method relies on the one hand on a priori estimates that result from the thermodynami-
cally consistent modelling, and from the conservation of total mass. The estimates are partly a
consequence of known results for the Poisson equation or the Navier-Stokes equations, but we
can regard the estimates on the chemical potentials of the mixture constituents, in particular in
the presence of chemical reactions, as original. The second supporting pillar of our method is
compactness: Here we exploit the original idea of [Hop51] (rather than Aubin—Lions techniques
and their generalisations), and the compactness properties of the Navier-Stokes operator es-
tablished first in [Lio98] and extended in [FNPO1]. In order to construct a thermodynamically
consistent regularisation of the system and approximate solutions, we use standard techniques
of convex analysis.

Since large parts of the modelling work in [DGM13] are original and not yet well known in the
mathematical literature devoted to the analysis of mixtures, we are not able to quote a direct
precursor for our analysis. In order to put the investigation into some context, let us mention
[MPZ15] and [Zat15] where models of compressible mixtures, including the energy balance,
but without the electric field, were studied. These models are not derived from the same ther-
modynamic principles that are used in our study: Particularly the constitutive equations for the
pressure, for the diffusion fluxes and for the reaction terms, are different in [MPZ15] and in
[DGM13]. The compactness question occurs like in our analysis but is solved assuming a spe-
cial structure of the viscosity tensor, called Bresch—Desjardins condition. This allows to obtain
estimates on the density gradient, a device which is not at our disposal here. A further difference
between the two mixture models concerns cross—diffusion, which is described in [MPZ15] and
[Zat15] by a special nonsymmetric choice of the mobility matrix, whereas we allow for general
symmetric positive semidefinite matrices. Note that the mobility matrix must be symmetric at
least in a binary mixture. Among recent less directly related investigations let us mention: In
the context of general diffusion, [Bot11]; for models with simplified diffusion and pressure laws
[FPTO08], [BFPR16]; for the analysis of incompressible models of Nernst—Planck—Poisson type
[BFS16], [US13].

In Section 2 the model will be introduced following [DGM15]. The model is formulated for the
normal regime of the system, i.e. it is assumed that the mass densities of the constituents do
not vanish. For the mathematical analysis we will derive an equivalent formulation which exhibits
more stability against possibly occurring extreme behavior, like the vanishing of species.

2 Improved Nernst—Planck—Poisson model

We consider a bounded domain 2 C R? representing an electrolytic mixture. The boundary of
() possesses a disjoint decomposition 02 = I'UX: The surface I represents an active interface
between an electrode and the electrolyte, where chemical reactions and adsorption may occur.
The other surface X represents an inert outer wall with no reactions and no adsorption.



The compressible mixture consists of N € N species denoted by A, ..., Ay. A species A,
may be carrier of electric charge, z;, and of molecular mass, m;.

We assume that the system is isothermal, so that the absolute temperature denoted by 6 is a
positive constant. Under the isothermal assumption the thermodynamic state of the mixture at
time t € [0, 7] is described by the mass densities py, . .., px of the species, the barycentric
velocity v of the mixture and the electric field £'. As usual in electrochemistry, a quasi-static ap-
proximation of the electric field is considered, i.e. the magnetic field is constant and the electric
field satisfies

E = —V¢. (1)

The scalar function ¢ is called electrical potential.

The active boundary I" can be viewed as a mixture of N1 = N + N® constituents denoted by
Ay, ..., Ayr, where the additional N constituents take into account the species of the adja-
cent exterior matter, i.e. electrode species. Thus we only consider surface chemical reactions
with participating species that also exist in the adjacent bulk domains. The surface constituents

have the surface mass densities pf, . . ., plr.

Moreover we consider s € N chemical reactions in the bulk and s' € N surface reactions on
the boundary I, respectively. The chemical reactions in the bulk and on the boundary have the
general form

K K RE K
a1A1+ "'+&NAN ?blAl—i_ "'+bNAN fOI’k E {1,"' ’S}, (2)
k
R’y K r
ap A+ ag Ay ==Dbr A+ DAy forke {1, s} (3

I',b
k

The constants ag, bg are positive intergers. We define the (mass related) stoechiometric coef-
ficients of the kth bulk reactions as

FERYN, AF = (aF = bF)m, fori=1,...,N. (4)

The inclusion of the molecular mass in the definition of the stoechiometric coefficients is not
common, but it simplifies the notation. The forward reaction rate of the kth reaction is Ri > 0,
and the backward reaction rate is rate 22 > 0. The net reaction rate of the kth reaction is
defined as

Ry=RI —R\  fork=1,... 5. (5)

The same definitions hold for the surface reactions on I'. Here the stoechiometric coefficients
are defined as

WEERY, A= (ap;—br)mi  for i=1,... N (6)

,1

and the surface reaction rates are

RE=R 7 —R"®  for k=1,...s". (7)



Since charge and mass are conserved in every single reaction, we have

N N
Z’szo and Ti—ii”yf:O forall k=1,...,s, (8)
i=1 i=1
NF NF
ZVEZO and ;—271'3’1-:0 for all k;zl,...,sr. (9)
i=1 i=1

2.1 Balance equations in the bulk

In the isothermal case the evolution of the thermodynamic state is described by the equations
of partial mass balances and momentum balance and the Poisson equation.

In ]0, T'[x €2 the mixture obeys partial mass balances fori = 1,..., N:

Ip;
ot

Here, v denotes the barycentric velocity of the mixture, and r; is the mass production of the ith
constituent due to chemical reactions. The quantities .J*, . .., J% are called the diffusion fluxes.
We use upper indices in their case because they are vector fields of R? and not scalars. The
mass production of constituent A, is related to the reaction rates by

k=1

The total mass is defined as p = vazl p; and has to satisfies the total mass balance equation

8@ .
_= =0. 12
" +div(pv) =0 (12)

Thus the conservation of total mass requires the additional constraints on the diffusion fluxes
and mass productions

N N
ZJZ':O and Zri:O. (13)
i=1 i=1

The side condition on the diffusion fluxes has to be guaranteed by an appropriate constitutive
modeling. However, the constraint (13), is already guaranteed by (11) and the conservation of
mass in every chemical reaction (8).

The momentum balance has the form

%—Fdiv(gv@v—a)ng—knFE, (14)

Herein o denotes the Cauchy stress tensor, o b is the force density due to gravitation, and the
Lorentz force due to the electric field is given by nf" E. The quantity n" represents the free



charge density which may be written in terms of the species mass densities by

N

F <

n = — pi - 15
;mzp (15)

Throughout the paper, we are going to neglect the gravitational force that plays no role in the
analysis. In the electrostatic setting the balance equation for the electric field reduces to the
Poisson equation for the electrical potential,

—e (1+x) Ap=n"" (16)

Here x > 0 is the constant susceptibility of the electrolyte.

2.2 Constitutive equations

The constitutive equations for the mass fluxes, the reaction rates and the stress tensor can be
derived from a single free energy density pv of a general form

o) =h(0, p1,....pNn) . (17)

The derivatives of the free energy function with respect to the mass densities are called chemical
potentials,

oh

Hi = api<07pl>"'7pN)' (18)

In the isothermal setting the balance equations and the free energy density yield a local entropy
production & with three contributions due to diffusion, &, reaction, £, and viscosity, &/, [MR59,
BD15, DGM15],

§=Ep+Er+E&r 2>0. (19)

A constitutive model that relies on the free energy function (17) implies explicit expressions for
the three entropy productions as binary products. From these expressions we may derive con-
stitutive equations yielding three separate non-negative entropy productions. For more details
regarding the derivation of the entropy production we refer to [MR59, dM63, BD15]. In [BD15]
its is shown how cross—effects revealing the Onsager symmetry can be introduced.

Diffusion fluxes. The entropy production due to diffusion reads

N
Ep=—Y_ J- D, (20)
i=1
where D', ..., D" are the thermodynamic driving forces for diffusion,
; i Iz .
DZ::V(M—>——Z—E for i=1,....N. 21)



The simplest constitutive ansatz for the diffusion fluxes J*, . .., J» that implies &p > 0is given
by

N
J'==> M;D fori=1,.. N, (22)
j=1

NxN
sym

pend on p. Moreover, the side condition Zf\il J* = 0 is complied if the mobility matrix satisfies

where the mobility matrix M € R must be positive semidefinite. The matrix M may de-

N
> Myy=0frj=1,...,N. (23)
i=1

Exemplarily, following the paper [DGM13], one can construct M from an empirical mobility ma-

trix Meomp(p) and a linear operator P : RY — RN~! x {0} via

M = P* My, P, Menp := diag(dy p1, ..., dy_1pn-1, 1), (24)

where d1, ..., dx_1 > 0 are diffusion constants, and the lines of the matrix P are given by the
differences ¢! — eV of standard basis vectors fori = 1,... , N. In fact, any operator P that
satisfies fori = 1, ..., N the condition Zjvzl Pi ; = 0 can be chosen in (24) in order to satisfy
(23). Let us emphasize however that our analytical results do not rely on the particular structure
(24) of the matrix M.

Reaction rates. The entropy production due to chemical reactions assumes the form

a=—» R.D}, (25)
k=1
where the driving forces DY, ... DY are given by
N
D,?:vaui fork=1,...,s. (26)
i=1

To achieve &g > 0, we assume that the vector of production rates are derived from a convex,
non-negative potential

R=—-Vpr¥U(DR), with ¥:R°*— Rconvex and Vpr¥(0)=0. (27)

Note that this choice is more general as in [DGM15], where the following potential is employed,
S
. _ 1 —BrADP Br _A,DR
Dreyer et al.: \I/——Zme kk k(l—i—ﬁe’“ k)—l—C’, (28)
k=1

with positive constants A, ..., A, and constants /31, ... 8, €]0, 1], C' € R arbitrary. By this
choice Dreyer et al. achieve an ansatz of Arrhenius typ, which is widely used in chemistry,

Dreyeretal.: Ry = e P4 Dk (1 — e DI (29)



Stress tensor. The entropy production due to viscosity is represented by
&v =3(c+pld): D(v), (30)

where the driving force D(v) is defined as D(v) = (0;v; + 0;v;); j=1,.. 3, and ld denotes the
identity matrix.

We split the Cauchy stress tensor into a viscous part S**¢ and the pressure p,
o= —pld+ S™°. (31)

Then the material pressure p can be calculated from the free energy function (17). The resulting
representation is called Gibbs-Duhem equation and reads

N
pi=—h+ ) pipi. (32)
=1
The simplest constitutive choice for the viscous stress tensor S¢ satisfying £, > 0 describes
a Newtonian fluid. It reads
S*¢ =n D(v) + A divo Id, (33)

where 1) > 0 is the coefficient of shear viscosity, and the coefficient A of bulk viscosity satisfies
A42n>0.

2.3 Choice of the free energy function
The constitutive model is derived from a free energy density of the general form (17). However,

for the analysis of the model, we need in some extent to specify the choice of the free energy
function. To this end the free energy density pv) is additively split into three contributions,

N
b= Z p; h;ef + hmech + hmix ) (34)

i=1
Here, the constants A (i = 1,..., N) are related to the reference states of the pure con-

stituents. The contribution A™" is the mechanical part of the free energy that is neglected in
the classical Nernst-Planck theory, and h™* represents the mixing entropy.

In the presentation of [DGM13, DGL14], the contributions h™" and A™* are naturally given
as functions of the number densities ny, ...,ny of the constituents. These are defined via
n; := pi/m; (i = 1,..., N). Number fractions y; := n,/(zyzl n;)fori =1,...,N are
also involved.

The function h™" is the free energy density associated with the isotropic elastic deformation
of the mixture. The mechanical free energy takes into account the different specific volumes

Vi,..., VN € R, of the constituents. Assuming a constant bulk compression modulus K > 0
the mechanical free energy in [DGL14] is given by

h = (K — peg) (1= n- V) + K (n-V) In(n- V).



Here p,e is a constant reference value of the pressure, and n - ' stands for Zf\il n; V;. Another
typical choice in fluid mechanics is the Tait equation

K
hmech:(K_pref)(l_n.V)_}_E((n-V)a_n-V)a a>1.

For the sake of generality, we express ™" in the form

A" = K F(n-V)+Cn-V  with F:R, — Rconvex . (35)
Dreyer et al. use F'(z) := x Inx + C} for an simple mixture, whereas the Tait equation corre-
sponds to F'(x) = ¢, x* + Cb.

The free energy function h™ results from the entropy of mixing and is given by
N N
X = an kg 6 Zyl Iny; , (36)
i=1 i=1

where kg is the Boltzmann constant.

2.4 The model for the boundary I

The active boundary I" represents an interface between the electrolyte mixture and an external
material. In the most important application the external material is an electrode which is likewise
a mixture of N® € N constituents. Here we have analogous quantities to those that occur in
the electrolyte, namely the barycentric velocity, and diffusion fluxes and so on. To distinguish
between the electrolyte and the external material we provide the external quantities the suffix

ext

In this paper we assume for simplicity that on I" we exclusively have constituents that also exist in
the electrolyte and in the external material. Thus the interface I' is a mixture of NU = N 4+ Ne¢
constituents.

The equations of an interface representing a surface mixture are derivable in the context of sur-
face thermodynamics and we refer the interested reader to [ABM75, DGM15, Guh14]. As in the
bulk there are universal surface balance equation and material depending surface constitutive
equations.

To simplify the surface equations we assume on |0, 7[xI"

B Time variations of the surface mass densities and tangential transport are negligible in
comparison to mass transfer across the surface and to chemical surface reactions. Then
the surface balance equations become stationary.

B The interface is fixed in space, i.e. the interfacial normal speed is zero.

B There is no velocity slip and the normal barycentric velocity is equal to the interfacial
normal speed, i.e. we have on |0, T'[xT"

v=20. (37)



Surface mass balances and surface reaction rates. We assume that the interfacial unit
normal v points into the external material.

Under the above assumptions the surface mass balance equations on |0, 7[xT" then reduce to

rF+Jv, fori=1,...,N
0= (38)

r ext,i | S ext
TNgi — v fore=1,...,N

Here we use the convention that the /V first species on I are the electrolyte constituents, while
the constituents with indices N + 1,..., N + N®" are the external ones.

It remains to specify the surface mass production 7! due to surface reactions. As in the bulk,
the production ' is related to the surface reaction rates R by

r

rf:Z%@’iRgfori:l,...,Nr. (39)
k=1

The interfacial entropy production 5; due to chemical reaction is, [DGM15],

s

NF

fg = — ZRg D,E’R > 0 with the driving force D,E’R = ny{fl /,LZ-F for k=1,...,s".
k=1 i=1

(40)

The entropy production of the surface has the same structure as the corresponding entropy
production in the bulk (25). Thus in order to satisfy the entropy inequality a similar ansatz to (29)
may be used. We assume the existence of a potential ! so that

R' = —VpraU ' (D™R)  with U7 : R — Rconvex and Vpral'(0)=0. (41)

Diffusion fluxes. Due to the above assumptions, the constitutive equations for the diffusion
fluxes at |0, T'[xT" simplify to

N
; r r .
JZ'V:+ZMi,j(Mj_Mj> fori=1,...,N, (42)
j=1
NeXt
; Text Text .
J = — Z M; 7 (us — pys) fori=1,..., N*. (43)
7j=1
Here, ulf, - ,,u;v are the surface chemical potentials of the electrolytic species, whereas the
external species induce the surface chemical potentials /iy, . . . , fty 4 yex-

These equations describe the adsorption of a constituent from the bulk to the surface. The
kinetics of this process is controlled by positive semidefinite matrices, viz.

MY e RNXN  gnd MUt e RVIXNT (44)

sym sym



which satisfy the side condition
MUY =0  and  MUINT = (45)

In the general thermodynamic setting, the surface chemical potentials are derivatives of a sur-
face free energy. Due to the assumption of stationary surface equations, and that the boundary
is fixed, we are able to formulate all surface equations in terms of the surface chemical poten-
tials. Thus, from a mathematical viewpoint the equation system (43) only serves to determine
the surface chemical potentials z! and the fluxes.

Electrical potential. The boundary condition for the electrical potential can be derived from
Maxwell’s equations for surfaces, which are satisfied in the quasi-static stetting by a continuous
electrical potential, [DGM15]. On |0, T[xI" we have

¢ = Cbo ) (46)

where ¢ is the electric potential at I". In this paper we assume that the surface potential ¢ is
a given function.

2.5 Summary model equations

Domain 2. Summarising, the evolution of the state (p, v, ¢) in |0, T'[x €2 is described by the
PDE—system

a 1 . i ® . .
;t—l—d1v(p2-v+J):glvakfor@:l,...,N (47)
aQU : VisC F
o T div(pv @ v — §"%(Vv)) + Vp = —n" V¢ (48)

—eo (14 x) Ao =nF . (49)

Here n'" is given by the formula (15), the fluxes J*, ..., J" obey (22), R, ..., R, obey (27),
p obeys (32) and SV obeys (33).

Boundary I'.  We have on |0, T'[xI" the boundary conditions

0=r"+(J—J) v, (50)
J-v=+M" (u— ,uF) for electrolyte constituents, (51)
Jo .y = — M (™ — 5o for external constituents, (52)
v=20, (53)

¢ =g, (54)

where the external chemical potentials 11®, the external potential ¢q and the kinetic matrices
MT and M are given. The reaction rates 7' obey(39) with R! satisfying (41). Recall that
the conditions (50) represent N equations and are a shorter form for (38).

10



Boundary Y. We choose as simple as possible model on the surface |0, 7[x¥: No mass
flux,

(piv+J)-v=0 fori=1,...,N; (55)

complete adherence of the fluid,

v=0 on]0,T[x; (56)
no surface charge,
Vo-v=0 onl0,T[xX. (57)
Initial conditions. Initial conditions are prescribed for the variables p1, ..., px. We denote
them p?, i =1,..., N.Moreover, an initial state v is also given for the velocity vector.

2.6 Notation

To get rid of overstressed indexing, we simplify the notation by the convention that we use
vectors for objects of the same type. For instance we write p for the vector of mass densities, n
for the vector of number densities i.e.

p = <p17p27"'>pN)€RN> n = (n17n2>"'7nN)€RN' (58)

Moreover we define the vector

1:=1V:=(1,1,...,1) e RY (59)
and the vectors of quotients of charge and mass, and of volume and mass
c N Vv 1% N

Using these conventions, we have a. o. the identities

v
o=1"-p, nF:i~p, n-V =p-— etc.
m m

The diffusion fluxes .J', ..., J" span a rectangular matrix J = {.J/} € R" x R®. The upper
index corresponds to the lines of this matrix. Vectors of RY are multiplicated from the left as for
instance in 1 - J = S | J* which is an identity in R,

The vectors !, ...,~® span a rectangular matrix v = {7¥} € R*® x R". The upper index
corresponds to the line of the matrix. Vectors of R® are multiplicated from the left, as for instance
inthe identity r = R~y =Y ,_, Rx7* € RV,

Analogously the vectors ¢, . . . ,wfar span a rectangular matrix yp = {7{32} eRS x RV,
In order to describe the reactions, we will further use the abbreviations

R:R* =R, R:=-VU

R': Rs" — RSF, R' = —vVU'.

11



3 Remarks on the concept of the solution

Consider the system of convection-diffusion-reaction equations (47) by given velocity and elec-
tric fields. A (weak) solution to this system is a pair of vector fields (p, ) : [0,7] x Q —
Rf x RY such that (47) is valid (in the sense of distributions), and subject to the algebraic
relation (cf. (18))

1= ",h(p). 61)

State—constraints If one thinks of applying functionalanalytic methods to the problem, it is
natural seeking to eliminate the algebraic constraint and to resort to one set of variables, either
w or p. The choice of p as main variables is connected to the difficulty that there is no (known)
maximum principle for systems with cross—diffusion. Since the mass densities must satisfy the
physical condition p; > 0 fori = 1,..., N the PDE system remains subject to an inequality
constraint. Moreover, the p—variables are not natural to express the diffusion (22) and they
would lead to uselessly complex structures at this level.

As to the p—variables, due to (61), they obey the constraint € Image(Vh; RY). For a
general function h, the range of Vh applied to Rf might be a true subset of RY. Thus, we
can state that in general, the PDE system is also subject to a constraint in . But for the con-
stitutive assumption (34) here under consideration, we can show that Vh : ]Rf — RVisa
bijection if the first derivative of the function ' is surjective onto R. Thus at least for relevant
particular choices of h, the PDE system is unconstrained in 11, and the chemical potentials are
a favourable set of variables for existence theory.

An ’hyperbolic’ component As a next remark, it is important to note that the fluxes J*, .. ., JV
and the functions r1, . .., rx occurring in the system (47) in fact only depend on the projection
of the vector i on the subspace 1+ := {¢ € RY : ¢.1 = 0} (see the side conditions (23)
for the diffusion flux, and to the restriction (8) on the vectors 7', ..., *). In fact, only N — 1
coordinates of the vector 1 in the plane 1+ explicitely occur in the system. In particular, a control
on the spatial gradient can be obtained only for the reduced vector.

Due to these remarks, a change of variables is necessary in order to define the solution. We
keep as main variables:

(@) On the one hand, one coordinate of the vector field p, namely the total mass density p - 1
that we shall denote o throughout the paper. This is the 'hyperbolic’ component subject to
the continuity equation;

(b) On the other hand, N — 1 coordinates of the vector of chemical potentials 1 defined via a
projection onto the linear space 1+ C R¥.

The possibility of these choices relies on the following algebraic results that we only aforemen-
tion here.

12



Proposition 3.1. Assume the free energy function h satisfies the Ansatz (34), (35), (36), and
that the function I’ occurring in (35) belongs to C*(R ) N C'(Ry ), is convex and possesses
a surjective first derivative I .

Letél, ... &N € RN be abasis of RN such that ¥ = 1 andn?t, ..., n"" € RY the vectors
such that & -n = 07 fori,j =1,...,N.
We define a ‘projector” 11 : RN — RN~ and an extension operator £ : RVN~! — RY
associated with the basis {£'}i—1._n via

N-1

OX:= (X9 .., X- 9" for X eRY, E£q:= qugk forq € RN,

k=1
Then there are mappings # € C'(R, x RN"1 RY) and 4 € C*(Ry x RV™1; R) such
that the nonlinear algebraic equations (61) are valid for ;1 € RN and p € RY if and only if there
are o € R, andq € RN~! such that

p=R0,q), p-l=0o and Hu=gq, p-n"=.4(,q). (62)

A proof of this elementary result is given in the section 5. In view of Proposition 3.1, we can
equivalently define a solution to the system of equations (47) as a pair (o, ¢), with a function
0:]0,T[xQ — R, and a vector field ¢ :]0, T[x 2 — RY~! such that

OHi(0, q) + div(Z;(0, Q) v+ J') =1
Ji=¢ - M(%# 0, q)(V(E)+2L1Vvep) fori=1_... N. (63)
ri=Y 0 WR(Y - Eq, ..., Eq)

Here we abbreviated R = —VW. For instance one chooses the system {51, ceey §N*1} =
{et,...,eN~1}. Inthis case we see that n* = ¥ —eNfork =1,..., N — land ™ = €.
Thus, [Ty is the vector (p; — v, - - -, fiv—1 — foiv)- For this reason, we propose to call relative
chemical potentials the components of the new variable q.

Obviously, this approach in order to be possible also requires the reformulation of the system
of boundary conditions (50), (51), (52). We mention a second algebraic result, which allows to
eliminate the variables ,uf, o ,,u]FVF so that only the vector 1 and the data are involved in the
boundary conditions.

In order to state this result, we first need to reinterpret via trivial extension the matrices M" and
MT** as positive semi-definite elements of RY: *N". We introduce a linear space V C R""
via
V= span{v{f}k:h“’sr @ Image M
Exploiting standard results of linear algebra, we then find a representation M = M1+ M2,
with M € Rgn:XNF positive semi-definite for i = 1, 2, such that
MYHON x RN =0, MY1N =0fori=1,2
M"™(V) =0, ImageM"™?CV.

"We should in fact speak stricto sensu of a reduction operator.
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We define

(1) d" = dim V;
2) &' := dim(Image M"?);

(3) The reduced boundary reaction vectors 4*, ..., 4% € 1+ x 0N* are the eigenvectors of
MF,Q;

The following result is proved in the section 5.

Proposition 3.2. Letb!,...,b" be abasis of V such thatb* = 4% fork = 1,..., 5",

Assume that the function ' occuring in (41) belongs to C* (RSF; RSF), is strictly convex,
coercive and has a global minimum at zero?.

There is a function U7 € CH(RS" x R™), (Y, w) — UI(Y, w) such that

W Forallw € RY, the function Y — T (Y; w) is of class C*(R*"), nonnegative, strictly
convex and coercive on R®" and it satisfies UT (0, w) = 0;

B Defining —RF = Vy\ifr, the boundary conditons (50), (51), (52) are valid if and only if
fori=1,..., N,

§F

) HL ~ ~ 8T ~
JV+ZR£<71M777 :u7w0)’72k:_‘]10
k=1
§F

TP == N(MT2) R0, w) 4"

k=1

Here A\ (M'2), ... A;r(M"2) are the nontrivial eigenvalues of M'*, and the coefficients
T
w? are choosen such that MTey &t = S0 ) P,

Owing to the Propositions 3.1 and 3.2, we define a solution to (47), (50), (51), (52) as a pair
composed of the scalar ¢ :]0,7[x{2 — R, (total mass density) and of the vector field g :
10, T[xQ2 — RN~ (relative chemical potentials). For the other occurences in (48) and (49) of
the original variables p, 1, we use the following equivalences relying on (62)

p=—h(p) + Zpi pi =K (=F+idF') (X - Z(0, q)) =: P(0, q)

n=2.p=2-%(0,q).

