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Abstract

We consider an improved Nernst–Planck–Poisson model for compressible electrolytes
first proposed by Dreyer et al. in 2013. The model takes into account the elastic defor-
mation of the medium. In particular, large pressure contributions near electrochemical in-
terfaces induce an inherent coupling of mass and momentum transport. The model con-
sists of convection–diffusion–reaction equations for the constituents of the mixture, of the
Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electri-
cal potential. Cross–diffusion phenomena occur due to the principle of mass conservation.
Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the
system is degenerate parabolic. In this paper we establish the existence of a global–in–
time weak solution for the full model, allowing for cross–diffusion and an arbitrary number
of chemical reactions in the bulk and on the active boundary.

1 Introduction

Increasing the efficiency of energy storage systems nowadays requires a better understanding
of their fundamental physical principles. Of particular interest are ion transport in electrolytes
for instance in lithium-ion batteries. Classically this transport is modeled by the Nernst-Planck
theory. But the classical Nernst-Planck theory has an important drawback: In the neighbourhood
of interfaces, see [DGM13, DGL14], it is failing for various reasons:

First of all, the classical Nernst-Planck model neglects the high pressures induced by the
Lorentz force which affects the charge transport. Secondly, it does not take into account the
interaction between the solvent and the charged constituents.

A further drawback of the Nernst-Planck theory is the widely used assumption of local charge
neutrality. This assumption completely fails in the vicinity of the boundaries where electric
charges accumulate.

An improved model able to remedy these deficiencies was first proposed in the paper [DGM13].
In [DGL14, DGM15] this improved model was further extended to include (i) finite volume effects
of the constituents, (ii) the viscosity of the mixture and (iii) chemical reactions in the bulk and on
electrochemical interfaces. In the isothermal case, the new model consists of universal balance
equations for mass and momentum and general material–dependent constitutive equations for
the mass fluxes, the stress tensor and the reaction rates. These general constitutive equations
use the driving forces of the system, which are derived from a single free energy function %ψ.
Here we choose a free energy function according to a special constitutive model for electrolytes
proposed in [DGM15, LGD16]. Moreover, we use a generalization of the constitutive equations
for the reaction rates as proposed in [DGM15].
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In this paper we establish the existence of a global–in–time weak solution for the presented
model, allowing for cross–diffusion, an arbitrary number of chemical reactions in the bulk and on
an active boundary that represents a one–sided elecrochemical interface. Moreover we consider
different specific volumes of the constituents.

Our method relies on the one hand on a priori estimates that result from the thermodynami-
cally consistent modelling, and from the conservation of total mass. The estimates are partly a
consequence of known results for the Poisson equation or the Navier-Stokes equations, but we
can regard the estimates on the chemical potentials of the mixture constituents, in particular in
the presence of chemical reactions, as original. The second supporting pillar of our method is
compactness: Here we exploit the original idea of [Hop51] (rather than Aubin–Lions techniques
and their generalisations), and the compactness properties of the Navier-Stokes operator es-
tablished first in [Lio98] and extended in [FNP01]. In order to construct a thermodynamically
consistent regularisation of the system and approximate solutions, we use standard techniques
of convex analysis.

Since large parts of the modelling work in [DGM13] are original and not yet well known in the
mathematical literature devoted to the analysis of mixtures, we are not able to quote a direct
precursor for our analysis. In order to put the investigation into some context, let us mention
[MPZ15] and [Zat15] where models of compressible mixtures, including the energy balance,
but without the electric field, were studied. These models are not derived from the same ther-
modynamic principles that are used in our study: Particularly the constitutive equations for the
pressure, for the diffusion fluxes and for the reaction terms, are different in [MPZ15] and in
[DGM13]. The compactness question occurs like in our analysis but is solved assuming a spe-
cial structure of the viscosity tensor, called Bresch–Desjardins condition. This allows to obtain
estimates on the density gradient, a device which is not at our disposal here. A further difference
between the two mixture models concerns cross–diffusion, which is described in [MPZ15] and
[Zat15] by a special nonsymmetric choice of the mobility matrix, whereas we allow for general
symmetric positive semidefinite matrices. Note that the mobility matrix must be symmetric at
least in a binary mixture. Among recent less directly related investigations let us mention: In
the context of general diffusion, [Bot11]; for models with simplified diffusion and pressure laws
[FPT08], [BFPR16]; for the analysis of incompressible models of Nernst–Planck–Poisson type
[BFS16], [JS13].

In Section 2 the model will be introduced following [DGM15]. The model is formulated for the
normal regime of the system, i.e. it is assumed that the mass densities of the constituents do
not vanish. For the mathematical analysis we will derive an equivalent formulation which exhibits
more stability against possibly occurring extreme behavior, like the vanishing of species.

2 Improved Nernst–Planck–Poisson model

We consider a bounded domain Ω ⊂ R3 representing an electrolytic mixture. The boundary of
Ω possesses a disjoint decomposition ∂Ω = Γ∪Σ: The surface Γ represents an active interface
between an electrode and the electrolyte, where chemical reactions and adsorption may occur.
The other surface Σ represents an inert outer wall with no reactions and no adsorption.
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The compressible mixture consists of N ∈ N species denoted by A1, . . . ,AN. A species Ai

may be carrier of electric charge, zi, and of molecular mass, mi.

We assume that the system is isothermal, so that the absolute temperature denoted by θ is a
positive constant. Under the isothermal assumption the thermodynamic state of the mixture at
time t ∈ [0, T ] is described by the mass densities ρ1, . . . , ρN of the species, the barycentric
velocity v of the mixture and the electric field E. As usual in electrochemistry, a quasi-static ap-
proximation of the electric field is considered, i.e. the magnetic field is constant and the electric
field satisfies

E = −∇φ. (1)

The scalar function φ is called electrical potential.

The active boundary Γ can be viewed as a mixture of NΓ = N +N ext constituents denoted by
A1, . . . ,ANΓ , where the additional N ext constituents take into account the species of the adja-
cent exterior matter, i.e. electrode species. Thus we only consider surface chemical reactions
with participating species that also exist in the adjacent bulk domains. The surface constituents
have the surface mass densities ρΓ

1 , . . . , ρ
Γ
NΓ .

Moreover we consider s ∈ N chemical reactions in the bulk and sΓ ∈ N surface reactions on
the boundary Γ, respectively. The chemical reactions in the bulk and on the boundary have the
general form

ak
1A1 + · · ·+ ak

NAN

Rfk−−⇀↽−−
Rbk

bk
1A1 + · · ·+ bk

NAN for k ∈ {1, · · · , s}, (2)

ak
Γ,1A1 + · · ·+ ak

Γ,NΓA
NΓ

RΓ,f
k−−−⇀↽−−−

RΓ,b
k

bk
Γ,1A1 + · · ·+ bk

Γ,NΓA
NΓ for k ∈ {1, · · · , sΓ}. (3)

The constants aiα, biα are positive intergers. We define the (mass related) stoechiometric coef-
ficients of the kth bulk reactions as

γk ∈ RN , γki := (ak
i − bk

i )mi for i = 1, . . . , N . (4)

The inclusion of the molecular mass in the definition of the stoechiometric coefficients is not
common, but it simplifies the notation. The forward reaction rate of the kth reaction is Rf

k > 0,
and the backward reaction rate is rate Rb

k > 0. The net reaction rate of the kth reaction is
defined as

Rk = Rf
k −R

b
k for k = 1, . . . , s . (5)

The same definitions hold for the surface reactions on Γ. Here the stoechiometric coefficients
are defined as

γkΓ ∈ RNΓ

, γkΓ,i := (ak
Γ,i − bk

Γ,i)mi for i = 1, . . . , NΓ (6)

and the surface reaction rates are

RΓ
k = RΓ,f

k −R
Γ,b
k for k = 1, . . . , sΓ . (7)
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Since charge and mass are conserved in every single reaction, we have

N∑
i=1

γki = 0 and
N∑
i=1

zi
mi
γki = 0 for all k = 1, . . . , s , (8)

NΓ∑
i=1

γkΓ,i = 0 and
NΓ∑
i=1

zi
mi
γkΓ,i = 0 for all k = 1, . . . , sΓ . (9)

2.1 Balance equations in the bulk

In the isothermal case the evolution of the thermodynamic state is described by the equations
of partial mass balances and momentum balance and the Poisson equation.

In ]0, T [×Ω the mixture obeys partial mass balances for i = 1, . . . , N :

∂ρi
∂t

+ div(ρi v + J i) = ri . (10)

Here, v denotes the barycentric velocity of the mixture, and ri is the mass production of the ith
constituent due to chemical reactions. The quantities J1, . . . , JN are called the diffusion fluxes.
We use upper indices in their case because they are vector fields of R3 and not scalars. The
mass production of constituent Ai is related to the reaction rates by

ri =
s∑

k=1

γki Rk for i = 1, . . . , N . (11)

The total mass is defined as % =
∑N

i=1 ρi and has to satisfies the total mass balance equation

∂%

∂t
+ div(% v) = 0 . (12)

Thus the conservation of total mass requires the additional constraints on the diffusion fluxes
and mass productions

N∑
i=1

J i = 0 and
N∑
i=1

ri = 0 . (13)

The side condition on the diffusion fluxes has to be guaranteed by an appropriate constitutive
modeling. However, the constraint (13)2 is already guaranteed by (11) and the conservation of
mass in every chemical reaction (8).

The momentum balance has the form

∂% v

∂t
+ div(% v ⊗ v − σ) = % b+ nFE , (14)

Herein σ denotes the Cauchy stress tensor, % b is the force density due to gravitation, and the
Lorentz force due to the electric field is given by nF E. The quantity nF represents the free
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charge density which may be written in terms of the species mass densities by

nF =
N∑
i=1

zi
mi

ρi . (15)

Throughout the paper, we are going to neglect the gravitational force that plays no role in the
analysis. In the electrostatic setting the balance equation for the electric field reduces to the
Poisson equation for the electrical potential,

−ε0 (1 + χ)4φ = nF . (16)

Here χ > 0 is the constant susceptibility of the electrolyte.

2.2 Constitutive equations

The constitutive equations for the mass fluxes, the reaction rates and the stress tensor can be
derived from a single free energy density %ψ of a general form

%ψ = h(θ, ρ1, . . . , ρN) . (17)

The derivatives of the free energy function with respect to the mass densities are called chemical
potentials,

µi :=
∂h

∂ρi
(θ, ρ1, . . . , ρN) . (18)

In the isothermal setting the balance equations and the free energy density yield a local entropy
production ξ with three contributions due to diffusion, ξD, reaction, ξR, and viscosity, ξV , [MR59,
BD15, DGM15],

ξ = ξD + ξR + ξV ≥ 0 . (19)

A constitutive model that relies on the free energy function (17) implies explicit expressions for
the three entropy productions as binary products. From these expressions we may derive con-
stitutive equations yielding three separate non-negative entropy productions. For more details
regarding the derivation of the entropy production we refer to [MR59, dM63, BD15]. In [BD15]
its is shown how cross–effects revealing the Onsager symmetry can be introduced.

Diffusion fluxes. The entropy production due to diffusion reads

ξD = −
N∑
i=1

J i ·Di , (20)

where D1, . . . , DN are the thermodynamic driving forces for diffusion,

Di := ∇
(µi
θ

)
− 1

θ

zi
mi

E for i = 1, . . . , N . (21)
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The simplest constitutive ansatz for the diffusion fluxes J1, . . . , JN that implies ξD ≥ 0 is given
by

J i = −
N∑
j=1

Mi,j D
j for i = 1, . . . , N , (22)

where the mobility matrix M ∈ RN×N
sym must be positive semidefinite. The matrix M may de-

pend on ρ. Moreover, the side condition
∑N

i=1 J
i = 0 is complied if the mobility matrix satisfies

N∑
i=1

Mi,j = 0 for j = 1, . . . , N . (23)

Exemplarily, following the paper [DGM13], one can construct M from an empirical mobility ma-
trix Memp(ρ) and a linear operator P : RN → RN−1 × {0} via

M := PT MempP , Memp := diag(d1 ρ1, . . . , dN−1 ρN−1, 1) , (24)

where d1, . . . , dN−1 > 0 are diffusion constants, and the lines of the matrix P are given by the
differences ei − eN of standard basis vectors for i = 1, . . . , N . In fact, any operator P that
satisfies for i = 1, . . . , N the condition

∑N
j=1Pi,j = 0 can be chosen in (24) in order to satisfy

(23). Let us emphasize however that our analytical results do not rely on the particular structure
(24) of the matrix M .

Reaction rates. The entropy production due to chemical reactions assumes the form

ξR = −
s∑

k=1

RkD
R
k , (25)

where the driving forces DR
1 , . . . , D

R
s are given by

DR
k =

N∑
i=1

γki µi for k = 1, . . . , s . (26)

To achieve ξR ≥ 0, we assume that the vector of production rates are derived from a convex,
non-negative potential

R = −∇DRΨ(DR), with Ψ : Rs → R convex and ∇DRΨ(0) = 0 . (27)

Note that this choice is more general as in [DGM15], where the following potential is employed,

Dreyer et al.: Ψ = −
s∑

k=1

1
βkAk

e−βkAkD
R
k

(
1 + βk

1−βk
eAkD

R
k

)
+ C , (28)

with positive constants A1, . . . , As and constants β1, . . . βs ∈]0, 1[, C ∈ R arbitrary. By this
choice Dreyer et al. achieve an ansatz of Arrhenius typ, which is widely used in chemistry,

Dreyer et al.: Rk = e−βk AkD
R
k (1− eAkDR

k) . (29)
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Stress tensor. The entropy production due to viscosity is represented by

ξV = 1
2
(σ + p Id) : D(v) , (30)

where the driving force D(v) is defined as D(v) = (∂ivj + ∂jvi)i,j=1,...,3, and Id denotes the
identity matrix.

We split the Cauchy stress tensor into a viscous part Svisc and the pressure p,

σ = −p Id + Svisc . (31)

Then the material pressure p can be calculated from the free energy function (17). The resulting
representation is called Gibbs-Duhem equation and reads

p := −h+
N∑
i=1

ρi µi . (32)

The simplest constitutive choice for the viscous stress tensor Svisc satisfying ξV ≥ 0 describes
a Newtonian fluid. It reads

Svisc = η D(v) + λ div v Id, (33)

where η > 0 is the coefficient of shear viscosity, and the coefficient λ of bulk viscosity satisfies
λ+ 2

3
η ≥ 0.

2.3 Choice of the free energy function

The constitutive model is derived from a free energy density of the general form (17). However,
for the analysis of the model, we need in some extent to specify the choice of the free energy
function. To this end the free energy density %ψ is additively split into three contributions,

h =
N∑
i=1

ρi h
ref
i + hmech + hmix . (34)

Here, the constants href
i (i = 1, . . . , N ) are related to the reference states of the pure con-

stituents. The contribution hmech is the mechanical part of the free energy that is neglected in
the classical Nernst-Planck theory, and hmix represents the mixing entropy.

In the presentation of [DGM13, DGL14], the contributions hmech and hmix are naturally given
as functions of the number densities n1, . . . , nN of the constituents. These are defined via
ni := ρi/mi (i = 1, . . . , N ). Number fractions yi := ni/(

∑N
j=1 nj) for i = 1, . . . , N are

also involved.

The function hmech is the free energy density associated with the isotropic elastic deformation
of the mixture. The mechanical free energy takes into account the different specific volumes
V1, . . . , VN ∈ R+ of the constituents. Assuming a constant bulk compression modulusK > 0
the mechanical free energy in [DGL14] is given by

hmech = (K − pref) (1− n · V ) +K (n · V ) ln(n · V ) .
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Here pref is a constant reference value of the pressure, and n·V stands for
∑N

i=1 ni Vi. Another
typical choice in fluid mechanics is the Tait equation

hmech = (K − pref) (1− n · V ) +
K

α
((n · V )α − n · V ) , α > 1 .

For the sake of generality, we express hmech in the form

hmech = K F (n · V ) + C n · V with F : R+ → R convex . (35)

Dreyer et al. use F (x) := x lnx+ C1 for an simple mixture, whereas the Tait equation corre-
sponds to F (x) = cα x

α + C2.

The free energy function hmix results from the entropy of mixing and is given by

hmix :=
N∑
i=1

ni kB θ

N∑
i=1

yi ln yi , (36)

where kB is the Boltzmann constant.

2.4 The model for the boundary Γ

The active boundary Γ represents an interface between the electrolyte mixture and an external
material. In the most important application the external material is an electrode which is likewise
a mixture of N ext ∈ N constituents. Here we have analogous quantities to those that occur in
the electrolyte, namely the barycentric velocity, and diffusion fluxes and so on. To distinguish
between the electrolyte and the external material we provide the external quantities the suffix
ext.

In this paper we assume for simplicity that on Γ we exclusively have constituents that also exist in
the electrolyte and in the external material. Thus the interface Γ is a mixture ofNΓ = N +N ext

constituents.

The equations of an interface representing a surface mixture are derivable in the context of sur-
face thermodynamics and we refer the interested reader to [ABM75, DGM15, Guh14]. As in the
bulk there are universal surface balance equation and material depending surface constitutive
equations.

To simplify the surface equations we assume on ]0, T [×Γ

� Time variations of the surface mass densities and tangential transport are negligible in
comparison to mass transfer across the surface and to chemical surface reactions. Then
the surface balance equations become stationary.

� The interface is fixed in space, i.e. the interfacial normal speed is zero.

� There is no velocity slip and the normal barycentric velocity is equal to the interfacial
normal speed, i.e. we have on ]0, T [×Γ

v = 0 . (37)
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Surface mass balances and surface reaction rates. We assume that the interfacial unit
normal ν points into the external material.

Under the above assumptions the surface mass balance equations on ]0, T [×Γ then reduce to

0 =

{
rΓ
i + J i · ν , for i = 1, . . . , N

rΓ
N+i − Jext,i · ν for i = 1, . . . , N ext

(38)

Here we use the convention that the N first species on Γ are the electrolyte constituents, while
the constituents with indices N + 1, . . . , N +N ext are the external ones.

It remains to specify the surface mass production rΓ due to surface reactions. As in the bulk,
the production rΓ is related to the surface reaction rates RΓ by

rΓ
i =

sΓ∑
k=1

γkΓ,iR
Γ
k for i = 1, . . . , NΓ . (39)

The interfacial entropy production ξΓ
R due to chemical reaction is, [DGM15],

ξΓ
R = −

sΓ∑
k=1

RΓ
k D

Γ,R
k ≥ 0 with the driving force DΓ,R

k =
NΓ∑
i=1

γkΓ,i µ
Γ
i for k = 1, . . . , sΓ .

(40)

The entropy production of the surface has the same structure as the corresponding entropy
production in the bulk (25). Thus in order to satisfy the entropy inequality a similar ansatz to (29)
may be used. We assume the existence of a potential ΨΓ so that

RΓ = −∇DΓ,RΨΓ(DΓ,R) with ΨΓ : RsΓ → R convex and ∇DΓ,RΨΓ(0) = 0 . (41)

Diffusion fluxes. Due to the above assumptions, the constitutive equations for the diffusion
fluxes at ]0, T [×Γ simplify to

J i · ν = +
N∑
j=1

MΓ
i,j (µj − µΓ

j ) for i = 1, . . . , N , (42)

Jext,i · ν = −
N ext∑
j=1

MΓ,ext
i,j (µext

j − µ
Γ,ext
N+j) for i = 1, . . . , N ext . (43)

Here, µΓ
1 , . . . , µ

Γ
N are the surface chemical potentials of the electrolytic species, whereas the

external species induce the surface chemical potentials µΓ
N+1, . . . , µ

Γ
N+N ext .

These equations describe the adsorption of a constituent from the bulk to the surface. The
kinetics of this process is controlled by positive semidefinite matrices, viz.

MΓ ∈ RN×N
sym and MΓ,ext ∈ RN ext×N ext

sym , (44)
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which satisfy the side condition

MΓ 1N = 0 and MΓ,ext 1N
ext

= 0 . (45)

In the general thermodynamic setting, the surface chemical potentials are derivatives of a sur-
face free energy. Due to the assumption of stationary surface equations, and that the boundary
is fixed, we are able to formulate all surface equations in terms of the surface chemical poten-
tials. Thus, from a mathematical viewpoint the equation system (43) only serves to determine
the surface chemical potentials µΓ and the fluxes.

Electrical potential. The boundary condition for the electrical potential can be derived from
Maxwell’s equations for surfaces, which are satisfied in the quasi-static stetting by a continuous
electrical potential, [DGM15]. On ]0, T [×Γ we have

φ = φ0 , (46)

where φ0 is the electric potential at Γ. In this paper we assume that the surface potential φ0 is
a given function.

2.5 Summary model equations

Domain Ω. Summarising, the evolution of the state (ρ, v, ϕ) in ]0, T [×Ω is described by the
PDE–system

∂ρi
∂t

+ div(ρi v + J i) =
s∑

k=1

γki Rk for i = 1, . . . , N (47)

∂% v

∂t
+ div(% v ⊗ v − Svisc(∇v)) +∇p = −nF ∇φ (48)

−ε0 (1 + χ)4φ = nF . (49)

Here nF is given by the formula (15), the fluxes J1, . . . , JN obey (22), R1, . . . , Rs obey (27),
p obeys (32) and Svisc obeys (33).

Boundary Γ. We have on ]0, T [×Γ the boundary conditions

0 = rΓ +
(
J − Jext

)
· ν , (50)

J · ν = +MΓ (µ− µΓ) for electrolyte constituents, (51)

Jext · ν = −MΓ,ext (µext − µΓ,ext) for external constituents, (52)

v = 0 , (53)

φ = φ0 , (54)

where the external chemical potentials µext, the external potential φ0 and the kinetic matrices
MΓ and MΓ,ext are given. The reaction rates rΓ obey(39) with RΓ satisfying (41). Recall that
the conditions (50) represent NΓ equations and are a shorter form for (38).
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Boundary Σ. We choose as simple as possible model on the surface ]0, T [×Σ: No mass
flux,

(ρi v + J i) · ν = 0 for i = 1, . . . , N ; (55)

complete adherence of the fluid,

v = 0 on ]0, T [×Σ ; (56)

no surface charge,

∇φ · ν = 0 on ]0, T [×Σ . (57)

Initial conditions. Initial conditions are prescribed for the variables ρ1, . . . , ρN . We denote
them ρ0

i , i = 1, . . . , N . Moreover, an initial state v0 is also given for the velocity vector.

2.6 Notation

To get rid of overstressed indexing, we simplify the notation by the convention that we use
vectors for objects of the same type. For instance we write ρ for the vector of mass densities, n
for the vector of number densities i.e.

ρ := (ρ1, ρ2, . . . , ρN) ∈ RN , n := (n1, n2, . . . , nN) ∈ RN . (58)

Moreover we define the vector

1 := 1N := (1, 1, . . . , 1) ∈ RN (59)

and the vectors of quotients of charge and mass, and of volume and mass

z

m
:= ( z1

m1
, z2
m2
, . . . , zN

mN
) ∈ RN ,

V

m
:= ( V1

m1
, V2

m2
, . . . , VN

mN
) ∈ RN . (60)

Using these conventions, we have a. o. the identities

% = 1 · ρ, nF =
z

m
· ρ, n · V = ρ · V

m
etc.

The diffusion fluxes J1, . . . , JN span a rectangular matrix J = {J ij} ∈ RN × R3. The upper
index corresponds to the lines of this matrix. Vectors of RN are multiplicated from the left as for
instance in 1 · J =

∑N
i=1 J

i which is an identity in R3.

The vectors γ1, . . . , γs span a rectangular matrix γ = {γki } ∈ Rs × RN . The upper index
corresponds to the line of the matrix. Vectors of Rs are multiplicated from the left, as for instance
in the identity r = R · γ =

∑s
k=1 Rk γ

k ∈ RN .

Analogously the vectors γ1
Γ, . . . , γ

sΓ

Γ span a rectangular matrix γΓ = {γkΓ,i} ∈ RsΓ × RNΓ
.

In order to describe the reactions, we will further use the abbreviations

R̄ : Rs → Rs, R̄ := −∇Ψ

R̄Γ : RsΓ → RsΓ , R̄Γ := −∇ΨΓ .
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3 Remarks on the concept of the solution

Consider the system of convection-diffusion-reaction equations (47) by given velocity and elec-
tric fields. A (weak) solution to this system is a pair of vector fields (ρ, µ) : [0, T ] × Ω →
RN

+ × RN such that (47) is valid (in the sense of distributions), and subject to the algebraic
relation (cf. (18))

µ = ∇ρh(ρ) . (61)

State–constraints If one thinks of applying functionalanalytic methods to the problem, it is
natural seeking to eliminate the algebraic constraint and to resort to one set of variables, either
µ or ρ. The choice of ρ as main variables is connected to the difficulty that there is no (known)
maximum principle for systems with cross–diffusion. Since the mass densities must satisfy the
physical condition ρi ≥ 0 for i = 1, . . . , N the PDE system remains subject to an inequality
constraint. Moreover, the ρ−variables are not natural to express the diffusion (22) and they
would lead to uselessly complex structures at this level.

As to the µ−variables, due to (61), they obey the constraint µ ∈ Image(∇h; RN
+ ). For a

general function h, the range of ∇h applied to RN
+ might be a true subset of RN . Thus, we

can state that in general, the PDE system is also subject to a constraint in µ. But for the con-
stitutive assumption (34) here under consideration, we can show that ∇h : RN

+ → RN is a
bijection if the first derivative of the function F is surjective onto R. Thus at least for relevant
particular choices of h, the PDE system is unconstrained in µ, and the chemical potentials are
a favourable set of variables for existence theory.

An ’hyperbolic’ component As a next remark, it is important to note that the fluxes J1, . . . , JN

and the functions r1, . . . , rN occurring in the system (47) in fact only depend on the projection
of the vector µ on the subspace 1⊥ := {ξ ∈ RN : ξ · 1 = 0} (see the side conditions (23)
for the diffusion flux, and to the restriction (8) on the vectors γ1, . . . , γs). In fact, only N − 1
coordinates of the vector µ in the plane 1⊥ explicitely occur in the system. In particular, a control
on the spatial gradient can be obtained only for the reduced vector.

Due to these remarks, a change of variables is necessary in order to define the solution. We
keep as main variables:

(a) On the one hand, one coordinate of the vector field ρ, namely the total mass density ρ · 1
that we shall denote % throughout the paper. This is the ’hyperbolic’ component subject to
the continuity equation;

(b) On the other hand, N − 1 coordinates of the vector of chemical potentials µ defined via a
projection onto the linear space 1⊥ ⊂ RN .

The possibility of these choices relies on the following algebraic results that we only aforemen-
tion here.
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Proposition 3.1. Assume the free energy function h satisfies the Ansatz (34), (35), (36), and
that the function F occurring in (35) belongs to C2(R+) ∩ C(R0,+), is convex and possesses
a surjective first derivative F ′.

Let ξ1, . . . , ξN ∈ RN be a basis of RN such that ξN = 1 and η1, . . . , ηN ∈ RN the vectors
such that ξi · ηj = δji for i, j = 1, . . . , N .

We define a ’projector’1 Π : RN → RN−1 and an extension operator E : RN−1 → RN

associated with the basis {ξi}i=1...,N via

ΠX := (X · η1, . . . , X · ηN−1) for X ∈ RN , E q :=
N−1∑
k=1

qk ξ
k for q ∈ RN−1 .

Then there are mappings R ∈ C1(R+ × RN−1; RN
+ ) and M ∈ C1(R+ × RN−1; R) such

that the nonlinear algebraic equations (61) are valid for µ ∈ RN and ρ ∈ RN
+ if and only if there

are % ∈ R+ and q ∈ RN−1 such that

ρ = R(%, q), ρ · 1 = % and Πµ = q, µ · ηN = M (%, q) . (62)

A proof of this elementary result is given in the section 5. In view of Proposition 3.1, we can
equivalently define a solution to the system of equations (47) as a pair (%, q), with a function
% : ]0, T [×Ω→ R+ and a vector field q : ]0, T [×Ω→ RN−1 such that

∂tRi(%, q) + div(Ri(%, q) v + J i) = ri

J i = ei ·M(R(%, q)) (∇(E q
θ

) + z
m

1
θ
∇φ)

ri =
∑s

k=1 γ
k
i R̄k(γ

1 · Eq, . . . , γs · Eq)

for i = 1, . . . , N . (63)

Here we abbreviated R̄ = −∇Ψ. For instance one chooses the system {ξ1, . . . , ξN−1} :=
{e1, . . . , eN−1}. In this case we see that ηk = ek − eN for k = 1, . . . , N − 1 and ηN = eN .
Thus, Πµ is the vector (µ1−µN , . . . , µN−1−µN). For this reason, we propose to call relative
chemical potentials the components of the new variable q.

Obviously, this approach in order to be possible also requires the reformulation of the system
of boundary conditions (50), (51), (52). We mention a second algebraic result, which allows to
eliminate the variables µΓ

1 , . . . , µ
Γ
NΓ so that only the vector µ and the data are involved in the

boundary conditions.

In order to state this result, we first need to reinterpret via trivial extension the matricesMΓ and
MΓ,ext as positive semi-definite elements of RNΓ×NΓ

sym . We introduce a linear space V ⊂ RNΓ

via

V := span{γkΓ}k=1,...,sΓ ⊕ ImageMΓ,ext

Exploiting standard results of linear algebra, we then find a representationMΓ = MΓ,1+MΓ,2,
with MΓ,i ∈ RNΓ×NΓ

sym positive semi-definite for i = 1, 2, such that

MΓ,i(0N × RN ext
) = 0, MΓ,i 1N

Γ

= 0 for i = 1, 2

MΓ,1(V) = 0, ImageMΓ,2 ⊆ V .
1We should in fact speak stricto sensu of a reduction operator.
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We define

(1) dΓ := dimV ;

(2) ŝΓ := dim(ImageMΓ,2);

(3) The reduced boundary reaction vectors γ̂1, . . . , γ̂ ŝ
Γ ∈ 1⊥ × 0N

ext
are the eigenvectors of

MΓ,2;

The following result is proved in the section 5.

Proposition 3.2. Let b1, . . . , bd
Γ

be a basis of V such that bk = γ̂k for k = 1, . . . , ŝΓ.

Assume that the function ΨΓ occuring in (41) belongs to C2(RsΓ ; RsΓ), is strictly convex,
coercive and has a global minimum at zero2.

There is a function Ψ̂Γ ∈ C1(RŝΓ × RdΓ
), (Y, w) 7→ Ψ̂Γ(Y, w) such that

� For all w ∈ RdΓ
, the function Y 7→ Ψ̂Γ(Y ; w) is of class C2(RŝΓ), nonnegative, strictly

convex and coercive on RŝΓ and it satisfies Ψ̂Γ(0, w) = 0;

� Defining −R̂Γ := ∇Y Ψ̂Γ, the boundary conditons (50), (51), (52) are valid if and only if
for i = 1, . . . , N ,

J i · ν +
ŝΓ∑
k=1

R̂Γ
k (γ̂1 · µ, . . . , γ̂ ŝΓ · µ, w0) γ̂ki = −J0

i

J0
i := −

ŝΓ∑
k=1

λk(M
Γ,2) R̂Γ

k (0, w0) γ̂k .

Here λ1(MΓ,2), . . . , λŝΓ(MΓ,2) are the nontrivial eigenvalues of MΓ,2, and the coefficients

w0 are choosen such that MΓ,extµext =
∑dΓ

k=1w
0
k b

k.

Owing to the Propositions 3.1 and 3.2, we define a solution to (47), (50), (51), (52) as a pair
composed of the scalar % : ]0, T [×Ω → R+ (total mass density) and of the vector field q :
]0, T [×Ω→ RN−1 (relative chemical potentials). For the other occurences in (48) and (49) of
the original variables ρ, µ, we use the following equivalences relying on (62)

p = −h(ρ) +
N∑
i=1

ρi µi = K (−F + idF ′)
(
V
m
·R(%, q)

)
=: P (%, q)

nF = z
m
· ρ = z

m
·R(%, q) .

2Since there is a free constant in the choice of the reaction potential, it is always possible to choose it nonneg-
ative
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The problem of vacuum In the context of weak solutions to the Navier-Stokes equations,
the occurence of a set of positive measure where the total mass density % vanishes cannot be
exculded. Such a set is called a vacuum. For a mixture, a vacuum is additionaly characterised by
the fact that the variables ρ and q are ’decoupled’: Here we mean that the mapping q 7→ R(% =
0, q) is trivial on the entire RN−1. For the analysis of the model, an additional concrete difficulty
is raised concerning the compacntness, since estimates for the time-derivatives are available
only for the ρ−variables. Thus, a sequence of mass densities ρn = R(%n, q

n) (n ∈ N)
such that %n → 0 can converge strongly while the corresponding qn are exhibiting oscillatory
behaviour.

The diffusion fluxes of the constituents J1, . . . , JN are linear expressions of the gradient of
q, and therefore the vacuum-oscillations do not affect the concept of the solution at this level.
However the reaction densities are in general nonlinear expressions in q1, . . . , qN−1. For the
concept of the solution, this means that the validity of the representation r =

∑s
k=1 R̄k(γ

k ·
Eq) γk is restricted to the set where % is strictly positive. In a vacuum set, the reaction term r is
the limit of a possibly oscillating sequence and is related to the variable q only via a dissipation
inequality. An analogous situation occurs at the boundary ]0, T [×Γ whenever it is in contact
with a vacuum.

In order to include the possibility of this situation, we relax the concept of a solution to (47),
(50), (51), (52). It now contains four entries: the scalar % : ]0, T [×Ω→ R+ (total mass density)
and of the vector field q : ]0, T [×Ω → RN−1 (relative chemical potentials) like in the natural
definition, but also the production factors in the bulk R : ]0, T [×Ω → Rs and on the interface
RΓ : ]0, T [×Γ→ RŝΓ . We define the vacuum–free set via

Q+(%) := {(t, x) ∈]0, T [×Ω : %(t, x) > 0} . (64)

For the representation of the bulk reactions, we require the following weaker condition

r =
s∑

k=1

γk Rk with R = R̄(γ1 · Eq, . . . , γs · Eq) in Q+(%) . (65)

We introduce a set S+(%) ⊆]0, T [×Γ as the subset of all (t, x) ∈]0, T [×Γ such that there is
an open neighbourhood Ut,x with the property

λ4

(
Ut,x ∩ {(s, y) ∈]0, T [×Ω : %(s, y) = 0}

)
= 0 . (66)

For the concept of the solution, we ask that

r̂ =
ŝΓ∑
k=1

γ̂k RΓ
k with RΓ = R̂Γ(γ̂1 · Eq, . . . , γ̂ ŝΓ · Eq, w0) in S+(%) . (67)

The weakening (65), (67) of the concept of the solution requires an equivalent representation of
the entropy productions due to reactions in the bulk and on the interface.

The dissipation (entropy production) associated with the bulk reactions is given by the ex-
pression ξR := −

∑s
k=1 R̄k(D

R)DR
k . Recall that DR

k := γk · µ for k = 1, . . . , s. On the
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boundary ]0, T [×Γ, the situation is slightly more complicated. Since the entropy production

ξΓ
R = −

∑sΓ

k=1 R̄
Γ
k (γkΓ · µΓ) γkΓ · µΓ, requires the introduction of interface chemical potentials,

we instead use the reduced driving forces D̂Γ,R
k := γ̂k · µ for k = 1, . . . , ŝΓ (Proposition 3.2).

A reduced entropy production, that we will show to be nonnegative, is given by

ξ̂Γ
R = −

ŝΓ∑
k=1

R̂Γ
k (D̂Γ,R, w0) D̂Γ,R

k = −R̂Γ(D̂Γ,R, w0) · D̂Γ,R .

For the validity of the following statement, we use the Theorem 26.5 of [Roc70].

Proposition 3.3. Define R̄ := −∇Ψ with a (strictly) convex potential Ψ ∈ C2(Rs) with
minimum at zero. Then

Ψ(D) + Ψ∗(−R̄(D)) = −R̄(D) ·D for all D ∈ Rs . (68)

Here, the convex conjugate function Ψ∗ is itself a convex element of C2(Rs).

Let ΨΓ ∈ C2(RsΓ) be a (strictly) convex potential. Define a reduced potential Ψ̂Γ and −R̂Γ =
∂Ψ̂Γ as in Proposition 3.2. Then,

Ψ̂Γ(D, w) + (Ψ̂Γ)∗(−R̂Γ(D, w), w) =− R̂Γ(D, w) ·D
for all (D, w) ∈ RŝΓ × RdΓ

. (69)

Here, the convex conjugate function (Ψ̂Γ)∗ is taken in the first variable, and is itself convex in
the first variable.

4 The mathematical results

Mathematical results can be obtained under suitable restrictions to the data of the problem. We
at first formulate these assumptions.

Assumptions on the free energy function

Our estimates on the (relative) chemical potentials moreover require the special form h =
href + hmech + hmix, where the mixing entropy obeys the precise representaion (36). We allow
for a certain generality only at the level of the function hmech which we assume of the form

hmech = K F (n · V ) + C n · V for s > 0 .

Here K is a constant, and we assume that F belongs to C2(R+) ∩ C(R0,+) and is a convex
function.

We assume that there are 3
2
< α < +∞ and constants 0 < c0, c1 such that

F (s) ≥ c0 s
α − c1 for all s > 0 . (70)

16



In the neighbourhood of zero, we assume that F (s) behaves like s ln s: There are constants
positive constants k0 < k1 and s0 > 0 such that

k0

s
≤ F ′′(s) ≤ k1

s
for all s ∈]0, s0] . (71)

In fact, in order to obtain an unconstrained PDE system, we crucialy need that

F ′ : R+ → R is surjective (72)

which is not satisfied for instance by the pure polynomial Ansatz according to Tait (see Section
5 below), but always follows from (71).

Assumptions on the mobility matrix

We assume that M is symmetric and positive semidefinite. Throughout the paper, we assume
that M is mass conservative, that is

M1 = 0 . (73)

Moreover we assume that the entries of M = M(ρ) are linear–growth, continuous functions of
the vector ρ of the partial mass densities.