2Since there is a free constant in the choice of the reaction potential, it is always possible to choose it nonneg-
ative
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The problem of vacuum In the context of weak solutions to the Navier-Stokes equations,
the occurence of a set of positive measure where the total mass density o vanishes cannot be
exculded. Such a set is called a vacuum. For a mixture, a vacuum is additionaly characterised by
the fact that the variables p and ¢ are 'decoupled’: Here we mean that the mapping ¢ — Z (0 =
0, q) is trivial on the entire RY=L_ For the analysis of the model, an additional concrete difficulty
is raised concerning the compacntness, since estimates for the time-derivatives are available
only for the p—variables. Thus, a sequence of mass densities p" = Z(o,, ¢") (n € N)
such that o, — 0 can converge strongly while the corresponding ¢" are exhibiting oscillatory
behaviour.

The diffusion fluxes of the constituents J*, ..., JV are linear expressions of the gradient of
g, and therefore the vacuum-oscillations do not affect the concept of the solution at this level.
However the reaction densities are in general nonlinear expressions in qy,...,gn—1. For the
concept of the solution, this means that the validity of the representation r = 22:1 Rk(yk .
£q) 7’“ is restricted to the set where g is strictly positive. In a vacuum set, the reaction term r is
the limit of a possibly oscillating sequence and is related to the variable g only via a dissipation
inequality. An analogous situation occurs at the boundary 0, T'[xI" whenever it is in contact
with a vacuum.

In order to include the possibility of this situation, we relax the concept of a solution to (47),
(50), (51), (52). It now contains four entries: the scalar ¢ : |0, T[x{2 — R, (total mass density)
and of the vector field ¢ :]0, T[x) — RY~! (relative chemical potentials) like in the natural
definition, but also the production factors in the bulk R :]0, T[x€2 — R*® and on the interface
R :]0, T[xI" — R*". We define the vacuum—free set via

Q" (o) :=={(t,z) €]0, T[xQ : o(t,z) > 0}. (64)

For the representation of the bulk reactions, we require the following weaker condition

r= ka Riwith R = R(y" - Eq,...,7*-Eq)in QT (o). (65)

k=1

We introduce a set St (o) CJ0, T[XT as the subset of all (¢, z) €]0, T[xT" such that there is
an open neighbourhood U, ,, with the property

M (Ui 0 {(5,9) €0, T[xQ : ofs, y) = 0}) = 0. (66)

For the concept of the solution, we ask that

I

P =Y A*Rpwith R = R (3" €q,... 4" - Eq, uw°) in S* (o). (67)
k=1

The weakening (65), (67) of the concept of the solution requires an equivalent representation of
the entropy productions due to reactions in the bulk and on the interface.

The dissipation (entropy production) associated with the bulk reactions is given by the ex-
pression &g := — > i_, Rix(D%) D}. Recall that D} := 4% - pfor k = 1,...,s. On the
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boundary |0, T[xT’, the situation is slightly more complicated. Since the entropy production
&= — 2211 RE(vk - uF) k- b, requires the introduction of interface chemical potentials,
we instead use the reduced driving forces D,E’R =4 -pfork =1,... 3" (Proposition 3.2).
A reduced entropy production, that we will show to be nonnegative, is given by

§F
5 = = 3T RE(DER, u) DR — (DR, ub) - 5
k=1

For the validity of the following statement, we use the Theorem 26.5 of [Roc70].

Proposition 3.3. Define R := —VV with a (strictly) convex potential ¥ € C?(R®) with
minimum at zero. Then

V(D) +¥*(—R(D))=—R(D)-D forall D € R®. (68)

Here, the convex conjugate function U* is itself a convex element of C*(R*).
LetUT € C2(R*") be a (strictly) convex potential. Define a reduced potential U and —R" =
OV as in Proposition 3.2. Then,
(D, w) + () (=RY(D, w), w) = — RY(D, w) - D
forall (D, w) € R x R . (69)

Here, the convex conjugate function (\ifr)* is taken in the first variable, and is itself convex in
the first variable.

4 The mathematical results

Mathematical results can be obtained under suitable restrictions to the data of the problem. We
at first formulate these assumptions.

Assumptions on the free energy function

Our estimates on the (relative) chemical potentials moreover require the special form h =
h'et 4 pmeeh 1 pMx where the mixing entropy obeys the precise representaion (36). We allow
for a certain generality only at the level of the function A™" which we assume of the form

™" = KFn-V)+Cn-V fors>0.

Here K is a constant, and we assume that F" belongs to C*(R ) N C'(R, ) and is a convex
function.

We assume that there are % < a < +o00 and constants 0 < ¢y, ¢; such that

F(s) > cops*—c¢ foralls > 0. (70)
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In the neighbourhood of zero, we assume that F'(s) behaves like s In s: There are constants
positive constants ky < k; and sg > 0 such that

k. k
D < F(s) < 2L forall s €]0, so] .- (71)
s s

In fact, in order to obtain an unconstrained PDE system, we crucialy need that
F': R, — Ris surjective (72)

which is not satisfied for instance by the pure polynomial Ansatz according to Tait (see Section
5 below), but always follows from (71).

Assumptions on the mobility matrix

We assume that M is symmetric and positive semidefinite. Throughout the paper, we assume
that M is mass conservative, that is

M1=0. (73)

Moreover we assume that the entries of M = M (p) are linear—growth, continuous functions of
the vector p of the partial mass densities.

Except for these few points, the exact structure of the mobility matrix is a delicate topic (in
particular there are connections to the Maxwell-Stefan theory, see [BD15]). In this paper we
restrict ourselves to the assumption that M has rank N — 1 independently on p. In other words,
denote 0 = A\ (M) < X\(M) < ... < Ay(M) the eigenvalues of the matrix M. We assume
that there are positive constants 0 < A < ) such that

A< N(M(p) <X(1+]p|) foralli=2,3,...,N, peRY. (74)

Let us remark that due to this assumption, only regularisations of the original Ansatz of the paper
[DGM13] are included in the analysis: In the formula (24) we can for example apply a cutoff from
below to the entries of the empirical matrix Menmp. Note that (74) makes sense if we assume that
the model applies to a mixture of /V constituents which is not allowed to degenerate.

We will treat the case of degenerate mobilities in a further publication.
Assumptions on the reaction densities

We assume that the reaction rates are derived from a strictly convex, nonnegative potential®
U € C?(R?®). Moreover, ¥ satisfies
¥ (D)

v(0) =0, W — +oofor |D| = . (75)

These assumptions are compatible with the choices (29).

Similarily, we require that the boundary reaction rates are derived from a strictly convex, non-
negative potential U* e C2(R*") such that

V(D)

vr0)=0, —=*
| DI

— +o0 for |D| — o0 (76)

3t is always possible to achieve the nonnegativity because the modelling only requires that ¥ has a global
minimum at zero
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For simplicity we explicitely require at least linear growth of the reaction terms, that is,

inf Apin(D*PH (X)) > 0. (77)

XeRs

As to the adsorption coefficients M and M occurring in the boundary conditions (42), (43)
they play in the analysis a role similar to the reactions. We assume them to be symmetric and
positive semidefinite matrices satisfying M* 1V = 0 and M7 1V = .

The reaction vectors: critical manifold

Denote W C 1+ C R¥ the linear subspace given by
W .= span{yl,...,ys, &1,...,&§F}. (78)

Recall that the reduced reaction vectors 4!, . .. ,’yér are associated with the matrix M/* and
can be identified with elements from 1+ (see Proposition 3.2). Call selection S of cardinality
|S| < N asubset {iy,...,45}of {1,..., N} suchthati; < ... <ig. For every selection,
we can introduce the corresponding projector Ps : RY — RY via Ps(&); =& fori € S, and
Ps(€); = 0 otherwise. We can define a linear subspace g C R” via

Ws = span { Ps('),... Po(r), Ps(3")..... PsG™) } (79)

The selection S will be called linearly independent if dim(Ws) = |S| and linearly dependent
otherwise.

For every selection S, we denote S~ the selection {1,..., N} \ S. It can easily be shown that
the manifold

My :=RY 0 U Ws x Pgr(RN) (80)
Sc{1,...,N}, S linearly dependent

is the finite union of submanifolds of dimension at most /N — 1. We say that the initial compatibility
condition is satisfied if the intial vector of the total masses py = fQ pldr € RJX satisfies

ﬁO ¢ Mcrit-
Assumptions on the domain {2 and the boundary I
The domain 2 C RR? possesses a boundary of class C%'. In connection with the optimal

regullarity of the solution to the Poisson equation with mixed-boundary conditions, we need to
introduce a further exponent (€2, I') as the largest number in the range [2, +oo[ such that

—Au = fin [WE(Q)]" implies u € WE7(Q)
forall f € W% (Q)]* and all 8 €], r|. (81)
It is well kwnon that 7(€2, ') > 2 in general (see [Gr689] a. o.), but there are numerous
situations where, depending on the boundary of the domain and the structure of the surface I,

the optimal exponent satisfies (€2, I') > 3 (see [DKR15] for results and discussions on this
topic). We require that

= <r, (82)
a—1
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whith a from (70). This of course might be a restriction only if @ < 2.
Assumptions on the remaining boundary data
We consider only nondegenerate initial and boundary data. This means that
P’ e Lo(Q; (Ry)Y)
v’ € L®(Q; R?)
¢o € L>(0,T3 WH(Q)) N L=(J0,T[x9) (83)
dhpo € Wy (0, T[xQ) N LY (0, T[x )
pt € L=(10, T[xT; RN™)
Moreover we assume the compatibility condition —¢o (1 + x) Apo(0) = = - p° weakly.

Results For ¢t > 0, we denote Q; :=]0, t[x () the space—time cylinder, and if 7" > 0 is the final
time of the process, we abbreviate () := Q). We denote S; :=]0, T[xI"and S = Sr.

Exploiting the preliminary considerations of the Section 3, a solution vector to the entire system
(47), (48), (49) with boundary conditions (50), (51), (52), (53), (54) and initial conditions (=:
Problem (P)) is composed of the scalars ¢ : Q — R (total mass density) and ¢ : @ — R
(electrical potential) and of the vector fields ¢ : Q@ — R™~! (relative chemical potentials), and
v : Q — R? (barycentric velocity field). If we want to account for the possibility of vacuum,
the productions factors are not everywhere functions of these components only. Thus we also
introduce R: Q — R*, R : § — R* as variables.

In order to define the concept of a weak solution we introduce what one could call a natural class
BB because this class narurally arises from the global energy and mass conservation identities
associated with the model. The class B reflects the regularity of the solution and essentially
depends on several parameters

B Thefinal time 1" > 0, the domain €2 and the partition I' U X of its boundary (see condition
(81));

B The choice of the free energy function h and in particular the growth exponent of (70);
B The mobility matrix M, in particular the nummber rk M

B The choice of the potentials U and U!" for the reaction densities.

For the variables p, ¢ and v we introduce the conditions

0 € L>%(Qr; Roy) (84)
v € Wye(Qr; R?) (85)
Vov € L=?*(Qr; R?) (86)
¢ € L*(Qr), V¢ e L™ (Qr; R?), (87)
with the exponents o > 3/2 and (£2,T") > 2 of the conditions (70) and (81), and with
[ := min {T(Q, ), (33—&&)*} : (88)
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For the variable g, a control is achieved on the spatial gradient thanks to (74), but we ob-

tain a very low regularity in time. In order to state this regularity, we introduce the function,

(onIn) := Ino...oln which is defined on the intervall (oxe)(1), +00|. For Bochner mea-
XN

surable functions  : [0, 7] — L*(£2) we define a number

Wiy o= swp (on)(K) M ({t €0, lu(®)llie > £)) . (9)
N k>(one)(1)

We say that u belongs to the class LE@NIH)Ll(Q) if [u]Lz(uo W L1(@) < +o0. For the variable ¢
we consider the conditions "

q € L{ 1y LH(Q; RYTH) (90)
Vg e L2(Q; RWN-Dx3) (91)

We recall that the reaction factor R is derived from a nonnegative, convex and coercive potential
. The vectorial Orlicz classes Ly (Q7; R®) and Ly« (Qr; R*) are then well known. We use
the notation

[D]L\I/(QT;RS) = / \P(D(t, 1’)) dx dt.

T

Due to the preliminary considerations of Section 3, we know that the reduced reaction factor R
is derived from a potential

DR s UT(DUR %) for DVR e R¥ .
Here w° € LOO(STA; Rdr) depends linearly on the vector 1 of external chemical potentials.
We can reinterpret UT' € L>°(S; C2(R?")) as the mapping
(t, x, D"R) — UT (DR wO(t, 2)). (92)

Then, we can introduce a vectorial Orlicz class L (.S; Rér) as the set of all measurable D :
S — R* such that

A

[D]L@p(s;Rér) = /S\ifr(t, z, D(t, x))dS(z)dt < 400.

For the variable g we thus have the additional conditions

(v' - Eq,...,7* - Eq) € Ly(Qr; R?),

~1 oD AT (93)
(7 - €q,...,7" -€q) € Lyr([0,T) x T, R* ).
For the variables R and R' we consider the conditions
—R € Ly-(Q; R), —R" € Ligr).(S; RY). (94)
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For a given vector (o, ¢, v, ¢, R, RF) we introduce on the base of the Propositions 3.1, 3.2
the auxiliary variables

p=%(0,q) (95a)
& 1
J=-M(p)D, D= % +o= 2V (95b)
T:Z’ykRk, D} :=~F.Eqfork=1,...,s (95c¢)
k=1
2
F=Y "Ry, Dfi=4"-Eqtork=1,.. 3" (95d)
k=1
p="P(o q) (95e)
la Z
no=p-—. (95f)
m

The natural class B also encodes an information concerning the conservation of global mass
(integration of (10) over €2). We additionally introduce the auxilliary variable

ﬁrz/pz/%’(@, q), (96)
Q Q

and a nonnegative function ®* € C'([0, T]?), ®*(t, t) = 0 constructed from the functions W,
Ul (and thus from R and R") via

s [ e
=1, N5 [R L () <C0
+ / /R’% + (ta —t1), (97)
t1 I

=1,...,N; [R <
1, »Nv[R]L(\ilF)*(s),Co

forall0 < t; <ty <T.Here () is an appropriate constant that we will choose later.
For a function u € C([0, T']), we define a weighted modulus of uniform continuity via
|u(ty) — ults)|
[Ulcy (o) == sup —— <
3+ ([0,T7) t1,12€[0T] P (tla t2)
We are finally in the position to introduce the solution class.

Definition 4.1. Let (0, ¢, v, ¢, R, R') such that o satisfies (84), v satisfies (85), ¢ satisfies
(87), and q satisfies (90), (91) and (93) and R, R" satisfy (94). We define a number

[(Qa q, v, ¢7 R7 RF)]B(T,Q,CVJkMy‘I’:\I’F) =
lollzen(@) + Ivllwrog) + Ve vllLe2@r) + 101l + VOl L)

+lalee 0@ + 1Vl + [Dra@ + (D10 0s)
I e ) + Bl @ + [=R'1 (s + D] L4434 )
+ [Pleg- (o) - (99)
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We say that (o, q, v, ¢, R, R) belongs to the class B(T, 2, o.,tk M, ¥, W) if and only if
[(Q) q, v, ¢7 R7 RF)]B(T,Q,a,rkM,\II,\IIF) is finite.

An essential property of solutions is the mass and energy conservation.

Definition 4.2. We say that (o, q, v, ¢, R, RF) satisfies the (global) energy (in)equality with
free energy function h and mobility matrix M if and only if the associated fields and variables

(95) satisfy for almost all t €]0,T

[{3er+5ae01vor 1 | 0
+ | {S(Vv) : Vo+0MD- D+ (¥(D") + U*(—R))}
Qt
+ j {@F(ﬁF,R’ wO) + (@F)*(_RF’ UJO)}

2 [l gae0vamoF a6}

t

—A{nF¢o—€o(1+X)v¢‘V¢o}

0

+ {nF¢o,t—eo(1+x)v¢-v¢o,t}+/((f+J°)-%¢O+JO-Sq). (100)
Qt St

We say that (o, q, v, ¢, R, R") satisfies the global mass balance if the vector field p (cf. (96))
satisfies

ﬁ(t)—ﬁo—l—/ot{/gr—i—/r(f—i—f))}(s)ds forallt € [0,7]. (101)

We now give the definition of a weak solution.

Definition 4.3. We call weak solution to the Problem (P) a vector (o, q, v, ¢, R, R") €
B(T, Q, a, N — 1, ¥, U1 such that the energy inequality and the global mass identity of
Definition 4.2 are valid and such that the quantities p, J,  and 7, p and n*" obeying the defini-
tions (95) satisfy the relations

_/Qp.wt_/Q(piHJi).v%_/on.zp(o)Jr/wajL/ST(HJO)~¢ (102)

—/gv«nt—/gv@)v:Vn—/pdivn—l—/S(Vv):Vn (103)
Q Q Q Q
:/QOUO-U(O)—/TLFV¢'U
Q Q
eo(1+x)/v¢-VC:/nFC, ¢ = ¢y as traces on |0, T[xT". (104)
Q Q
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forally € CH([0,T[; C'(; RY)),n € CH([0,T[; C1($; R)) and( € L0, T; Wp*(Q),
and the identities
R = R(D") inQ" (o)
R' = RY(D™R, w®) in S* (o). (105)
The sets Q" (0) and ST (o) are defined in (64) and (66).

The concept of weak solution is well defined owing to standard estimates (see also below). We
state our main theorems.

Theorem 4.4. [Gobal-in-time existence] Let Q € C%'. Assume that the free energy function
hmeeh satisfies (70) and (71) and that the mobility matrix M satisfies (73) and (74). Let ¥ &
C2(R*) and U € C2(R*") be striclty convex and satisfy (75), (76). Assume that the initial
data p° and ", and the boundary data 11", ¢y are nondegenerate in the sense of (83). Assume
that one of the following conditions is valid:

v

(1) a=>2;
@)

(3)

<a<2andr(Q,T)>d;

Nl Ol©o

<a<2,r(QT) > d andthe vectorsm € RY andV € RY are parallel.
Assume moreover that

(1) Either s + 3" = 0, that is, there are no bulk reactions and the adsorption coefficients and
interface reaction vectors satisfy dim(Image(M") N span{yf},— ) = 0;

(2) Ors+ 5% > 1 and the vector p° of the total initial masses has positive distance to the
manifold M ; of (80).

Then, for T > 0 arbitrary, the problem (P) possesses a weak solution in the sense of Defi-
nition 4.3 in the class B(T, 2, o, N — 1, U, WY). Moreover the following information on the
complete vanishing of species is available:

M({tel0,T] - ‘_ianﬁi(t) =0}) =0.

goon

In the case that s+ 3" = ( we even obtain the additional time regularity q| 10 rN-1) < 400.
(Q7 )

If one starts with total initial masses on the critical manifold, then it is possible that certain
species completely vanish after finite time, and the solution then exists only up to this time.
Afterwards, it might be necessary to restart the system with a smaller number of species.

Theorem 4.5. [Local-in-time existence] Same assumptions as in Theorem 4.4, with py € M g
ands + 5" > 1.

Then, there are a time 0 < Ty depending only on the data and a time T, < T < 400 such
that there is a weak solution (o, q, v, ¢, R, R') € B(t, Q, o, N — 1, ¥, ¥ in the sense
of Definition 4.3 to ( P;) for allt < T™*. Moreover the following alternative concerning T is valid:
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(1) Either T* = +o00;

() Orinfi_y_n pi(t) > 0 forallt € [0,T*[ and lim,_,7- inf;—y __y ps(t) = 0. Moreover
lall L@ rv-1) — +o00 ast — T™.

Our plan is as follows. According to the preliminary Section 3, the algebraic properties of the
equation (61) determines the analysis of the model. Our next Section 5 is therefore devoted to
the proof of the Propositions 3.1 and 3.2. After that, we shall turn our attention to the PDEs.
In the Section 6 we introduce thermodynamically consistent regularisations of the problem (P)
for which it is easier to prove the solvability. For this larger class of problems, we then derive
the energy and global mass balance identities (Section 7) and the resulting a priori estimates
(Section 8). The Section 8 deals in particular with a priori estimates for the variable ¢, one of the
most demanding part of the analysis. In order to pass to the limit in approximate problems with
the numerous nonlinearities of the system, it is necessary to obtain compactness statements:
This is the second pillar of the analysis, that we establish in the Sections 9 and 10. With all
these tools at hand, we are able to complete the proof ot the main theorems in the Section 11
devoted to existence.

5 Algebraic properties

This section is devoted to the rigourous derivation of the statements announced in the Section
3. We at first enlight the choice of the variables in the bulk, and then prove the reduction of the
boundary systemon I'.

5.1 The choice of variables in the bulk. General free energy

The algebraic relation between partial mass densities p and chemical potentials 1 is given by
ui:(?ih(pl,...,pN)fori:1,...,N. (106)

In the isothermal case we can forget about the temperature-dependence, that is, h ~~ h(p).
Using tools of convex analysis, we immediately obtain that the relation (106) is invertible if / is
convex and smooth. In the remainder of the paper we always denote RY = (R, )" = {X €
RY © X; > Ofori = 1,...,N},and R}, = (Ro )V = {X e RV : X; > Ofori =
1,...,N}.

Lemmas5.1. Leth € C*(RY)NC(RY, ) be convex. Let D; € R™ be the setTmage(Vh; RY),
thatis Di = {u € RY : Ip € RY, u = Vh(p)}. Then, the Legendre transform of h, de-
noted h*, is a well-defined function on D5, convex and it satisfies h* € C*(Dj). Moreover the
relation (108) is valid for i € D, and p € RY if and only if p = Vh* (p).

Proof. Since h € C(Ré\vﬂr), it is a closed proper convex function in the sense of [Roc70]. The
claim follows from the Theorem 26.5 of this book. O
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Next we investigate the possibility to introduce 'mixed’ coordinates to describe the set of solu-
tionsto (106). Let &1, ..., &N € RY be abasis of RY suchthat £V := 1.Choosen*, ..., 0"V €
RY such that & -7/ = 67,4, = 1,..., N. We define a 'projector’ IT : RY — RV~ and an
extension operator £ : RV~ — R¥ associated with the basis {£'},—;. x via

N-1
X :=(X-n',... . X gV for X eRY, Eq:=) ¢ forg e RN (107)
k=1
Corollary 5.2. Assumptions of Lemma 5.1. Let &Y, ... &N € RY be a basis of R such that
&N .= 1. Defineaset 2 C R, x RN~! via
Eq+tl e D;
P:={(s5,q) ERy xRV : IR at &
1-Vh*(Eq+tl)=s

Then, 9 is open and there is a function # € C'(2), (s, q) — (s, q) such that (108) is
valid for ;1 € Dj, and p € RY if and only if

N-1
MZ;(HM)i£i++///(p']l,Hu) 1 (108)
=(Eoll)p+ 4 (p-1,1Ip) 1.
The derivatives of ./ satisfy the idendities
O (p-1, q) = W7 Og,  (p- 1, q) Z—%
j=1,...,N—1 (109)
Proof. Define an opensetid C RV~! x R via
U:={(g,t) eERV xR : E¢g+tl € D;}.
We define a function G : U x Ry — Rvia
G(g, t,s):=1-Vh*(Eq+tl)—s. (110)

We compute the partial derivatives of (G and we use the representation (119) to obtain that
9G(q, t, s) = D*h*(Eq+t1)1-1 >0, 0,G(q, t, s) =D*h*(Eq+1t1)¢ - 1.

Consider now the solution manifold for G = 0 in U4 x R,. Since G} > 0, we obtain from the
implicit function theorem that there is .# € C1(2)

G(q, t, s) =0ifandonlyif t = .4 (s, q) .
In particular, d,.# = Gy '(q, t, s) and 0,4 = —G,/G,.

Assume now that (106) is valid for o € Dj, and p € RY. We express j1 = Zf\;l(u )&+
(™) 1. Then G(Tp, pu-n™, p-1) =0sothat u-n™ = .4 (p- 1, ). O
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Corollary 5.3. Assumptions as in Corollary 5.2. Then there is a bijection % : C' (2; Rf ) such
that (106) is valid for i € D} and p € RY ifand only if p; = %;(p - 1, Tly) fori = 1,..., N.

Proof. For (s, q) € 2, we define Z(s, q) := (Vh*)(E q+ A4 (s, q) 1). We can compute
that

. De -1 DhrE -1

_ 27 % 1
8qj%’b'<s7 Q) - D h € - 5] - D2h,*]l . 1
D?h*et - 1

D2p*1 -1

(111)

as%i(& Q) = (112)
In these formula, D*h* is evaluated at u = £q + .# (s, q) 1. In order to prove that Z is a
bijection, it is sufficient to show that % is invertible. Let X = (r, q) € R x RN~1 arbitrary.
Then d% X = O means thatfori = 1,..., N one has

. + D211 - &q
i.ph(eg—1 (L —0.
¢ (gq ( D2h+l - 1 )) 0

Using the uniform invertibility of D?h*, we obtain that £¢ — 1 (%) = 0. We can
multiply this identity with n', ..., 7"~ andsincep’ - 1 =0forj = 1,..., N — 1, we obtain

that ¢q,...,qgy_1 = 0. Therefore also 7 = 0, and the claim follows. O

The pressure function The pressure function is given by the formula (32). We immediately
see under (106) that p = —h(p) + p - 1 = h*(u) where h* is the convex conjugate of h. We
define a function P : & — R via

P(s,q) =h"(Eq+ #(s,q)1). (113)
Lemma 5.4. Let (s, q) € 9. Then P € C''(9) satisfies

D2h*1 - &
D1

S

Py(s, q) = D2l 1 Py(s, q) = & - Vh*(n)

In these formula, D*h* is evaluated at i = £q + # (s,q) 1.
Proof. Define p:= & q+ # (s, q) 1 and p = Vh* (). Then

Py(s, q) =1-Vh*(u) A(s, q) = p- 1 M(s, q)
Py(s,q) =& -Vh* () + 1- VR (u)y; (s, q) = p-& +p- 1M (s, q)

and the claim follows from the Lemma 5.2. O
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5.2 The variables in the bulk. Special constitutive choice of the free en-
ergy

For special choices of the free energy, we can find more explicit formula than Lemma 5.1. Under
the conditions (35) and (36), the relation (106) reads

Vi kg0
pi=ci+K—LF V- n)+-2
m; m;

Iny; +=1,...,N, (114)

where c1,...,cy € R are certain constants depending on the reference states, f > 0 is the
absolute temperature assumed constant and kg is the Boltzmann constant.