Except for these few points, the exact structure of the mobility matrix is a delicate topic (in
particular there are connections to the Maxwell–Stefan theory, see [BD15]). In this paper we
restrict ourselves to the assumption thatM has rankN−1 independently on ρ. In other words,
denote 0 = λ1(M) ≤ λ2(M) ≤ . . . ≤ λN(M) the eigenvalues of the matrix M . We assume
that there are positive constants 0 < λ ≤ λ such that

λ ≤ λi(M(ρ)) ≤ λ (1 + |ρ|) for all i = 2, 3, . . . , N, ρ ∈ RN
+ . (74)

Let us remark that due to this assumption, only regularisations of the original Ansatz of the paper
[DGM13] are included in the analysis: In the formula (24) we can for example apply a cutoff from
below to the entries of the empirical matrixMemp. Note that (74) makes sense if we assume that
the model applies to a mixture of N constituents which is not allowed to degenerate.

We will treat the case of degenerate mobilities in a further publication.

Assumptions on the reaction densities

We assume that the reaction rates are derived from a strictly convex, nonnegative potential3

Ψ ∈ C2(Rs). Moreover, Ψ satisfies

Ψ(0) = 0,
Ψ(D)

|D|
→ +∞ for |D| → ∞ . (75)

These assumptions are compatible with the choices (29).

Similarily, we require that the boundary reaction rates are derived from a strictly convex, non-
negative potential ΨΓ ∈ C2(RsΓ) such that

ΨΓ(0) = 0,
ΨΓ(D)

|D|
→ +∞ for |D| → ∞ . (76)

3It is always possible to achieve the nonnegativity because the modelling only requires that Ψ has a global
minimum at zero
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For simplicity we explicitely require at least linear growth of the reaction terms, that is,

inf
X∈RsΓ

λmin(D2ΨΓ(X)) > 0 . (77)

As to the adsorption coefficientsMΓ andMΓ,ext occurring in the boundary conditions (42), (43)
they play in the analysis a role similar to the reactions. We assume them to be symmetric and
positive semidefinite matrices satisfying MΓ 1N = 0 and MΓ,ext 1N

ext
= 0.

The reaction vectors: critical manifold

Denote W ⊆ 1⊥ ⊂ RN the linear subspace given by

W := span
{
γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ

Γ
}
. (78)

Recall that the reduced reaction vectors γ̂1, . . . , γ̂ ŝ
Γ

are associated with the matrix MΓ and
can be identified with elements from 1⊥ (see Proposition 3.2). Call selection S of cardinality
|S| ≤ N a subset {i1, . . . , i|S|} of {1, . . . , N} such that i1 ≤ . . . ≤ i|S|. For every selection,
we can introduce the corresponding projector PS : RN → RN via PS(ξ)i = ξi for i ∈ S, and
PS(ξ)i = 0 otherwise. We can define a linear subspace WS ⊂ RN via

WS := span
{
PS(γ1), . . . , PS(γs), PS(γ̂1), . . . , PS(γ̂ ŝ

Γ

)
}
. (79)

The selection S will be called linearly independent if dim(WS) = |S| and linearly dependent
otherwise.

For every selection S, we denote S⊥ the selection {1, . . . , N} \ S. It can easily be shown that
the manifold

Mcrit := RN
+ ∩

⋃
S⊂{1,...,N}, S linearly dependent

WS × PS⊥(RN) (80)

is the finite union of submanifolds of dimension at mostN−1. We say that the initial compatibility
condition is satisfied if the intial vector of the total masses ρ̄0 :=

∫
Ω
ρ0 dx ∈ RN

+ satisfies
ρ̄0 6∈ Mcrit.

Assumptions on the domain Ω and the boundary Γ

The domain Ω ⊂ R3 possesses a boundary of class C0,1. In connection with the optimal
regullarity of the solution to the Poisson equation with mixed-boundary conditions, we need to
introduce a further exponent r(Ω, Γ) as the largest number in the range [2,+∞[ such that

−4u = f in [W 1,β′

Γ (Ω)]∗ implies u ∈ W 1,β
Γ (Ω)

for all f ∈ [W 1,β′

Γ (Ω)]∗ and all β ∈]r′, r[ . (81)

It is well kwnon that r(Ω, Γ) > 2 in general (see [Grö89] a. o.), but there are numerous
situations where, depending on the boundary of the domain and the structure of the surface Γ,
the optimal exponent satisfies r(Ω, Γ) > 3 (see [DKR15] for results and discussions on this
topic). We require that

α′ :=
α

α− 1
< r , (82)
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whith α from (70). This of course might be a restriction only if α < 2.

Assumptions on the remaining boundary data

We consider only nondegenerate initial and boundary data. This means that

ρ0 ∈ L∞(Ω; (R+)N)

v0 ∈ L∞(Ω; R3)

φ0 ∈ L∞(0, T ; W 1,r(Ω)) ∩ L∞(]0, T [×Ω)

∂tφ0 ∈ W 1,0
2 (]0, T [×Ω) ∩ Lα′(]0, T [×Ω)

µext ∈ L∞(]0, T [×Γ; RN ext
)

(83)

Moreover we assume the compatibility condition −ε0 (1 + χ)4φ0(0) = z
m
· ρ0 weakly.

Results For t > 0, we denote Qt :=]0, t[×Ω the space–time cylinder, and if T > 0 is the final
time of the process, we abbreviate Q := QT . We denote St :=]0, T [×Γ and S = ST .

Exploiting the preliminary considerations of the Section 3, a solution vector to the entire system
(47), (48), (49) with boundary conditions (50), (51), (52), (53), (54) and initial conditions (=:
Problem (P )) is composed of the scalars % : Q → R+ (total mass density) and φ : Q → R
(electrical potential) and of the vector fields q : Q→ RN−1 (relative chemical potentials), and
v : Q → R3 (barycentric velocity field). If we want to account for the possibility of vacuum,
the productions factors are not everywhere functions of these components only. Thus we also
introduce R : Q→ Rs, RΓ : S → RŝΓ as variables.

In order to define the concept of a weak solution we introduce what one could call a natural class
B because this class narurally arises from the global energy and mass conservation identities
associated with the model. The class B reflects the regularity of the solution and essentially
depends on several parameters

� The final time T > 0, the domain Ω and the partition Γ∪Σ of its boundary (see condition
(81));

� The choice of the free energy function h and in particular the growth exponent of (70);

� The mobility matrix M , in particular the nummber rkM ;

� The choice of the potentials Ψ and ΨΓ for the reaction densities.

For the variables %, φ and v we introduce the conditions

% ∈ L∞,α(QT ; R0,+) (84)

v ∈ W 1,0
2,S(QT ; R3) (85)

√
% v ∈ L∞,2(QT ; R3) (86)

φ ∈ L∞(QT ), ∇φ ∈ L∞,β(QT ; R3) , (87)

with the exponents α > 3/2 and r(Ω,Γ) > 2 of the conditions (70) and (81), and with

β := min

{
r(Ω, Γ),

3α

(3− α)+

}
. (88)
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For the variable q, a control is achieved on the spatial gradient thanks to (74), but we ob-
tain a very low regularity in time. In order to state this regularity, we introduce the function,
(◦N ln) := ln ◦ . . . ◦ ln︸ ︷︷ ︸

×N

which is defined on the intervall (◦Ne)(1), +∞[. For Bochner mea-

surable functions u : [0, T ]→ L1(Ω) we define a number

[u]Lw
(◦N ln)

L1(Q) := sup
k>(◦Ne)(1)

(◦N ln)(k)λ1

(
{t ∈]0, T [ : ‖u(t)‖L1(Ω) > k}

)
. (89)

We say that u belongs to the class Lw(◦N ln)L
1(Q) if [u]Lw

(◦N ln)
L1(Q) < +∞. For the variable q

we consider the conditions

q ∈ Lw(◦N ln)L
1(Q; RN−1) (90)

∇q ∈ L2(Q; R(N−1)×3) . (91)

We recall that the reaction factorR is derived from a nonnegative, convex and coercive potential
Ψ. The vectorial Orlicz classes LΨ(QT ; Rs) and LΨ∗(QT ; Rs) are then well known. We use
the notation

[D]LΨ(QT ;Rs) :=

∫
QT

Ψ(D(t, x)) dx dt .

Due to the preliminary considerations of Section 3, we know that the reduced reaction factor R̂
is derived from a potential

D̂Γ,R 7→ Ψ̂Γ(D̂Γ,R, w0) for D̂Γ,R ∈ RŝΓ .

Here w0 ∈ L∞(ST ; RdΓ
) depends linearly on the vector µext of external chemical potentials.

We can reinterpret Ψ̂Γ ∈ L∞(S; C2(RŝΓ)) as the mapping

(t, x, D̂Γ,R) 7→ Ψ̂Γ(D̂Γ,R, w0(t, x)) . (92)

Then, we can introduce a vectorial Orlicz class LΨ̂Γ(S; RŝΓ) as the set of all measurable D̂ :

S → RŝΓ such that

[D̂]L
Ψ̂Γ (S;RŝΓ ) :=

∫
S

Ψ̂Γ(t, x, D̂(t, x)) dS(x) dt < +∞ .

For the variable q we thus have the additional conditions

(γ1 · Eq, . . . , γs · Eq) ∈ LΨ(QT ; Rs) ,

(γ̂1 · Eq, . . . , γ̂ ŝΓ · Eq) ∈ LΨ̂Γ([0, T ]× Γ; RŝΓ) .
(93)

For the variables R and RΓ we consider the conditions

−R ∈ LΨ∗(Q; Rs), −RΓ ∈ L(Ψ̂Γ)∗(S; RŝΓ) . (94)
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For a given vector (%, q, v, φ, R, RΓ) we introduce on the base of the Propositions 3.1, 3.2
the auxiliary variables

ρ = R(%, q) (95a)

J = −M(ρ)D, D :=
∇E q
θ

+
1

θ

z

m
∇φ (95b)

r =
s∑

k=1

γk Rk, DR
k := γk · Eq for k = 1, . . . , s (95c)

r̂ =
ŝΓ∑
k=1

γ̂k RΓ
k , D̂Γ,R

k := γ̂k · Eq for k = 1, . . . , ŝΓ (95d)

p = P (%, q) (95e)

nF = ρ · z
m
. (95f)

The natural class B also encodes an information concerning the conservation of global mass
(integration of (10) over Ω). We additionally introduce the auxilliary variable

ρ̄ :=

∫
Ω

ρ =

∫
Ω

R(%, q) , (96)

and a nonnegative function Φ∗ ∈ C([0, T ]2), Φ∗(t, t) = 0 constructed from the functions Ψ,
ΨΓ (and thus from R and RΓ) via

Φ∗(t1, t2) := sup
i=1,...,N ; [R]LΨ∗ (Q)≤C0

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣

+ sup
i=1,...,N ; [R̂]L

(Ψ̂Γ)∗ (S)≤C0

∣∣∣∣∫ t2

t1

∫
Γ

R̂ · γ̂i
∣∣∣∣+ (t2 − t1) , (97)

for all 0 ≤ t1 ≤ t2 ≤ T . Here C0 is an appropriate constant that we will choose later.

For a function u ∈ C1([0, T ]), we define a weighted modulus of uniform continuity via

[u]CΦ∗ ([0,T ]) := sup
t1, t2∈[0,T ]

|u(t1)− u(t2)|
Φ∗(t1, t2)

. (98)

We are finally in the position to introduce the solution class.

Definition 4.1. Let (%, q, v, φ, R, RΓ) such that % satisfies (84), v satisfies (85), φ satisfies
(87), and q satisfies (90), (91) and (93) and R, RΓ satisfy (94). We define a number

[(%, q, v, φ, R, RΓ)]B(T,Ω, α, rkM,Ψ,ΨΓ) :=

‖%‖L∞,α(Q) + ‖v‖W 1,0
2 (Q) + ‖√% v‖L∞,2(QT ) + ‖φ‖L∞(Q) + ‖∇φ‖L∞,β(Q)

+ [q]Lw
(◦N ln)

L1(Q) + ‖∇q‖L2(Q) + [DR]LΨ(Q) + [D̂Γ,R]L
Ψ̂Γ (S)

+ ‖J‖
L

2, 2α
1+α (Q)

+ [−R]LΨ∗ (Q) + [−RΓ]L
(Ψ̂Γ)∗ (S) + ‖p‖

Lmin{1+ 1
α ,

5
3−

1
α }(Q)

+ [ρ̄]CΦ∗ ([0,T ]) . (99)
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We say that (%, q, v, φ, R, RΓ) belongs to the class B(T, Ω, α, rkM, Ψ, ΨΓ) if and only if
[(%, q, v, φ, R, RΓ)]B(T,Ω, α, rkM,Ψ,ΨΓ) is finite.

An essential property of solutions is the mass and energy conservation.

Definition 4.2. We say that (%, q, v, φ, R, RΓ) satisfies the (global) energy (in)equality with
free energy function h and mobility matrix M if and only if the associated fields and variables
(95) satisfy for almost all t ∈]0, T [∫

Ω

{
1

2
% v2 +

1

2
ε0 (1 + χ) |∇φ|2 + h(ρ)

}
(t)

+

∫
Qt

{
S(∇v) : ∇v + θM D ·D + (Ψ(DR) + Ψ∗(−R))

}
+

∫
St

{Ψ̂Γ(D̂Γ,R, w0) + (Ψ̂Γ)∗(−RΓ, w0)}

(<)
=

∫
Ω

{
1

2
%0 |v0|2 +

1

2
ε0 (1 + χ) |∇φ0(0)|2 + h(ρ0)

}
−
∫

Ω

{
nF φ0 − ε0 (1 + χ)∇φ · ∇φ0

}∣∣∣∣t
0

+

∫
Qt

{
nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t

}
+

∫
St

((r̂ + J0) · z
m
φ0 + J0 · Eq) . (100)

We say that (%, q, v, φ, R, RΓ) satisfies the global mass balance if the vector field ρ̄ (cf. (96))
satisfies

ρ̄(t) = ρ̄0 +

∫ t

0

{∫
Ω

r +

∫
Γ

(r̂ + J0)

}
(s) ds for all t ∈ [0, T ] . (101)

We now give the definition of a weak solution.

Definition 4.3. We call weak solution to the Problem (P ) a vector (%, q, v, φ, R, RΓ) ∈
B(T, Ω, α, N − 1, Ψ, ΨΓ) such that the energy inequality and the global mass identity of
Definition 4.2 are valid and such that the quantities ρ, J , r and r̂, p and nF obeying the defini-
tions (95) satisfy the relations

−
∫
Q

ρ · ψt −
∫
Q

(ρi v + J i) · ∇ψi =

∫
Ω

ρ0 · ψ(0) +

∫
Q

r · ψ +

∫
ST

(r̂ + J0) · ψ (102)

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η (103)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η

ε0 (1 + χ)

∫
Q

∇φ · ∇ζ =

∫
Q

nF ζ , φ = φ0 as traces on ]0, T [×Γ . (104)
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for allψ ∈ C1
c ([0, T [; C1(Ω; RN)), η ∈ C1

c ([0, T [; C1
c (Ω; R3)) and ζ ∈ L1(0, T ; W 1,2

Γ (Ω)),
and the identities

R = R̄(DR) in Q+(%)

RΓ = R̂Γ(D̂Γ,R, w0) in S+(%) . (105)

The sets Q+(%) and S+(%) are defined in (64) and (66).

The concept of weak solution is well defined owing to standard estimates (see also below). We
state our main theorems.

Theorem 4.4. [Gobal-in-time existence] Let Ω ∈ C0,1. Assume that the free energy function
hmech satisfies (70) and (71) and that the mobility matrix M satisfies (73) and (74). Let Ψ ∈
C2(Rs) and ΨΓ ∈ C2(RsΓ) be striclty convex and satisfy (75), (76). Assume that the initial
data ρ0 and v0, and the boundary data µext, φ0 are nondegenerate in the sense of (83). Assume
that one of the following conditions is valid:

(1) α ≥ 2;

(2) 9
5
≤ α < 2 and r(Ω, Γ) > α′;

(3) 3
2
< α < 9

5
, r(Ω, Γ) > α′ and the vectors m ∈ RN

+ and V ∈ RN
+ are parallel.

Assume moreover that

(1) Either s + ŝΓ = 0, that is, there are no bulk reactions and the adsorption coefficients and
interface reaction vectors satisfy dim(Image(MΓ) ∩ span{γkΓ}k=1,...,sΓ) = 0;

(2) Or s + ŝΓ ≥ 1 and the vector ρ̄0 of the total initial masses has positive distance to the
manifoldMcrit of (80).

Then, for T > 0 arbitrary, the problem (P ) possesses a weak solution in the sense of Defi-
nition 4.3 in the class B(T, Ω, α, N − 1, Ψ, ΨΓ). Moreover the following information on the
complete vanishing of species is available:

λ1

(
{t ∈ [0, T ] : inf

i=1,...,N
ρ̄i(t) = 0}

)
= 0 .

In the case that s+ŝΓ = 0 we even obtain the additional time regularity ‖q‖L1(Q;RN−1) < +∞.

If one starts with total initial masses on the critical manifold, then it is possible that certain
species completely vanish after finite time, and the solution then exists only up to this time.
Afterwards, it might be necessary to restart the system with a smaller number of species.

Theorem 4.5. [Local-in-time existence] Same assumptions as in Theorem 4.4, with ρ̄0 ∈Mcrit

and s+ ŝΓ ≥ 1.

Then, there are a time 0 < T0 depending only on the data and a time T0 ≤ T ∗ ≤ +∞ such
that there is a weak solution (%, q, v, φ, R, RΓ) ∈ B(t, Ω, α, N − 1, Ψ, ΨΓ) in the sense
of Definition 4.3 to (Pt) for all t < T ∗. Moreover the following alternative concerning T ∗ is valid:
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(1) Either T ∗ = +∞;

(2) Or infi=1,...,N ρ̄i(t) > 0 for all t ∈ [0, T ∗[ and limt→T ∗ infi=1,...,N ρ̄i(t) = 0. Moreover
‖q‖L1(Qt;RN−1) → +∞ as t→ T ∗.

Our plan is as follows. According to the preliminary Section 3, the algebraic properties of the
equation (61) determines the analysis of the model. Our next Section 5 is therefore devoted to
the proof of the Propositions 3.1 and 3.2. After that, we shall turn our attention to the PDEs.
In the Section 6 we introduce thermodynamically consistent regularisations of the problem (P )
for which it is easier to prove the solvability. For this larger class of problems, we then derive
the energy and global mass balance identities (Section 7) and the resulting a priori estimates
(Section 8). The Section 8 deals in particular with a priori estimates for the variable q, one of the
most demanding part of the analysis. In order to pass to the limit in approximate problems with
the numerous nonlinearities of the system, it is necessary to obtain compactness statements:
This is the second pillar of the analysis, that we establish in the Sections 9 and 10. With all
these tools at hand, we are able to complete the proof ot the main theorems in the Section 11
devoted to existence.

5 Algebraic properties

This section is devoted to the rigourous derivation of the statements announced in the Section
3. We at first enlight the choice of the variables in the bulk, and then prove the reduction of the
boundary system on Γ.

5.1 The choice of variables in the bulk. General free energy

The algebraic relation between partial mass densities ρ and chemical potentials µ is given by

µi = ∂ih(ρ1, . . . , ρN) for i = 1, . . . , N . (106)

In the isothermal case we can forget about the temperature-dependence, that is, h  h(ρ).
Using tools of convex analysis, we immediately obtain that the relation (106) is invertible if h is
convex and smooth. In the remainder of the paper we always denote RN

+ = (R+)N = {X ∈
RN : Xi > 0 for i = 1, . . . , N}, and RN

0,+ = (R0,+)N = {X ∈ RN : Xi ≥ 0 for i =
1, . . . , N}.