Note that the free energy h = h"" + A" 4 L™ gatisfies the assumptions of Lemma 5.1 if we
assume that the function F' € C?*(R ) N C(Ry ) is convex. At first we want to characterise
the set D} and we need a preliminary Lemma.

Lemma 5.5. There is a function f € C'(RY) such that if the identity (114) is valid for i € RY
andn € RY then F'(V-n) = f(u). Moreover, the function f satisfies the following inequalities

m m

v (sup i —sup ;) < f(p) < 5 (sup s — inf e;) + 7 In N (115)

and V| < m/(VK). Fora vector V € RY we here abbreviate V := inf,_; _nV; and

Proof. Define a function G : RY x R — R, (i, t) — G(pu, t) via
N

G(u, t) = ex —1.
n =3 p( -

It is readily verified for all ;1 € R that lim;_,_o, G(u, t) = +o0, that lim;_, o, G(u, t) =
—1,andthat G¢(u, t) < 0. Thus, the solution manifold to Gy, t) = Oisacurve {(p, f(n)) :
p € RN}y where 0, f (1) = =Gy (1, f(11)) Gy, (11, f(1). Easy computations show that

m; (pi—ci)—K'V; f(1)
0,f (1) = = eXP( e #> (116)
i \U) = 7= .
mj (uj—cj)—KVj
K Z?;l‘/jexp< J(#] ]]@)39 ]f(.“))

In particular |V f| <mYV K. Moreover, if G(u, t) = 0, then setting

m; Z—CZ—K‘/;F,t
= o (ML) =KV,

(117)

we see that p; :ci+K%t+%e Iny;fori =1,...,N.Sincey €]0,1[N andy -1 = 1,
it easily follows that

_m_

wv (supp; —supe;) <t <

K3 K3

(suppy; —infe;) + 522 In N
proving (115). O
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We are now ready to prove an inversion formula for the relation (114).

Corollary 5.6. Assume that the function ' € C*(R,) N C(Ry ) is convex. Define D :=
Image(Vh; RY). Then Di = {u € RN : f(u) € Image(F’, Ry)}. If u € D, then

exp (m (i _0123 _GK Vi (1) )

Z?le V; exp (mj (Mj_C]iL_QKVj f(u)) (118)

O () = my ([F'] ™" o f)(p)

— O(F" o ().

with F* = Legendre transform of F'.

Proof. If i € Dj, thenthereis p € Rf such that 4 = Vh(p). Thus, (114) is valid, and Lemma
5.5 shows that F”(% - p) = f(u). Thus, f(1) € Image(F’, R.) and this yields

Dy C{neRY : f(u) € Image(F', Ry)}.

In order to prove the reverse inclusion, consider 1 € RY such that f(u) € Image(F’, R,).
Denote

exp <m (uz’—c’i; —0K Vi f(u))

SNV exp (mj leymep) KV, f(u))

g(p) == [F' " o f(u), pi :=mig(p)

We easily show that Vh(p) = . Using (116) we see that
O;h* () = K g(p) 0, f () = 0i(F” o f)(u) -

]
Lemma 5.7. Assumptions of Corollary 5.6. Then Vh* € C' (D). The representation
D1, (Vh(p)) = (119
mipj5f+p¢pj 1 N Vien  Vi4V;
kg0 n-V\Kn-VFE'n-V) kgOn-V kg0
is valid with V? - n = S~ V2 n,. There holds
|D*R*(Vh(p))] < Cip-1 (120)
1
D?*h* 1-1>C)———. 121
B(ThE) L1 > C s (121)
Proof. By direct computation starting from (118) we obtain (119). This entails
—9 —
m; m; 1 V V
D*h} .(Vh < pi =42 2
D"k (VI < pi (kBQ Ty (Kn-VF”(n-V) "oV T k30)>
< i1 . 122
=Cp ( +Kn-VF~(n-V)) 122
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The function s F(s) is asymptotically equivalent to s 5!

= const near zero (cf. (71)) and to
ss°72 = s ! for s large. Thus, there is a constant ¢y > 0 such that inf,eg, s F”(s) > cq,

and (120) follows. Further

pip-1

D*h*1 - e =
¢ TKFn-V)(n-V)?

pi p-1V2.n Vip-1 p-V
. - - . 12
+k39< * (n-V)? n-V. n-V (123)
Thus
N
> D,
ij=1
_ (p-1)° L (e PV V-
K(V-n)2F'(V-n) kgt P on) n-vV
2
- 1)2 1 1A/ V2.
KV -n)2F"(V-n) kgt V-n
2 1
k:BQS V(‘/ pVVZ.n—V.p). (124)

The estimate (121) is a straightforward consequence of (124) and of the Cauchy-Schwarz in-

equality, since we can express va Vipi = va L(Viy/mg) (m; /). We further use in (121)
that F'(n - V) > F"(co) > ¢ F"(o) (cf. (71)). O

As corollaries of Lemma 5.7, note that the functions .# € C'(2) of Lemma 5.2 and P €
C1(2) satisfy for all (s, q) € 2 the following inequalities (cp. (109), Lemma 5.4):

1 K F"(s)

|0y (3, q)| < %KSF”(S) (125)

1Py (s,q)| < Cs(1+KsF"(s)). (126)

Remark 5.8. For the applicability of our approximation methods we are restricted to the case
that D = R . In view of the Corollary 5.6 this is basically the case if F" is surjective. In this
case, 7 = R, x RN~ and there is no state-constraint on u.

Remark 5.9. In the case that the polynomial growth of the function F' is less than 9/5, we rely
in the analysis of the PDE system on second derivatives and on the convexity of the function
s — P(s, q) at fixed q. We are able to establish this property only in the very special case
that P is a function of the total mass density. We note the following trivial observation. Define
P as in the Lemma 5.4. Assume that the vector V' € Rﬂf andm € Rf are parallel. Then P
depends only on the first variable.
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5.3 The boundary reduction

The second step is to show that the boundary conditions (50), (51), (52) can be equivalently
expressed by means of only a (N — 1)—dimensional reduction of the vector . from the bulk.
The idea is to solve the algebraic equations

’f’F o (MF + MF,ext) MF — _MF w— MF,extluext’ (127)
which result from (50), (51). We show that these equation allow to eliminate the occurrences of

the surface potentials zi*.

Note that (127) makes sense if we reinterpret via trivial extension the matrices M and M-

as positive semidefinite elements of Ré\y[;XN " The vectors 1 and ™ are trivially extended as

well according to the scheme 1t ~ (i, 0) € RN x 0N and p®t ~~ (0, p) € 0V x RN™.
For the sake of simplicity we do not introduce explicitely these operators by means of additional
symbols.

For the solution to (127), we define a linear subspace of RN via
V = span{1}, . .. ,vﬁr} @ Image Mo (128)

Now we can orthogonaly decompose Image M* = (Image M' N V) @ V;, where V) is
the orthogonal complement of V in Image M". There is an associated decompositon M =
MT + MT2 with positive semidefinite M € RY *N" for § = 1, 2 satisfying

sym
M1 % {0}) ® ({0} x RY™)) = 0fori = 1,2, Image M =V,
and Image M'*? C V. Then, it is obvious that (127) is equivalent to

T'F o (MF’2 4 MF,ext) MF — _MF,ext luext o MF’2 L (129)
Py (p" —p)=0. (130)

We now focus on the conditions (129). In order to solve these equations, we introduce

B The numbers d© = dim V and §' := dim(Image M"?) < d";

B The eigenvalules )\, ..., \;r and the orthonormal eigenvectors b', . .., b% of MT2;
B We choose further vectors bsr 1, ..., by € RM" such that {b1,...,bgr} is a basis of
V.
We introduce the abbreviation d®' = rk M®. Since the matrix M occurring in (129) is
symmetric and positive semidefinite, there are orthonormal vectors el, . . ., e®™ € RN such
that
de)(t
Text k k .. r
M; > :Z)\Z’dei ej, ,j=1,...,N (131)
k=1
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. . T
where A\$%, ... A% are the nonzero eigenvalues of M. Recalling now that {b',... b }
is a basis of V, there are coefficients {A;s};—1 o =1 arand {A;¢};—1 e =1 qr such
that

dF dext
=D Aplt, =) At (132)
=1 =1

Employing these notations and properties

deXt

dr st
L (Mm + MF,ext) MF _ Zbk Z Aj,k RUI — Z Aj’k )\;xt el MF
k=1 j=1 j=1

§F
DDA
k=1

Moreover there is a representation

dl" daext dF
_ et Mext _ Z (Z Aj,k /\;Xt el Mext) bk —. ‘ (133)

k=1 \j=1

I
[
g
%

Due to the two latter relations, (129) is equivalent to

Zj; Ajx RM — Zdenl Aji Aed -t — Ay, bF it = wp — A b p

j:
fork=1,...,8"

ST . ext  ~ . (134)
> Ajp BT — Zj:l Ajpe A6l - it = wy,
fork=8"+1,...,d"
Choose U from (41). We introduce auxiliary potentials U*, U2 € C2%(R? ) via
B 1 dext ~
() = WT(AX) + 5 DA (A X)? (135)
k=1
1<
VA(X) =0 (X)+= ) NX2 136
(X) = WH(X) + 5 le j (136)

AtX = (b -t b D) e RT and Y = (b - g, b° - ) € R the identities
(130) are valid if and only if

—kaqfl(X)—/\ka:wk—)\kY}g fork:=1,...,§F (137)
—Vx, VH(X) = wy fork=3s"+1,...,d"
or using the second potential also
~VxU4X)=w-DY. (138)
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Here D € R? *%" s the block-structured matrix

D= ( 10) ) . D =diag(\;,..., \gr) € RS (139)

The following auxiliary statement is then obvious.

Lemma 5.10. The solution to the equation (134) at the point X = (b*- ", ... b -u') € RT
andY = (b' -y, ..., b% - ) € RS is given by

X =V@H"(DY —w).
Here (U2)* € C2(R%") is the convex conjugate to W* and D € R® **' is defined in (139).

The Lemma 5.10 yields a representation of the vector (b' - u*', ... b% - i) as a function of
(b, ... b 1) Recall also (130) to see that ' — g2 = 0 on V;. Thus, the flux .J,, in (50)
given by the expression .J, = M" (11— ;") possesses at Y = (b* - p1, ..., b° - 1) € R¥' the
equivalent representation

Jy=M"(p—pt) =M (u—pt)

gl"

= Z)\ (b = b )b =N (Y = 0T (DY —w)) b

i=1
We introduce a potential U7 € C2(R®" x R?") via
~ 1 ~ —
(Y, w) =5 DY Y — (UH*(DY — w)
+ (V)" (—w) + DY - V(I?)* (—w). (140)

Then, at the point Y = (b' - 11, ..., b% - 1) we obtain the equivalence

3

Ty =) N (0 U (Y, w) — 0y, UT(0, w)) b’ (141)

i=1

We reinterpret the identity (141) by defining

B A modified reaction rate vector field R € C'(R¥" x R%")

RU(Y, w) :== =Vy U (Y, w), (142)

B Modified reaction vectors

A =brfork=1,...,5", (143)

B Modified reaction driving forces

Dyt =4k pfork=1,...,5", (144)
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B Anouter flux JO = J(1®%) taking values in Image M2 = span{3*,...,4" } via

I

JO =" X0y, 070, w) . (145)

i=1

Lemma 5.11. We define

(a) Areduced number of boundary reactions ' := dim(Image M N V);

(b) Modified reactions vectors {4*,... 4 S asthe eigenvectors of the matrix M2 (cf. (143));
v v

Using the potential U'' from (140), we define
§F
Pr=Y R(D™F w)AF == "oy UL (DR, w) 4k
k=1

We moreover define (cf. (133), (145))

deXf

wy = E Ajp Xl - pfork = ... d"
i=1

§F

JO = )\Z 8y7\ifr(0, wo) ’3/2
=1

Then the conditions (50), (51), (52) are satisfied if and only if J, = — — J°.

It remains to investigate the properties of the potential U in order to show that 7 has the desired
structure of a reaction term.

Proposition 5.12. Assume that U!' € CQ(RSF) is a strictly convex, nonnegative and coercive
T T

potential. Assume that M" and M"®" are positive semidefinite elements of MJ, "' . Let

§' := dim(Image MT N V) be the reduced number of boundary reactions. We define the

reduced potential V' as in (140).

Then, U7 e CY(R®" x R?) is nonnegative, and the function Y + W' (Y, w) is of class
C2(R*"), strictly convex and coercive for all w € R% .

Proof. Due to the representation (140), we directly obtairl that U is of class C'' and even of
class C* in the first variable. The second derivative D, W' is given by

D2y U =D —D' D% (V) (DY —w))D.
Due to convex conjugation, D?(U2)*(DY —w) = [DQ@QLX)]*l at X = V(\?2)*(Z_DY—’LU).

The definition of U2 induces D2¥2(X) = D?>¥'(X) + D. Here we denote D € R* %4 the
matrix diag(Aq, ..., Agr, 0,...,0).
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Therefore D%Y@F(Y, w)=D — D [qujl(X) + 5}_1 D
By definition (recall also the definitions (132) of the matrices A and fl), forn € RY arbitrary

deXt

DRI (X = DPUT(AX) An - A+ 37N (A
=1

> inf{Auin(D7UT), AT A (|40 + [Anl?) = co[nf?,

where we make use of the assumption (77). From the latter estimate, we obtain via elementary

arguments that A, (D% O > % . This proves the claims. O

6 Approximate solutions. Regularisation strategy

For the existence theory we shall embedd the problem (P) into a larger class of approximate,
regularised problems that are easier to solve. These approximations (in the spirit of "viscosity
solutions’) are constructed in such a way that the integrability of the entire vector of chemical
potentials © as main variable can be expected.

6.1 The regularisation strategy

The regularisation strategy, though not mass conservative, will be chosen thermodynamically
consistent, since it consists in two essential steps:

(1) A positive definite regularisation of the mobility matrix M ;

(2) A convex regularisation of the free energy function h.

The method involves three levels associated with positive parameter, say o, 6 and 7. The first
level, associated with the diffusion parameter o, consisits in modifying the mobility matrix M in
order that it becomes elliptic via M ~~ M +o 1. We denote M, (p) the corresponding diffusion
matrix, that is, we set

M,(p) = M(p) +ol. (146)

This regularisation will allow a control on V .

The — and 7— regularisations are associated with the free energy function h. The ) —regularisation
consists in increasing the growth of the (mechamical) free energy modifying the function F' that
occurs in the definition of A™" via F'(n - V) ~ F(n-V) + 4§ (n- V)% « > 3. If the original
growth exponent of I is larger than 3, this step can be omitted. We denote h; the corresponding
free energy function, that is

hs(p) :=h(p) + 6 (p- L)*. (147)

3

34



The T—regularisation is a stabilisation for the vector of chemical potentials. It consists in modi-
fiying the function h* (or (hs)*) via

(hs)*(X) ~ (h)*(X) + T Zw(xi) (= (hs)*(X) +7w(X)-1) for X € RV

Here w € C*(R) is a convex and increasing function for which we impose the growth conditions
co (V]s~[+1s7|%) < W(s) s —wls) < er (Vs + [s]) (148)
W (s) < e (1+w(s)s —w(s))Ve. (149)

For example, we could choose the function

—24/|s| fors < —1

w(s) =4 3s*+3s-32 for —1<s<1  (150)

’

2o/ (i/q)‘ sY 4+ (2 — ﬁ) s+ m — 1 otherwise.

which satisfies these assumptions. The choice of the regularisation w is by no means unique,
the constants in (150) are determined from simple interpolation conditions. Essential for our
purposes is in fact only the sublinear growth for s — —oo that garanties convexity.

Combining with the d—regularisation, we define on R a function

i (X) = (hs)*(X) + T Zw(X», (151)

which is twice differentiable and convex. Making use of the convexity we easily show that the
mapping th’é : RN — ]Rf is bijective. Interpreting (151) as Legendre transform, we intro-
duce a regularised free energy function via

hs := convex conjugate of the function h} ; = (h] )", (152)

which is a twice differentiable convex function on Rf. The main motivation for this construction
is that the new free energy function has improved coercivity properties over the variables p and
L as exposed in the following statement.

Lemma 6.1. Let the original free energy function h satisfy

co |p|* —c1 < h(p) < Colp|* + Cy, forallp € RY . (153)
with constants 3/2 < oy < +o0 and 0 < ¢, ¢1, Cy, C; < +o00. Let « > 3 be the
regularisation exponent of (147), and w a function satisfying (148). Define

N
Ou(X) =Y W(X;) X; —w(X;) for X € RV (154)
=1

Then there are ¢y, ¢1 > 0, and 1o(«v, o) > 0 such that if T <
hrs(p) = o (|p|* +61p|* +7 Do (p)) — 1 (155)
forall p € RY and ju € R" connected by the identity p = VI 5(11).
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Proof. The definition (152) implies that
hes(VRZ 5(X)) = hs(V(hs)" (X)) + 7 @ (X))
By assumption, p and p are related via
p = Vhi () = V(hs)"(p) + 7' (1), (156)
and we obtain for the regularised free enery the identity

hrs(p) = hs(V(hs)" (1)) + 7 Pus(p1)

= hs(p— T (1) + 7 Z(Mw/(ﬂi) —w(p))- (157)

i=1

Using the properties of i5(Y) = h(Y) + 6 (Y - L), we obtain that

hrs(p) = hip — 76/ (1) + 6 (0 — 70/ () - ¥ +TZM ) —w(n).

On the other hand, the condition (148) ensures that w’(11;) < ¢ (1 + W' (1) p — w(p))*/e.
For o > 1, denote ¢(«), ¢(a) two constants such that |a — b|* > c(a) a® — ¢(a) b* for all
a, b > 0. If follows that

hes(p) > hip— 7w/ (1) + 28 |p — 7w/ ()™ + 7 Y (s w' () — w(psa)

i=1

> hip — m'm)) + min{c, 6, c(a)} |p|®
T Z (i ' (i) — w(pi)) — 2 6 7€) |w' ()]

= h(p =7 (1)) + min{c; 6, c(a)} |p|*

+(1—c02() 7)) 7 Y (s () — wlps)) = C.

i1
If we asssume that C'§ 7271 < 1/4,

N

es(p) > hlp — 7/ (1)) + minfes 6, e(0)} |pl" + 5 7 >t W) = €.

=1

Making use of the growth of the free energy h and analogous arguments, the claim follows. [
We also note that the pressure in the system is naturallly defined viap = —h(p)—irzf\il pi i =

h*(1). In the context of the approximmation scheme for § > 0 and 7 > 0, we obtain natural
definitions for the variables p and n!" via

p= VI s(1) = Vi(ha) () + 7 (), p = h() = B +TZ<1‘> )
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6.2 Approximation scheme

For the existence proof we shall embedd the problem (P) into a larger class of (approximate)
problems (PTW;) charcterised by an elliptic diffusion matrix M, and a regularised free energy
h+s. Since in this approach it is possible to control the entire vector 41, a solution vector consists
of the entries 1, v and ¢.

In order to define the concept of solution, we introduce also in this case a natural class 3
for the approximate solutions. If §, ¢ > 0 and 7 > 0, we say that (i, v, ¢) belongs to
B(T, Q, o, N, ¥, ¥V) if and only if

(Q? q, v, ¢7 R7 RF) € B(T7 Qu a, N — 17 \117 \I[F>
with ¢ := VA s(u) - T and g := Il
Ry = Ri(D®), DF:=~".ptork=1,...,s,

RF = Ri(bF,R’ U}), ﬁ};’R = ,s/k - L k= 17 e §F (158)
W, %(Q; RM) if7>0ando >0
a 1 N 2/ ). TWNX3 (159)
L L (@ RY), Ve LAH(Q; RY) - form=0ando > 0

We say that (i, v, ¢) satisfies the approximate energy (in)equality if and only if the corre-
sponding vector (o, q, v, ¢, R, R") satisfies the energy (in)equality of Definition 4.2, with free
energy function k. s and mobility matrix M. Ford > 0,0 > 0 and 7 > 0 we call weak solution
to the problem (P, ,, 5) a vector (i, v, ¢) € B subject to the energy inequality and such that
the quantities

p=Vhisp
Vi 1z
J=-M,(p)D, D:=—+-—V
(r) o Ty Vo
r=Y AR(DF), DV=(y"p.0 )
k=1
- (160)
F=Y ANRIDNN W), D= (3 AT )
k=1
p= hi,a(ﬂ)
’]’LF = p . i
m
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satisfy the identities

_/Qp'wt_/Q(MHi)’wz':/Q”OW(OH/QT'W/%(MJO)w (161)

—/Qv-nt—/gv@w : Vn—/pdivn—l—/S(Vv) .V (162)
Q Q Q Q
N
0 F i
~ [ a) = [ 0o [(S 5 V-0
/QO Q Q;

eo(1+x)/V¢-VC:/nFC, ¢ = ¢p astraceson |0, T[xI". (163)
Q Q

forallyy € CH([0,T[; CH(Q; RN)),n € CH[0,T[; CH(Q;R?))and ¢ € L(0,T; Wr*(Q)).

7 Derivation of the global energy and mass balance identi-
ties

In this section we motivate the definition 4.2 by stating an energy identity naturally associated

with the problem (P) (or its thermodynamically consistent approximations (P, , 5)).

Proposition 7.1. Assume that there are vector fields 1 € C%*([0, T]xQ; RY), v € C%L([0, T x
Q; R3) and q§ € L>([0,T]; C™(2)) that satisfy together with their associate variables p, J,
r, T, 0, P, n¥" defined in (160) the relations

/8tp v — /plv—f-J’ SVt = /r ¢+/T+J0 (164)
/g@tv-nJr/g(v-V)v-nJr/S(Vv) : Vn—/pdivn
Q Q Q Q
N
—/(ZJi~V)v-n—/nFV¢-n (165)
Q4x) [Vorve= [arc. e
Q Q

for all p € WhH(Q; RN), allnp € Wy (Q; R?) and for all ¢ € W' (Q) together with
conditions
u(0) = p° € COH RY), v(0) =" € COH(Q; R?) inQ

6 = do € CO([0,T] x Q) on]0, T[T, v = 0 on[0,T] x IY. (167)
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We define p° = Vi ;(1°). Then, for all t €]0, T}, the following identity is valid:

/Q {% ov’ + % éo (1+x) [Vol* + hT,a(p)} (t)

{S(Vv) : Vo—0J-D=r-p}— [ #op
Qt 5t
1 1
= [ ol Fa 0o +hes(s) )
Q

t

—/Q{”F¢0+60(1+X)V¢'V¢o}

0

{nF¢o,t—eg(1+x)V¢-w>g,t}+/{Jo-u+(f~+J°)~%¢0}.

Q¢ St

Proof. We choose 1) = ji(t) in (164). Because of Lemma 5.4, we observe that Zf\il pi Vi =
Vh (1) = Vp. Moreover, the definition of p yields 1 = Vh, 5(p) and therefore O;p - 1 =
Oths.5(p). Thus, we obtain that

N
at/hf,a(/))—/ <v~Vp+ZJ"~VM> :/r~u+/(f+JO)~,u. (168)
Q Q . Q N

=1

We next choose 1) = = ¢ in (164). We recall that - = = 0, and obtain that

/atn ¢ — /(n v- V¢+ZJ’—’ v¢> /F(MJO)-%%. (169)

Next we differentiate in time (166), and choose ( = ¢(t) — ¢y (). We obtain that

/QNbe:/angbo+w@/{quﬁF—eo(l—i—x)/QV¢t-V¢0. (170)

Thus, (169) and (170) yield

€ (1 +x) 2 . Sl T N .
Mo, [ 90 /Q<n DI w)-/F(rH) = 6y

+éo (1 + X) /Véf)t'vﬁbo—/nf%-
Q Q
(171)
If we now add (171) to (168), we obtain that

/{hﬂs EOHX)WI}/ (Vp + 0’ Vo)

—A;Jﬂ(wﬁ;—gw)—/gr-u—/rf

T Q Q
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Next we choose 77 = v(t) in (165), and we obtain that

/g@tv2+/g(U-V)v2+/S(V1}) : Vo
Q Q Q
+/ (Vp+nFfVe) = /ZJZ Vol (173)
Q

If we choose ¢ = v? 1 in (164) and observe that 7 - 1 = 0 = # - 1 by definition, we see that

DO | —

N

/@sz—/(gv—l—zji)-VvQ:O. (174)
Q Q

=1

Due to (174), we have

N
/Q@tv2+/QU~V02+/ZJi'VU2:8t/QUQ, (175)
Q Q Qi Q

and thus (173) yields

/gv +/ (Vo) VU+/ (Vp+nf'Ve)=0. (176)

We add (176) to (172) and obtain that

/{ 002 + hns(p) + (”X>|V¢\}+/Sw Vo

—/9J~D—/r-u—/f
Q Q r

T Q

Q

We integrate over time and are done. O

The proof of the global mass conservation identities is comparatively simpler. It suffices to insert
W =c¢e'fori=1,..., N into (263).

Proposition 7.2. Assumptions of Proposition 7.1. Then for allt € [0, T

ﬁ(t):ﬁo—l—/Ot{/ﬂr—i—/r(f—l—Jo)}(s)ds. (178)

8 A priori estimates

In this section we derive a priori estimates on solutions to the problem (P) that result from
the energy identity. In order to include in our considerations both approximationn scheme and
limit problem, we here consider generic free energy functions satisfying the following growth
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assumption: there are ¢; > 0, ¢co > 0and C; > 0,72 = 1,2,3 and 7 > 0 such that for all
p€RY

ci|p|” + 7 @u[Vh(p)] — c2 < h(p) < Cr|p|” + Co7 2u,[VR(p)] + Cs. (179)

Moreover we consider mobility matrices M, = M (p) + o I, 0 > 0, such that M satisfies (73)
and (74).

We commence with a few standard estimates. In the second subsection we prove the most
demanding estimate on the chemical potentials.

8.1 Standard estimates

Proposition 8.1. Let (o, q, v, ¢, R, R") satisfy the energy inequality of the Definition 4.2 with
free energy function h satisfying (179) and mobility matrix M satisfying (74). Then, there is a
number Cy > 0 depending only on €2, on the constants c¢;, C; in the conditions (179), and on
the quantity

Bo = [0l + 7120 (1) |12y + (V20 0°lz2(e) + | doll (@)
+ [[@oll oo o, wr2(0)) + ||¢0,t||W21’0(Q) + ”¢0,t||La’(Q) + [ oo s)

such that

(180)

ol Loea (@) + 7 [P0 (1) | o1 (@) + IV 0 V][ Lo2(@) + [[ V| Loe2(q) < Co
[0l + IVallzz@) < Co

HDHHLW @ + D™z res) < Co

Z H‘]ZHLQ 1+a + [_R}L\I}*(Q) + [_RF]L(@F>*(S) S CO

\/_||Vu||Lz +mm{0 T} ullz2s(q) < Co
|mwm@s%ﬁamemm@s%W“

Here the quantities p, .J, etc. obey the definitions (95), (160).

Proof. Due to the assumption (179) we have for the left-hand of the energy identity (100)

[ro0=za [lpor+r [ @) -all.

Moreover, for general velocity fields v € W12(Q); R3)

2 2
/S(Vv) : Vo = / U |ID(v) — = divold* + /()\ + = 1) (dive)?.
O 04 3 O 3
In the case that v = 0 on 02 one even has

/QS(VU) : Vo = /Q(MVUP—I— (A +n) (dive)?).

41



For the right hand of (100), we first observe that

o] <131 [ 1< [ e [ o

wttn) [ Vool < 205D [igomp e [ va.

Moreover by standard considerations
[0 o0 (152095 Vi)
t

< [ ey el + 0 (1420 V0 V(s o
< [ Oy + a0 (14 0) 19966 g}
0 [ Una(o) gy + 900N}

We further note by the Young inequality that

1
—/ —¢0 /( D)tz —ZRF)
St St
+/ ‘i!F(t?xa4¢0(:)/1'%7"'7:V§F'%>)‘
St

Thus, using convexity and that (O7)*(t, z, —1 R") = (7)*(t,z, L (—=R") + 2 0)

_ | RUsk.Z <—/\TJF*t _RC
Rt <y [y )
T, 3 21z 280 2
+ v (tax71¢0(7 'Ev"‘7/y E))
St

1 T *
T4 /S (W) (t, 2, =R") + Co([| ol (o,11x1)) -

—_

Sy
Next we use the fact that J° possesses a representation J" = 22:1 2& 4%, and therefore

. 1 -
IO < / Ut x, = DMR) +/ (W) (t,z, 47)
St St 4 St
1 ~ A~
gz/wmemHGMWMwﬂ
St

Recall the identities
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Thus, for all t €]0, T'[, the dissipation inequality implies that

/ {ggm@wuﬂ|p|a+7<1>w<m}<t>

+/ {(UIVv!2+(>\+n) (divv)? —QZJZ D'+ )+(\If>*(—R>>}

(O (¢, 2, DVP) + (B)*(t, 2, —RY)}
St

t
§C’o+0/{||,0H%a(g)+€0(1+X) IV6l1320)}
0

Owing to the thermodynamical consistency, we (at least) obtain that Zf\il Jt- D' < 0. More-
over, recall that A + %77 > 0. Exploiting the Gronwall Lemma, we thus obtain bounds for the
quantities ||\/0 V|| Le2(q), ||V@|Le2(g) and [|p|| L) and 7 || P (f1)|[ Loo1 (@) - It next fol-
lows that

/{%szﬂL}160(1+X)|V¢|2+2|P|a+7¢w(#)}(t)
Q

+/ {(n|vv|2+()\+n) (divv)? —QZJZ D'+ DR)+(\I/)*(—R))}
+ % /St{ﬁ% z, DUF) o+ (1) (8,2, —RT)} < Co(T).

In turn this implies a bound for || div v||;2(g), and for |[Vv||2(g). Moreover the production
factors R and R are bounded in Orlicz classes

I
[=RlLg@r) + [-R ]L(@F)*(ST;RJ) < Cp. (181)
whereas the reaction driving forces satisfy
ar
(D u@sms) + D7, L (spimery < Co- (182)
It remains to exploit the dissipation due to diffusion and the driving forces D!, ..., DV . At first

we note that —0 ", J'- D' =6 ", . M;; D' DI. Fori = 1,..., N the Cauchy-Schwarz
inequality and the growth condition (74) on M (or M) imply that

\J’|—|ZM DJ| < (MD - D)?(Mé' - ¢')'/?

< (\/E+ V) (1 + o)V (MD - D)2,
Therefore, we obtain for the diffusion fluxes that

1T @) 2o < c||MD - D)5, 1+ o)l 0) < CollMD - DI

J e () L) -

43



. 1/2
tfollows that | J°] , . < (fQ MD - D) < .

We finally want to obtain estimates on the gradients of the (relative) chemical potentials. Here
we use the assumption (74) which yields that

N N
—0> J-D'=0Y M;;D'-D’>0\|P. D[
i=1 ij=1

Here P;. the orthogonal projection on the space 1+. We now split the driving force D’ =
0" (Vi + 2= V), and we obtain that

N
: . A 3A | 2|2
—0 J'-D'> = |P.Vul* — == |=| |V¢|*.
We use the identity Py je = >, " ¢; Py1&. Due to the choice of €1, ..., €N, the vectors
Pyi€t, ... PN are abasis of 11. Thus, there is a constant depending only on the choice

of the projector IT such that | P+ Vi[> > ¢y |[Vg|?. This entails

N
IVl <c(=6> ) J'- D'+ |Vel*), (183)

=1

proving that || Vg||.2(q) < Co. Since M,D - D > o D?

N
Co > —0? Z/QJ’ D'z /Q\WI2 =30 [Z] VoL -
=1

which yields the bound for 1/ ||V || .2(¢)- Finally
1T~ Jllr2@) = o lIL- Dllr2o) < evVo (Vo [Vl + Vo Vel -
Due to the conditions (148), we verify that |w'|* < (1 4+ ®,,) and this directly yields
e (Dl imai@) < 7 7 @l enia) < 7 Co.

At last we can verify using the growth property of ®,, that the function w = /1 + |u| pos-
sesses a distributional gradient in L?((QQ) and is bounded in L°>'(Q) via

1 -
IVwllzag) < 5 IVilia@) < oo™,
lwllzai@) < 191+ [Vl @) < 19+ 1 Pu(p) |z (@) < Cor "

Thus,

w|]L2,6(Q) < CU’T. ]

In many cases it is possible to increase the regularity of the electrical potential.
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Lemma 8.2. Assumptions of Proposition 8.1. Assume moreover that for almost all t €]0, T,
the electrical potential ¢ € L>°(0,T; W12(Q)) satisfies

—eo (14 x) Ap(t) = nf'(1) in W2 (Q), o(t) = gbo(t) astracesonl,
with ¢y € L>®(Q) N L>(0,T; W1H(Q)), 8 = min{r(, ), ¢ +} Then

[9llL=(@) < ldollr=(@) + ¢ ||p||Loo,a(Q)

(184)
10|l oo (0,75 w02y < € ([[@ol| oo o,m wrs ) + ol (q)) -
Moreover, if 3 > o we obtain that
" Vol o e < IInfllia@ Vel - (185)

T (Q)

Proof. We only need to recall that « > 3/2 and the definition of the exponent (€2, ") > 2 (see
(81)). The estimates (184) are standard consequences of second order elliptic theory, whereas
(185) follows from the Hélder inequality. O

Next we can derive the uniform continuity estimate that results from the mass balance equations.

Proposition 8.3. Assumptions of Proposition 8.1. If p satisfies the global mass balance identity
of Definition 4.2, then [p|c,. (0,17) < Co.

Proof. Let0 < t; <ty < T. Note that by assumption p(t2)—p(t1) = tt2{fﬂ r+ [ (F+J%)}.

We note that
to
IR [ [
t1 Q

We argue similarily with the other right-hand side terms, and recalling the definition (97), we
obtain that

R - S
0

sup
N, [R]L g« <Co

|p(ta) — p(t1)| < Co *(ty, ta) . (186)
I

In the course of the proofs, we shall also need bounds of more technical nature obtained via
Holder and Sobolev inequalities We denote « the growth exponent of the function A at infinity
and 8 := min{r(Q2, I'), e +} the optimal regularity of the electric field.

Lemma 8.4. We assume that the bounds in the Propositions 8.1, 8.2 are valid. Then

lovll oo < cllollea lollyiog) < Co

L7864 (Q)
1/2
o < IVevl=a llelZa g, < Co

ool . 2
HQ QHLl 3TQ(Q) < CHQHLOO@‘ HUH2 1O(Q < CO

lov?|l,

N

ZJiU

i=1

(2a—3)/(3cx +a)/(3cx)
IS e TR <

<[

=1

523 S cllev

HUHL2,6(Q) S CO \/E
L*(Q)

L23/2(Q)
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Proof. We prove exemplarily only the last statement.

Employing Holder's inequality [| S=:0, Ji(t) v(t) || arzey < 11 2oy Ji (8l 2@y [0 () 2s(0)-
Ll

Further we shall need an improved bound on the pressure. This is also fairly standard, and
therefore we give the proof in the appendix.

Lemma 8.5. Assume that the relations (161) and (162) are valid.

B /fa > 3, then HpHL1+1/a(Q) < C[),'

W f3/2<a<3,r(QT)>aandl-J=0,then|p|l 3

< Cyp.
TR

The only piece of information still missing in order to obtain a bound in the natural class is the
estimate on the vector g. This is the object of the next section.

8.2 The L, , L'(Q)norm of the relative chemical potentials

In this section we show that a combination between the estimates on the reactions (cf. (181),
(182)) and the control on the gradient of the relative potentials (g1, . . ., qy_1) = Iy (cf. (183))
allows a control in time on the L' —norm of these functions in the sense of the natural class 3.

A first essential ingredient of the proof is the global mass balance identity which implies for the
vector of total masses p := fQ p that

p(t) € {p°} @span{~', ... 7% A, ... ,&gr} = {p"} oW forallt €]0,T[. (187)

The estimate is not obvious we have to devote an entire section to its proof. We start from a pari
(0: ) € L¥(Q) x LY 1)L (Q; RY™1). We define p := Z(0, q), and pu := Eqif g is
finite. The estimate method relies on a precise structure of the free energy

1% 1
Oh=c+K—F(p-%)+kg— Iny,. (188)

mZ (3

Note that at every point where o > 0, we can resort to the representation
pi— e = Eq- (¢ — ") = (Eq+ .M (0, 9) 1) - (¢' — €¥)
.V

; 1 1
=c¢—c+ K <E_E) F'(p =)+ kgt (— lnyi——lnyk) .

m; my m; mg
(189)

We commence stating an obvious estimate that results from the energy identity.

Lemma 8.6. Define W := span{y*,....7*, 4*,...,4" }, and Py : RN — W the orthog-
onal projection on the subspace W . There is C' depending only on () such that

1 Pw il 2 @) + 1Pw il gorixry <C (L + IVallig) + [Py + [P Flyrs) -
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Proof. Consider at first a vector v* € R™, k € {1,..., s} associated with the bulk reactions
(see (4))). Obviously fQ - < fQ |DR| < Cy. By assumption, v* - 1 = 0 for all k. This
means that there is a constant cy 11 depending on W' and the choice of the projector II such
that |V (7% - )| < ey [VITu|. We also obtain (trace theorem) that

/ A < Ol AF oy
10,T[xT

Analogously for k € {1, ..., 8"}, we obtain that f]o T 11 Ak < f]o Tixr |DUR| < . We
use that fQ - AF < C IV A N er) + e - A5 pr o<y ), and the claim follows. O

In general we cannot expect to control the entire vector |11z 11 () using Lemma 8.6: In fact
W is always a true subset of 1+ due to the charge conservation condition v* - = = (. In order
to pursue, we need the auxiliary functions

do(t) = [[Va)ll 1), o(t) = [[Pwp(t)]| 1o - (190)

In order to achieve notational simplicity troughout the section, we denote for A C () measurable
its three-dim. Lebesgue measure via |A| := A3(A).

Lemma 8.7. Leti, k € {1,...,N},i # k ande, 6 > 0 be arbitrary numbers. Fort €]0,T|
define dy(t) like in (190). Then, there is a disjoint splitting |0, T'[= I, (i, k, €, 6) U I5(i, k, €, 0)
of the interval |0, T'[ such that

Jo lia(t) = ()] < C(8) (do(t) + ) fort € I,
|{ZE €l qu(t,flf) - Mk(t7x) < 6_1}| <9
or fort € I

{z € Q: plt, ) — pu(t ) > —e '} <6
Here, C* is a continuous, nonincreasing function on [0, 1] depending only on Q.

Proof. We show that for all § > 0, there is ¢ = ¢(d) depending only on 2 such that for all

u € WHH(Q)
il < (0) (\|VUHL1(9)+maX{ ey w})

forall A, B C Q) such that min{|A|, |B|} > 4. (191)

Otherwise, there is dy > 0 such that for all j € N, one finds u; € W' (Q) and A;, B; C Q,
‘AJ|, |BJ| > (50 and

Jasllzsco) 2 3 (ijummmax{ [/ \uj|}>.
A; B;

Consider ; = u;/||uj||L1(). Then, [|@;]lwir) < [Vl +1 < 571 + 1. Conse-
quently, there is a subsequence (no new labels) and a limiting element u € Ll(Q) such that
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u; — u strongly in L'(Q). But since Vii; — 0 strongly in L'(2), we easily show that @
is a constant. Now, we see that also ™ |A;| + |a~||B;| — 0, and obviously @ = 0. Thus
1 = [|t;]|L1(@) — 0, a contradiction.

Foru € L'(Q), we apply (191) with the choices
A={reQ ux)<e'}, Bi={reQ:ulx)>—€'}.

It follows that either min{| A|, |B|} < J or that

ol < e(0) (¥l m+max{ [t [1i})

< (@) (IVullore + - ~max {|4], 1B

We apply the latter inequality to w = (u; — px ) (2), 4, k € {1, ..., N}. Note that independently
of the choice of 11, there is ciy such that ||V (ui(t) — px(t))[[21@) < emdo(t). The claim
follows. H

Under the assumptions (189), (188) we can also translate the result in the following way.

Lemma 8.8. Recall the definition of the number densities n; := mi pi-Leti, ke {1,... N},
i # k arbitrary. For all §, € > 0 there is a disjoint splitting |0, T'|= J1 (i, k, €,0) U Ja(i, k, €,0)
of the interval |0, T'[ such that

Jo l1i(t) = p(B)] < C*(9) (do(t) +€7*)  fort € Jy
Hex e Q :ni(t,z) > e} < Coe*+ 46
or fort € J,.
Hr e Q: ng(t,x) > e}| < Coe* + 6

Proof. We consider t € I5(i,k, v, ) for v, 6 > 0 with I5 defined by Lemma 8.7. We for
example assume that |[{z € Q : u;(t,z) — up(t,r) < v~'}| < 4. The other case of the
alternative is completely similar.

We abbreviate A = A(~y) = {z € Q : u;(t,z) — px(t,x) > vy~ '}. For constants 0 <
M, < M,y < 400, we introduce also the sets By, := {x € Q : ag < n(t,z) -V < My}
and By, :={x € Q : My <n(t,z)-V < ap}. Here, ag € R denotes the number such
that F"(ag) = 0. Moreover we put Cpy, == {x € Q : n(t,z) -V < M;} and Cyy, := {x €
Q : n(t,r) -V > M,}. Onthe set Cyy,, we directly obtain that n, < n -1 < V' M;. Thus
we note that

Cu, C{z : ny(t,x) <V 1M}, (192)
Due to the estimate ||n - 1| z.2(g) < Co, one moveover has

|Ch | < Co My (198)
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Due to (189), we see that in the set A N (B, U Byy,) we have

1/my; kg0
Y < pi—p=ci—c+KF(n-V) (& - %)+ (‘yi/mk> ,
Yy
which in turn implies for z € A N By, that

kg0
1/my \ °F v, v
<yk > < e 7 gtk eKF (Mz2)( z_m_i)+

1/m;
Yi
1

J

< Oy RFOR)

where b := sup & — inf £. On the other hand, for = € By, N A we obtain that

kg6
1/my \ B Vi
(yk ) < e gl eKF,(Ml) (E‘m_if

1/m;
?Jl/

< e K |F (M) 6_771

Thus, forz € AN Byy,, i = 1,2, we obtain that
n, < (n-1) [ebK|F/(MZ-)\ o

— M

< Gy M, [P KIF M) o=~ 1}@, (194)
For e > 0, consider the set U = U, ., := {z € 0 : ny(t,z) > €}. Observe that
U C [UQCMI]U[UQCMZ]U[UﬂAﬂBMl]U[UﬂAmBMQ]U[U\A].

For M; = V ¢, we obviously obtain from (192) that U N C);, = (). Choosing M, := ¢! and
~ = v(€) so small that

Oy et b K max{[F (WO} 6_7,1]% <e, (195)
we obtain from (194) that U N A N By, = () for i = 1,2, and therefore that U C [U \ A] U
[U \ Chp]. Since (193), the latter
yields

Ul < Che*+94. (196)

Thus, we have shown that for all ¢ > 0, if t € I5(i, k, y(€), d) then (196) holds. Define
Ja(i, k, €, 0) via

Jo:={t€[0,T] :
inf{|{z : n;(t,x) > €}|, |{z : ni(t,x) > e}|} < Coe* +6}.

Then, t & Jo implies t & I5(i, k, v(€), &), and applying the dichotomy of Lemma 8.7, we
obtain that ¢ € I (i, k, y(€), d). This means that .J; :=|0, T[\Jo C I; and it follows that

/“h (1) < C*(8) (do(t) + 7~(e)) Torall £ € J; .
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We can find (€) according to (195) by setting

1 C
(6 T @k 0fm b K max{[F (LI F (e DI}’

with a constant C' that depends only on m and V and b := sup £ — inf ¥. Thus

1 / st
el <C(1+|Ine|l+ K max{|F'(Ve)|, |[F'(e H[})

<CQA+|lne+e) <Ce®
The claim follows. O

The Lemma 8.8 shows that the set J, of all times such that the L*(£2) norm of y1; — p might
be ’large’ must be contained in the set where the number density of at least one specie is
‘vanishing’ almost entirely. For this set it is possible to obtain estimates using the property (187)
for the vector of total masses p := fﬂ p. In a certain special case, we can show it directly.

Lemma 8.9. Assume (187), and that s + 5" = 0 (no reactions and M2 = 0). Then, there is a
constant Cyy depending on By (cf. (180)) and oninf,—y . n [, p? such that ||j; — || 110y <
Coforalli, k€ {1,...,N}.

Proof. If s + 8" = 0, then # = 0 = J° and the total mass of each constituent is conserved,
thatis [, pi(t) = [,p) fori = 1,...,N and all t €]0,T[. We thus easily show for all
ag < |S?|71 infi:17,__7N ﬁ? andall ¢ G]O, T[ that

/

{zeQ: pilt) > ao}| > {; < inf 7t —aoym)r |

ol L) \i=Lo

In particular, for ag := (2|Q|)~! inf,—;_x pY, we obtain that

/

1 (0%
z € pi(t) > agt] > inf p; =:by. (197)
|{ P () 0}| |:2||Q||Loca |Q| =1, N p:| 0

Thus, recalling the dichotomy of the Lemma 8.8, the interval J5(i, k, €, d) is empty for all pa-
rameters €, ¢ satisfying the conditions

€ < ao, Co€a+(5<b0.

Choose for instance dy = by/2 and ¢y = min{ag/2, (by/(2Cy))*/*}, and we obtain for all
t €]0, T[that [, |i(t) — pe(t)] < C*(do) (do(t) + €5 ). This proves the claim. O

For a system with reactions, we have an equivalent property in the case that the time intervall is
sufficiently short

50



Lemma 8.10. Assume that (187) is valid. Define

T :=inf{t € [0,7] : min_p;(t) =0}. (198)

i=1,...,

Then, there is a time Ty > 0 depending on By (cf. (180)) and on inf,—; _x p such that

T > Ty, and ||p; — pl| 1) < Coy foralli, k€ {1,..., N} andt < T*.
Proof. We recall (186), and we see that

15(t) — p°] < Co ®*(t,0) forallt € [0,T]. (199)
Thus, if Ty is such thatinf;—; _ y ﬁ?—éo d*(Ty,0) > ¢o > 0, we obtainthatinf,—y _y p;(t) >

Oforall t € [0, 7*] and we can conclude as in Lemma 8.9. O

Our next purpose is to prove an equivalent of Lemma 8.9 in the case that s + ' > 0 and
this globally in time. Our idea relies on the concept of a species selection. A selection S of
cardinality |S| € {1,..., N} is defined via

S={iy,...,qgpwithi; € {1,...,N}forj=1,...,[S|andi; < ... <ig.
For a selection S = {i1, ..., 5}, we dentote Ps : R — R¥ the projection (Ps¢); = & for
i € S and (Ps€); = 0 otherwise. The orthogonal selection is defined via S* = {1,..., N} \
S. We call a selection S linearly independent (with respect to the vectors v!,...,v* and

At ... 4% ) if the condition

Wy = span{Ps(7"), ..., Ps(y"), Ps(3"),... Ps(3" )} = Ps(RY)

is satisfied, and linearly dependent if dim(Ws) < |S| — 1. We recall at this point also the
definition (80) of the manifold M .

Lemma 8.11. Assume that the vector p° := [, p° € RY of total initial masses does not belong
to M. Then, there are ag, by > 0 depending on dist(p°, M) and on By such that for all
linearly dependent selections .S, and all a < ag and b < by

{t €]0,T[: {z €Q : ni(t,x) > a}| <b foralli € S} =1. (200)

Proof. Due to (187), we obtain that Ps(p(t)) € {Ps(p")} & Ws. If S is a linearly dependent
selection, then by the definition of the critical manifold

|Ps(p(t))] > dist(p", Men) -
Thus, for all ¢ €]0, 77, there is at least one indice iy = i;(t) € S such that p;,(t) >

%. As in the proof of (197), we see that
1 dist (5°, Meg) of
e pulta) 2 all 2 | ( —alal)|
' [0l Lo () S|/

Thus, in particular for ag := dist(p°, M)/ (2 N2 |Q),

diSt(ﬁO, Mcrit) :|O/
= b()
2 |loll 2 (q) 1€2]

The claim follows. O

erQ:mﬁAOZ%Hz[
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Thus, few restrictions on the vector of the initial global masses (note: the critical manifold as
at most dimension N — 1) are sufficient to garanty that the indices of a linearly dependent
selection cannot correspond to global masses that vanish at the same time. In the remaining,
most technical part of the estimate, we are going to show that this is also the case for linearly
independent selections. We aforemention that owing to the conservation of the total mass fﬂ 0,

we can introduce
a L / b ( it / )a/ (201)
ao ‘= 57 o, Vo= |\ 7 ©o
219 Jq 2ol L@y Ja

and show that the set Ag(t) == {x € Q : o(t,x) > ao} satisfies |Ag(t)| > by for all
t €]0,T[. Note that in the set |Ay(¢)| it is always possible to introduce the entire vector of
chemical potentials n = Eq+ .4 (o, q) 1, and the identity .« = Vh(p)is validat p = Z(o, q).
We commence with two auxiliary statements.

Lemma 8.12. Define @y, by > 0 like in (201). Then there is for i € [0, T arbitrary a set
E = E(t) C A(t), |[E| > 4 by such that foralli € {1,...,N} and all 0 < e <

_ 7 1/a _
min{ {2, ( i 13000) }and§ < by/(2N?), the following alternative is valid:

1 Either|[{z € Q : n;(t,z) > e}| < Che* + 6;

2 0r [ lma(t)] < (14 C*(9) (do(t) + €7)).

where c depends only on the parameters appearing in the definition of the chemical potentials,
on ag and by, and C* is as in Lemma 8.7.

Proof. Lett €]0,T[. We define % = .#(t,e,6) C {1,..., N} as the set of indices ¢ such
that the condition [{z : n;(t,x) > e}| < Cye* + 4 is satisfied. For i € .#, the first member
(1) always applies. Note that .# (¢, €,d) C F(t, €, 0p) if € < g and § < .