Lemma 5.1. Let h ∈ C2(RN
+ )∩C(RN

0,+) be convex. LetD∗h ⊆ RN be the set Image(∇h; RN
+ ),

that is D∗h = {µ ∈ RN : ∃ ρ ∈ RN
+ , µ = ∇h(ρ)}. Then, the Legendre transform of h, de-

noted h∗, is a well-defined function on D∗h, convex and it satisfies h∗ ∈ C2(D∗h). Moreover the
relation (106) is valid for µ ∈ D∗h and ρ ∈ RN

+ if and only if ρ = ∇h∗(µ).

Proof. Since h ∈ C(RN
0,+), it is a closed proper convex function in the sense of [Roc70]. The

claim follows from the Theorem 26.5 of this book.
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Next we investigate the possibility to introduce ’mixed’ coordinates to describe the set of solu-
tions to (106). Let ξ1, . . . , ξN ∈ RN be a basis ofRN such that ξN := 1. Choose η1, . . . , ηN ∈
RN such that ξi · ηj = δji , i, j = 1, . . . , N . We define a ’projector’ Π : RN → RN−1 and an
extension operator E : RN−1 → RN associated with the basis {ξi}i=1...,N via

ΠX := (X · η1, . . . , X · ηN−1) for X ∈ RN , Eq :=
N−1∑
k=1

qk ξ
k for q ∈ RN−1 . (107)

Corollary 5.2. Assumptions of Lemma 5.1. Let ξ1, . . . , ξN ∈ RN be a basis of RN such that
ξN := 1. Define a set D ⊆ R+ × RN−1 via

D :=

{
(s, q) ∈ R+ × RN−1 : ∃t ∈ R

{
Eq + t1 ∈ D∗h
1 · ∇h∗(Eq + t1) = s

}
.

Then, D is open and there is a function M ∈ C1(D), (s, q) 7→ M (s, q) such that (106) is
valid for µ ∈ D∗h and ρ ∈ RN

+ if and only if

µ =
N−1∑
i=1

(Πµ)i ξ
i + +M (ρ · 1, Πµ) 1

= (E ◦ Π)µ+ M (ρ · 1, Πµ) 1 .

(108)

The derivatives of M satisfy the idendities

∂sM (ρ · 1, q) =
1

D2h∗(µ)1 · 1
, ∂qjM (ρ · 1, q) =− D2h∗(µ)1 · ξj

D2h∗(µ)1 · 1
j = 1, . . . , N − 1 . (109)

Proof. Define an open set U ⊂ RN−1 × R via

U := {(q, t) ∈ RN−1 × R : Eq + t1 ∈ D∗h} .

We define a function G : U × R+ → R via

G(q, t, s) := 1 · ∇h∗(Eq + t1)− s . (110)

We compute the partial derivatives of G and we use the representation (119) to obtain that

∂tG(q, t, s) = D2h∗(Eq + t1)1 · 1 > 0, ∂qjG(q, t, s) = D2h∗(Eq + t1) ξj · 1 .

Consider now the solution manifold for G = 0 in U × R+. Since Gt > 0, we obtain from the
implicit function theorem that there is M ∈ C1(D)

G(q, t, s) = 0 if and only if t = M (s, q) .

In particular, ∂sM = G−1
t (q, t, s) and ∂qM = −Gq/Gt.

Assume now that (106) is valid for µ ∈ D∗h and ρ ∈ RN
+ . We express µ =

∑N−1
i=1 (µ · ηi) ξi +

(µ · ηN)1. Then G(Πµ, µ · ηN , ρ · 1) = 0 so that µ · ηN = M (ρ · 1, Πµ).
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Corollary 5.3. Assumptions as in Corollary 5.2. Then there is a bijection R : C1(D ; RN
+ ) such

that (106) is valid for µ ∈ D∗h and ρ ∈ RN
+ if and only if ρi = Ri(ρ · 1, Πµ) for i = 1, . . . , N .

Proof. For (s, q) ∈ D , we define R(s, q) := (∇h∗)(E q + M (s, q) 1). We can compute
that

∂qjRi(s, q) = D2h∗ei · ξj − D2h∗ei · 1D2h∗ξj · 1
D2h∗1 · 1

(111)

∂sRi(s, q) =
D2h∗ei · 1
D2h∗1 · 1

. (112)

In these formula, D2h∗ is evaluated at µ = Eq + M (s, q)1. In order to prove that R is a
bijection, it is sufficient to show that dR is invertible. Let X = (r, q) ∈ R × RN−1 arbitrary.
Then dRX = 0 means that for i = 1, . . . , N one has

ei ·D2h∗
(
Eq − 1

(
r +D2h∗1 · Eq
D2h∗1 · 1

))
= 0 .

Using the uniform invertibility of D2h∗, we obtain that Eq − 1
(
r+D2h∗1·Eq
D2h∗1·1

)
= 0. We can

multiply this identity with η1, . . . , ηN−1, and since ηj · 1 = 0 for j = 1, . . . , N − 1, we obtain
that q1, . . . , qN−1 = 0. Therefore also r = 0, and the claim follows.

The pressure function The pressure function is given by the formula (32). We immediately
see under (106) that p = −h(ρ) + ρ · µ = h∗(µ) where h∗ is the convex conjugate of h. We
define a function P : D → R via

P (s, q) := h∗(E q + M (s, q)1) . (113)

Lemma 5.4. Let (s, q) ∈ D . Then P ∈ C1(D) satisfies

Ps(s, q) =
s

D2h∗1 · 1
, Pqj(s, q) = ξj · ∇h∗(µ)− s D

2h∗1 · ξj

D2h∗1 · 1
.

In these formula, D2h∗ is evaluated at µ = Eq + M (s, q)1.

Proof. Define µ := E q + M (s, q)1 and ρ = ∇h∗(µ). Then

Ps(s, q) = 1 · ∇h∗(µ) Ms(s, q) = ρ · 1Ms(s, q)

Pqj(s, q) = ξj · ∇h∗(µ) + 1 · ∇h∗(µ)Mqj(s, q) = ρ · ξj + ρ · 1Mqj(s, q)

and the claim follows from the Lemma 5.2.
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5.2 The variables in the bulk. Special constitutive choice of the free en-
ergy

For special choices of the free energy, we can find more explicit formula than Lemma 5.1. Under
the conditions (35) and (36), the relation (106) reads

µi = ci +K
Vi
mi

F ′(V · n) +
kB θ

mi

ln yi i = 1, . . . , N , (114)

where c1, . . . , cN ∈ R are certain constants depending on the reference states, θ > 0 is the
absolute temperature assumed constant and kB is the Boltzmann constant.

Note that the free energy h = href + hmech + hmix satisfies the assumptions of Lemma 5.1 if we
assume that the function F ∈ C2(R+) ∩ C(R0,+) is convex. At first we want to characterise
the set D∗h and we need a preliminary Lemma.

Lemma 5.5. There is a function f ∈ C1(RN) such that if the identity (114) is valid for µ ∈ RN

and n ∈ RN
+ thenF ′(V ·n) = f(µ). Moreover, the function f satisfies the following inequalities

m

K V
(sup

i
µi − sup

i
ci) ≤ f(µ) ≤ m

K V
(sup

i
µi − inf

i
ci) + kB θ

K V
lnN (115)

and |∇f | ≤ m/(V K). For a vector V ∈ RN
+ we here abbreviate V := infi=1,...,N Vi and

V := supi=1,...,N V .

Proof. Define a function G : RN × R→ R, (µ, t) 7→ G(µ, t) via

G(µ, t) :=
N∑
i=1

exp

(
mi (µi − ci)−K Vi t

kB θ

)
− 1 .

It is readily verified for all µ ∈ RN that limt→−∞G(µ, t) = +∞, that limt→+∞G(µ, t) =
−1, and thatGt(µ, t) < 0. Thus, the solution manifold toG(µ, t) = 0 is a curve {(µ, f(µ)) :
µ ∈ RN} where ∂if(µ) = −G−1

t (µ, f(µ))Gµi(µ, f(µ). Easy computations show that

∂if(µ) =
mi

K

exp
(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

) . (116)

In particular |∇f | ≤ mV K−1. Moreover, if G(µ, t) = 0, then setting

yi = exp

(
mi (µi − ci)−K Vi F

′(t)

kB θ

)
, (117)

we see that µi = ci +K Vi
mi
t+ kB θ

mi
ln yi for i = 1, . . . , N . Since y ∈]0, 1[N and y · 1 = 1,

it easily follows that

m

K V
(sup

i
µi − sup

i
ci) ≤ t ≤ m

K V
(sup

i
µi − inf

i
ci) + kB θ

K V
lnN

proving (115).
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We are now ready to prove an inversion formula for the relation (114).

Corollary 5.6. Assume that the function F ∈ C2(R+) ∩ C(R0,+) is convex. Define D∗h :=
Image(∇h; RN

+ ). Then D∗h = {µ ∈ RN : f(µ) ∈ Image(F ′, R+)}. If µ ∈ D∗h, then

∂ih
∗(µ) = mi ([F

′]−1 ◦ f)(µ)
exp

(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

)
= ∂i(F

∗ ◦ f)(µ) .

(118)

with F ∗ = Legendre transform of F .

Proof. If µ ∈ D∗h, then there is ρ ∈ RN
+ such that µ = ∇h(ρ). Thus, (114) is valid, and Lemma

5.5 shows that F ′( V
m
· ρ) = f(µ). Thus, f(µ) ∈ Image(F ′, R+) and this yields

D∗h ⊆ {µ ∈ RN : f(µ) ∈ Image(F ′, R+)} .

In order to prove the reverse inclusion, consider µ ∈ RN such that f(µ) ∈ Image(F ′, R+).
Denote

g(µ) := [F ′]−1 ◦ f(µ) , ρi := mi g(µ)
exp

(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

)
We easily show that∇h(ρ) = µ. Using (116) we see that

∂ih
∗(µ) = K g(µ) ∂if(µ) = ∂i(F

∗ ◦ f)(µ) .

Lemma 5.7. Assumptions of Corollary 5.6. Then∇h∗ ∈ C1(D∗h). The representation

D2h∗i,j(∇h(ρ)) = (119)

mi ρj δ
j
i

kB θ
+
ρi ρj
n · V

(
1

K n · V F ′′(n · V )
+

V 2 · n
kB θ n · V

− Vi + Vj
kB θ

)
is valid with V 2 · n :=

∑N
i=1 V

2
i ni. There holds

|D2h∗(∇h(ρ))| ≤ C1 ρ · 1 (120)

D2h∗(∇h(ρ))1 · 1 ≥ C0
1

K F ′′(ρ · 1)
. (121)

Proof. By direct computation starting from (118) we obtain (119). This entails

|D2h∗i,j(∇h(ρ))| ≤ ρi

(
mi

kB θ
+
mj

V

(
1

K n · V F ′′(n · V )
+

V
2

kB θ V
+ 2

V

kB θ

))

≤ C ρi

(
1 +

1

K n · V F ′′(n · V )

)
. (122)
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The function s F ′′(s) is asymptotically equivalent to s s−1 = const near zero (cf. (71)) and to
s sα−2 = sα−1 for s large. Thus, there is a constant c0 > 0 such that infs∈R+ s F

′′(s) ≥ c0,
and (120) follows. Further

D2h∗1 · ei =
ρi ρ · 1

K F ′′(n · V ) (n · V )2

+
ρi
kB θ

(
mi +

ρ · 1V 2 · n
(n · V )2

− Vi ρ · 1
n · V

− ρ · V
n · V

)
. (123)

Thus

N∑
i,j=1

D2h∗j,i

=
(ρ · 1)2

K (V · n)2 F ′′(V · n)
+

1

kB θ

(
m · ρ+

(ρ · 1)2 V 2 · n
(V · n)2

− 2
ρ · V ρ · 1
n · V

)
=

(ρ · 1)2

K (V · n)2 F ′′(V · n)
+

1

kB θ

(
√
m · ρ− ρ · 1

√
V 2 · n

V · n

)2

+
2

kB θ

ρ · 1
n · V

(
√
m · ρ

√
V 2 · n− V · ρ) . (124)

The estimate (121) is a straightforward consequence of (124) and of the Cauchy-Schwarz in-
equality, since we can express

∑N
i=1 Vi ρi =

∑N
i=1(Vi

√
ni) (mi

√
ni). We further use in (121)

that F ′′(n · V ) ≥ F ′′(c %) ≥ c̃ F ′′(%) (cf. (71)).

As corollaries of Lemma 5.7, note that the functions M ∈ C1(D) of Lemma 5.2 and P ∈
C1(D) satisfy for all (s, q) ∈ D the following inequalities (cp. (109), Lemma 5.4):

1

C1 s
≤ ∂sM (s, q) ≤ K F ′′(s)

C0

|∂qM (s, q)| ≤ C1

C0

K sF ′′(s) (125)

1

C1

≤ Ps(q, s) ≤
K sF ′′(s)

C0

|Pqj(s, q)| ≤ C s (1 +K sF ′′(s)) . (126)

Remark 5.8. For the applicability of our approximation methods we are restricted to the case
that D∗h = RN . In view of the Corollary 5.6 this is basically the case if F ′ is surjective. In this
case, D = R+ × RN−1 and there is no state-constraint on µ.

Remark 5.9. In the case that the polynomial growth of the function F is less than 9/5, we rely
in the analysis of the PDE system on second derivatives and on the convexity of the function
s 7→ P (s, q) at fixed q. We are able to establish this property only in the very special case
that P is a function of the total mass density. We note the following trivial observation. Define
P as in the Lemma 5.4. Assume that the vector V ∈ RN

+ and m ∈ RN
+ are parallel. Then P

depends only on the first variable.
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5.3 The boundary reduction

The second step is to show that the boundary conditions (50), (51), (52) can be equivalently
expressed by means of only a (N − 1)−dimensional reduction of the vector µ from the bulk.
The idea is to solve the algebraic equations

rΓ − (MΓ +MΓ,ext)µΓ = −MΓ µ−MΓ,extµext , (127)

which result from (50), (51). We show that these equation allow to eliminate the occurrences of
the surface potentials µΓ.

Note that (127) makes sense if we reinterpret via trivial extension the matrices MΓ and MΓ,ext

as positive semidefinite elements of RNΓ×NΓ

sym . The vectors µ and µext are trivially extended as

well according to the scheme µ  (µ, 0) ∈ RN × 0N
ext

and µext  (0, µext) ∈ 0N × RN ext
.

For the sake of simplicity we do not introduce explicitely these operators by means of additional
symbols.

For the solution to (127), we define a linear subspace of RNΓ
via

V := span{γ1
Γ, . . . , γ

sΓ

Γ } ⊕ ImageMΓ,ext . (128)

Now we can orthogonaly decompose ImageMΓ = (ImageMΓ ∩ V) ⊕ V1, where V1 is
the orthogonal complement of V in ImageMΓ. There is an associated decompositon MΓ =
MΓ,1 +MΓ,2 with positive semidefinite MΓ,i ∈ RNΓ×NΓ

sym for i = 1, 2 satisfying

MΓ,i((1⊥ × {0})⊕ ({0} × RN ext
)) = 0 for i = 1, 2, ImageMΓ,1 = V1 ,

and ImageMΓ,2 ⊆ V . Then, it is obvious that (127) is equivalent to

rΓ − (MΓ,2 +MΓ,ext)µΓ = −MΓ,ext µext −MΓ,2 µ (129)

PV1(µΓ − µ) = 0 . (130)

We now focus on the conditions (129). In order to solve these equations, we introduce

� The numbers dΓ = dimV and ŝΓ := dim(ImageMΓ,2) ≤ dΓ;

� The eigenvalules λ1, . . . , λŝΓ and the orthonormal eigenvectors b1, . . . , bŝ
Γ

of MΓ,2;

� We choose further vectors bŝΓ+1, . . . , bdΓ ∈ RNΓ
such that {b1, . . . , bdΓ} is a basis of

V .

We introduce the abbreviation dext = rkM ext. Since the matrix MΓ,ext occurring in (129) is
symmetric and positive semidefinite, there are orthonormal vectors e1, . . . , ed

ext ∈ RNΓ
such

that

MΓ,ext
i,j =

dext∑
k=1

λext
k eki e

k
j , i, j = 1, . . . , NΓ (131)

30



where λext
1 , . . . , λ

ext
dext are the nonzero eigenvalues of MΓ,ext. Recalling now that {b1, . . . , bd

Γ}
is a basis of V , there are coefficients {Aj,`}j=1...,sΓ, `=1,...,dΓ and {Ãj,`}j=1...,dext, `=1,...,dΓ such
that

γjΓ =
dΓ∑
`=1

Aj,` b
`, ej =

dext∑
`=1

Ãj,` b
` . (132)

Employing these notations and properties

rΓ − (MΓ,2 +MΓ,ext)µΓ =
dΓ∑
k=1

bk

 sΓ∑
j=1

Aj,k R
Γ,j −

dext∑
j=1

Ãj,k λ
ext
j ej · µΓ


−

ŝΓ∑
k=1

bk λk b
k · µΓ .

Moreover there is a representation

−MΓ,ext µext =
dΓ∑
k=1

(
dext∑
j=1

Ãj,k λ
ext
j ej · µext

)
bk =:

dΓ∑
k=1

wk b
k . (133)

Due to the two latter relations, (129) is equivalent to

∑sΓ

j=1Aj,k R
Γ,j −

∑dext

j=1 Ãj,k λ
ext
j ej · µΓ − λk bk · µΓ = wk − λk bk · µ

for k = 1, . . . , ŝΓ∑sΓ

j=1Aj,k R
Γ,j −

∑dext

j=1 Ãj,k λ
ext
j ej · µΓ = wk

for k = ŝΓ + 1, . . . , dΓ .

(134)

Choose ΨΓ from (41). We introduce auxiliary potentials Ψ̃1, Ψ̃2 ∈ C2(RdΓ
) via

Ψ̃1(X) := ΨΓ(AX) +
1

2

dext∑
k=1

λext
k (Ãk ·X)2 (135)

Ψ̃2(X) := Ψ̃1(X) +
1

2

ŝΓ∑
i=1

λiX
2
i . (136)

At X = (b1 · µΓ, . . . , bd
Γ · µΓ) ∈ RdΓ

and Y := (b1 · µ, . . . , bŝΓ · µ) ∈ RŝΓ the identities
(130) are valid if and only if{

−∇XkΨ̃
1(X)− λkXk = wk − λk Yk for k = 1, . . . , ŝΓ

−∇XkΨ̃
1(X) = wk for k = ŝΓ + 1, . . . , dΓ

(137)

or using the second potential also

−∇XΨ̃2(X) = w −D Y . (138)
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Here D ∈ RdΓ×ŝΓ is the block-structured matrix

D =

(
D
0

)
, D = diag(λ1, . . . , λŝΓ) ∈ RŝΓ×ŝΓ . (139)

The following auxiliary statement is then obvious.