Consider i ¢ . fixed. Then, we obtain due to Lemma 8.8 forall j € {1, ..., N} the alternative

1 Either [, |ui(t) — p; ()] < C*(6) (do(t) +€®);

2 Or[{z € Q : n;(t,x) > e}| < Che* + 6.

Wecall 7 = #(t,i,¢€0)C {l,..., N} the subset such that the first condition in this new
alternative is satisfied. Thus

/Q i (t) — i (8)] < C*(6) (do(t) + e ) forallj € 7. (202)

Due to the nonincreasing character of the latter estimate in ¢, 9, we note that

/(t, i, €0, (50) - /(t, i, €, (S) if e < ¢g and ) < 50 . (203)
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We can decompose (2 into disjoint sets By, ..., By such that

n;(t, x) = Z_SlupN ne(t, z) forz € B; .

Call Ay(t) :=={z € Q : p(t,x) > ao} like in (201). Note that on B; N Ay (1), the estimates

KV -
i <ot L P <o (o)

kg . 1
_ In —

_ KV _ -
p; = ¢+ mj] [F'(ag inf %)] m; N

ensure that |11;] < supc(1+ (n-1)* 4 |[F'(ao inf £)]~|. Therefore
/ ;] < Co+ Clag) | B; N Ay . (204)
B]'ﬂAO

For i # j arbitrary, we observe that

/ ’,Ui|§/ \ujy+/ i — py] forj=1,...,N.
BjﬂA() BjﬂAo BjﬂAo

Ifj € _Z(t, 1, € 6), the inequality (204) joined to the fact (202) implies that

BjﬂA() Q

We define E(t, 4, €,0) := ;e s (1.c.5) Bj M Ao, and we obtain as a consequence of (205) that

/E(t ) lis| < N (Clag) + C*(9) (do(t) +€°)).

Further, the property (203) yields E(t,1, €y, 00) C E(t,1,€,0).

Consider now j € {1,..., N} \ _Z. Then by definition, [{z : n;(t,z) > €}| < Cye* + 6.
Recall also that sup;_; x 7k > do/(INT2) on Ag. Therefore, the set inclusion B; N Ay C
{z : n; > ag/(Nm)} is valid. Thus, if j ¢ Z andif e < ag/(Nm) then |B; N Ap| <
Co€* + 6. Thus, forall € < ag/(Nm)

[ Ao\ E(t,i,€6,0)] <Y [AgN Bj| < N (Coe* +9),
igs

We now introduce a set E' independent of 7, € and ¢ via

E —= E(t) g m E(t, /l', 60, 50),
ie{l,.,N})\.5

. agp bo Ye 5 bo
€n .= ININ E— = _—.
0 Nm' \4NC, ’ 0" 9N2
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Then
E| > Aol = Y [Ao\ E(t,i, €0, 60)|

e{l,..,.N}\J

b
> |Ag| — N Cyed — N2, > ZO'

Since £ C E(t,1, €y, 60) C E(t,i,€, 0) forall e and §

JZEY) ol N () 470 1) + ).

We need a second auxiliary statement.

Lemma 8.13. Leti € {1,..., N}. Then there are C; > 0 and §; > 0 depending only on the
parameters appearing in the definition of the chemical potentials such that for all 0 < 6 < 41,
there is N; 5 C €1, such that | N, 5| < Cj [In %]‘O‘/ and such that

{r eQ:ni(t,x) <o} C{z e : |u(t,x)] > —Ci Ind} UN,;.

Proof. Consider = € 2 such that n;(x) < §. We distiguish two cases.
Firstcase n(z) -1 > 1.

We introduce for i = 1, ..., N the function G; such that u; = G; + (kg 6/m;) Inn;, that s,

KV, kg0
VF’(n-V)— B

ml (2

We easily show thatforn - 1 > 1that G; < ¢ (1+ |n-1[* ). 1t G; < —’;me In é, then p; <
];me Ind < 0, and therefore |p;| > —’;me Ind. On the other hand, if G;(z) > —I;me Ind,
then

Gi = Ci‘i‘

In(n-1).

kg0
— L mé<e(l+(n-1))*7Y.
m;
Thus, if d is such that —’;Lm? Ind > 4¢, we see that = belongs to the set Ny := {z

(n-1))>t > —Zme Ind}. The estimate
1 /

]7&
kg6 )
64mi

[Ns| < |[n- EHCLY;%a(Q) [In
is valid.
Second case n(z) - 1 < 1.

lfn(z) -1 < /0, thenn(z) -V S_V \/8, and we can use the logarithmic growth of F” to see
that that y1; < ¢; + K Vym; ! In(V V/0).

If otherwise (z)-1 > /3, theny;(z) < V3, and ; < c;i+K Vym; ' F'(V)+kg 0 m; ! In /3.
Thus in both cases 1; < C; (1 4 In ), and the claim follows. O
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Next we are going to use the structure of the reaction terms. Recall that we denote Py (1) the
projection of the vector 14 and that the inequality of Lemma 8.6 ensures a control of the quantity

I Piv (1)1 11 We denote o () = || P (1(£)) Il
Lemma 8.14. There are
1 Numbers €, &, > 0 depending only on @y, by (cf. (201));

2 A continuous, nonnegative and nondecreasing function h* defined on [0, &, such that
h*(0) = 0 and h*(0) > 0 for all &;

with the following property: If S is a linearly independent selection andt €)0,T'[, € €]0, €o] and
d €10, &) are such that

Hzx e Q : ni(t,z) > €e}| < Coe*+6  foralli € S
ro(t) < Gl |Ine|, do(t) < |Inel

then, there is a selection S' O S,

S'| = |S| + 1 such that
{z € Q : ni(t,z) > |Ine|™V} < Co(|Ine|™ + n*(8)) foralli € S
Proof. Let S be linearly independent. There are for i € S coefficients A1, . .., Asand A1, . . ., 5\§r

in R depending only on the vectors v and 7 such that the :—th standard basis vector of RN
has the representation

s ar
¢ =Y NPs(v)+ D A Ps(¥)
/=1 /=1
AT

s 50 s ]
=) A D ANA D MU= Po)() + D M (I - Ps)(A)
(=1 (=1 (=1

(=1

J

~
€lmage Pg |

€ W & Image Py .
Thus, for all ¢ € S there is a constant C; g such that
lpi] — Cis | P ()] < [P ()] (206)

Introducing C' := SUDPg inearly independent, ics Ci,s it follows that

Por ()] 2 2 (e — | Bwa))- 207

Assume now that [{z : n;(t,z) > €}| < Cye® + Jforalli € S. Owing to Lemma 8.13, we
then see for all © € S that
H{x € Q : |pi(t,z)| > —C; In€}|
1
> {xeQ:ni(t,z) <e}| —Co[ln—
€

o

1.
Z |Q|—5—CQEQ—CO[IDE]_Q .
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Define £ as in the Lemma 8.12. Then, we can ensure that the intersection /' := E N {z €
Q : |ui(t,x)| > —Cy Ine} satisfies

1.
’F| 2 |E|—5—Co€a—00[lnz]_a

>Z—0—5 Coe® —C’O[lnl]

by BN )
< — < —
5_8, e_mm{(gco) e ,

we obtain that | F'| > b, /8. We integrate (207) over F'. This yields

[iesuol = g (1wticmer - [ 1rw))
([)80 Ci|lne| — ro(t)) )

L such that

If we now choose

St

> =

cQ QIHQI

Thus, there must exist jo = jo(t) €

L= [l 2 57 (2 € mel = rofe)

Therefore, we obtain again from the alternative of Lemma 8.12 that for all 7, 7 such that

B 1/a
O<77<H11n Nm’ <4NC()) ) ) T< 2N2 (208)
c(L+C*(7) (do(t) +17)) < w2z (2 Cy [Ine| — ro(t))

it must follow that |{z : nj,(t,) > n}| < Con® + 7.

We next compute good choices of 7 and 7 as functions of € and J. Define two functions
7(6) == min{y >0 : C*(y) <6}, ne) = [Ime[ 7/, (209)
Then
¢(1+C7(7(9)) (do(t) +n(€)™)) < e(14ddo(t) + 6 [Ine]).
Thus, if ¢ is such that dy(t) < |Ine| and ro(t) < f—% C1 | In €|, (209) imply that

c(1+C7(7(9)) (do(t) +n(€)™)) < c(1+26[Ine])

b b
—O Cy |Ine| —ro(t) > — Cy | Inel.
16
_64cC
The second of the conditions (208) i N16 bo C1
Define finally h*(9) := max{d, 7()}. Set S’ = S U {jio} and the claim follows. O
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We are now going to iterate the result of Lemma 8.14. Consider the auxiliary function

0= () &0

Corollary 8.15. There are

1 Numbers &y, &, > 0 depending only on ag, by;

2 A continuous, nonnegative and nondecreasing function h* defined on [0, o), h*(0) = 0;

with the following property: If S is any linearly independent selection andt €0, T, e €]0, &
and d €]0, do] are such that

Hzx e Q: ni(t,z) > e} < Coe*+0 foralli € S
ro(t) < S [ng*(e)|, do(t) < [Ing*(e)|
then, there is a linearly dependent selection S’ O S such that

Hz € Q : ni(t,x) > g* ()} < Co((g*(€))* + h*(5)) foralli € S".

Proof. Taking the numbers g, €y and the function h* from Lemma 8.14, we denote h* =
on_1h*:=h"o...0oh", and we choose
——
XN—1

1 - _
€ := (on-_1€) (_e_a) do :=sup{y > 0 : h*(y) < do}- (211)

0

If S'is any linearly independent selection and t €]0, T, € €]0, €y] and ¢ €]0, Jo] are such that

ro(t) < Ao |Ine|, do(t) < |Ine]

{|{x€ Q:ni(t,x) > e} <Che*+d foralli € S

then, due to Lemma 8.14, there is a selection S” D S, |S'| = |.S| + 1 such that

Hz € Q : ni(t,x) > e} < Co((e1)*+61) forallie S,

with ; = |Ine|™"/* and 6, = h*(J). Our assumptions (see (211)) are suited in such a way
that €; < ¢g and 6; < dy, and that moreover
Cy b
ro(t) < 1160|1n61|, do(t) < |Iney].

Thus, we can apply to .S’ Lemma 8.14 again, and we obtain the existence of a selection S” D S,
|S”| = |S| + 2 such that

Hz € Q : ni(t,z) > e} < Co((€2)* +d2) foralli € S”,

with € = | Ine;|7/% = a/*(In|Ine|) /% and 6, = h*(d;) = (h* o h*)(J). After at most
N — 1 steps, we attain the (linearly dependent) selection of cardinality V. O
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Now, we can combine these estimates with the Lemma 8.11.

Corollary 8.16. Assumptions of Lemma 8.11. Then, for all 0 < € < €, 6 < 5_0 and i €
{1,...,N}

1

M{t€]0,T[: {z € Q : ni(t,x) > e} < Che* +6}) < Cy onI) (e

Proof. Consider Iy = {t €]0,T[: do(t) > [Ing*(e)|,ro(t) > <o |Ing*(e)|}. Then,
since both dy(t) and 7 (t) are bounded in L'(0, T"), we can show that | I ;| < Cy | In g*(e)| .
Lett €]0, T[\Ip,andi € {1,..., N} besuchthat |{z : n;(t, x) > e}| < Cye*+0. Then,

due to Corollary 8.15, there is a linearly dependent selection S' O {i} such that
{2+ ni(t,2) > g"(©)}] < Co ((g"()* + h*(8)) forall j € .

Applying the Lemma 8.11, we obtain that if g*(e) < ag and Cy ((g*(€))® + h*(8)) < by, it
must follow

{t G]O,T[\[]V[ . ‘{.’L‘ . nl(t, LL') Z 6}‘ < Co e” +(5} = @
Thus, foralle =1,..., N

Mt €)0,T[: o« nilt, ) > €} < Coe® + 6} < M(Inr).

We can conclude to the main estimate.

Proposition 8.17. Assume that the free energy function h possesses the explicit form (188).
Assume that the vector of total masses p is subject to (187). Then

(1) Define T as in (198). ThenT™ > Ty > 0 with Ty depending only on the data, and for all
t e [O, T*[, H/LHLl(Q,«,;RN*l) < C()(t>,

(2) Ifs+ 8" =0, there is a constant Cyy such that ||| 11, rx—1) < Co;

(38) Assume that the vector of total initial masses ,50 does not belong to the manifold M ;; (cp.
(80)). Then, there is a constant C such that [I1p] LY DNQRN 1) < Cp.
on In ’

Here Cyy depends only on || VIIp|| 11y on || Pw il i (qusy), oninfi_y v pY, and in the last
case also on dist(p°, M)

Proof. See the Lemmas 8.9 and 8.10 for the two first cases. Otherwise, we apply the Lemma 8.8
together with the consideration of Corollary 8.16. We see that the set Jo(i, k, €, 0) satisfies for

d < dp and € < € the inequality A\ (J2(7, k, €, 0)) < Cp m. Thus also for Jy(€, §) :=
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N Ja(i,k, €, 8), we have A (Ja(e, 0)) < Cy—t—. For t €]0,T[\Jo, the inequality
i,k=1 [1In g*(e)]

[ [T(t)] > C*(3) (do(t) + ) is valid. Observe that
{te]O,T[: /Q|H,u(t)| > 90 (%) eia} C e, %)u {te]o,T[: do(t) > eia} |

Therefore

A ({t €10, 77 /Q|H,u(t)| > 90 (52_0) Ei}) §C’0m+006a.

The claim follows. O

8.3 Special estimates foroc > Oand 7 > 0

In the case o > 0, the dissipation inequality provides /o ||V || z2(g) < Co as an additional
information. Thus, a gradient bound for all coordinates of the vector p. In this case, we can
apply the reasoning a simplified version of the preceding subsection to the chemical potentials
instead of the differences.

Lemma 8.18. Let o > 0 be fixed. Then

(1) Define T := 1nf{t S [O,T] : minizlw,’N ﬁl<t) = 0} Then T™ > TO > 0 with TO
depending only on the data, and for allt € [0, T[, || || L1 (@i rv) < Coo(l);

2) Ifs+ 8" =0, then || || 11,y < Coes

(3) If the vector of total initial masses ﬁo does not belong to M, then [,u] Lt DHQRY) <
ON n
Coo-

Here Co,, depends on o, on ||VI1pul| 1) on || Pw il Li(qusy), on infizi, v p;, and in the
second case also on dist(p®, M ).

Proof. Forallt €]0,T'], the global mass conservation implies that [, o(t) = [, 0°- 1, and this
implies by means of a well-known argument that there is are +00 > a; > ag > 0 and by > 0
such that the set Ay(t) := {x € Q : a1 > o(t) - 1 > ao} satisfies | Ag(t)| > by. Consider
now the disjoint decomposition of €2 into sets By(t), ..., Bn(t) where B;(t) := {z € Q :
pj(t, x) = sup,—; _n pi(t, x)} . We can show that

c(1+[F'(a)]") = p;(t) > —c(1+ [F'(ao)] ) on Ao(t) N B;(t).  (212)

Thus, fori € {1,..., N} arbitrary

/ s(t)] < / 1y (6)] + / s(8) — 15 (0)
Ao (t)NB;(t) Ao (t)NB;(t) Ao (t)NB;(t)
< clag, ar) + / a(t) — 5 (0)].

Ao (t)NB;(¢)
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Summing up over 7 = 1, ..., N, the latter yields

/Ao(t) |1:(1)] < N e(ag, ar) + jz1 /Q i () — s (t)] .

Now we apply the inequality (191) in the proof of Lemma 8.7 with A := Ay(t) =: B and
0 := by, and we obtain that

()11 < cbo) (IIVu(t)IIle) -/ ) |u(t)|)

< ¢(bo) <’|vﬂ(t)”L1(Q)+Nc<a0= a1)+Z /Qmi(t)—uj(t)I)

< Co (IVa®)llzr (@) + ITLp(t) [l 1 mv-1) + 1) -

We apply the Proposition 8.17 to control ||TT1(%)||11(o;rv-1), and the fact that ||V || £1 ()

<
Co,s, and the claim follows. O

We recall that we can always express p = Vh*(u) with the mapping of Lemma 5.7. If o > 0,
we thus obtain that
Vo= (Vu-D*h*(n)), (213)
and using the relation (120), this shows that
Vp| < Cro|Vpl. (214)
If « > 2 (we in fact always assume o > 3 if ¢ > 0), it follows that

VoIVl o, o < Cllolleia) IVF Valiz) < Co. 215)

We will need the following statement.
Lemma 8.19. Assume o > 0. Then || In Q||W21,0(Q) < Coo~ /2,

Proof. Let1 > ~ > 0. Using (213), (214), we obtain that

IVin(o+7)| < Cy

0
QJWIWI < C1|Vpl.

Thus, /o ||V 1n(o + 7) | r2g) < C. Lete > 0. Fort €]0, 7], we can always show that
{z € Q:In(o(t) +7) <e '} =19 — Coe .

Thus, applying (191) (see the proof of Lemma 8.7), we see that there is a decomposition |0, 7=
I, U I, such that

Joo I Iele) + )] < C*(6) (I oft) + ey + ) tort € 1
Hz € Q : In(o(t) +7) > —e 1} <6 fort € I.
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In particular, choosing v < 2~ ' e~ 1/,

Jy1ino(t) +7)] < C*(8) (19 Info(t) + 2l + ) fort € 1,
Hx e Q: o(t)>27 e/} <6 fort € I.

Due to the global mass conservation, we find parameter ¢y > 0, dy > 0 depending only on the
data such that Iy, = () for all 6 < &y and € < €. Thus

/Q!ln(@(t) +)| < C(00) (IIV Ino(t) + ey + &) fort €]0,TT.

It follows that [, [In(o(t) + )| < C*(d) (Co o012 + ¢;1), and letting v tend to zero, the
claim follows. O

We now resume the estimates obained in the two last sections for the chemical potentials.

Proposition 8.20. Let (o, ¢, v, ¢, R, R') satisfy the dissipation inequality. Assume that i :=
Eq+ (0, q) 1 is a measurable mapping from [0, T'] into L*(£2; R™) and that the vector of
total masses p := [, p = |, %0, q) belongs to Co+([0, T]) and satisfies p(t) € {p°} & W
for allt €]0,T[. Then

(1) Define T* := inf{t € [0,T] : min;_y n pi(t) = 0}. Then T* > Ty > 0 with T,
depending only on the data. For allt € [0, T*[, we have ||q|| 11 (g,rv-1) < Co(t);
2) Ifs+ 35" =0, then ||q|| 1 (grr-1) < Co.

(3) Ifdist(p°, M) > 0, then [q] v

(on In

)Ll(Q;RNfl) S C().
Ifo > 0, there is C , such that

(1) Forallt € [0, T*[, we have || || 11 (@, rN) < Coo(t)s
2) Ifs+ 8" =0, then || || 11 grr) < Cop-

(3) Ifdist(ﬁo, ./\/lc,,-[) > ( then [M]L%Nle(Q; RY) < CO,U-

Remark 8.21. Recall also that if T > 0, then independently on additional conditions, there is
Co,0,- > 0 depending on By and o, T such that || 1| 1(q) < Co,s,- (Proposition 8.1).

9 Compactness |

Our aim in this section is to derive a general compactness tool in order to pass to the limit with
approximate solutions to the problem (P). Since we do not want to specify with which of the
approximation parameters 9, o or 7 we pass to the limit, we will considers families indexed by a
generic parameter ¢ > 0.
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In order to obtain the compactness we shall need the informations on distributional times deriva-
tive contained in the system (102), (103). For technical reasons it is convenient to express these
informations in an older (though elementary) fashion (see [Hop51], Lemma 5.1 for the inspiring
precursor of all Aubin—Lions—type techniques). For the sake of brevity, we introduce an auxiliary
vector A associated with (g, ¢, v, ¢, R, R") and the auxiliary quantities (95) via

A:=(J, ov, 7, 7, Vv, ov@v,v® (1-J),p, n Vo) € [L'(Q)]*, (216)

where a > 1 is the number of scalar compnents of the vector A. A functional F belongs
to C([0,T]; Z(LY(Q), [CHQ; R¥)]*)) if F maps [0,7] x LY(Q) into [C1(Q; R¥)]* and
satisfies moreover the conditions
t + F(t, y) is absolutely continuous for all y € L'(Q)
sup | F(t1, y) — F(ta; y)lljcrsrry- — 0ford — 0 (217)

”y”Ll(Q) <R, |t1*t2|§5

We consider a ’solution family’ {(o., ¢¢, v, ¢, R, R'¢)} .0 which might for example corre-
spond to free energy functions {A.}.~o and mobility matrices { M. }.~o. We assume that the
conditions

he(p) > colp|® = c1, forallp e RY

>
B 218
ME-€> MNPy forall € € RY. (218)

are satisfied uniformly in €.

At first we need to extract weakly convergent subsequences.

Lemma 9.1. Consider a family {(o., ¢¢, v, ¢, R°, R"¢)} .o which satisfies a uniform bound
in the class B(T, 2, a, N — 1, U, WY). Define auxiliary quantities p¢, J., r¢, 7, p., nf' and
A€ in the fashion of (95), (216).

Assume that there is a mapping F € C([0,T]; Z([L*(Q)]%, [C}(; RN¥3)]*)) such that
for almost all t €]0,T'[

(et ) =7 AV ). ¥ (o) € CHOSRY) x Cex B),

(219)
Assume that for almost allt €]0, T, ¢.(t) satisfies in the weak sense

z

—€o (1 + X) Agbe(t) = m ’ pe(t)v v V¢e(t) =0 OI’IZ, ¢e(t) = ¢0(t) onl. (220)
Then, there are

pe L®(Q;RY), JeL*7(Q;RY), —Re Ly(Q;R®), —R" € Ly(S:RY)
e WQLO(Q), p c Loo,l(Q) N Lmin{l—&-é,%—é (Q)
¢ € L=(Q) N L¥(0,T; WH(Q))
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and a subsequence { €, }nen such that asn — oco:

P — p weakly in L*(Q; R™)

P (t) — p(t) weakly in L*(Q; RY) for almost allt € [0, T

p™ — p strongly in C([0, T]; RY)

Je,, — J weakly in Lz’%(Q; RN >3)

R — R weakly in L'(Q: R®), R™ — R" weakly in L'(S; R®)
v — v weakly in W, (Q; R?)

Pe, — D weakly in [Amini3, %_E}(Q)

be, — ¢ strongly in W, °(Q)

=y P Vo, — =y p V¢ weakly in L' (Q; R?)

m m

Oc, V" — 0 weakly in LQ’E;%(Q; R?)

(e, v)(t) — o(t) v(t) weakly in L%(Q; R?) for almost allt € [0, T
0e, V" ® U — 00 @ v weakly in L5 (Q; R¥*3) |

Proof. At first, using the bounds in the natural class BB we extract a subsequence such that

p™ — pweakly in L*(Q; RY),  p™ — pstrongly in C([0,T]; RY)
J., — J weakly in LQ’%(Q; RV *3)

R — RweaKlyin L'(Q; R®), R"“ — R" weakly in L'(S; R™)
v — v weakly in W,°(Q; R?)

Pe, — p weakly in LTmin{l/e,2/3=1/a} ()

0c, U — £ weakly in L5374 (Q; R?)

0c, V" © U — € weakly in L35 (Q; R¥)

e, — ¢ weakly W, (Q)

nl V., — ki weakly in L' (Q; R?)

v @ (1-J,.,) — € weakly in L'(Q; R**?).

It is then easily seen that the corresponding quantity A" defined via (216) satisfies
A" — A= (J, & r, 7, Vo, £, f, p, k1) weakly in [L'(Q)]".

We now make use of the identity (219). Due to the fact that the mapping F is linear in the
second argument, we obtain for almost all t €]0, 77| that

im Ja () -4 — 1/0. PN 1/0). ™3
1 (fgg?n(t)ven(t)-n)_}_(t’ AW, m) V(¥ m)C (4 RY) x Co(; R?).

n—oo

(221)
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Thus, for almost all ¢ € [0, 7], we realise that the entire sequence {p“(t)} converges as
distributions. Since it is uniformly bounded in L(£2), we obtain that { p“* (¢) } weakly converges
in L*(£2). The limit must be identical with p(¢) for almost all t € [0, T']. Thus, using the Remark
9.3 hereafter, p — p strongly in [W,"°(Q)]*, and this allows to show that o v" — o as
distributions in (). Clearly £ = pwv.
Next we define ¢(t) € W12(Q) to be the unique weak solution to the problem

z

—e0 (L+x) 8o(t) = — - p(t), —v-Vo(t) =00nZ, ¢(t) = do(t)onT.

We can verify due to the Remark 9.3 that for almost all t €]0, 7’| the convergence ¢, (t) —

o(t) strongly in W12(Q) is valid.

Thus, we also obtain that = - p V¢, — = - p V¢ weakly in L'(Q). It follows that kj, =
F

n" Vo.

The relation (221) implies that o, () v (t) converges as distributions to o(¢) v(t) for almost all

t €]0, T, and therefore also weakly in L>*/(1+9)(Q)). Since 2a/(1 + ) > 6/5, it also follows

Oc,, V" — o strongly in [W;’O(Q)]*. This in turn allows to show that g, V" @ V" — pvV @0
as distributions, that means £ = pv ® v. O

Remark 9.2. The condition (219) is naturally motivated by the structure of the weak formulation.

Remark9.3. M Let]l < p < +oo. LetK : LP(Q) — W1P(Q) be a linear, bounded,
compact operator. Assume that {u, }nen C LP(Q) is a sequence such that u,(t) —
u(t) weakly in LP(2) for almost all t €]0,T[. Then KC(u,(t)) — K(u(t)) strongly in
WhP(Q) for almost all t €)0,T].

W Jfv, — v weakly in W, (Q) and u,(t) — wu(t) strongly in [W2(Q)]* for almost all
t €]0, T, then u, v, — uv weakly in L*(Q).