Lemma 5.10. The solution to the equation (134) at the pointX = (b1 ·µΓ, . . . , bd
Γ ·µΓ) ∈ RdΓ

and Y := (b1 · µ, . . . , bŝΓ · µ) ∈ RŝΓ is given by

X = ∇(Ψ̃2)∗(D Y − w) .

Here (Ψ̃2)∗ ∈ C2(RdΓ
) is the convex conjugate to Ψ̃2 and D ∈ RdΓ×ŝΓ is defined in (139).

The Lemma 5.10 yields a representation of the vector (b1 · µΓ, . . . , bd
Γ · µΓ) as a function of

(b1 · µ, . . . , bŝΓ · µ). Recall also (130) to see that µΓ − µ = 0 on V1. Thus, the flux Jν in (50)
given by the expression Jν = MΓ (µ−µΓ) possesses at Y = (b1 ·µ, . . . , bŝΓ ·µ) ∈ RŝΓ the
equivalent representation

Jν = MΓ (µ− µΓ) = MΓ,2 (µ− µΓ)

=
ŝΓ∑
i=1

λi (b
i · µ− bi · µΓ) bi =

ŝΓ∑
i=1

λi (Yi − ∂i(Ψ̃2)∗(D Y − w)) bi .

We introduce a potential Ψ̂Γ ∈ C2(RŝΓ × RdΓ
) via

Ψ̂Γ(Y, w) :=
1

2
DY · Y − (Ψ̃2)∗(D Y − w)

+ (Ψ̃2)∗(−w) +D Y · ∇(Ψ̃2)∗(−w) . (140)

Then, at the point Y = (b1 · µ, . . . , bŝΓ · µ) we obtain the equivalence

Jν =
ŝΓ∑
i=1

λi (∂YiΨ̂
Γ(Y, w)− ∂YiΨ̂Γ(0, w)) bi . (141)

We reinterpret the identity (141) by defining

� A modified reaction rate vector field R̂Γ ∈ C1(RŝΓ × RdΓ
)

R̂Γ(Y, w) := −∇Y Ψ̂Γ(Y, w) , (142)

� Modified reaction vectors

γ̂k := bk for k = 1, . . . , ŝΓ , (143)

� Modified reaction driving forces

D̂Γ,R
k := γ̂k · µ for k = 1, . . . , ŝΓ , (144)
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� An outer flux J0 = J0(µext) taking values in ImageMΓ,2 = span{γ̂1, . . . , γ̂ ŝ
Γ} via

J0 =
ŝΓ∑
i=1

λi ∂YiΨ̂
Γ(0, w) γ̂i . (145)

Lemma 5.11. We define

(a) A reduced number of boundary reactions ŝΓ := dim(ImageMΓ ∩ V);

(b) Modified reactions vectors {γ̂1, . . . , γ̂ ŝ
Γ} as the eigenvectors of the matrixMΓ,2 (cf. (143));

Using the potential Ψ̂Γ from (140), we define

r̂ :=
ŝΓ∑
k=1

R̂Γ
k (D̂Γ,R, w) γ̂k = −

ŝΓ∑
k=1

∂Y Ψ̂Γ
k (D̂Γ,R, w) γ̂k .

We moreover define (cf. (133), (145))

w0
k :=

dext∑
j=1

Ãj,k λ
ext
j ej · µext for k = . . . , dΓ

J0 =
ŝΓ∑
i=1

λi ∂YiΨ̂
Γ(0, w0) γ̂i .

Then the conditions (50), (51), (52) are satisfied if and only if Jν = −r̂ − J0.

It remains to investigate the properties of the potential Ψ̂Γ in order to show that r̂ has the desired
structure of a reaction term.

Proposition 5.12. Assume that ΨΓ ∈ C2(RsΓ) is a strictly convex, nonnegative and coercive
potential. Assume that MΓ and MΓ,ext are positive semidefinite elements of MNΓ×NΓ

sym . Let
ŝΓ := dim(ImageMΓ ∩ V) be the reduced number of boundary reactions. We define the
reduced potential Ψ̂Γ as in (140).

Then, Ψ̂Γ ∈ C1(RŝΓ × RdΓ
) is nonnegative, and the function Y 7→ Ψ̂Γ(Y, w) is of class

C2(RŝΓ), strictly convex and coercive for all w ∈ RdΓ
.

Proof. Due to the representation (140), we directly obtain that Ψ̂Γ is of class C1 and even of
class C2 in the first variable. The second derivative D2

Y,Y Ψ̂Γ is given by

D2
Y,Y Ψ̂Γ = D −DT D2

X,X(Ψ̃2)∗(D Y − w))D .

Due to convex conjugation,D2(Ψ̃2)∗(D Y −w) = [D2Ψ̃2(X)]−1 atX = ∇(Ψ̃2)∗(D Y −w).
The definition of Ψ̃2 induces D2Ψ̃2(X) = D2Ψ̃1(X) + D̃. Here we denote D̃ ∈ RdΓ×dΓ

the
matrix diag(λ1, . . . , λŝΓ , 0, . . . , 0).
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Therefore D2
Y,Y Ψ̂Γ(Y, w) = D −DT [D2Ψ̃1(X) + D̃]−1D .

By definition (recall also the definitions (132) of the matrices A and Ã), for η ∈ RdΓ
arbitrary

D2Ψ̃1(X)η · η = D2ΨΓ(AX)Aη · Aη +
1

2

dext∑
i=1

λext
i (Ãη)2

i

≥ inf{λmin(D2ΨΓ), λext
1 , . . . , λ

ext
dext} (|Aη|2 + |Ãη|2) ≥ c0 |η|2 ,

where we make use of the assumption (77). From the latter estimate, we obtain via elementary
arguments that λmin(D2

Y,Y Ψ̂Γ) ≥ c0 λmin(D)
c0+λmax(D)

. This proves the claims.

6 Approximate solutions. Regularisation strategy

For the existence theory we shall embedd the problem (P ) into a larger class of approximate,
regularised problems that are easier to solve. These approximations (in the spirit of ’viscosity
solutions’) are constructed in such a way that the integrability of the entire vector of chemical
potentials µ as main variable can be expected.

6.1 The regularisation strategy

The regularisation strategy, though not mass conservative, will be chosen thermodynamically
consistent, since it consists in two essential steps:

(1) A positive definite regularisation of the mobility matrix M ;

(2) A convex regularisation of the free energy function h.

The method involves three levels associated with positive parameter, say σ, δ and τ . The first
level, associated with the diffusion parameter σ, consisits in modifying the mobility matrix M in
order that it becomes elliptic viaM  M+σ I . We denoteMσ(ρ) the corresponding diffusion
matrix, that is, we set

Mσ(ρ) = M(ρ) + σ I . (146)

This regularisation will allow a control on∇µ.

The δ− and τ− regularisations are associated with the free energy function h. The δ−regularisation
consists in increasing the growth of the (mechamical) free energy modifying the function F that
occurs in the definition of hmech via F (n · V ) F (n · V ) + δ (n · V )α, α > 3. If the original
growth exponent of F is larger than 3, this step can be omitted. We denote hδ the corresponding
free energy function, that is

hδ(ρ) := h(ρ) + δ
(
ρ · V

m

)α
. (147)
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The τ−regularisation is a stabilisation for the vector of chemical potentials. It consists in modi-
fiying the function h∗ (or (hδ)

∗) via

(hδ)
∗(X) (hδ)

∗(X) + τ

N∑
i=1

ω(Xi) (= (hδ)
∗(X) + τ ω(X) · 1) for X ∈ RN .

Here ω ∈ C2(R) is a convex and increasing function for which we impose the growth conditions

c0 (
√
|s−|+ |s+|α′) ≤ ω′(s) s− ω(s) ≤ c1 (

√
|s−|+ |s+|α) (148)

ω′(s) ≤ c2 (1 + ω′(s) s− ω(s))1/α . (149)

For example, we could choose the function

ω(s) :=


−2
√
|s| for s ≤ −1

1
4
s2 + 3

2
s− 3

4
for − 1 < s < 1

1
2α′ (α′−1)

sα
′
+ (2− 1

2(α′−1)
) s+ 1

2α(α′−1)
− 1 otherwise .

(150)

which satisfies these assumptions. The choice of the regularisation ω is by no means unique,
the constants in (150) are determined from simple interpolation conditions. Essential for our
purposes is in fact only the sublinear growth for s→ −∞ that garanties convexity.

Combining with the δ−regularisation, we define on RN a function

h∗δ,τ (X) := (hδ)
∗(X) + τ

N∑
i=1

ω(Xi) , (151)

which is twice differentiable and convex. Making use of the convexity we easily show that the
mapping ∇h∗τ,δ : RN → RN

+ is bijective. Interpreting (151) as Legendre transform, we intro-
duce a regularised free energy function via

hτ,δ := convex conjugate of the function h∗τ,δ = (h∗τ,δ)
∗ , (152)

which is a twice differentiable convex function on RN
+ . The main motivation for this construction

is that the new free energy function has improved coercivity properties over the variables ρ and
µ as exposed in the following statement.

Lemma 6.1. Let the original free energy function h satisfy

c0 |ρ|α0 − c1 ≤ h(ρ) ≤ C0 |ρ|α0 + C1, for all ρ ∈ RN
+ . (153)

with constants 3/2 < α0 < +∞ and 0 < c0, c1, C0, C1 < +∞. Let α > 3 be the
regularisation exponent of (147), and ω a function satisfying (148). Define

Φω(X) :=
N∑
i=1

ω′(Xi)Xi − ω(Xi) for X ∈ RN . (154)

Then there are c̃0, c̃1 > 0, and τ0(α, α0) > 0 such that if τ ≤ τ0

hτ,δ(ρ) ≥ c̃0 (|ρ|α0 + δ |ρ|α + τ Φω(µ))− c̃1 (155)

for all ρ ∈ RN
+ and µ ∈ RN connected by the identity ρ = ∇h∗τ,δ(µ).
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Proof. The definition (152) implies that

hτ,δ(∇h∗τ,δ(X)) = hδ(∇(hδ)
∗(X)) + τ Φω(X) .

By assumption, ρ and µ are related via

ρ := ∇h∗τ,δ(µ) = ∇(hδ)
∗(µ) + τ ω′(µ) , (156)

and we obtain for the regularised free enery the identity

hτ,δ(ρ) = hδ(∇(hδ)
∗(µ)) + τ Φω(µ)

= hδ(ρ− τ ω′(µ)) + τ
N∑
i=1

(µi ω
′(µi)− ω(µi)) . (157)

Using the properties of hδ(Y ) = h(Y ) + δ (Y · V
m

)α, we obtain that

hτ,δ(ρ) ≥ h(ρ− τ ω′(µ)) + δ ((ρ− τ ω′(µ)) · V
m

)α + τ

N∑
i=1

(µi ω
′(µi)− ω(µi)) .

On the other hand, the condition (148) ensures that ω′(µi) ≤ c (1 + ω′(µi)µi − ω(µi))
1/α.

For α > 1, denote c(α), c̄(α) two constants such that |a − b|α ≥ c(α) aα − c̄(α) bα for all
a, b > 0. If follows that

hτ,δ(ρ) ≥ h(ρ− τ ω′(µ)) + c2 δ |ρ− τ ω′(µ))|α + τ
N∑
i=1

(µi ω
′(µi)− ω(µi))

≥ h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α

+ τ
N∑
i=1

(µi ω
′(µi)− ω(µi))− c2 δ τ

α c(α) |ω′(µ)|α

= h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α

+ (1− c2 δ c(α) τα−1) τ
N∑
i=1

(µi ω
′(µi)− ω(µi))− C .

If we asssume that C δ τα−1 ≤ 1/4,

hτ,δ(ρ) ≥ h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α +
3

4
τ

N∑
i=1

(µi ω
′(µi)− ω(µi))− C .

Making use of the growth of the free energy h and analogous arguments, the claim follows.

We also note that the pressure in the system is naturallly defined via p = −h(ρ)+
∑N

i=1 ρi µi =
h∗(µ). In the context of the approximmation scheme for δ > 0 and τ > 0, we obtain natural
definitions for the variables p and nF via

ρ = ∇h∗τ,δ(µ) = ∇(hδ)
∗(µ) + τ Φ′ω(µ), p = h∗τ,δ(µ) = h∗δ(µ) + τ

N∑
i=1

Φω(µi)
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6.2 Approximation scheme

For the existence proof we shall embedd the problem (P ) into a larger class of (approximate)
problems (Pτ,σ,δ) charcterised by an elliptic diffusion matrix Mσ and a regularised free energy
hτ,δ. Since in this approach it is possible to control the entire vector µ, a solution vector consists
of the entries µ, v and φ.

In order to define the concept of solution, we introduce also in this case a natural class B
for the approximate solutions. If δ, σ > 0 and τ ≥ 0, we say that (µ, v, φ) belongs to
B(T, Ω, α, N, Ψ, ΨΓ) if and only if

(%, q, v, φ, R, RΓ) ∈ B(T, Ω, α, N − 1, Ψ, ΨΓ)

with % := ∇h∗τ,δ(µ) · 1 and q := Πµ,

Rk = R̄k(D
R), DR

k := γk · µ for k = 1, . . . , s,

RΓ
k = R̂Γ

k (D̂Γ,R, w), D̂Γ,R
k := γ̂k · µ, k = 1, . . . , ŝΓ (158)

µ ∈

{
W 1,0

2 (Q; RN) if τ > 0 and σ > 0

Lw(◦N ln)L
1(Q; RN), ∇µ ∈ L2(Q; RN×3) for τ = 0 and σ > 0

(159)

We say that (µ, v, φ) satisfies the approximate energy (in)equality if and only if the corre-
sponding vector (%, q, v, φ, R, RΓ) satisfies the energy (in)equality of Definition 4.2, with free
energy function hτ,δ and mobility matrixMσ. For δ > 0, σ > 0 and τ ≥ 0 we call weak solution
to the problem (Pτ, σ, δ) a vector (µ, v, φ) ∈ B subject to the energy inequality and such that
the quantities

ρ = ∇h∗τ,δ(µ)

J = −Mσ(ρ)D, D :=
∇µ
θ

+
1

θ

z

m
∇φ

r =
s∑

k=1

γ̂k R̄k(D
R), DR = (γ1 · µ, . . . , γs · µ)

r̂ =
ŝΓ∑
k=1

γ̂k R̂Γ
k (D̂Γ,R, w0), D̂Γ,R = (γ̂1 · µ, . . . , γ̂ ŝΓ · µ)

p = h∗τ,δ(µ)

nF = ρ · z
m

(160)
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satisfy the identities

−
∫
Q

ρ · ψt −
∫
Q

(ρi v + J i) · ∇ψi =

∫
Ω

ρ0 · ψ(0) +

∫
Q

r · ψ +

∫
ST

(r̂ + J0) · ψ (161)

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η (162)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η −
∫
Q

(
N∑
i=1

J i · ∇)η · v

ε0 (1 + χ)

∫
Q

∇φ · ∇ζ =

∫
Q

nF ζ, φ = φ0 as traces on ]0, T [×Γ . (163)

for allψ ∈ C1
c ([0, T [; C1(Ω; RN)), η ∈ C1

c ([0, T [; C1
c (Ω;R3)) and ζ ∈ L1(0, T ; W 1,2

Γ (Ω)).

7 Derivation of the global energy and mass balance identi-
ties

In this section we motivate the definition 4.2 by stating an energy identity naturally associated
with the problem (P ) (or its thermodynamically consistent approximations (Pτ,σ,δ)).

Proposition 7.1. Assume that there are vector fields µ ∈ C0,1([0, T ]×Ω; RN), v ∈ C0,1([0, T ]×
Ω; R3) and φ ∈ L∞([0, T ]; C0,1(Ω)) that satisfy together with their associate variables ρ, J ,
r, r̂, %, p, nF defined in (160) the relations∫

Ω

∂tρ · ψ −
∫

Ω

(ρi v + J i) · ∇ψi =

∫
Ω

r · ψ +

∫
Γ

(r̂ + J0) · ψ (164)∫
Ω

% ∂tv · η +

∫
Ω

% (v · ∇)v · η +

∫
Ω

S(∇v) : ∇η −
∫

Ω

p div η

= −
∫

Ω

(
N∑
i=1

J i · ∇)v · η −
∫

Ω

nF ∇φ · η (165)

ε0 (1 + χ)

∫
Ω

∇φ · ∇ζ =

∫
Ω

nF ζ , (166)

for all ψ ∈ W 1,1(Ω; RN), all η ∈ W 1,1
0 (Ω; R3) and for all ζ ∈ W 1,1

Γ (Ω) together with
conditions

µ(0) = µ0 ∈ C0,1(Ω; RN), v(0) = v0 ∈ C0,1(Ω; R3) in Ω

φ = φ0 ∈ C0,1([0, T ]× Ω)) on ]0, T [×Γ, v = 0 on [0, T ]× ∂Ω .
(167)
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We define ρ0 = ∇h∗τ,δ(µ0). Then, for all t ∈]0, T [, the following identity is valid:∫
Ω

{
1

2
% v2 +

1

2
ε0 (1 + χ) |∇φ|2 + hτ,δ(ρ)

}
(t)

+

∫
Qt

{S(∇v) : ∇v − θ J ·D − r · µ} −
∫
St

r̂ · µ

=

∫
Ω

{
1

2
%0 |v0|2 +

1

2
ε0 (1 + χ) |∇φ0(0)|2 + hτ,δ(ρ

0)

}
−
∫

Ω

{
nF φ0 + ε0 (1 + χ)∇φ · ∇φ0

}∣∣∣∣t
0

+

∫
Qt

{
nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t

}
+

∫
St

{J0 · µ+ (r̂ + J0) · z
m
φ0} .

Proof. We choose ψ = µ(t) in (164). Because of Lemma 5.4, we observe that
∑N

i=1 ρi∇µi =
∇h∗τ,δ(µ) = ∇p. Moreover, the definition of ρ yields µ = ∇hτ,δ(ρ) and therefore ∂tρ · µ =
∂thτ,δ(ρ). Thus, we obtain that

∂t

∫
Ω

hτ,δ(ρ)−
∫

Ω

(
v · ∇p+

N∑
i=1

J i · ∇µi

)
=

∫
Ω

r · µ+

∫
Γ

(r̂ + J0) · µ . (168)

We next choose ψ = z
m
φ in (164). We recall that r · z

m
= 0, and obtain that∫

Ω

∂tn
F φ−

∫
Ω

(
nF v · ∇φ+

N∑
i=1

J i
zi
mi

· ∇φ

)
=

∫
Γ

(r̂ + J0) · z
m
φ0 . (169)

Next we differentiate in time (166), and choose ζ = φ(t)− φ0(t). We obtain that∫
Ω

nFt φ =

∫
Ω

nFt φ0 +
ε0 (1 + χ)

2
∂t

∫
Ω

|∇φ|2 − ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 . (170)

Thus, (169) and (170) yield

ε0 (1 + χ)

2
∂t

∫
Ω

|∇φ|2 −
∫

Ω

(
nF v · ∇φ+

N∑
i=1

J i
zi
mi

· ∇φ

)
=

∫
Γ

(r̂ + J0) · z
m
φ0

+ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 .