We next can obtain the strong convergence of the velocity field. This result is in principle known
(see [Lio98], page 9). For the convenience of the reader, we give a proof in the Appendix.
Corollary 9.4. Assumptions of Lemma 9.1. Then, there is a subsequence such that g, (v* —

v) converges to zero strongly in L'(Q) and pointwise almost everywhere in Q.

We now can prove the conditional compactness of the family {p°}.~. We will need the following
auxiliary statements.

Lemma 9.5. Consider the mapping # € C(Ro x RN™1 RY) (cf. (5.3)). Forz € R, x
RYN-1, we denote v = (1, 7). Let K C L'(Q2; RY) be a weakly sequentially compact set,
and K* C L'(Q) a sequentially compact set. Let ¢*, ¢?,... € C°>°(Q) be a countable, dense
subset of C(; RY).

For all 6 > 0, there are C'(§) > 0 and m(d) € N such that
H%(wl) - %(w2)HL1(Q)

<9 (1 Y ||wi||w1,1<m> +C() Y

i=1,2 i=1

/Q (B(w) — R(w?)) - ¢
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forallw*, w?* € L'(Q; Ry x RN~1) such that
A e K, w ek, weW QR fori=1,2.

Proof. Clearly, it is sufficient to prove the claim for all w!, w? € L}(Q; R, x RY~!) such that
Z(w') € K, wt € K*and w' € WH(Q; RN=1) fori = 1,2 and such that

12 (w") — % (w?)|| L1y > 0.

If this is not true, there is g > 0 such that for all n € N and 7 = 1,2, we can find whm €
LY Ry x RY71) such that Z(w'") € K, wy™ € K*, w™ € WHH(Q; RN1) (i = 1,2)
satisfying moreover the properties

12 (w"") — 22 (w™*™)| L1

Z 50 Z ||U_}Z’nHW11(Q) +n Z
=1

1=1,2

1% (w'") — B (w*™)|| 1) = do .- (223)

/Q (R(w™) — (™) - & @22)

Since we assume that Z(w"") € K fori = 1,2 and since K is a bounded set of L' ({2), we
obtain first that ||@"" ||y 1.1y < C for all n € N. Thus we can extract a subsequence that we
not relabel such that for almost all = € ) there exists w*(x) := lim,,_,, W""(x).

Moreover as w}" € K*, we can extract a subsequence such that w}™ — w? strongly in L' (£2)
and almost everywhere in ). Consequently, we obtain for a subsequence and for i = 1, 2 that

w"™ — w' = (w, w') strongly in L*(Q; R, x RV 1) anda.e.in Q2.

Now using that Z(w"™) € K, we can pass to a subsequence again to see that Z(w"") — u’
weakly in L(€2; RY) fori = 1, 2. Obviously the continuity of % and the pointwise convergence
yield u* = Z(w"). We next use the second implication of (222), that is,

n

D

i=1

/ﬂ (B (™) — RWP™) - | < en !

so that we easily conclude that Z(w') = % (w?) almost everywhere in ). It remains to observe
that Z(w™") — Z(w*™) — 0in L*(€2) to show that the condition (223) is violated. O

In order to apply the Lemma 9.5 in the context of parabolic problems, we introduce the following
way of speaking:

Remark 9.6. We say that a family of vector-valued functions {u.}.cjo,1) C C([0,T]; L*(Q)) is
compact in L' () uniformly in time if and only if the family Ucepo.) Urepo.y{ue(t)} is sequen-
tially compact in L' ().

We now state and prove our main compactness tool.
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Corollary 9.7. Forn € N, letw™ : [0,T] — L'(Q; R, x R¥~1) be continuous. Assume
that w? is compact in L'(Q) uniformly in time (sense of Remark 9.6). Moreover assume that
there is C'| independent on n such that

[@" ]y

@ IVl = G

Suppose that | Z(w")|| L=.0() < Ch, and that the sequence {Z(w"(t)) }nen converges as
distributions in 2 for almost all t.

Then, there is a subsequence (no new labels) for which p(t, z) = lim,_,., Z(w"(t,z))
exists for almost all (t,x) € Q, and Z(w"(t,x)) — p strongly in L*(Q; RY).

Proof. Forn € N, the assumptions imply that Z(w"(t)) € L*(Q2; RY) forall t € [0,T]. We
define K C L'(Q; RY) via K := U, Uiejo.y 12(w"(t))} By assumption K is bounded
in L%(§2) and thus also weakly sequentially compact in L' (€2).

By assumption again, the set K* := |, o U, 0.y 17 (1)} is compact in L(€).

For § > 0, we apply the inequality of Lemma 9.5 with the following choices: w' = w"(t),
w? := w""P(t). We obtain for t € [0, T] that

12 (w" (£)) = Z2(w™ P (1)1 (@)
<0 (L[ () lwra + [0 P @) llwia o)

/Q (B (1)) — B(w™(1))) - 6] 224

m

+C(6, K*) )

=1

Fix ¢ € N and define I,,, C [0, T via Iy, := {t €]0,T[: |[@w"(t)||1(2) > ¢}. Note that by
assumption

[wn} Ly 1n>L1 () Ch
MUen) S =00 = ovm) @)

Thus Ay ([0, T\ 1) > T — —<owclﬁ>(e>'

We integrate the relation (224) over the set J := [0, T \ (L¢,, U Iy4,) and this yields

| % (w"™) — Z(W"P)| 11 sx0)
<6 (T + 2 sup [[0" || wrrsxa)

+C(5) i/J

< 5(T+Co) +C() i/T

/Q (R (1) — R(w™(1))) - &

/Q (B (" (1) — B(w™P(1))) - &

Due to boundedness of {Z(w™)} in L>!(Q), and the fact that A ([0, T \ J) < 2 (oNChll)(e)’
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we obtain that

12 (w") = Z(w" )| 2 @)
Ch
(on In)(¢)

/Q (R (1)) — B (1)) - &

< 4 sup || Z(w")]| o1 () +0 (T + Cy)

+C(5)§;/OT

The vector fields Z(w™) weakly converges in L'(£2; RY) for almost all ¢ to some element
p € L>=>°(Q; RY). Invoking the triangle inequality,

T T
/ < 2 sup /
0 k>n Jo

Thus

/Q (R (1)) — B(w™P(1))) - &

/Q (R (1)) - plt)) - |

Invoking the Fatou Lemma and the bounds in L°>%, we have

T T
lim sup sup / = lim sup /
0 n—+00 0

n—oo k>n
T
< / lim sup
0 n— o0

The vector fields 2 (w"(t)) weakly converges in L'(€) for almost all ¢.

Therefore lim sup,, ., | [,(Z(w"(t)) — p(t)) - ¢'| = 0 for almost all t. Thus

/Q (B (D) — p(t) - &

/Q (B (1)) - plt)) - &

/Q (@ (1)) - p(t)) - |

T
lim sup sup/ /(%(wk(t)) —p(t))- 4| =0.
n—oo k>n J0Q (e}
It next follows that
lim sup sup || Z(w") — Z(w"*) |11 (o)

n—oo p>0

< 4 sup || Z(w")|| L—HS(T#LC’)
= np Lo1(Q) (on In)(0) ¢)

and since £ and 0 are arbitrary, lim sup,, . sup,sg | Z(w") — Z(w"*?)||11(q) = 0. This
means that {Z(w™)} is a Cauchy sequence in L(Q). In particular, we can extract a subse-
quence such that lim,, , ., Z(w™") exists almost everywhere in (). O
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Corollary 9.8. Assumptions of Lemma 9.1. Assume moreover that the family of the total mass
densities {96}620 is compact in Ll(Q) uniformly with respect to time (sense of Remark 9.6).
Then
P — p strongly in L'(Q; RY)
dq(t, z) := lim ¢ (¢, x) for almost every (t, x) such that o(t, x) > 0.

n—o0
Consequently, the identity p = %(o, q) is valid at almost every point of the set {(t, x)
oft, x) > 0}.

Proof. We at first obtain the convergence properties of Lemma 9.1 for a sequence {€,, },en. We
define w™ = (g, , ¢°*), and verify easily that all requirements of the Corollary 9.7 are satisfied.
We apply the Corollary 9.7, and we first obtain that p* = %(o.,,, ¢°*) converges strongly in
L'(Q) and pointwise almost everywhere.

Next we use the formula (111) and the inequalities of Lemma 5.7 to see that for a certain
A€ [0,1]

\Z (0cr, @) — F(0, ¢)| = Bs(A e, + (1 = A) 0, ¢)| |0c,, — 0
a—1
< C max{g.,, 0} * |o., — 0.

The latter implies that

|2 (0c,., @) — Z(0, ¢)|| L1 (@) <C (5up || e, || zo(@) + el a@)) |06, — 0l - 22 ()

LI+

— 0.

Thus passing to a subsequence we obtain also that % (o, ¢“*) converges almost everywhere in
(). Next, we use the fact that for all s > 0, the mapping Z is a bijection between [s, —i—oo[xIRN_1
and {p € RY : p-1 > s}. Thus, from the existence of lim,, .. Z(0(t, z), ¢ (t, )), we
first obtain that

lim inf ¢* (¢, z) = lim sup ¢ (¢, x) for almost all(¢, z) such that o(¢,z) > 0.  (225)

n—00 n—o00

Next we use the estimates available on ¢ to see for k£, ¢ > 0 that
T
meas{(t,) € @ [¢| = K} = [ o€ Qs g (0)] = k)|
0
-/ e (0] 2 b
{t : ”qen (t)”Ll(Q) SK}

+/‘ (e e : g™ (1) = k)]
{t:llgen Ol L1y >}

IN

1 . .
E/ g™ (®) 1@y + M ({t = g™ (B)llr@ > €})
{t:llan (Ol 1 gy <E}

€n 1 g 1
+[q ]L}“ONID)U(Q) m ¢ (E - m) '

IA
~
IS
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Combining the latter observation and (225) we see that that there is a set N (k, ¢) with meas N/ (k, £) <
C (% + m) such that

lim ¢ (t, ) exists in RN "' forall (t,2) € {(t,z) : o(t,x) >0} \ N(k, ().

n—oo

Choosing appropriate sequences of numbers ¢, k, the measure of N(kz, ) can be made arbi-
trarily small.

We then use that p» = Z(o.,,, ¢°*) to see that p** also converges almost everywhere in () to
Z (o, q), and the claim follows. O

In order to pass to the limit in the boundary reaction terms, we also discuss the strong conver-
gence of the relative chemical potentials on the boundary I'.

Lemma 9.9. Assumptions of Corollary 9.8. Then

Jq(t, 2) := lim ¢ (¢, x) for almost every (t, z) € ST (p).

n—o0

Proof. By definition, the surface S+(g) is relatively open and possesses an open neighbour-
hood U in @ suchthat [UN{(¢,z) : o(t, z) = 0}| = 0. Thus, for (t5, 2°) € ST (o) arbitrary,
there is R > 0 such that the cube Qr(to, 2°) with radius R > 0 and centered at (to, 2°) is
contained in U. For all ¢ > 0, there is a constant ¢ = ¢(2, €) such that

||UHL1(FR(r0)) <e€ ||Vu||L1(QR(x0)) + C(E, Q) ||U/”L1(QR(:EO)) forall u € WI’I(SD .

Here I' and Qg denote the intersectoin of I and Q with Q(z°), the three-dimensional cube
with radius R centered at 2. With the help of this inequality, we obtain for almost all t €
lto — R, to + R[ that

g () — a1 rron@o) <€(IVa™ Ol @ + IVa®) L)
+c(e, Q) [lg™ (1) — q(t)|| L1 (@ r(=0)) -

Choosing I C|to— R, to+R[ of arbitrary small measure so that the norms ||¢“* (t) —q(t) || .1 (o)
are uniformly bounded for ¢ €|ty — R, to + R[\I, we obtain that

/Iqun(t) — q<t>HLl(rR(xO)) dt < Co €+ C(G, Q) /I qun (t) — q(t)HD(QR(xO)) dt

Now as I x (2 N Qgr(z")) is a subset of U, we obtain with the help of Corollary 9.8 that
S llge () = a(t)[| i @poy dt — 0 for n — oo, and this yields limsup,, . [, [l¢ () —
Q(t)HLl(FR(IO)) dt = 0. The claim follows. 0

It remains to enlight the global convergence property of the variables {¢“*} inclusively of the
set where vacuum possibly occurs.
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Lemma 9.10. Assumptions of Corollary 9.8. Then, there are open sets K1 C Ko C ... [0,T],
| K| — T form — oo and a subsequence such that

n — q weakly in L? X QUF RV forallm € N
q q

(K
V¢ — Vq weakly in L*(Q; Xg)
D — (y' - Eq,...,7" - Eq) weakly in L'(Q; RS)
(

DUFRen 5 (51 &q, ... A% - £q) weakly in L'(S; R ).
Proof. Letm € N, and consider the sets I,, ,, C [0, 7] defined via
Lym={t€[0,T] : 3 <N, {z : pi"(t, z) >m '} <m™'} (226)

Fort € I, wefind iy € {1,..., N} such that
€ -1 1
Hz : pip(t, ) >m | < - (227)
Recall the definition of @y > 0 and by > 0 in (201). For M > 0 set A(t) := {z : aq
o0 (t, x) < M} satisfies

A = [{z a0 < 0™ (&, @)} = [{o = M < 0™ (L, 2)}
Z bQ—CoM_a.

IN

Thus, there is M depending only on the data such that | A(Z)| > bo/2. Defining next B(t) :=
A(t)n{z : pi(t, ) < m~'}, we easily show that if m > 4 /b then | B(t)| > bo/2—1/m >
bo /4. Pursuing this reasoning we obtain for x € B(t) that

o 1
ot z) — (t,x) < In — + C(ag, Mp).
io (T, ) jfff?,v“ﬂ( ) < e ot (@o, Mo)

It follows that |q(t, x)| > ¢ |, (t, 2) — sup,—; _ n p;(t, x)] on B(t), and therefore

a0 2% (220 - o0, 1)

20

lg@) L1 smv-1y > /

B(t)
Thus, for all m > my(data), we achieve that

Ly CHAE & g L1 irr-1) = ¢ Inm}.
Due to the estimate in the class L, . ln)Ll(Q), we obtain that

v
(on+11n)(m)

Recall that in the natural class, the regularity p € Cs+([0, T]) is available. Consider for k € N
the compact sets J;, := {t € [0,T] : inf;—1__n pi(t) < k~'}, and define

ML) <c (228)

Juw = {t€0.1] + inf g < 7).

1=1,.
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Due to the uniform convergence of p, there is ng = ng(k) such that
Inok © Jp C© Sy foralln > ng.
Observe further that
te oy = 7i1an |({z : pin(t, x) > k72 < kY2
—=tel, ;- (229)

Moreover t € I, ,,, implies for a ¢( that

J O Y (U R B 10
Q {riy ()<1/m} {p5 (t)=1/m}

S m—l |Q’ + ||p§"||L00704(Q) m—l/a/ .

20

Thus
tel,m=—tec Jn’le/a/ . (230)

Define now K, =0, T'[\Jy-1 ,,1/0/ Open. Owing to (230), K, C [0, 7]\ I, foralln >
no(m). Using the alternative of Lemma 8.8

g (D)l 20, rrv-1) < Cr (Vg™ (8) || 22() + 1) (231)
16 |2k, xR -1y < Clom - (232)

Moreover, by the definition of K, the inclusion (229) and (228), we see that

1
)‘1([0>T] \ Km) < )‘1(] 271 (le/a’)l/z) <C (

_ . 233
" on+11n)(m) (#39)

Making use of (232) can now extract a diagonal subsequence such that ¢» — ¢ weakly in
LK, x [QUT]; R¥1) for all m € N. Let next ( € C.(K,,) arbitrary. From (231) we
deduce that

T T
/ C) Nla(®)ll 2o mv-1) dt < hfjljnf/ CO) Nlg™ ()l 2 (s rv—) dt
0 n—roe Jo

<o | ") (AW + 1) d

Here, A € L*(0,T) is a weak limit in L*(0, T') of the sequence {|| V¢ ()| 12(q)}- Thus, we
obtain the majoration ||q(t)|| 2(q; ry-1) < Cr (A(t) + 1) for almost all £ € K. From this we
deduce that

lg(t) 2 mv-1y < Coort € [0,T]\ Ky, U{t : A(t) > m}.

Clearly, together with (233), this yields a bound for g in L{;, . ln)Ll(Q).

We then easily see that ¢ possesses for almost all ¢ weak partial derivatives, and that V¢ —
Vq weakly in L?(Q; RIN-1Dx3), O
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Finally we can identitfy the remaining limits.

Corollary 9.11. Assumptions of Corollary 9.8. Let .J, p, r and v denote the weak limit of J",
Pe,., 7" and 7" constructed in the Lemma 9.1. Then, for almost allt €]0,T'[

J = M(p) (VEq+ = V)

p=Ple, q)
r= Z 7* Ry (DP) with Dff = ~* - £q in Q™ (o)
k=1

r

P =Y 4" R(D™F, w) with D" = 4% - £ on S* (o).
k=1

Proof. Exploiting the convergence properties stated in the Corollary 9.8 and the Lemma 9.1,
9.10 we see that

Jow = M(p) (VEG + = V6,,) = M(p) (VE g + — Vo) weakly in 1755 (Q).

Moreover, P(o.,, ¢) — P(o, q) pointwise in Q* (o), while |P(o.,, ¢)| < co? — 0
pointwise in @ \ @* (o). The other claims are proved similarly. O

We now resume the results of the section formulating our main (conditional) compactness state-
ment.

Proposition 9.12. Consider a family {(o., ¢, v°, ¢c, RS, R")} s which satisfies a uniform
bound in the class B(T, ), o, N —1, ¥, W), Assume the condition (219) on the time deriva-
tives. Assume that the family o. is compact in L' () uniformly in time (sense of Remark 9.6).

Then, there is a limiting element (o, q, v, ¢, R, R') € B and subsequence {¢, },cn such
that

P — p strongly in L'(Q; R™)

J — J weakly in LZ’%(Q; RY>*3)

R — R weakly in L'(Q; R®), R — R weakly in L'(S; R®")

v — v weakly in W,°(Q; R?)

b, — & strongly in W, °(Q)

nl Ve, — n' Vo weakly in L' (Q; R?)

0c, V" — o strongly in L' (Q; R?)

Oc,, V" @ V" — pv ® v weakly in L%(Q; R3*3) .

Here the quantities p, J, r, 7, p, n" obey the natural definitions (95).

We finally note an important consequence of Proposition 9.12.
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Corollary 9.13. Assumptions of Proposition 9.12. Suppose that { (0., q¢¢, v¢, ¢e, RS, R')} s
satisfies the enerqy inequality with mobility matrix M, > M, and a free energy function h hav-
ing the property

pf— pER), = limiglf he(p®) > h(p).
’ €—>

Then the limiting element (o, q, v, ¢, R, R') constructed in Proposition 9.12 satisfies the
enerqy inequality with free energy function h and mobility matrix M .

Proof. We first prove that
liminf [ M(p*)D-D> | M(p)D-D. (234)
=0 Q+ Qt

Since M (p©) is a positive semidefinite matrix, we can introduce its square-root Mz (p°), and
we easily realise that

M= (p°) — M2 (p°) strongly in L' (Q) forall 1 < r < 2.
On the other hand, the driving forces D = VE¢“ + = V¢, converge weakly to D = VEq +
= V¢ in L*(Q) owing to the Proposition 9.1. Thus, since v > 1, it follows that
M2 (p%) D° — M2 (p) D weakly in L'(Q) . (235)

. L . . oo . 1, ¢ € . . 2
Since the dissipation inequality implies that M 2 (p®) D€ is uniformly bounded even in L*(Q),
we can show that the weak convergence (235) takes place even in LQ(Q). Thus, due to the
lower semicontinuity of the L?—norm, we obtain (234).

In order to prove the lower semicontinuity of the reaction terms, we use the lower semicontinuity
(convexity) of the functions W and W*, to obtain that

ligi()rlf/Cz(\I!(DR’e)+\D*(—Re)) > /Q(qf(DR) +U*(~R)).

Analogoulsy, on the boundary

e—0

lim inf / (BT (DPRe, ) 4+ (F0) (—RE*, )
S

A

> [ (BNDPR )+ (8 (R ).

10 The structure of the Navier-Stokes operator

In the section 9 we showed that boundedness in the energy class together with the existence of
weak time derivatives implies the compactness of the solution vector if the condition o(t) € K*
is satisfied, where K™ is a compact of L'(£2). Using an extension of the method of Lions for the
compressible Navier-Stokes operator, we are going to show that this condition is satisfied for
the approximation schemes of interest to us. We commence formulating our main statement.
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Proposition 10.1. Consider a family {(o., ¢, v, ¢., R, R')}s0 C B which is uniformly
bounded in the natural class B(T, Q, o, N — 1, ¥, V') and satisfies the assumptions of
Lemma 9.1. Let {J}~0 C L%(Q; R?) be a family of perturbations such that J¢ — 0 strongly
in L*(Q) as € — 0 and such that

{limsupe_>O [(J¢-VIng)t |l =0 ifa>3 (236)

J=0 if3<a<3.

Suppose that the identities

- /Q 0t — /Q (0 + 7996 = [ (o) (237)

—/geve-nt—/gdﬁ@ve : Vn—/pe diVT]—i-/S(VUE)'VT] (238)
Q Q Q Q

zémww@+AU’WWW—4fvﬂﬂ~

are valid for all ) € C([0,T[; C*(Q)) and alln € CX([0,T[; C}(Q; R?)). Assume that
either o > 9/5, or that the function P of Lemma 5.4 is convex in the first variable and that
< <9/5.

Then for every sequence { ¢, }ncn, the sequence { o, } nen is compact in L (2) uniformly with
respect to time (sense of Remark 9.6).

Remark 10.2. Under the assumptions of the Proposition 10.1, we apply the Lemmas 9.1, 9.4
and we find a subsequence such that

P — p weakly in L*(Q; R™)

P (t) — p(t) weakly in L*(€2; RY) for almost allt € [0, T]

v — v weakly in W, °(Q; R?)

Pe, — p weakly in [Amin{z 33 (Q)

be, — ¢ strongly in W, °(Q)

Ly PV, — Ly p V¢ weakly in L' (Q)

m m

O, V" — 0v weakly in LQ’%(Q; R?)

(0e, V") () = o(t) v(t) weakly in LT5= (Q: R?) for almost all t € [0, T

Oc,, V" ® V™ — pv ® v weakly in L%(Q; R3*3)

o, (V" —v) — 0 strongly in L' (Q; R?) .
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and these weak limiting elements satisfy

_/Q¢t—/QU‘V¢:/QO¢(O) (239)
Q Q Q
—/Qv-m—/m}@v : Vn—/pdivn+/S(Vv)~Vn (240)
Q Q Q Q
I/@ovo'n(O)—/nFWb'n
Q Q

for allp € C1([0, T[; C*(Q)) and for alln € C1([0, T[; CHQ; R?)).

The section is devoted to the proof of Proposition 10.1. There is a branching in the proof: We
consider separately the cases & > 3and 3/2 < o < 3.

10.1 Thecasea > 3

We are going to establish after Lions convergence properties associated with the effective vis-
cous flux p., — 1’ divv‘". Here we abbreviate ’ := A 4+ 27 > 0.

Lemma 10.3. Let p, v and p denotes the weak limits according to the Remark 10.2. Then
(pe, — 1" divo™) o, — (p— 1’ divo) o as distributions in Q .
Proof. For convenience we give a proof in the Appendix. O

We next use an important property of our regularisation.

Lemma 10.4. Let o, satisfy (237). Then o¢ € C'([0,T]; L*(2)), and for all't € [0, T)

t
/Qe(t) ane(t)_/Qo lngo+/ /ge dives < C|(J - Ving) || . (241)
Q Q 0 Q

Denote o the weak limit of { o, }. Then o. € C'([0,T); L'(Q)) and for all t € [0, T

t
/g(t) lng(t)—/go lngo—i-/ /Qdivv:(). (242)
Q Q 0o Ja

Proof. Owing to the Lemma 8.19, we can rely for € > 0 on the fact that In g, € W,°(Q) (cf.
Lemma 8.19). Using well known time smoothing techniques, of which we spare the details here,
we can multiply the equation (237) with the function 1 + In .. If follows for almost all ¢ €]0, T'[

that
t t B
/@e(t) In 0c(t) — o an0+/ /Qe divvf—/ /JE-VanEIO.
Q 0 JQ 0o Jo

The first claim (241) follows.
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The second claim (242) follows from the fact that g is a renormalised solution to (239). This was
shown in [Lio98] (for instance on page 14, see also [Li0o96], Lemma 2.3) and [FNPO1], section
3.5.

In order to state (241), (242) for all t € [0, T, we need ¢°, 0 € C([0,T]; L*(Q2)). This was
proved in [Lio98], page 23. We provide a proof for convenience in the appendix. O

In order to prove the compactness of the mass density we need a last observation in the follow-
ing Lemma. Comparable ideas are to find for instance in [Lio98], section 8.5.

Lemma 10.5. /fp, v and o denotes the weak limits according to the Remark 10.2. Then, for
all ¢ € CY(Q) such that ¢ > 0 in Q, there holds lim inf,, ., fQ De,, 0c, ¢ > prQC +

co liminf,,_, fQ(Qen —0)%¢.