(171)

If we now add (171) to (168), we obtain that

∂t

∫
Ω

{hτ,δ(ρ) +
ε0 (1 + χ)

2
|∇φ|2} −

∫
Ω

v · (∇p+ nF ∇φ)

−
∫

Ω

N∑
i=1

J i · (∇µi + zi
mi
· ∇φ)−

∫
Ω

r · µ−
∫

Γ

r̂ · µ

=

∫
Γ

(J0 · µ+ (J0 + r̂) · z
m
φ0) + ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 . (172)
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Next we choose η = v(t) in (165), and we obtain that

1

2

∫
Ω

% ∂tv
2 +

∫
Ω

% (v · ∇)v2 +

∫
Ω

S(∇v) : ∇v

+

∫
Ω

v · (∇p+ nF ∇φ) = −1

2

∫
Ω

N∑
i=1

J i · ∇v2 . (173)

If we choose ψ = v2 1 in (164) and observe that r · 1 = 0 = r̂ · 1 by definition, we see that∫
Ω

∂t% v
2 −

∫
Ω

(% v +
N∑
i=1

J i) · ∇v2 = 0 . (174)

Due to (174), we have∫
Ω

% ∂tv
2 +

∫
Ω

% v · ∇v2 +

∫
Ω

N∑
i=1

J i · ∇v2 = ∂t

∫
Ω

% v2 , (175)

and thus (173) yields

1

2
∂t

∫
Ω

% v2 +

∫
Ω

S(∇v) : ∇v +

∫
Ω

v · (∇p+ nF ∇φ) = 0 . (176)

We add (176) to (172) and obtain that

∂t

∫
Ω

{1

2
% v2 + hτ,δ(ρ) +

ε0 (1 + χ)

2
|∇φ|2}+

∫
Ω

S(∇v) : ∇v

−
∫

Ω

θ J ·D −
∫

Ω

r · µ−
∫

Γ

r̂ · µ

=

∫
Γ

(J0 · µ+ (J0 + r̂) · z
m
φ0) + ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 . (177)

We integrate over time and are done.

The proof of the global mass conservation identities is comparatively simpler. It suffices to insert
ψ = ei for i = 1, . . . , N into (263).

Proposition 7.2. Assumptions of Proposition 7.1. Then for all t ∈ [0, T ]

ρ̄(t) = ρ̄0 +

∫ t

0

{∫
Ω

r +

∫
Γ

(r̂ + J0)

}
(s) ds . (178)

8 A priori estimates

In this section we derive a priori estimates on solutions to the problem (P ) that result from
the energy identity. In order to include in our considerations both approximationn scheme and
limit problem, we here consider generic free energy functions satisfying the following growth
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assumption: there are c1 > 0, c2 ≥ 0 and Ci ≥ 0, i = 1, 2, 3 and τ ≥ 0 such that for all
ρ ∈ RN

+

c1 |ρ|α + τ Φω[∇h(ρ)]− c2 ≤ h(ρ) ≤ C1 |ρ|α + C2 τ Φω[∇h(ρ)] + C3 . (179)

Moreover we consider mobility matrices Mσ = M(ρ) + σ I , σ ≥ 0, such that M satisfies (73)
and (74).

We commence with a few standard estimates. In the second subsection we prove the most
demanding estimate on the chemical potentials.

8.1 Standard estimates

Proposition 8.1. Let (%, q, v, φ, R, RΓ) satisfy the energy inequality of the Definition 4.2 with
free energy function h satisfying (179) and mobility matrix M satisfying (74). Then, there is a
number C0 > 0 depending only on Ω, on the constants ci, Ci in the conditions (179), and on
the quantity

B0 := ‖ρ0‖Lα(Ω) + τ ‖Φω(µ0)‖L1(Ω) + ‖√%0 v
0‖L2(Ω) + ‖φ0‖L∞(Q)

+ ‖φ0‖L∞(0,T ;W 1,2(Ω)) + ‖φ0,t‖W 1,0
2 (Q) + ‖φ0,t‖Lα′ (Q) + ‖µext‖L∞(S) ,

(180)

such that

‖ρ‖L∞,α(Q) + τ ‖Φω(µ)‖L∞,1(Q) + ‖√% v‖L∞,2(Q) + ‖∇φ‖L∞,2(Q) ≤ C0

‖v‖W 1,0
2 (Q) + ‖∇q‖L2(Q) ≤ C0

‖DR‖LΨ(Q) + ‖D̂Γ,R‖L
Ψ̂Γ (S) ≤ C0

N∑
i=1

‖J i‖
L

2, 2α
1+α (Q)

+ [−R]LΨ∗ (Q) + [−RΓ]L
(Ψ̂Γ)∗ (S) ≤ C0

√
σ ‖∇µ‖L2(Q) + min{σ, τ 2} ‖µ‖L2,3(Q) ≤ C0

‖1 · J‖L2(Q) ≤ C0

√
σ, ‖τ ω′(µ)‖L∞,α(Q) ≤ C0 τ

1/α′ .

Here the quantities ρ, J , etc. obey the definitions (95), (160).

Proof. Due to the assumption (179) we have for the left-hand of the energy identity (100)∫
Ω

h(ρ)(t) ≥ c1

∫
Ω

|ρ(t)|α + τ

∫
Ω

Φω(µ(t))− c2 |Ω| .

Moreover, for general velocity fields v ∈ W 1,2(Ω; R3)∫
Ω

S(∇v) : ∇v =

∫
Ω

η

4
|D(v)− 2

3
div v Id|2 +

∫
Ω

(λ+
2

3
η) (div v)2 .

In the case that v = 0 on ∂Ω one even has∫
Ω

S(∇v) : ∇v =

∫
Ω

(η |∇v|2 + (λ+ η) (div v)2) .
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For the right hand of (100), we first observe that∣∣∣∣∫
Ω

nF (t)φ0(t)

∣∣∣∣ ≤ ∣∣ zm ∣∣ ∫
Ω

|ρ| |φ0(t)| ≤ c1

2

∫
Ω

|ρ|α + c

∫
Ω

|φ0|α
′

∣∣∣∣ε0 (1 + χ)

∫
Ω

∇φ · ∇φ0

∣∣∣∣ ≤ ε0 (1 + χ)

4

∫
Ω

|∇φ(t)|2 + c

∫
Ω

|∇φ0|2 .

Moreover by standard considerations∣∣∣∣∫
Qt

{nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t}
∣∣∣∣

≤
∫ t

0

{‖nF (s)‖Lα(Ω) ‖φ0,t(s)‖Lα′ (Ω) + ε0 (1 + χ) ‖∇φ(s)‖L2(Ω) ‖∇φ0,t(s)‖L2(Ω)

≤
∫ t

0

{‖nF (s)‖αLα(Ω) + ε0 (1 + χ) ‖∇φ(s)‖2
L2(Ω)}

+ C

∫ t

0

{‖φ0,t(s)‖α
′

Lα′ (Ω)
+ ‖∇φ0,t(s)‖2

L2(Ω)} .

We further note by the Young inequality that

−
∫
St

RΓ
k γ̂

k · z
m
φ0 ≤

∫
St

(Ψ̂Γ)∗(t, x, −1

4
RΓ)

+

∫
St

Ψ̂Γ(t, x, 4φ0 (γ̂1 · z
m
, . . . , γ̂ ŝ

Γ · z
m

)) .

Thus, using convexity and that (Ψ̂Γ)∗(t, x, −1
4
RΓ) = (Ψ̂Γ)∗(t, x, 1

4
(−RΓ) + 3

4
0)

−
∫
St

RΓ
k γ̂

k · z
m
φ0 ≤

1

4

∫
St

(Ψ̂Γ)∗(t, x, −RΓ)

+

∫
St

Ψ̂Γ(t, x,
3

4
φ0 (γ̂1 · z

m
, . . . , γ̂ ŝ

Γ · z
m

))

=
1

4

∫
St

(Ψ̂Γ)∗(t, x, −RΓ) + C0(‖φ0‖L∞([0,T ]×Γ)) .

Next we use the fact that J0 possesses a representation J0 =
∑ŝΓ

k=1 k γ̂
k, and therefore∫

St

J0 · µ ≤
∫
St

Ψ̂Γ(t, x,
1

4
D̂Γ,R) +

∫
St

(Ψ̂Γ)∗(t, x, 4 )

≤ 1

4

∫
St

Ψ̂Γ(t, x, D̂Γ,R) + C0(‖µext‖L∞(S)) .

Recall the identities

Ψ(DR) + (Ψ)∗(−R̄(DR)) = −
s∑

k=1

R̄k(D
R) γk · µ

Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −R̂Γ(D̂Γ,R, w0)) = −
ŝΓ∑
k=1

R̂Γ
k (D̂Γ,R, w0) γ̂k · µ .
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Thus, for all t ∈]0, T [, the dissipation inequality implies that∫
Ω

{
1

2
% v2 +

ε0 (1 + χ)

4
|∇φ|2 +

c1

2
|ρ|α + τ Φω(µ)

}
(t)

+

∫
Qt

{
(η |∇v|2 + (λ+ η) (div v)2)− θ

N∑
i=1

J i ·Di + (Ψ(DR) + (Ψ)∗(−R))

}
+

1

2

∫
St

{Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −RΓ)}

≤ C0 + C

∫ t

0

{‖ρ‖αLα(Ω) + ε0 (1 + χ) ‖∇φ‖2
L2(Ω)}

Owing to the thermodynamical consistency, we (at least) obtain that
∑N

i=1 J
i ·Di ≤ 0. More-

over, recall that λ + 2
3
η ≥ 0. Exploiting the Gronwall Lemma, we thus obtain bounds for the

quantities ‖√% v‖L∞,2(Q), ‖∇φ‖L∞,2(Q) and ‖ρ‖L∞,α(Q) and τ ‖Φω(µ)‖L∞,1(Q) . It next fol-
lows that∫

Ω

{
1

2
% v2 +

1

4
ε0 (1 + χ) |∇φ|2 +

c1

2
|ρ|α + τ Φω(µ)

}
(t)

+

∫
Qt

{
(η |∇v|2 + (λ+ η) (div v)2)− θ

N∑
i=1

J i ·Di + (Ψ(DR) + (Ψ)∗(−R))

}
+

1

2

∫
St

{Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −RΓ)} ≤ C0(T ) .

In turn this implies a bound for ‖ div v‖L2(Q), and for ‖∇v‖L2(Q). Moreover the production
factors R and RΓ are bounded in Orlicz classes

[−R]L(Ψ)∗ (Q;Rs) + [−RΓ]L
(Ψ̂Γ)∗ (ST ;RŝΓ ) ≤ C0 . (181)

whereas the reaction driving forces satisfy

[DR]LΨ(Q;Rs) + [D̂Γ,R]L
Ψ̂Γ (ST ;RŝΓ ) ≤ C0 . (182)

It remains to exploit the dissipation due to diffusion and the driving forces D1, . . . , DN . At first
we note that−θ

∑N
i=1 J

i ·Di = θ
∑

i,jMi,j D
i ·Dj . For i = 1, . . . , N the Cauchy-Schwarz

inequality and the growth condition (74) on M (or Mσ) imply that

|J i| = |
N∑
j=1

Mi,j D
j| ≤ (MD ·D)1/2 (Mei · ei)1/2

≤ (
√
σ +

√
λ) (1 + |ρ|)1/2 (MD ·D)1/2 .

Therefore, we obtain for the diffusion fluxes that

‖J i(t)‖
L

2α
1+α (Ω)

≤ c ‖MD ·D(t)‖1/2

L1(Ω) (1 + ‖ρ(t)‖1/2
Lα(Ω)) ≤ C0 ‖MD ·D(t)‖1/2

L1(Ω) .

43



It follows that ‖J i‖
L

2, 2α
1+α (Q)

≤ c
(∫

Q
MD ·D

)1/2

≤ C0.

We finally want to obtain estimates on the gradients of the (relative) chemical potentials. Here
we use the assumption (74) which yields that

−θ
N∑
i=1

J i ·Di = θ

N∑
i,j=1

Mi,j D
i ·Dj ≥ θ λ |P1⊥ D|2 .

Here P1⊥ the orthogonal projection on the space 1⊥. We now split the driving force Di =
θ−1 (∇µi + zi

mi
∇φ), and we obtain that

−θ
N∑
i=1

J i ·Di ≥ λ

2 θ
|P1⊥∇µ|2 −

3λ

θ

∣∣∣ z
m

∣∣∣2 |∇φ|2 .
We use the identity P1⊥µ =

∑N−1
i=1 qi P1⊥ξ

i. Due to the choice of ξ1, . . . , ξN−1, the vectors
P1⊥ξ

1, . . . , P1⊥ξ
N−1 are a basis of 1⊥. Thus, there is a constant depending only on the choice

of the projector Π such that |P1⊥∇µ|2 ≥ cΠ |∇q|2. This entails

|∇q|2 ≤ c (−θ2

N∑
i=1

J i ·Di + |∇φ|2) , (183)

proving that ‖∇q‖L2(Q) ≤ C0. Since MσD ·D ≥ σD2

C0 ≥ −θ2

N∑
i=1

∫
Q

J i ·Di ≥ σ

2

∫
Q

|∇µ|2 − 3σ
∣∣ z
m

∣∣ ‖∇φ‖2
L2(Q) ,

which yields the bound for
√
σ ‖∇µ‖L2(Q). Finally

‖1 · J‖L2(Q) = σ ‖1 ·D‖L2(Q) ≤ c
√
σ (
√
σ ‖∇µ‖L2(Q) +

√
σ ‖∇φ‖L2(Q)) .

Due to the conditions (148), we verify that |ω′|α ≤ (1 + Φω) and this directly yields

‖τ ω′(µ)‖L∞,α(Q) ≤ τ 1/α′ ‖τ Φω(µ)‖L∞,1(Q) ≤ τ 1/α′ C0 .

At last we can verify using the growth property of Φω that the function w =
√

1 + |µ| pos-
sesses a distributional gradient in L2(Q) and is bounded in L∞,1(Q) via

‖∇w‖L2(Q) ≤
1

2
‖∇µ‖L2(Q) ≤ C0 σ

−1/2,

‖w‖L∞,1(Q) ≤ |Ω|+ ‖
√
|µ|‖L∞,1(Q) ≤ |Ω|+ ‖Φω(µ)‖L∞,1(Q) ≤ C0 τ

−1 .

Thus, ‖w‖L2,6(Q) ≤ Cσ,τ .

In many cases it is possible to increase the regularity of the electrical potential.
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Lemma 8.2. Assumptions of Proposition 8.1. Assume moreover that for almost all t ∈]0, T [,
the electrical potential φ ∈ L∞(0, T ; W 1,2(Ω)) satisfies

−ε0 (1 + χ)4φ(t) = nF (t) in [W 1,2
Γ (Ω)]∗, φ(t) = φ0(t) as traces on Γ ,

with φ0 ∈ L∞(Q) ∩ L∞(0, T ; W 1,β(Ω)), β = min{r(Ω, Γ), 3α
(3−α)+}. Then

‖φ‖L∞(Q) ≤ ‖φ0‖L∞(Q) + c ‖ρ‖L∞,α(Q)

‖φ‖L∞(0,T ;W 1,β(Ω)) ≤ c (‖φ0‖L∞(0,T ;W 1,β(Ω)) + ‖ρ‖L∞,α(Q)) .
(184)

Moreover, if β ≥ α′ we obtain that

‖nF ∇φ‖
L
∞, βα

β+α (Q)
≤ ‖nF‖L∞,α(Q) ‖∇φ‖L∞,β(Q) . (185)

Proof. We only need to recall that α > 3/2 and the definition of the exponent r(Ω,Γ) ≥ 2 (see
(81)). The estimates (184) are standard consequences of second order elliptic theory, whereas
(185) follows from the Hölder inequality.

Next we can derive the uniform continuity estimate that results from the mass balance equations.

Proposition 8.3. Assumptions of Proposition 8.1. If ρ̄ satisfies the global mass balance identity
of Definition 4.2, then [ρ̄]CΦ∗ ([0,T ]) ≤ C0.

Proof. Let 0 ≤ t1 < t2 ≤ T . Note that by assumption ρ̄(t2)−ρ̄(t1) =
∫ t2
t1
{
∫

Ω
r+
∫

Γ
(r̂+J0)}.

We note that∣∣∣∣∫ t2

t1

∫
Ω

ri

∣∣∣∣ =

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣ ≤ sup

i=1,...,N, [R]LΨ∗≤C0

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣ .

We argue similarily with the other right-hand side terms, and recalling the definition (97), we
obtain that

|ρ̄(t2)− ρ̄(t1)| ≤ C̄0 Φ∗(t1, t2) . (186)

In the course of the proofs, we shall also need bounds of more technical nature obtained via
Hölder and Sobolev inequalities. We denote α the growth exponent of the function h at infinity
and β := min{r(Ω, Γ), 3α

(3−α)+} the optimal regularity of the electric field.

Lemma 8.4. We assume that the bounds in the Propositions 8.1, 8.2 are valid. Then

‖% v‖
L

2, 6α
6+α (Q)

≤ c ‖%‖L∞,α(Q) ‖v‖W 1,0
2 (Q) ≤ C0

‖% v‖
L
∞, 2α

1+α (Q)
≤ ‖√% v‖L∞,2(Q) ‖%‖1/2

L∞,α(Q) ≤ C0

‖% v2‖
L

1, 3α
3+α (Q)

≤ c ‖%‖L∞,α(Q) ‖v‖2
W 1,0

2 (Q)
≤ C0

‖% v2‖
L

5α−3
3α (Q)

≤ c ‖% v2‖(2α−3)/(3α)

L∞,1(Q) ‖% v2‖(3+α)/(3α)

L
1, 3α

3+α (Q)
≤ C0∥∥∥∥∥

N∑
i=1

J i v

∥∥∥∥∥
L2,3/2(Q)

≤

∥∥∥∥∥
N∑
i=1

J i

∥∥∥∥∥
L2(Q)

‖v‖L2,6(Q) ≤ C0

√
σ .
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Proof. We prove exemplarily only the last statement.

Employing Hölder’s inequality ‖
∑N

i=1 J
i
σ(t) v(t)‖L3/2(Ω) ≤ ‖

∑N
i=1 J

i
σ(t)‖L2(Ω) ‖v(t)‖L6(Ω).

Further we shall need an improved bound on the pressure. This is also fairly standard, and
therefore we give the proof in the appendix.

Lemma 8.5. Assume that the relations (161) and (162) are valid.

� If α > 3, then ‖p‖L1+1/α(Q) ≤ C0;

� If 3/2 < α ≤ 3, r(Ω, Γ) > α′ and 1 · J ≡ 0, then ‖p‖
L1+ 2

3−
1
α (Q)
≤ C0.

The only piece of information still missing in order to obtain a bound in the natural class is the
estimate on the vector q. This is the object of the next section.

8.2 The Lw
(◦N ln) L

1(Q)norm of the relative chemical potentials

In this section we show that a combination between the estimates on the reactions (cf. (181),
(182)) and the control on the gradient of the relative potentials (q1, . . . , qN−1) = Πµ (cf. (183))
allows a control in time on the L1−norm of these functions in the sense of the natural class B.