Proof. We note that p., = P(o.,, ¢*) with the function P of Lemma 5.4. Moreover, due
to Lemma 5.4 9;P > cy. For arbitrary nonnegative u € C'(Q), we therefore obtain that
(P(oc,, ¢) — P(u, ¢)) (0, — u) > co (0c, — u)?. This entails

hminf/ De,, 0c,, C — / pul Zliminf/ P(u, ¢™) (0e, —u) ¢

n—o0

n— o0

+ ¢o lim inf /(gen —u)*(.
Q

We note that VP(u, ¢**) = Ps(u, ¢**) Vu + Zj\;l Py, (u, ¢*) Vg5, the Lemma 5.4 im-
plies that

[VP(u, ¢)| < e{|ul*™" [Vul + |u* [V}

It follows that ||V P(u, ¢°)||r2(q) < Cy Co. Since moreover |P(u, ¢)
a=a, € L®(Q)NW,"°(Q) and a subsequence such that

< C'|ul®, there is

P(u, ¢°*) — a weakly in W,°(Q) .

We easily show that [, P(u, ¢*) (¢, — )¢ — [, a (o — u) (. Note that the inequality
P(u, ¢*) < c|ul® implies that |a| < ¢|u|*. We obtain that

hminf/pengen(—/pucz/a(g—u)(—i—co liminf/(gen—ufg.

It suffices now to approximate o in L*(Q) with functions u of C*(Q) to obtain the claim. [

Lemma 10.6. Assumptions of the Proposition 10.1 for o > 3. Then for every sequence
{€n }nen such that the convergence properties (10.2) are valid:

1 0., (t) — o(t) strongly in L' (Q) for almost all t €]0,T].

2 The family U, (o 11 Uneni0e, (1)} is sequentially compact in L' (<2).
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Proof. We consider an arbitrary sequence of times {t,, }nen C|0, 7’| such that t,, — t* for
n — oo. We choose for j € N a nonnegative function f; € Cl(R) with the following properties

=0 fors < 57!
fils)€0,1] forse[j™ 27, [fi(s) <ej.
=1 fors > 2571

We define ;, € CL(Q) via

Gin(t, ) = f(tn — 1) f;(dist(z, 09)).

Note that (;,, — ¢; uniformly in ) for n — oo with (; := f;(¢t*—t) f;(dist(x, 02)). Moreover
|V4Cj,n| < Cj and

1ia-2
1 2 2a
G = X vl o < (5) 243)

We then express
/ pen Qen Cj,n = / (p€n - 77/ le Uen) Qen Cj,n
Q Q
+1n / div o™ e, (Cn — Xota] X2) + 1 / div o™ g, .
Q Q

tn

Thus, because of the identity (241)
us / (0e, (tn) In oc, (tn) — 00 In 0o) + / Pen Oy Gjin
Q Q

= / (Pe,, — 1" divo™) g, G + 17 / div o™ e, (Cin — X[o,tn] X20) -
Q Q

Moreover, owing to (242),
7 /(@(t*) In o(t*) — 00 ln@o)+/p9é},n
Q Q

= / (p—n' dive) o n +1' / div v 0 (G — Xo+] X0) -
Q Q
Thus, subtracting the two latter identities
7 /(Qen(tn) In g, (tn) — o(t") Ino(t")) + / (Pen Oen — P 0) Cjim
Q Q
= / ((Pe, =7 dive™) g, — (p — 7' divv) o) (in
Q

+ 7 / div o gc,, (Cjn — Xoitn] X2) — 1 / divv 0 ($n — X044 X) -
Q Q
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Due to (243)

< || divo™ QERHLQ,%(Q) i = X[0,t] XQHLQ,Q%(Q)

/ div o™ oc, (G — X[0,tn] X0)
Q
<Cojt.

Moreover, we easily show that |G — X(o.e+] Xall 5, 20, . < cj 1+ |t, —t*|'/2, and therefore

(@)

< Co (5714 [t — t*|V/2).

‘/ divv o ((jn — Xjos] X)
Q

Since (,,; — ¢; uniformly in (), the Lemma 10.3 implies that

lim [ ((pe, — 7" dive™) o, — (p— 7' divv) 0) in

n—oo
Q

= lim [ ((p., — 71 dive™) o, — (p—n' divv)o)(; =0.

n—oo
Q

Further

lim (pen Oe,, — pQ) Cj,n = ILm /(pEn Oe, — pQ) Cj Z Co ILm /(an - Q)2 gj
Q n—=oo /o n—=oo o

n—oo

=co lim [ (0, — 0)* ({ — X041 Xa) + o lim (0c, — 0)?

n— 00 —00
Q Qt*

1\ 1+
>co lim [ (0, — 0)* = l|0e, — 0lli~n(o) (‘)

n—o0 Jo,. i

It follows that there is r > 0 such that

ot [ (o, (0) Ing,, (0) — oft") Ino(t)
& (244)
+ co liminf/ (0e, —0)* < Coj".
n—oo Qt

Since 0., € C([0,T]; D*(Q2)), we show easily that o., (t,) — o(t*) as distributions in €2,
and this added to (244) yields

0, (tn) — o(t*) strongly in L*(Q2) . (245)

We now deduce both claims of the Lemma.

In order to estabilsh (1), we choose t,, = ¢ € [0, 7] fixed. Then, due to (245), we see that
0, (t) — oft) strongly in L' (£2). The claim (1) follows

In order to prove (2), we observe that o., € C([0,T]; L*(2)) for all n € N and that also
o € C([0,T); L*(£2)). This was observed in Lemma 10.4. Consider any sequence in the
set U,c(o,7] Unen{€e. (1)} Such a sequence is of the form {¢,, (¢)}ren. We can always
extract a subsequence such that ¢, — t* € [0,77], an applying the result (245), it follows
that o, (tx) — o(t*) strongly in L*(9). Thus, the set Usepor) Unen{ee. (1)} is sequentially
compact in L*(Q). O
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10.2 Thecase3/2 < a <3

Since we cannot rely on the condition o > 3, additional technical problems occur. Nevertheless
the passage to the limit can be carried over using an extension of the method of Lions (o > 9/5,
[Lio98], Chapter 5) and Feireisl, Novotny and Petzeltova (3/2 < a < 9/5, [FNP01]) . Here we
have to assume that the approximate solutions satisfy global mass conservation exactly (the
perturbation J€in (239), (240) vanishes). In particular

- / 0 i — / 00 - Vi = / ¥ (0) foral g € CH([0, T C'(Q)  (249)
Q Q Q

The Lemma 10.3 and the further reasoning have to be modified. Here we will stick to the ap-
proach of Feireisl, Novotny and Petzeltova in [FNP0O1]. One introduces for k € N the cutoff
function

Ti(0c) := min{o., k} .

It is possible to extract a subsequence (which might be a different one for all values of k), and
to find ax, € L>°(()) such that

Ti(0e) — ap weakly in LP(Q) forall 1 < p < 0.

Exploiting the a priori bounds it follows that

o

/ 1
IT(e)®) — 0Oy < (e : 0ults2) > K} lodl ooy < Co (z) ,

so that [lax(t) — o(t)|lz1) < Co (7). Thus, ay is an approximation of o. Now, the argu-
ments of [FNP0O1], Lemma 4.4 allow to prove that the limit p is also a renormalised solution to
(239), and to obtain the following statement.

Lemma 10.7. Let o, satisfy (246). Define

Li(o) = olnp ifp <k
olnk+ o—k otherwise

Then, for all ¢ > 0, the function o, belongs to C([0,T|; L'(Q)) and forallt € [0, T

/Q Li(o)(t) - / Le(oo) + / O / Ti(o.) divet = 0. (247)

Denote o the weak limit of { g, }. Then o € C([0,T]; L'(2)) and for allt € [0, T]

/QLk(Q)(t)—/QLk<Q0)+/Ot/QTk(,Q) dive =0. (248)

Proof. We can reproduce the proof [FNP01], Lemma 4.4 (see also the section 4.6) one to
one. -
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With the same method as in the Lemma 10.3, one moreover proves

Lemma 10.8. Letp, v and o denotes the weak limits according to 10.2. Then, for one subse-
quence possibly depending on k

(pe, — ' dive™) Ti(o.,) — (p — 1" divv) a, weakly in L'(Q) .
Proof. For conveninence, the reader can find a proof in the appendix. O

We next can establish the essential property of Lemma 10.5 also if o < 3.

Lemma 10.9. For allt € [0, T there holds:

n—00 t n—00

If P is moreover a convex function of o (see Lemma 5.9), then

n—oo n—oo

limsup/ De,, Tr(0c,) > / pTk(0) + co limsup/ (Tk(0c,) — Tk(g))z.

Proof. We note that we can represent p., = P(o,, ¢™) with the function P’ of Lemma 5.4.
Recall that 9, P > ¢. For arbitrary nonnegative u € C'*(()), we have

(P(0e,s a) = Plu, ¢)) (Ti(ee,) — Ti(w)) = co (Ti(ee,) — Til(w)).

As in the proof of the Lemma 10.5, we use that the functions P(u, qfn) have a bounded gradient
in L222/(1+2) () for fixed u. Exploiting the weak convergence p., — p and Ty(o.,) — ax,
we can show that

limsup/ De., Tk(gen)—/ pTi(u) > B( ) (ax — Ti(u))

n—oo

+eo limsup [ (Tilen,) = Tu(w)?,

n—o0

Here, 5(u) denote a weak limit of P(u, ¢*). Since a;, < k almost everywhere in @, it is
possible to represent a;, = Tk(ak). Therefore, we can approximate a; with functions Tk(u)
u € CY(Q), and it follows that

limsup/ De, Tk(0e,) —/ pax > co lim sup/ (Tk(0e,) — ak)2.

n— ‘0o n—00

If P is a convex function depending only on p, then we follow [FNP01], Lemma 4.3. O

At last we prove the equivalent of Lemma 10.6.
Lemma 10.10. 1 0., (t) — o(t) strongly in L*(2) for almost all t €]0,T|.

2 The family U, (o 11 Uneni e, (1)} is sequentially compact in L' (<2).
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Proof. We have

/an Pen Th(0c,) =/Q
).

Invoking the Lemma 10.9

(p€n - /r’/ dlv fUEn) Tk(g5n) + n/ / dlv Uen Tk(QEn)
tn Qtn

(Pen — 17 divo™) Te2er) — / (Li(oe, () — Li(oo)

tn

lim sup / Pe. Ta(0.,) = / (b —1f dive)a, — 1 limint / (Liloe, (t2)) — Li(oo))
t t Q

n—oo n—o0

:/tpak—n’/tdivv(ak—Tkz(Q))_n//tdiVUTk(Q)

n—oo

:/tpak_n' /tdivv(ak—Tk(g))+n' (/QLk(g(t))—hggf/QL;C(@en(tn))) -

Now we distinguish two cases. In general, we obtain the inequality

—of liminf / (Li(0e, (1)) — Lu(oo)

¢ Tim sup / (Tk(e,) — ap)? +1f limint / (Li(0e) (1) — Li(0) (1))

n—00 n—00
< -7 / divv (ar, — Ti(0)) -

In the case where the function P is convex in the first argument, there is the stronger statement

o limsup/ (Tr(0e,) — Ti(0)* + 1/ hggglf/ﬂ([/k@en)(tn) — Li(0)(t))

n—00 B

< —77'/ divv (ax — Ti(0)) .

Thus using that both terms on the left-hand are nonnegative

co limsup/ (Th(0e,) — Tr(0))* < —1f / divv (ax — Tr(0))

n—oo + +

=y lim [ dive(Ti(e.,) — Ti(0))

n—o0 Qt

< |l divvll2(q) limsup ([ Tk(ee,) — Te(o)ll 2q0) -
n—oo

This shows that cq [|ar — Tk(0)||L2(Qy) < 7] || div v 22

Thus, in both cases, we will find that a;, — T} (o) converges strongly to zero in L?(Q) as k — oo,
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and it follows that

¢o lim sup lim Sup/ (Ty(0c,) — ax)?

k—o0 n—r00 ¢

+ lim inf lim inf/Q(Lk(QE)(tn) — o(t) In o(t))

k—o0 n—o00

= ¢p lim sup lim sup/ (T (0c,) — a)?

k—ro0 n—00 ¢

4 liminf lim inf /Q (Lu(oo) () — Li(0)(£)) < 0. (249)

k—o0 n—o0
Now we introduce for £ > 2 and n € N the variables u, . such that
Uke, Muge, = Li(oc,) -

Denoting v the inverse of the function ¢ — ¢ Int in the range [2, +0c], we have

0 if 0, <k
€n Uu y€n = .
¢ : Oc,, — W(0e, Ink + 0., — k) otherwise

Thus
Jter () = 00, Oll @) < (e @ ooy + 0@ o) ko (250)
We use this to show that
Uke, (tn) = Uke, (tn) — O, (tn) + 0e, (tn) — o(t) as distributions for k,n — oo (251)

It follows that lim infy, o0 [o) Un,e, (tn) In g, (t) > [, 0(t) In o(t). Using the definition of
Ug.e, and (249), we condluce that the equality sign is valid, showing that uy, .(t) — o(t) strongly
in L(2), and thus due to (250) also that

0c. (t,) — o(t) strongly inL' () . (252)

The claims (1), (2) follow using the same argument as in Lemma 10.6. O

11 Existence of solutions

Weak solutions to (P) are defined in the spirit of viscosity solutions by passing to the limit
o — 0 and then § — 0 in the approximation scheme (P, 5) = (Pr—0,0.5)-

Proposition 11.1. Assumptions of the Theorems 4.4, 4.5. For o > 0 and § > 0 assume that
there is (117°, v°°, ¢y5) € B(T, Q, a, N, ¥, W) subject to the energy inequality and the
global mass conservation identity (Definition 4.2) that weakly solves (P s).

Then, (P) possesses a weak solution (as stated in the theorems 4.4, 4.5).
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Proof. We first show the claim under the assumptions of the Theorem 4.4 (Global existence).

The validity of the mass conservation identity implies that the vector of total mass densities
p°° € Co-([0,T]; RY) satisfies

P (t) € {P°Y @ Wtorallt € [0,T].
We apply the Propositions 8.1, 8.2, 8.3 and 8.20 and obtain that
(005, ¢7°, 07, G5, R, RV (.00 o 1,0, 0r) < Cog
(0.5, 47°, v7°, ¢0s, R, RP’U’(S)]B(T, Q,a,N—1, 0,97y < Cp.

Here we distinguish the regularisation exponent as > 3 and the original growht exponent
3/2 < a < +0o0 of the free energy function.

(253)

Moreover, time integration in (161) and (162) means that there is a mapping F in the class
C([0,T]; Z([LYQ)]?, [CL(Q; RNT3)]*)) such that for almost all ¢ €]0, T[

7,0
pr7<t)w >:J'—"t AU,(S
( fg 00’5@) UU"s(t) - (t, )W, )
forall (1, ) € CH(E; RY) x CH(Q; R?). (254)
Fix & > 0. Then, by construction (see (147)), we can rely on the growth condition ais > 3. In
order to apply the proposition 10.1, we need to verify the condition

[((L-J7) - VIngss) |12 — 0foro — 0. (255)

In order to show (255), note that o, = ZZN:1 VR () with the mapping of Lemma 5.7 (here
we can forget for a while about the J indices). We obtain that

N
Ving, = o' Y D*hi (1) Vg
ij=1
D11 _, =D,
ZQ—V(M ‘1)+ZQ—V(M £,
ag l:1 g

where €1, ..., €V~ are chosen as to form an orthonormal basis of 1+. Thus, introducing for
k=1,...,N the driving forces Dy, := Vu{ + ;L—’“k V¢, we obtain that

D?r*1 -1 = DKL - ¢! D*h*1 - 2
Ving, = =———(1-D) + Sty - T mgy,
0o ~ 0 0o
Recall that — SV 4% = ¢ (1 - D). Thus
N N-1 N
; D?h*1 -1 D?h*1 - & ,
—ZJ“’-Vlng,,:a—(]l-D)Q— —g(ZJ““)-(gz-D)
i=1 Qo (=1 %o i=1
D12 L
T m (Z JH V)
9o 1
-1 N N
D?h*1 - &' o D?h 1 - £ i
> - Q—(ZJ’ )-(£‘~D)—Q—<ZJ’ Vo).  (256)
(=1 7 i=1 7 i=1
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Recallthat |£ - D| < ¢|IID| < ¢vVMD - D. Thus
ZJ“’ (€ D)l <HZJ“’HL2 11§ - Dz < Cov/e
ZJ“’ V¢U\|L1(Q)<||ZJW||L2 IVoolr2q < Covo .

Using (120) we moreover see that % < (1. Thus, (256) implies that

(L J7) - VIng,) |l ig) < CoCh Vo

This establishes (255), and the Proposition 10.1 applied with J? :=1 - J? now garanties that
the familty {055 }o>0 is compact in L*(£2) uniformly with respect to time (see the Remark 9.6).

It remains to apply the Propositon 9.12 in order to obtain the convergence to a weak solution
(957 q67 U(sv ¢57 R(S, RF,5) € B(T7 Qa a, N — 1a \Ifa qu) to (PO':(),(S)'

For the passage to the limit & — 0 the reasoning is the same. We have a unifgrm bound for
[(05, ¢°, v°, @5, R°, R™°)|5(1. 0, 0, N—1,w, wr. Since there is no perturbation .J° in the mass
conservation equation, the Proposition 10.1 garanties at once the uniform in time compactness

in L*(€2) of {05 }s>0, and the Propositon 9.12 garanties the convergence to a weak solution to
(P).

It remains to discuss the case of Theorem 4.5 (Local-in-time existence). We first note that due
to the Proposition 8.1, 8.3, we have a bound

167 || L) + [P7°)cge (07 < Co- (257)
We can extract subsequences such that p”° converges weakly in L*(Q), and P uniformly
on [0, 7.

We define a time T*5 via

ss = mf{t € [0,T[: inf P70 (t) = 0}

We know that T* > Ty > 0 where Tj is fixed by the data. At first we can extract a subse-
quence such that T*5 — T*. Due to (257), we see that 0 = inf p7(T%5) — inf p(T™).

Consider now 7" € [0, T*[ arbitrary. Then, forall o < oo(T* —T"),and 6 < do(T* —T"), we
can apply the Propositions 8.1, 8.2, 8.3 and 8.20 and obtain the esimate (253) with 7" replaced
by T”. We then finish the proof as for Theorem 4.4 with T" replaced by 7”. The claim follows. [

Due to Proposition 11.1 it is sufficient to prove the solvability of the problem (P, 5) in order to

complete the proof of the existence Theorems. We are going to carry out this last step by means
of a Galerkin approximation described hereafter.
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Construction of approximate solutions for (Ps,,) We choose

(1) Acountable linearly independent system 7', 72, ... € Wy >°(Q; R?) dense in W, *(Q; R?)
in order to approximate the variable v;

(2) A countable linearly independent system ¢!, (2,... € WI}“’(Q) dense in WFIQ(Q) in

order to approximate the variable ¢;

In order to approximmate the variables 1 we need a countable system 1!, 12, . .. of the space
Whoo(Q; RY) dense in W12(Q; RY). For technical reasons, we have to require additional
properties of this set. For n € N, and ¢,j € {1,...,n} such that ¢ < j, we introduce the
functions 77/ = 1 - Y whith ', ... n™ from (1). By means of an obvious renumbering, we
denote these funtions 77° for s = 1,...,n(n + 1)/2. For all n € N, we assume that there is
p = p(n) > n such that the following additional conditions are valid

1 € span{yt, ... yP}
7° 1 € span{e!, ... YP} foralls=1,...,n(n+1)/2 (258)
po =, (* = espan{y, ... P} foralls=1,...,n

Obvious corollaries of this property are

v € span{nt, ..., n"} = |[v|* € span{y!, ... ,wp(")}

~ ~ (259)
¢ € span{C',..., ("} = (¢ + do) = € span{y', ... P}
For n € N, we are looking for approximmate solutions
pt e CH[0,T]; Wh(; RY)) o™ € CY([0,T]; Wy™(©; R?))
¢n € CH([0,T); WH(Q)) (260)
following the Ansatz
p(n) n n
pt=Y alt) (), ot = bt (@), b= o+ Y clt)('(x).  (261)
=1 =1 =1

where the vector fieds a = a™ € C'([0, T]; R?),b = b™ € C*([0,T]; R") and ¢ = ™ €
C1([0,T]; R™) are to determine.

Our approximation scheme is (P7-7o—75) as described in the section 6. We project this scheme
on the Galerkin space and choose 7 = 7,, = % In order to state approximate equations, we

needforit = 1,..., N the free energy functions h, 5 (cp. (152)). In this point we introduce the
abbreviation

K" (1) = Vh; 5=V (hs)"(u") + T (") (262)
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In order to approximate the equations (47), we consider for s € {1,...,p(n)}
/at%* / (2 (") o™ + J") - VO© + (") - 4°)
+ [+ 30, (262)
Introduce a Matrix-valued mapping /o — A' (1) = {a;; (1) }ijm1,. pn) Via
ousli) = [ A 000 = [ (DRM 0 + 7 (0 6.0 005 (e

Owing to the convexity of 4} and of the function w, we see that A'(11) is symmetric and positive
semidefinite. Due to the Ansatz (261) for 1™, we can now express (263) in the equivalent form

Flm @Gy + )90+ [ rGe)v [0+ 19 v

In order to approximate the equations (48), we consider for s € {1,...,n}
[ voarw == @169+ [ ) v
Q

— [ sy v-/ Jmi Y -S—/i-,@*"vn-S. 265
/Q(vn Z vt = | W) Vo (265)

a) (1) /%* L' —/(Vha( )+ T (W) Lt (266)

Owing to the nonnegativity of Vh} and of w’, we see that AQ(M) is symmetric and positive
semidefinite. Due to the Ansatz (261) for v™ and ", we can express (265) in the equivalent
form

A2( M)V (t) = F2(a(t), b(t), c(t))

/«@* " V)v”~775+/ (W) divy®

Q

N V4
o van v s+/ Jn,i‘v 5" — _%* nv¢n s
/Q< o [ [ ey

In order to determine ¢,,, we use the ansatz ¢,, = qgn + ¢y and we consider the projection onto
span{C!,...,("}* of the Poisson equation, that is

€ (1+x) /Qvén-vci:—eo(urx) /QV%VCW/%-%*(M”)C". (267)

Q
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We make use of the Ansatz (261) for ¢,,, and we see that the vector ¢y, . . . ¢,, can be determined
via for a linear system A ¢ = f where

Ai,j :€0<1+X)/VCZV<]fOI’Z,]:1,7TL
Q

fi= —eo(1+x)/quo-VCi—{—/i-%*(p”)giforizl,...,n. (268)
Q om

Since the matrix A is by assumption invertible, we obtain that ¢ = A~ f =: f(a).

Overall, the Galerkin approximation (263), (265), (267) has the form

Al(a(t)) 0 a\ _ [ F'(a(t), b(t), f(a(t)))
( 0 NMW)(”)(meM&ﬂwm> 209
We consider the initial conditions
a(0) =a”" e R, b(0) =b"" € R". (270)

Here we require for the reason of consistency that

p(n)
PO =" a)" = = V,h(p) in LH(€; RY)
= (271)
0" = Zbg’n 7 — v%in LY(Q; R¥) asn — oo.
=1

We moreover assume that
1" | 2y < Co, (272)
which by definition also yields forz = 1,..., N
P = 8 (1®™) > ¢y > 0 everywhere in Q. (273)
At first we can obtain local existence for the problem (269), (270).

Proposition 11.2. There is € = ¢(n, a®", b®™) such that the problem (269), (270) possesses
a solution in C*([0, €]; RP x R™).

Proof. Recall (273). Consider the matrix A'(1") (cf. (264))
AL = [ Db o) o vt
Q
Owing to the strict convexity of him(; on compact sets, Al(uo) is positive definite and therefore

invertible, and ||[A'(u°)] 7| < C(a®, n). The matrix A%(1°) (cf. (266)) is uniformly invertible
because VR s is stricly positive on compact sets, and [|[A*(u”)] || < C(a®, n).

The system matrix A in (269) satisfies det A = det A' det A2. Thus, A is invertible at a°, b°,
and standard perturbation arguments yield the claim. O
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Next we want establish a continuation property for the solution, and we need a priori estimates.

Proposition 11.3. Assume that the approximmate system (269), (270) possesses a solution
(a, b) € CH([0,T*[; R? x R™) foraT* > 0. Then, u™, v™ and ¢,, satisfy the dissipation
inequality with free energy I, 5 and mobility matrix M.

Proof. We apply the ideas of Proposition 7.1. We can multiply (263) with 1. Due to the addi-
tional property (258) and to (259) on the system {!, ... 1"}, we can also multiply (263) with

4

Second, we multiply (265) with v™. Due again to the additional property (258) and to (259) we
can also choose |v™|? 1 as a test function in (263) to obtain that the perturbations vanish. The
claim follows. O

Next we verify a continuation criterion.

Proposition 11.4. Assumptions of Proposition 11.3. Then ”MnHL°°([0,T*]xQ)+HU”HLoo([O’T*]XQ)+
[Pl Lo o.771x0) < C(n).

Proof. The bound [|Z*(1")||Loo(@re) < Co also implies that sup, ,yeq,. [Z*(1")] <
C(n). The reason is that the subset M := Z*(span{t!,...,¢¥P™}) (C LY(Q; RY))is
parameterised by a finite dimensional linear space. Thus, there exists a constant c,; such that

ull 1) = ear [|ul| oo (o) forallu € M.

We want to obtain a L>° bound for u™. By construction we have for ¢ €]0, 7| arbitrary

CTnZ/\/m<Tn/ "M <Cy.

Now we prove: There is ¢ = ¢(n) such that ]1:\1/2 < ¢z - ¥[Y2| 1) for all z € RP.

Otherwise there is for each j € N a 2/ € RP such that \xj|1/2 > j |||x9 . ¢|1/2HL1 . Thus
27 - 2 | oy < 57" with &7 = 27 /|27 pee. =L
But since |||Z - 1|'/?|| ;1) = 0, we obtain that Z - 1) = 0in €2, and due to the ch0|ce of the
system {1, ... P}, it foIIows that Z = 0, a contradiction.

It follows that

C(n)

n

I (O ) < en) [a(8)[32 < &) (111" O ||y < Co.

Thus ||| o (jo,7%)x ) < C(n).
It follows from the properties of Z* that inf,—; . infj rxo Z; (") > c(n) > 0. From
the bound [, Z* (1" (t)) - 1 [v"(t)]* < Co, we obtain that |[v"™ || Lo (o, 7+ 1x) < Coc(n) ™.

Analogously, [, [V, (t)[> < Cy implies that ||V, || e (o,r+1x2) < C(n), and since ¢, =
¢ on [0, T*] x T, the claim follows. O

As a Corollary of these estimates, we obtain the global solvability of the approximate system.
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Corollary 11.5. LetT' > (. Then, the approximmate system (269), (270) possesses a solution
(a, b) € C1([0,T]; R? x R™).

Proof. Owing to the Proposition 11.2, there is T™ > 0 such that (269), (270) possesses a
solution (a, b) € C'([0, T*]; R? x R™). Since ||"|| o< (0,7+x) < C(n), it follows from the
properties of * that inf,—, _ n infjo r+jx0 Z; (1™) > c(n).

The matrix A*(p"(t)) is invertible for all t € [0, 7], and ||[A'(x™(¢))]7Y| < C(n). The
matrix A?(u™(t)) (cf. (266)) is uniformly invertible, and ||[A%(u"(¢))] 7| < C(n) on [0, T*].
Due to the Proposition 11.4, the functions p™(7™), v™(T™) and ¢,,(T™) belong to L>°(£2) and
their norm in this space is bounded independently on ¢.

Thus, the problem (269), with initial data (a(7™),b(7™)) possesses solution in an intervall
[T, T* + €(n)], and the claim follows reiterating this argument. O

Proposition 11.6. Letn € N and T' > 0. The Galerkin approximation (263), (265), (267),
possesses a solution with the regularity (11) such that the dissipation inequality is valid with
free energy function h..,, s and mobility matrix M, .

Uniform estimates We define

pro=R (W) = V(he)" (1") + Ta ' (W), pni=hy s(1").
The approximate vector of total masses p" € C'([0,T]; R") defined via p"(t) = [, p"(t)
satisfies p"(0) = p° + 7, [, w'(1°). Therefore, for ¢y := | [, w'(u")| we have

—n — _ s ~ A§F
P"(t) € Beyr, (P°) ® W = By s, (p°) @ span{y’, ..., 7% 4%, ... ,4% }. (274)

We obtain for ¢g 7, < 3 dist(p°, M.q) that the conclusion of Proposition 8.17 is valid. Apply-
ing the conclusion of the Propositions 8.1, 8.2, 8.3 and 8.20 to g,, := p" - 1 and ¢" := I1u"™ we

obtain that [(12", V", ¢n)|B(1,0,a, N, v, 1) < Co.

Passage to the limit n — oo Due to the condition (258), we can multiply the equations (263)
with ) = o™ -n° 1, s € {1,...,n} arbitrary. We obtain that

/8tgnv"-ns—/an”-V(v"-ns):/(]I-J”)-V(v"-ns).
Q Q Q

Thus, it follows that

/at(gnvn)'ns_/Qnatvn'ns_/Qn (Un'v)vn.ns
Q Q Q
—/gn(v”@w") : Vnsz/(]l~J")-V(v”-n8).
Q Q

Rearranging terms
Jotenenyw = [ ot ouy s v = [ v )
Q Q

Q
_ / on (O + (0" - V)o™) - 7.
Q
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Using the latter identity and (265), we obtain that

/ O(on ") - 1® — / on (V' ®@V") - Vn® = /pn divy® — / S(Vo") - Vn®
Q Q Q Q

N
+ Jv .V S~”—/i~”vn~s. 275
/Q(; et = | ) Véa (275)

Due to the identities (263) and (275) we obtain for all t € [0, T'] the representation

N RO RE R W
forall (1, n) € span{4!, ..., p*™} x span{n', ... 5"} . (@76)

Here F € C([0,T]; Z(LY(Q), [CX(Q; RNF3)]*)) is the functional naturally defined by the
right-hands of (263) and (265), that is

Filt, A () = /p ¢+//w M)V,

// o [ [,
Folt, A")( //gnv@)v n+//pndlvn—//S(Vv”)-Vns
L e e

As the systems span{wl, ..., "™} and span{n',... 0"} are dense in C" for n — oo, we
easily show that there is a subsequence such that p™(t) and o, (t) v"(t) converge as distribu-

tions for all t €]0, T'[. Thus, the conclusions of Lemma 9.1 are valid and we can produce a limit
element (11, v, ¢) € B(T, Q, a, N, ¥, 1),

In order to obtain the strong convergence of the sequence, we use the estimate of Lemma 8.18
valid for the class B(T, 2, o, N, ¥, ¥l) and fixed ¢ > 0, and a variant of Corollary 9.7.
Abbreviate Z = V(h;)* € C(RY; RY). We show that for all € > 0, there are C, > 0 and
m. € N such that for all w!, w? € Wh1(Q; RY)

|2 (w') — %(wz)HLl(Q) <e(1+ s_up [l |11 (RN))

1=

— Z(w?)) - ¢’

Here ¢!, ¢?, ... is a dense subset of C.(€2; RY). Then, we choose w! = p™(t) and w? =
p"*P(t), and integrate over the interval J = [0,T] \ (Is,, U Isp+p) Where I, = {t :
| 1" ()| 21 (@) = €}. Arguing as in the Corollary 9.7, we obtain after few steps the inequality

|2 (") — Z (") || o o,y ) < +e(T+Cy)

. ¢
(on In)()
+ C. Z /

— Z("7)) - ¢
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Due to Proposition 8.1, | Z(u") — p"| = |1 ' (™) < Cy 727" Thus, in view of Lemma 9.1,
we ensure that Z (1" (t)) — p(t) as distributions for almost all ¢. This yields

C
li R(p") — Rt < —
msup [|%(u") = R wronxe) < T 5 G
We conclude as in the proof of Corollary 9.7 that {Z(u™)} converges strongly in L!(Q; RY).

Then, owing to the uniform bound [u"]Lz(n AYe) < (), we obtain that p = lim,,_,o 1"
ON n

exists almost everywhere in (), and we easily identify (1, v, ¢) € B(T, , a, N, ¥, ¥l) as
a weak solution to the problem (P, s).

+e(T+Cy).

A Proofs of some auxiliary statements

Proof of the Lemma 8.5

Proof. The proof relies on the availibility of a solution operator to the problem
divX = finQ), X =00n0, (277)
for all f having mean value zero over €2, so that for all 1 < ¢ < 400 the estimates
1 X o) < cq I flla@y, Xz < cq 1fll g oy (278)

are valid. For details about the solution operator, see among others [FNP01], section 3.1.

We begin with the case o > 3. Then, foralln € C([0, T'[; C1(Q; R?)) the function p satisfies

/pdivn——/gv-m—/gv@v : Vn—l—/S(Vv) : Vn
Q Q Q Q

—/Q(if-V)n-v—/QQovo-77(0)+/QHFV¢-77-

We make use of the estimates

[ even] < ool g 1 e

. 2
[evon s Vol <levtl, i g 1900t

/Q S(Vo) : V| < e Vol IVl 20

N .
/(ZJ;-V>n-v <
Q =1

\ /Q 0 V61| < InF Vol e Il

(279)
N

ZJZ,U

=1

1V L3
£23/2(Q)

< c|In” V|| Lo (@ lInll oo o wra()) -
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Let ¢ €]0, T'[ and consider according to (277) a solution to the problem
div X = o(t) — o(t) in 2, X = 0o0n 02
Since 0(t) = || 00| 1(0) for all ¢ as a consequence of (161), we obtain the estimate

X w1 < e(lle(t)]

L) + ool @) -

Further the identity (161) also implies that

N
- = -V J' -V =0 forall clo,T; C*(Q)),
/ng /ng ¢+/Q; b= Oforall s € CL( @)

and since we assume « > 3, this yields
N
loell 2. w2 < levlizeg + 1Y Tl
=1

< cllov] L2

6+a

N
o1l > Jilzag) < Co.

Thus we also obtain from the properties (278) that
1Xellz2@) < clloellz,m; w12 < Co-

Owing to the inqualities 6/ (5av —6) < 2 and 3/ (2a—3) < «, we see that | pr div X| <
Co. Thus [, p 0 < Co, and since ¢ > P/ the claim follows.

If « < 3, then we assume that 1 - J = 0, then p satisfies for all n € CL([0, T[; C}(; R?))

/pdivn:—/gv-nt—/m;@v : V77+/S(VU) : Vn
Q Q Q Q
—/ggvo-n(0)+/nFV¢-n.
Q Q

We apply the estimates (279) for the right-hand except for the last one. Note now that 3/ (2cv —
3) > 3, and therefore § > min{3, r(2, I')} > «’ by assumption. It follows that BO‘ > 1,
and therefore

= (Q) = Cy ”TIHLOO 0.1 whEa3 ()

Ev¢-n| <|n” o
[ " von] < IVl g

It can be shown using (161) that ¢ is a solution to the continuity equation in the sense of
renormalised solutions (see [Lio98] or [FNP01]) and that it satisfies for all s > 0 and ¢ €

C0,T; CH(Q))
_/C298¢t:/cggsv.v¢+(1—s)/62ps divo .
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Defining r := 2a/(2s + «)

le*(8) divo(®)]lzr@) < | divo(®)llz @) e za@) < Colldivo®)]@
) < Cp. Moreover, defining 7 = 6a/(6s + )
lo(t)* v(t)[|r) < [lo@)7e@) lv(®)] o) < Co llv#)llzs) »

and this shows that || 0° v|| 2.7(g) < Co, T = 6/ (65 + ). Using the Sobolev inequality

‘/th

For the choice s = 2 — 1, it follows that ||(0®)'|| L 6a < Cy. Now we consider
L2(0,T5 [W 6+ (Q)]*)

a solution to the problem

< Co ([IVl 2 () + 19l 2 ) < Co 190l

L2(0,7; W Sas 5065 (Q))

divX = 0°(t) — 0°(t) in 2, X = 00on 9N

We obtain that ||X|| < () and that ”XtHLQWS—(iG(Q) < (). We see again

o (0,T; W' 2—3(9))
that pr div X is flnlte and the claim follows. O

Proof of the Corollary 9.4 At first, we prove the Corollary 9.4. Here we need the following
auxiliary statement.

Lemma A.1. Let ¢y, ¢, ... € C(Q) be a countable, dense subset of C(Q)). Let K C
L'(2) be a weakly sequentially compact set. We denote L’ () the cone of nonnegative func-
tions in L*(S2). Then, for every § > 0, there are a constant C' = C(§) € Ry andm(d) € N
such that

[Aullzr @)

Aug;
Q

forallu € W1(Q) and A € L1 (Q) such that \u € K and || Aul|11q) > 6.

Proof. If the claim is not true, then one can find 0, > 0 and for each n € N functions u,, €
Wh1(Q) and A, € LY () such that u, A, € K, ||\, ty|11(0) > 0o and such that

[ An tnll 21y = 0o || Vun || 1@

>\ (o (280)

Since A, u,, € K, there is a subsequence and 3* € L'() such that A, u,, — [3* weakly in
LY(Q) and sup,,c || An n || 11 (@) < +00. Thus, we easily obtain that

2_0; e

=0forallng € N,
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and using the properties of the system {¢; }, this yields 5* = 0. On the other hand, the se-
quence Vu,, is bounded in L' (£2) owing to (280). Passing to a subsequence, we obtain that
u(z) := lim,_e0 un(z) € R exists for almost all z € €. In particular, the characteristic
functions X;f = X{z€Q:un(2)>0} ANA X, 1= X{zeQ:u,(x)<0} CONVErge pointwise almost every-
where in Qto x* = X{zeQ:u(z)>0} @Nd X~ 1= X{ze:u(z)<0}- We can then use for instance

the Proposition 1. in [GMS98], Section 1.2.4, to see that
A Uy X5 — % xF = 0 weakly in L'(Q).

Together with the fact that ||\, uy| 1) = fQ Anun {X;7 — X, }, this proves that 6y <
| An tn |1 (@) — 0, a clear contradiction. O

Proof of Corollary 9.4. For j € N, define I; := {t €]0, T[: |[v()| 120/ () < J}-

Since a > 3/2, one always can show that 2a’ < 6, and thus that ||v|| ;220 (g) < Co. Thus,
M0, T\) < ej™.

We now define aset K = K(j) C L'(Q) via

K = U{e®) (v'(t) = o))} -

te]]- e>0

Note that for ¢ € I;, one has ||o(t) v(t)HL%(Q) < le* )o@ [0(E)]| 2o () < Co j- Thus

the set K is bounded in L%(Q) and it is weakly sequentially compact in L'(€2).
Let 0 > O arbitrary. Consider A := ¢.(t) and u := v(t) — v(t). According to the Lemma A.1,
if H)\UHLI(Q) > 5, then

[[oe(t) (v°(t) = v(@)) |21 () SOV (0°(E) = v(E)) |1

m(d)
o) Y / 0c(t) (v5() — (1)) &

J=1

Y

Thus it also follows that

|0e(t) (v(t) — v(t))|| L1 (@) <6 max{l, ||V(v(t) —v(t))|[L1)})

m(d)
o) Y / 0c(t) (v°() — (1))

=1

)

where C(0) depends only on the set K. We integrate over I; C|0, T the latter inequality and
we obtain that

loe (v = 0)l[ 11t x0) < 6 (T + V(0 = 0)|11(g)

m(d)
0D A PCICORO
m(d)

g(T+CO)5+C(5)Z/

i=1 J

dt

dt

/Q 0:(8) (0 (t) — v(8)) &
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We now consider the subsequence {en}neN of Lemma 9.1. Using the distributional conver-
gence o, (t) v (t) — o(t)v(t) and o, (t) — o(t) for almost all t €]0,T[, we see that
the function g, (t) := [, 0, (t) (v (t) — v(t)) ¢; converges pointwise to zero for aimost all
t €]0,7T, and |g., (t)] < C'fort € I,. Thus

limsup [l0c, (v = v)l|11,x) < (T + o).

n—oo

On the other hand, the sequence g, (v* —v) is uniformly bounded in L%%a (@), and therefore
[0, (v = V)| L1@) < N0, (V™ — V) |lLrz;x) + [|@e, (V" = V)| L1qo,rp 1y x0)
6 )
6+a
Now, lim sup,, o, [|@e, (v* —v)||1(@) < (T + Cp) d + Cp j~° and the claim follows. O

< [, (v — U)HLl(Iij) +Coj ™%, s:=min{2,

Proof of Lemma 10.3 Next we want to provide the proof of Lemma 10.3. We commence with
the fundamental technical observations due to Lions ([Lio98], page 17-21) about the compen-
sated compactness of the acceleration terms (see also [FNP01], section 3.4).

55}, con
sider { X} c~0, X C L*(Q; R3) such that fore — 0

X¢ — X strongly in L*(Q; R®), 0,X¢ — 0,X weakly in L*“(Q; R?)
VX — VX weakly in L"(Q; R?).
Then
v 0, X 4 0. v° @0 1 VX = 0v-0,X +ov®@v : VX weaklyin L'(Q).
Proof. The assumptions imply that a’ < 5. Using LP9 interpolation, there are 71 > 2 and
ro9 > a’ and a certain interpolation exponent A\ E]O, 1] so that

. 1-X <Cr
s g 001, <G

locv¥llzrima(@) < llocveIl’

Similarily since b’ <
such that

3+ < there are p; > 1 and po > b’ and an interpolation exponent A €]0, 1|

loe [Pl errz(@) < Nloe [0 l| 7o gy lloe 021117 ) ﬁ(Q < Co.
As a consequence of Holder’s inequality, one then finds a z > 1 such that
| 0e v 0, X |12 0) + [[0e v @ v+ VX 120) < C. (281)

Since the exact value of z is not necessary to our purpose we avoid to burden the proof by
calculating this exponent. We also note that

10 0 X || 201() < N0ell oo (@) 10:X [ 120 < C
Joct : VXlmng) < et 2 g IV X gy < €

L2 ¥ ( (282)
_ a« >6 B 6o b >6
hN=ra’ 5 q2_(6+a)b+6a 5
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After these preliminary observations, we now want to establish the convergence property. We
define vector fields w¢, w : Q@ — R* via w® := (1,v¢) and analogously w := (1, v). The
first step is to show for i = 1,2, 3 that the sequence A; . := o w® - V4 X[ converges weakly
in L'(Q) to A; := pw - V,X;. Here V := (0;, V) is the total differential. Owing to (282),
note that || A, HLz v < O,y = min{ %, (Hgﬁ} > 6/5. Consider now arbitrary
n e Ccl(Q, R?’). Then, due to the Gauss integration by parts theorem

/(QewE V)X = _/(Qewe V) - X +/ ocw - Vy(n X°). (283)
Q Q Q
At this point we recall the continuity equation (237). We consider ) € Ccl(Q) arbitrary, and we

define 1) := 1 - X°. We easily verify that ¢, € L"*(Q) and that Vi) € L>™>® %}(Q).
Thus, by density we can use this test function in (237), and therefore

_/Qgewe .v4(nXE)Z/QJE-V(n-XE).

Owing to the property J¢ — 0 strongly in L?(Q) as € — 0 this yields

o i

S Cp HJEHLz(Q) (HVXeuLQ(Q) + HXeHLz(Q)) —0ase —0.

Owing to (283) and the strong convergence of X ¢ in L*(Q), it follows that

/(@ewf‘W)X“n%—/(Qw'W)n'X-
Q Q

Using that div4(pw) = 0 in the sense of (239), this yields that g, w* - V4, X — ow - V4 X
as distributions. Therefore,

A;c — A;weakly in L*Y(Q) fori =1,2,3. (284)

For arbitrary 7, j € {1,2,3} and ¢ € C.(Q), we now express

/v A5¢ = /v — AeC
+/QQ€(Tn(vf)—T( v;)) W - V4X€<+/Q n(vi) (A5 = A4;) ¢ (285)

Forn € Nand s € R, we denoted 7},(s) := sign(s) min{|s|, n}. Denote B,, :=
Uizios{(t ) = |ui(t, @) > (Ben) < 3||v||z2 n 2. Then, epxloiting (281),

we obtain that
\/ =T Ay = | [ -z <2ilme [ 1Al

< 20 ||¢ ||z (q) meas(Ben)* < 2C ||C|l e .
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On the other hand, owing to Remark 10.2, we have o, |T (v) = T,(v)] < gc v —v| = 0
almost everywhere in (, and therefore o, (T},(v) — T,,(v)) — 0 strongly in L*~°(Q) for all
0 > 0. We verify easily that ||w® - V4 X*| L2 minta, < C, and thus there is 0y > 0 such

that [[w® - VaX*| por+s0(g) < C- Thus

5 Q)

/Q 0 (Ta(vf) — To(ws)) w - VaX5 ¢

< [IClzoe @) llw - VaXC| farseo ) ll0c (Tn(v®) = T ()| Loa—e(@) = Oas e = 0.

Due to the weak convergence (284)
’/ Tn(vz) (A;-AJ><‘ —0ase— 0,
Q

and for B,, := Ui:172,3{(t,$) s it )| > n},

fn=mien -

It follows from (285) that lim sup, _,, ‘fQ(vf A§ —v; Aj) C‘ < C||¢|| (@) n=¥*', which yields
the claim. O

[ = Ajc\ <20 Cllimiy n

Proof of the Lemma 10.3. Let ¢ € C}(0,T'). Consider for ¢ €]0,T[ the weak solution . €
W12(0) to the auxiliary Problem

—At)e = 0(t)¢(t)in, ¢ =00n00.

Then the estimate HQZJEHLOO(QT; w2eay < € | 0e|| o= (0,7 Lo (02)) is valid. Moreover, u = ) is
a weak solution to

—Au = (0:(t) C(t))e = C(t) (— div(ee v + J) + 0.(t) ¢'(t), uw=00n0.
This yields for 6 /(6 + «) > 2 that
[0l 20 w20y < ¢ (loe vz + 1 r2@) < ec Co-
Letn € C1(Q) arbitrary, and consider the field X¢ := 1 V1).. Then
10:X | 20,1, wr2)) < Co,  [[VX | oera@) < € |9l Loo 0.1 w2 suppn)) < Co -

Define 1 € W12(Q) to be the weak solution to the auxiliary Problem —A1) = o (t) () in
[W,*(Q)]*. Then it is readily proved (use the Remark 9.3) for X = V)7 that

X — X strongly in L*(Q), 0,X¢ — 9,X weakly in L*(Q) ,
VX — VX weakly in L*(Q) .
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Since 2 > 6 /(b — 6) and @ > 220‘73 (this is exactly the case for az > 3), we can show that

the assumptions of Lemma A.2 are satisfied. Thus
0V - O X+ 0.0 @0 1 VX — 0v-9,X +ov®v : VX weaklyin L'(Q) .
Moreover, calling here 1) the coefficient of shear viscosity
/S(Vve) : VX =np / D(Vve) : VX + A / div v div X¢
Q Q Q
= —p / v AXE—np / v - V(div X€) + A / divv® div X¢
Q Q Q

:770/ve-curlcurlXe—2770/1}E-V(divXe)+/\/divv6 div X*
Q Q Q

:770/Curlve-culrlXe—i—(/\—k2770)/divv6 div X°.
Q Q

Thus

/S(Vve) : VX© :(/\+2no)/div1j€g€§
Q Q

+ /{()\ 4+ 20) div e Vb, - Vi — o curl o - (Ve x Vi)
Q
We also note that
/pe div X* =/pegev7<+/pevwe-v?7-
Q Q Q
Moreover

< N2 IV X [l 10 z2o@) = 0.

‘/Q(J€~V)X€~ve

Multiplying the Navier-Stokes equation with X © and the limiting equation with X, we then easily
obtain that

/CW(I%-(AJFQT?O) divvf%gﬁ/cmp—(wzno) divv) g
Q Q

Proof of the Lemma 10.8

Proof. One uses the Lemma A.2 with a vector field X“* = V1), 7, where 1, solves

_Awen = Tk(gsn(t)) C(t) in Qa wen =0on 0.
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Then, one obtains for all 1 < p < oo the bound ||t || 1o (o 1, w22()) < C'p- Moreover, since
0., are assumed renormalized solutions to (246), we obtain for k fixed that

_/Csz(Qﬁn)%_/Tk(gEn)m-vw

Q
= — /Q(TI:;(Qa) 0c, — T1(0e,)) divo™p forallyp € C’i(Q) )

This proves the bounds

||atTk;(Qen) HLQ(O,T; [Wol’ﬁ/s(ﬂ)}*) <c k (HUE" ||L2,6(Q) + || div v ||L2(Q))
(Ve ) 126q) < ck (v [ z2o@) + [ diveo™ [z + 1<) -
We obtain from the Lemma A.2 that
0c, V" - O X + 0., V" @0 1 VX = ov-0,X +ov®@v : VX weakly in L'(Q).

But then we can conclude exactly as in the Lemma 10.3 that (p., — 1’ div o) Tk (0.,,) —
(p — 1’ divv) ay, as distributions.

Finally we note that the sequence {p., — 1 div v} is uniformly bounded in L5~ (Q) and
the claim follows. O

At last we justify the continuity statements in the Lemma 10.4 and 10.7.

Proof. We use that the solution to (237), (239) is renormalised. We are going to prove the claim
for a solution to (239). The arguments for solutions to (237) case are similar. For £ € N, denote

fr(s) := min{k, max{s, 1/k}}fors > 0.

If o satisfies (239), we then obtain for the function F'(s) := s Ins and almost all 0 < ¢; <
ty < T that

/Q(Fo ) olta)) — /Q(Fo F)o(t) + /t /Qbk dive = 0 (286)
b =xXr o+ (1 —xx) (Fofe)(0), Xt= X{oelk1,k}-

Thus,

Fo et = [ (o fk)(@(t1)>' < el divolleg) vV = .

Next we use that for postitive real numbers F'(z)—F(z1) = F'(z1) (zo—z1)+1 fol F'(Ax1+
(1 — X\) w2) dX (z9 — 1)?, which yields

|2y — 371’2

1+ max{z, x2} < F(ag) — Flan) — F'(z1) (x2 — 11).-

99



From this inequality, we easily deduce for all u, v € L>(Q; [k~!, k]) that

[ (L) (U M)m

< (ullzmry + 0]l ere)’ (\ [ — () (v - )

>1/2

Thus, for u = fr(o(t1)) and v = fi(o(t2))
I fr(o(ta)) = frlo(t )11 (q)
/Q{(F o fi)(o(t2)) — (Fo fi)(o(t1)) — (1 +In fi(o(t1))) (o(t2) — Q(tl))}‘

e ( Jaiv el Vi + | [ (1 1 fulole) (o) — g(tn)')

< 2|loll L1 ()

Further, we note that

1
o

Ie(e(t2) = ulolt) oy = lts) = ot o — o ()

Thus

loltz) — ot2) 12 ) <Co ( VETT+

[+ In fulettn) (ol) - Q“”’D s

It remains to observe that o € C([0,T]; D*(2)). Thus, o(t1) — o(t2) as distributions for
to — t1. On the other hand { o(t2)} is a bounded family in L(2). We obtain that

) 1
limsup [|o(t2) — o(t1)|| 1) < ko7,

to—1t1

proving that o € C([0,T7]; L*(Q)). O
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