A first essential ingredient of the proof is the global mass balance identity which implies for the
vector of total masses ρ̄ :=

∫
Ω
ρ that

ρ̄(t) ∈ {ρ̄0} ⊕ span{γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ
Γ} =: {ρ̄0} ⊕W for all t ∈]0, T [ . (187)

The estimate is not obvious we have to devote an entire section to its proof. We start from a pari
(%, q) ∈ L∞,α(Q) × Lw(◦N ln)L

1(Q; RN−1). We define ρ := R(%, q), and µ := Eq if q is
finite. The estimate method relies on a precise structure of the free energy

∂ih = ci +K
Vi
mi

F ′(ρ · V
m

) + kB θ
1

mi

ln yi . (188)

Note that at every point where % > 0, we can resort to the representation

µi − µk = Eq · (ei − ek) = (Eq + M (%, q)1) · (ei − ek)

= ci − ck +K

(
Vi
mi

− Vk
mk

)
F ′(ρ · V

m
) + kB θ

(
1

mi

ln yi −
1

mk

ln yk

)
.

(189)

We commence stating an obvious estimate that results from the energy identity.

Lemma 8.6. Define W := span{γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ
Γ}, and PW : RN → W the orthog-

onal projection on the subspace W . There is C depending only on Ω such that

‖PWµ‖L1(Q) + ‖PWµ‖L1(]0,T [×Γ) ≤C (1 + ‖∇q‖L1(Q) + [DR]LΨ(Q) + [D̂Γ,R]L
Ψ̂Γ (S)) .
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Proof. Consider at first a vector γk ∈ RN , k ∈ {1, . . . , s} associated with the bulk reactions
(see (4))). Obviously

∫
Q
|µ · γk| ≤

∫
Q
|DR| ≤ C0. By assumption, γk · 1 = 0 for all k. This

means that there is a constant cW,Π depending on W and the choice of the projector Π such
that |∇(γk · µ)| ≤ cW,Π |∇Πµ|. We also obtain (trace theorem) that∫

]0,T [×Γ

|µ · γk| ≤ C ‖µ · γk‖W 1,0
1 (Q) .

Analogously for k ∈ {1, . . . , ŝΓ}, we obtain that
∫

]0,T [×Γ
|µ · γ̂k| ≤

∫
]0,T [×Γ

|D̂Γ,R| ≤ C0. We

use that
∫
Q
|µ · γ̂k| ≤ C (‖∇(µ · γ̂k)‖L1(Q) + ‖µ · γ̂k‖L1(]0,T [×Γ)), and the claim follows.

In general we cannot expect to control the entire vector ‖Πµ‖L1(Q) using Lemma 8.6: In fact
W is always a true subset of1⊥ due to the charge conservation condition γk · z

m
= 0. In order

to pursue, we need the auxiliary functions

d0(t) := ‖∇q(t)‖L1(Ω), r0(t) := ‖PWµ(t)‖L1(Ω) . (190)

In order to achieve notational simplicity troughout the section, we denote forA ⊆ Ω measurable
its three-dim. Lebesgue measure via |A| := λ3(A).

Lemma 8.7. Let i, k ∈ {1, . . . , N}, i 6= k and ε, δ > 0 be arbitrary numbers. For t ∈]0, T [
define d0(t) like in (190). Then, there is a disjoint splitting ]0, T [= I1(i, k, ε, δ)∪ I2(i, k, ε, δ)
of the interval ]0, T [ such that

∫
Ω
|µi(t)− µk(t)| ≤ C∗(δ) (d0(t) + ε−1) for t ∈ I1
|{x ∈ Ω : µi(t, x)− µk(t, x) < ε−1}| < δ

or

|{x ∈ Ω : µi(t, x)− µk(t, x) > −ε−1}| < δ

for t ∈ I2

Here, C∗ is a continuous, nonincreasing function on [0, 1] depending only on Ω.

Proof. We show that for all δ > 0, there is c = c(δ) depending only on Ω such that for all
u ∈ W 1,1(Ω)

‖u‖L1(Ω) ≤ c(δ)

(
‖∇u‖L1(Ω) + max

{∫
A

|u+|,
∫
B

|u−|
})

for all A, B ⊂ Ω such that min{|A|, |B|} ≥ δ . (191)

Otherwise, there is δ0 > 0 such that for all j ∈ N, one finds uj ∈ W 1,1(Ω) and Aj, Bj ⊂ Ω,
|Aj|, |Bj| ≥ δ0 and

‖uj‖L1(Ω) ≥ j

(
‖∇uj‖L1(Ω) + max

{∫
Aj

|u+
j |,
∫
Bj

|u−j |

})
.

Consider ūj := uj/‖uj‖L1(Ω). Then, ‖ūj‖W 1,1(Ω) ≤ ‖∇ūj‖L1(Ω) + 1 ≤ j−1 + 1. Conse-
quently, there is a subsequence (no new labels) and a limiting element ū ∈ L1(Ω) such that
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ūj → ū strongly in L1(Ω). But since ∇ūj → 0 strongly in L1(Ω), we easily show that ū
is a constant. Now, we see that also ū+ |Aj| + |ū−| |Bj| → 0, and obviously ū ≡ 0. Thus
1 = ‖ūj‖L1(Ω) → 0, a contradiction.

For u ∈ L1(Ω), we apply (191) with the choices

A := {x ∈ Ω : u(x) < ε−1}, B := {x ∈ Ω : u(x) > −ε−1} .

It follows that either min{|A|, |B|} < δ or that

‖u‖L1(Ω) ≤ c(δ)

(
‖∇u‖L1(Ω) + max

{∫
A

|u+|,
∫
B

|u−|
})

≤ c(δ) (‖∇u‖L1(Ω) +
1

ε
max {|A|, |B|}) .

We apply the latter inequality to u = (µi−µk)(t), i, k ∈ {1, . . . , N}. Note that independently
of the choice of Π, there is cΠ such that ‖∇(µi(t) − µk(t))‖L1(Ω) ≤ cΠ d0(t). The claim
follows.

Under the assumptions (189), (188) we can also translate the result in the following way.

Lemma 8.8. Recall the definition of the number densities ni := 1
mi
ρi. Let i, k ∈ {1, . . . , N},

i 6= k arbitrary. For all δ, ε ≥ 0 there is a disjoint splitting ]0, T [= J1(i, k, ε, δ)∪J2(i, k, ε, δ)
of the interval ]0, T [ such that

∫
Ω
|µi(t)− µk(t)| ≤ C∗(δ) (d0(t) + ε−α) for t ∈ J1
|{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε

α + δ

or

|{x ∈ Ω : nk(t, x) ≥ ε}| < C0 ε
α + δ

for t ∈ J2 .

Proof. We consider t ∈ I2(i, k, γ, δ) for γ, δ > 0 with I2 defined by Lemma 8.7. We for
example assume that |{x ∈ Ω : µi(t, x) − µk(t, x) < γ−1}| < δ. The other case of the
alternative is completely similar.

We abbreviate A = A(γ) := {x ∈ Ω : µi(t, x) − µk(t, x) > γ−1}. For constants 0 <
M1 < M2 < +∞, we introduce also the sets BM2 := {x ∈ Ω : a0 ≤ n(t, x) · V ≤ M2}
and BM1 := {x ∈ Ω : M1 ≤ n(t, x) · V ≤ a0}. Here, a0 ∈ R+ denotes the number such
that F ′(a0) = 0. Moreover we put CM1 := {x ∈ Ω : n(t, x) · V ≤ M1} and CM2 := {x ∈
Ω : n(t, x) · V ≥M2}. On the set CM1 , we directly obtain that nk ≤ n · 1 ≤ V −1M1. Thus
we note that

CM1 ⊆ {x : nk(t, x) ≤ V −1M1} . (192)

Due to the estimate ‖n · 1‖L∞,α(Q) ≤ C0, one moveover has

|CM2 | ≤ C0M
−α
2 . (193)
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Due to (189), we see that in the set A ∩ (BM1 ∪BM2) we have

γ−1 ≤ µi − µk = ci − ck +K F ′(n · V ) ( Vi
mi
− Vk

mk
) + ln

(
y

1/mi
i

y
1/mk
k

)kB θ

,

which in turn implies for x ∈ A ∩BM2 that(
y

1/mk
k

y
1/mi
i

)kB θ

≤ e−γ
−1

eci−ck e
K F ′(M2) (

Vi
mi
− Vk
mk

)+

≤ C1 e
bK F ′(M2) e−γ

−1

,

where b := sup V
m
− inf V

m
. On the other hand, for x ∈ BM1 ∩ A we obtain that(

y
1/mk
k

y
1/mi
i

)kB θ

≤ e−γ
−1

eci−ck e
K F ′(M1) (

Vi
mi
− Vk
mk

)−

≤ C1 e
bK |F ′(M1)| e−γ

−1

,

Thus, for x ∈ A ∩BMi
, i = 1, 2, we obtain that

nk ≤ C̃1 (n · 1) [ebK |F
′(Mi)| e−γ

−1

]
mk
kBθ

≤ C̃1M2 [ebK |F
′(Mi)| e−γ

−1

]
mk
kB θ . (194)

For ε > 0, consider the set U = Uε,k,t := {x ∈ Ω : nk(t, x) ≥ ε}. Observe that

U ⊂ [U ∩ CM1 ] ∪ [U ∩ CM2 ] ∪ [U ∩ A ∩BM1 ] ∪ [U ∩ A ∩BM2 ] ∪ [U \ A] .

For M1 = V ε, we obviously obtain from (192) that U ∩ CM1 = ∅. Choosing M2 := ε−1 and
γ = γ(ε) so small that

C̃1 ε
−1 [ebK max{|F ′(V ε)|, |F ′(ε−1)|} e−γ

−1

]
mk
kB θ < ε , (195)

we obtain from (194) that U ∩ A ∩ BMi
= ∅ for i = 1, 2, and therefore that U ⊂ [U \ A] ∪

[U \ CM2 ]. Since |Ω \ A| < δ by assumption and |CM2 | ≤ C0 ε
α owing to (193), the latter

yields

|U | ≤ C0 ε
α + δ . (196)

Thus, we have shown that for all ε > 0, if t ∈ I2(i, k, γ(ε), δ) then (196) holds. Define
J2(i, k, ε, δ) via

J2 := {t ∈ [0, T ] :

inf{|{x : ni(t, x) ≥ ε}|, |{x : nk(t, x) ≥ ε}|} ≤ C0 ε
α + δ} .

Then, t 6∈ J2 implies t 6∈ I2(i, k, γ(ε), δ), and applying the dichotomy of Lemma 8.7, we
obtain that t ∈ I1(i, k, γ(ε), δ). This means that J1 :=]0, T [\J2 ⊂ I1 and it follows that∫

Ω

|µi(t)− µk(t)| ≤ C∗(δ) (d0(t) + γ−1(ε)) for all t ∈ J1 .
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We can find γ(ε) according to (195) by setting

1

γ(ε)
= ln

C

ε2 kB θ/m e−bK max{|F ′(V ε)|, |F ′(ε−1)|} ,

with a constant C that depends only on m and V and b := sup V
m
− inf V

m
. Thus

1

γ(ε)
≤ C (1 + | ln ε|+K max{|F ′(V ε)|, |F ′(ε−1)|})

≤ C̃ (1 + | ln ε|+ ε−α) ≤ C̄ ε−α .

The claim follows.

The Lemma 8.8 shows that the set J2 of all times such that the L1(Ω) norm of µi − µk might
be ’large’ must be contained in the set where the number density of at least one specie is
’vanishing’ almost entirely. For this set it is possible to obtain estimates using the property (187)
for the vector of total masses ρ̄ :=

∫
Ω
ρ. In a certain special case, we can show it directly.

Lemma 8.9. Assume (187), and that s+ ŝΓ = 0 (no reactions andMΓ,2 = 0). Then, there is a
constant C0 depending on B0 (cf. (180)) and on infi=1,...,N

∫
Ω
ρ0
i such that ‖µi − µk‖L1(Q) ≤

C0 for all i, k ∈ {1, . . . , N}.

Proof. If s + ŝΓ = 0, then r̂ = 0 = J0 and the total mass of each constituent is conserved,
that is

∫
Ω
ρi(t) =

∫
Ω
ρ0
i for i = 1, . . . , N and all t ∈]0, T [. We thus easily show for all

a0 < |Ω|−1 infi=1,...,N ρ̄
0
i and all t ∈]0, T [ that

|{x ∈ Ω : ρi(t) ≥ a0}| ≥
[

1

‖%‖L∞,α(Q)

(
inf

i=1,...,N
ρ̄0
i − a0 |Ω|

)]α′
.

In particular, for a0 := (2|Ω|)−1 infi=1,...,N ρ̄
0
i , we obtain that

|{x ∈ Ω : ρi(t) ≥ a0}| ≥
[

1

2 ‖%‖L∞,α(Q) |Ω|
inf

i=1,...,N
ρ̄0
i

]α′
=: b0 . (197)

Thus, recalling the dichotomy of the Lemma 8.8, the interval J2(i, k, ε, δ) is empty for all pa-
rameters ε, δ satisfying the conditions

ε < a0, C0 ε
α + δ < b0 .

Choose for instance δ0 = b0/2 and ε0 = min{a0/2, (b0/(2C0))1/α}, and we obtain for all
t ∈]0, T [ that

∫
Ω
|µi(t)− µk(t)| ≤ C∗(δ0) (d0(t) + ε−α0 ). This proves the claim.

For a system with reactions, we have an equivalent property in the case that the time intervall is
sufficiently short
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Lemma 8.10. Assume that (187) is valid. Define

T ∗ := inf{t ∈ [0, T ] : min
i=1,...,N

ρ̄i(t) = 0} . (198)

Then, there is a time T0 > 0 depending on B0 (cf. (180)) and on infi=1,...,N ρ̄
0
i such that

T ∗ ≥ T0, and ‖µi − µk‖L1(Qt) ≤ C0,t for all i, k ∈ {1, . . . , N} and t < T ∗.

Proof. We recall (186), and we see that

|ρ̄(t)− ρ̄0| ≤ C̃0 Φ∗(t, 0) for all t ∈ [0, T ] . (199)

Thus, if T0 is such that infi=1,...,N ρ̄
0
i−C̃0 Φ∗(T0, 0) ≥ c0 > 0, we obtain that infi=1,...,N ρ̄i(t) >

0 for all t ∈ [0, T ∗] and we can conclude as in Lemma 8.9.

Our next purpose is to prove an equivalent of Lemma 8.9 in the case that s + ŝΓ > 0 and
this globally in time. Our idea relies on the concept of a species selection. A selection S of
cardinality |S| ∈ {1, . . . , N} is defined via

S := {i1, . . . , i|S|} with ij ∈ {1, . . . , N} for j = 1, . . . , |S| and i1 < . . . < i|S| .

For a selection S = {i1, . . . , i|S|}, we dentote PS : RN → RN the projection (PSξ)i = ξi for
i ∈ S and (PSξ)i = 0 otherwise. The orthogonal selection is defined via S⊥ = {1, . . . , N} \
S. We call a selection S linearly independent (with respect to the vectors γ1, . . . , γs and
γ̂1, . . . , γ̂ ŝ

Γ
) if the condition

WS := span{PS(γ1), . . . , PS(γs), PS(γ̂1), . . . PS(γ̂ ŝ
Γ

)} = PS(RN)

is satisfied, and linearly dependent if dim(WS) ≤ |S| − 1. We recall at this point also the
definition (80) of the manifoldMcrit.

Lemma 8.11. Assume that the vector ρ̄0 :=
∫

Ω
ρ0 ∈ RN

+ of total initial masses does not belong
toMcrit. Then, there are a0, b0 > 0 depending on dist(ρ̄0,Mcrit) and on B0 such that for all
linearly dependent selections S, and all a < a0 and b < b0

{t ∈]0, T [ : |{x ∈ Ω : ni(t, x) ≥ a}| < b for all i ∈ S} = ∅ . (200)

Proof. Due to (187), we obtain that PS(ρ̄(t)) ∈ {PS(ρ̄0)} ⊕WS . If S is a linearly dependent
selection, then by the definition of the critical manifold

|PS(ρ̄(t))| ≥ dist(ρ̄0,Mcrit) .

Thus, for all t ∈]0, T [, there is at least one indice i1 = i1(t) ∈ S such that ρ̄i1(t) ≥
dist(ρ̄0,Mcrit)

|S|1/2 . As in the proof of (197), we see that

|{x ∈ Ω : ρi1(t, x) ≥ a0}| ≥
[

1

‖%‖L∞,α(Q)

(
dist(ρ̄0,Mcrit)

|S|1/2
− a0 |Ω|

)]α′
.

Thus, in particular for a0 := dist(ρ̄0,Mcrit)/(2N
1/2 |Ω|),

|{x ∈ Ω : ρi1(t, x) ≥ a0}| ≥
[

dist(ρ̄0,Mcrit)

2 ‖%‖L∞,α(Q) |Ω|

]α′
=: b0 .

The claim follows.
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Thus, few restrictions on the vector of the initial global masses (note: the critical manifold as
at most dimension N − 1) are sufficient to garanty that the indices of a linearly dependent
selection cannot correspond to global masses that vanish at the same time. In the remaining,
most technical part of the estimate, we are going to show that this is also the case for linearly
independent selections. We aforemention that owing to the conservation of the total mass

∫
Ω
%,

we can introduce

ā0 :=
1

2|Ω|

∫
Ω

%0, b̄0 =

(
|Ω|

2‖%‖L∞,α(Q)

∫
Ω

%0

)α′
(201)

and show that the set A0(t) := {x ∈ Ω : %(t, x) ≥ ā0} satisfies |A0(t)| ≥ b̄0 for all
t ∈]0, T [. Note that in the set |A0(t)| it is always possible to introduce the entire vector of
chemical potentials µ = Eq+M (%, q)1, and the identity µ = ∇h(ρ) is valid at ρ = R(%, q).
We commence with two auxiliary statements.

Lemma 8.12. Define ā0, b̄0 > 0 like in (201). Then there is for t ∈ [0, T ] arbitrary a set
E = E(t) ⊆ A0(t), |E| ≥ 4−1 b̄0 such that for all i ∈ {1, . . . , N} and all 0 ≤ ε <

min{ ā0

Nm
,
(

b̄0
4NC0

)1/α

} and δ < b̄0/(2N
2), the following alternative is valid:

1 Either |{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε
α + δ;

2 Or
∫
E
|µi(t)| ≤ c (1 + C∗(δ) (d0(t) + ε−α)).

where c depends only on the parameters appearing in the definition of the chemical potentials,
on ā0 and b̄0, and C∗ is as in Lemma 8.7.

Proof. Let t ∈]0, T [. We define I = I (t, ε, δ) ⊆ {1, . . . , N} as the set of indices i such
that the condition |{x : ni(t, x) ≥ ε}| ≤ C0 ε

α + δ is satisfied. For i ∈ I , the first member
(1) always applies. Note that I (t, ε, δ) ⊆ I (t, ε0, δ0) if ε ≤ ε0 and δ ≤ δ0.

Consider i 6∈ I fixed. Then, we obtain due to Lemma 8.8 for all j ∈ {1, . . . , N} the alternative

1 Either
∫

Ω
|µi(t)− µj(t)| ≤ C∗(δ) (d0(t) + ε−α);

2 Or |{x ∈ Ω : nj(t, x) ≥ ε}| ≤ C0 ε
α + δ.

We call J = J (t, i, ε, δ) ⊆ {1, . . . , N} the subset such that the first condition in this new
alternative is satisfied. Thus∫

Ω

|µi(t)− µj(t)| ≤ C∗(δ) (d0(t) + ε−α) for all j ∈J . (202)

Due to the nonincreasing character of the latter estimate in ε, δ, we note that

J (t, i, ε0, δ0) ⊆J (t, i, ε, δ) if ε ≤ ε0 and δ ≤ δ0 . (203)
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We can decompose Ω into disjoint sets B1, . . . , BN such that

nj(t, x) = sup
`=1,...,N

n`(t, x) for x ∈ Bj .

Call A0(t) := {x ∈ Ω : %(t, x) ≥ ā0} like in (201). Note that on Bj ∩ A0(t), the estimates

µ+
j ≤ cj +

KVj
mj

[F ′]+ ≤ c (1 + (n · 1)α−1)

µ−j ≥ cj +
KVj
mj

[F ′(ā0 inf V
m

)]− − kB θ

mj

ln
1

N

ensure that |µj| ≤ sup c (1 + (n · 1)α−1 + |[F ′(ā0 inf V
m

)]−|. Therefore∫
Bj∩A0

|µj| ≤ C0 + C̄(ā0) |Bj ∩ A0| . (204)

For i 6= j arbitrary, we observe that∫
Bj∩A0

|µi| ≤
∫
Bj∩A0

|µj|+
∫
Bj∩A0

|µi − µj| for j = 1, . . . , N .

If j ∈J (t, i, ε, δ), the inequality (204) joined to the fact (202) implies that∫
Bj∩A0

|µi| ≤ C0 + C̄(ā0) |Bj ∩ A0|+
∫

Ω

|µi − µj|

≤ C(ā0) + C∗(δ) (d0(t) + ε−α) , (205)

We defineE(t, i, ε, δ) :=
⋃
j∈J (t,i,ε,δ) Bj ∩A0, and we obtain as a consequence of (205) that∫

E(t,i,ε,δ)

|µi| ≤ N (C(ā0) + C∗(δ) (d0(t) + ε−α)) .

Further, the property (203) yields E(t, i, ε0, δ0) ⊂ E(t, i, ε, δ).

Consider now j ∈ {1, . . . , N} \J . Then by definition, |{x : nj(t, x) ≥ ε}| ≤ C0 ε
α + δ.

Recall also that supk=1,...,N nk ≥ ā0/(Nm) on A0. Therefore, the set inclusion Bj ∩ A0 ⊂
{x : nj ≥ ā0/(Nm)} is valid. Thus, if j 6∈ J and if ε ≤ ā0/(Nm) then |Bj ∩ A0| ≤
C0 ε

α + δ. Thus, for all ε ≤ ā0/(Nm)

|A0 \ E(t, i, ε, δ)| ≤
∑
j 6∈J

|A0 ∩Bj| ≤ N (C0 ε
α + δ) ,

We now introduce a set E independent of i, ε and δ via

E = E(t) =
⋂

i∈{1,...,N}\I

E(t, i, ε0, δ0) ,

ε0 := min

{
ā0

Nm
,

(
b̄0

4NC0

)1/α
}
, δ0 :=

b̄0

2N2
.

53



Then

|E| ≥ |A0| −
∑

i∈{1,...,N}\I

|A0 \ E(t, i, ε0, δ0)|

≥ |A0| −N C0 ε
α
0 −N2 δ0 ≥

b̄0

4
.

Since E ⊆ E(t, i, ε0, δ0) ⊆ E(t, i, ε, δ) for all ε and δ∫
E

|µi| ≤
∫
E(t,i,ε,δ)

|µi| ≤ N (C(ā0) + C∗(δ) (d0(t) + ε−α)) .

We need a second auxiliary statement.

Lemma 8.13. Let i ∈ {1, . . . , N}. Then there are C1 > 0 and δ1 > 0 depending only on the
parameters appearing in the definition of the chemical potentials such that for all 0 < δ < δ1,
there is Ni,δ ⊂ Ω, such that |Ni,δ| ≤ C0 [ln 1

δ
]−α

′
and such that

{x ∈ Ω : ni(t, x) ≤ δ} ⊂ {x ∈ Ω : |µi(t, x)| ≥ −C1 ln δ} ∪Ni,δ .

Proof. Consider x ∈ Ω such that ni(x) ≤ δ. We distiguish two cases.

First case n(x) · 1 ≥ 1.

We introduce for i = 1, . . . , N the function Gi such that µi = Gi + (kB θ/mi) lnni, that is,

Gi := ci +
KVi
mi

F ′(n · V )− kB θ

Vi
ln(n · 1) .

We easily show that for n · 1 ≥ 1 that Gi ≤ c̄ (1 + |n · 1|α−1). If Gi ≤ −kB θ
2mi

ln δ, then µi ≤
kB θ
2mi

ln δ < 0, and therefore |µi| ≥ −kB θ
2mi

ln δ. On the other hand, if Gi(x) ≥ −kB θ
2mi

ln δ,
then

−kB θ
2mi

ln δ ≤ c̄ (1 + (n · 1))α−1) .

Thus, if δ is such that −kB θ
2mi

ln δ > 4 c̄, we see that x belongs to the set Nδ := {x :

(n · 1))α−1 ≥ −kB θ
4mi

ln δ}. The estimate

|Nδ| ≤ ‖n · 1‖α−1
L∞,α(Q) [ln

1

δ
kB θ

4mi

]−α
′
,

is valid.

Second case n(x) · 1 < 1.

If n(x) · 1 ≤
√
δ, then n(x) · V ≤ V

√
δ, and we can use the logarithmic growth of F ′ to see

that that µi ≤ ci +K Vim
−1
i ln(V

√
δ).

If otherwise n(x)·1 >
√
δ, then yi(x) ≤

√
δ, and µi ≤ ci+K Vim

−1
i F ′(V )+kB θm

−1
i ln

√
δ.

Thus in both cases µi ≤ Ci (1 + ln δ), and the claim follows.

54



Next we are going to use the structure of the reaction terms. Recall that we denote PW (µ) the
projection of the vector µ and that the inequality of Lemma 8.6 ensures a control of the quantity
‖PW (µ)‖L1(Q). We denote r0(t) := ‖PW (µ(t))‖L1(Ω).

Lemma 8.14. There are

1 Numbers ε0, δ0 > 0 depending only on ā0, b̄0 (cf. (201));

2 A continuous, nonnegative and nondecreasing function h∗ defined on [0, δ0], such that
h∗(0) = 0 and h∗(δ) ≥ δ for all δ;

with the following property: If S is a linearly independent selection and t ∈]0, T [, ε ∈]0, ε0] and
δ ∈]0, δ0] are such that{

|{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε
α + δ for all i ∈ S

r0(t) ≤ C1 b̄0
16
| ln ε|, d0(t) ≤ | ln ε|

then, there is a selection S ′ ⊃ S, |S ′| = |S|+ 1 such that

|{x ∈ Ω : ni(t, x) ≥ | ln ε|−1/α}| ≤ C0 (| ln ε|−1 + h∗(δ)) for all i ∈ S ′ .

Proof. LetS be linearly independent. There are for i ∈ S coefficients λ1, . . . , λs and λ̂1, . . . , λ̂ŝΓ
in R depending only on the vectors γ and γ̂ such that the i−th standard basis vector of RN

has the representation

ei =
s∑
`=1

λ` PS(γ`) +
ŝΓ∑
`=1

λ̂` PS(γ̂`)

=
s∑
`=1

λ` γ
` +

ŝΓ∑
`=1

λ̂` γ̂
` +

s∑
`=1

λ` (I − PS)(γ`) +
ŝΓ∑
`=1

λ̂` (I − PS)(γ̂`)︸ ︷︷ ︸
∈ImageP

S⊥

∈ W ⊕ ImagePS⊥ .

Thus, for all i ∈ S there is a constant Ci,S such that

|µi| − Ci,S |PS⊥(µ)| ≤ |PW (µ)| . (206)

Introducing C̄ := supS linearly independent, i∈S Ci,S it follows that

|PS⊥(µ)| ≥ 1

C̄
(|µi| − |PW (µ)|) . (207)

Assume now that |{x : ni(t, x) ≥ ε}| ≤ C0 ε
α + δ for all i ∈ S. Owing to Lemma 8.13, we

then see for all i ∈ S that

|{x ∈ Ω : |µi(t, x)| ≥ −C1 ln ε}|

≥ |{x ∈ Ω : ni(t, x) ≤ ε}| − C0 [ln
1

ε
]−α

′

≥ |Ω| − δ − C0 ε
α − C0 [ln

1

ε
]−α

′
.
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Define E as in the Lemma 8.12. Then, we can ensure that the intersection F := E ∩ {x ∈
Ω : |µi(t, x)| ≥ −C1 ln ε} satisfies

|F | ≥ |E| − δ − C0 ε
α − C0 [ln

1

ε
]−α

′

≥ b̄0

4
− δ − C0 ε

α − C0 [ln
1

ε
]−α

′
.

If we now choose

δ ≤ b̄0

8
, ε ≤ min

{(
b̄0

8C0

)1/α

,

[
e
−
(

8
b̄0

)1/α′
]}

,

we obtain that |F | ≥ b̄0/8. We integrate (207) over F . This yields∫
F

|P⊥S (µ)| ≥ 1

C̄

(
|F | [C1 | ln ε|]−

∫
F

|PW (µ)|
)

≥ 1

C̄

(
b̄0

8
C1 | ln ε| − r0(t)

)
.

Thus, there must exist j0 = j0(t) ∈ S⊥ such that∫
E

|µj0| ≥
∫
F

|µj0| ≥
1

N C̄
(
b̄0

8
C1 | ln ε| − r0(t))

Therefore, we obtain again from the alternative of Lemma 8.12 that for all τ, η such that0 ≤ η < min

{
ā0

Nm
,
(

b̄0
4NC0

)1/α
}
, τ < b̄0

2N2

c (1 + C∗(τ) (d0(t) + η−α)) < 1
N C̄

( b̄0
8
C1 | ln ε| − r0(t))

(208)

it must follow that |{x : nj0(t, x) ≥ η}| ≤ C0 η
α + τ .

We next compute good choices of τ and η as functions of ε and δ. Define two functions

τ(δ) := min{y ≥ 0 : C∗(y) ≤ δ}, η(ε) := | ln ε|−1/α . (209)

Then

c (1 + C∗(τ(δ)) (d0(t) + η(ε)−α)) ≤ c (1 + δ d0(t) + δ | ln ε|) .

Thus, if t is such that d0(t) ≤ | ln ε| and r0(t) ≤ b̄0
16
C1 | ln ε|, (209) imply that

c (1 + C∗(τ(δ)) (d0(t) + η(ε)−α)) ≤ c (1 + 2 δ | ln ε|)
b̄0

8
C1 | ln ε| − r0(t) ≥ b̄0

16
C1 | ln ε| .

The second of the conditions (208) is satisfied for all 2 c C̄ δ < b̄0
N 16

C1 and all ε ≤ e
− 64 c C̄
b̄0 C1 .

Define finally h∗(δ) := max{δ, τ(δ)}. Set S ′ = S ∪ {j0} and the claim follows.
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We are now going to iterate the result of Lemma 8.14. Consider the auxiliary function

g∗(ε) :=

(
1

(◦N−1 ln)(ε−1)

)1/α

. (210)

Corollary 8.15. There are

1 Numbers ε̄0, δ̄0 > 0 depending only on ā0, b̄0;

2 A continuous, nonnegative and nondecreasing function h̄∗ defined on [0, δ̄0], h̄∗(0) = 0;

with the following property: If S is any linearly independent selection and t ∈]0, T [, ε ∈]0, ε̄0]
and δ ∈]0, δ̄0] are such that|{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε

α + δ for all i ∈ S

r0(t) ≤ C1 b̄0
16
| ln g∗(ε)|, d0(t) ≤ | ln g∗(ε)|

then, there is a linearly dependent selection S ′ ⊃ S such that

|{x ∈ Ω : ni(t, x) ≥ g∗(ε)}| ≤ C0 ((g∗(ε))α + h̄∗(δ)) for all i ∈ S ′ .

Proof. Taking the numbers δ0, ε0 and the function h∗ from Lemma 8.14, we denote h̄∗ :=
◦N−1h

∗ := h∗ ◦ . . . ◦ h∗︸ ︷︷ ︸
×N−1

, and we choose

ε̄0 := (◦N−1e)

(
− 1

εα0

)
δ̄0 := sup{y ≥ 0 : h̄∗(y) ≤ δ0} . (211)

If S is any linearly independent selection and t ∈]0, T [, ε ∈]0, ε0] and δ ∈]0, δ0] are such that{
|{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε

α + δ for all i ∈ S
r0(t) ≤ C1 b̄0

16
| ln ε|, d0(t) ≤ | ln ε|

then, due to Lemma 8.14, there is a selection S ′ ⊃ S, |S ′| = |S|+ 1 such that

|{x ∈ Ω : ni(t, x) ≥ ε1}| ≤ C0 ((ε1)α + δ1) for all i ∈ S ′ ,

with ε1 = | ln ε|−1/α and δ1 = h∗(δ). Our assumptions (see (211)) are suited in such a way
that ε1 < ε0 and δ1 ≤ δ0, and that moreover

r0(t) ≤ C1 b̄0

16
| ln ε1|, d0(t) ≤ | ln ε1| .

Thus, we can apply to S ′ Lemma 8.14 again, and we obtain the existence of a selection S ′′ ⊃ S,
|S ′′| = |S|+ 2 such that

|{x ∈ Ω : ni(t, x) ≥ ε2}| ≤ C0 ((ε2)α + δ2) for all i ∈ S ′′ ,

with ε2 = | ln ε1|−1/α = α1/α (ln | ln ε|)−1/α and δ2 = h∗(δ1) = (h∗ ◦ h∗)(δ). After at most
N − 1 steps, we attain the (linearly dependent) selection of cardinality N .
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Now, we can combine these estimates with the Lemma 8.11.

Corollary 8.16. Assumptions of Lemma 8.11. Then, for all 0 < ε < ε̄0, δ ≤ δ̄0 and i ∈
{1, . . . , N}

λ1({t ∈]0, T [ : |{x ∈ Ω : ni(t, x) ≥ ε}| ≤ C0 ε
α + δ}) ≤ C0

1

(◦N ln)(ε−1)
.

Proof. Consider IM := {t ∈]0, T [ : d0(t) ≥ | ln g∗(ε)| , r0(t) ≥ C1 b̄0
16
| ln g∗(ε)|}. Then,

since both d0(t) and r0(t) are bounded inL1(0, T ), we can show that |IM | ≤ C0 | ln g∗(ε)|−1.
Let t ∈]0, T [\IM , and i ∈ {1, . . . , N} be such that |{x : ni(t, x) ≥ ε}| < C0 ε

α+ δ. Then,
due to Corollary 8.15, there is a linearly dependent selection S̃ ⊃ {i} such that

|{x : ni(t, x) ≥ g∗(ε)}| < C0 ((g∗(ε))α + h̄∗(δ)) for all j ∈ S̃ .

Applying the Lemma 8.11, we obtain that if g∗(ε) ≤ a0 and C0 ((g∗(ε))α + h̄∗(δ)) ≤ b0, it
must follow

{t ∈]0, T [\IM : |{x : ni(t, x) ≥ ε}| < C0 ε
α + δ} = ∅ .

Thus, for all i = 1, . . . , N

λ1({t ∈]0, T [ : |{x : ni(t, x) ≥ ε}| < C0 ε
α + δ} ≤ λ1(IM) .

We can conclude to the main estimate.

Proposition 8.17. Assume that the free energy function h possesses the explicit form (188).
Assume that the vector of total masses ρ̄ is subject to (187). Then

(1) Define T ∗ as in (198). Then T ∗ ≥ T0 > 0 with T0 depending only on the data, and for all
t ∈ [0, T ∗[, ‖Πµ‖L1(Qt;RN−1) ≤ C0(t);

(2) If s+ ŝΓ = 0, there is a constant C0 such that ‖Πµ‖L1(Q;RN−1) ≤ C0;

(3) Assume that the vector of total initial masses ρ̄0 does not belong to the manifoldMcrit (cp.
(80)). Then, there is a constant C0 such that [Πµ]Lw

(◦N ln)
L1(Q;RN−1) ≤ C0.

Here C0 depends only on ‖∇Πµ‖L1(Q) on ‖PWµ‖L1(Q∪ST ), on infi=1,...N ρ̄
0
i , and in the last

case also on dist(ρ̄0,Mcrit).

Proof. See the Lemmas 8.9 and 8.10 for the two first cases. Otherwise, we apply the Lemma 8.8
together with the consideration of Corollary 8.16. We see that the set J2(i, k, ε, δ) satisfies for
δ < δ̄0 and ε < ε̄0 the inequality λ1(J2(i, k, ε, δ)) ≤ C0

1
| ln g∗(ε)| . Thus also for J2(ε, δ) :=
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⋃N
i,k=1 J2(i, k, ε, δ), we have λ1(J2(ε, δ)) ≤ C0

1
| ln g∗(ε)| . For t ∈]0, T [\J2, the inequality∫

Ω
|Πµ(t)| ≥ C∗(δ) (d0(t) + ε−α) is valid. Observe that{
t ∈]0, T [ :

∫
Ω

|Πµ(t)| ≥ 2C∗
(
δ̄0

2

)
1

εα

}
⊂ J2(ε,

δ̄0

2
) ∪
{
t ∈]0, T [ : d0(t) ≥ 1

εα

}
.

Therefore

λ1

({
t ∈]0, T [ :

∫
Ω

|Πµ(t)| ≥ 2C∗
(
δ̄0

2

)
1

εα

})
≤ C0

1

| ln g∗(ε)|
+ C0 ε

α .

The claim follows.

8.3 Special estimates for σ > 0 and τ > 0

In the case σ > 0, the dissipation inequality provides
√
σ ‖∇µ‖L2(Q) ≤ C0 as an additional

information. Thus, a gradient bound for all coordinates of the vector µ. In this case, we can
apply the reasoning a simplified version of the preceding subsection to the chemical potentials
instead of the differences.

Lemma 8.18. Let σ > 0 be fixed. Then

(1) Define T ∗ := inf{t ∈ [0, T ] : mini=1,...,N ρ̄i(t) = 0}. Then T ∗ ≥ T0 > 0 with T0

depending only on the data, and for all t ∈ [0, T ∗[, ‖µ‖L1(Qt;RN ) ≤ C0,σ(t);

(2) If s+ ŝΓ = 0, then ‖µ‖L1(Q;RN ) ≤ C0,σ;

(3) If the vector of total initial masses ρ̄0 does not belong toMcrit, then [µ]Lw
(◦N ln)

L1(Q;RN ) ≤
C0,σ.

Here C0,σ depends on σ, on ‖∇Πµ‖L1(Q) on ‖PWµ‖L1(Q∪ST ), on infi=1,...N ρ̄
0
i , and in the

second case also on dist(ρ̄0,Mcrit).

Proof. For all t ∈]0, T [, the global mass conservation implies that
∫

Ω
%(t) =

∫
Ω
%0 ·1, and this

implies by means of a well-known argument that there is are +∞ > a1 > a0 > 0 and b0 > 0
such that the set A0(t) := {x ∈ Ω : a1 ≥ %(t) · 1 ≥ a0} satisfies |A0(t)| ≥ b0. Consider
now the disjoint decomposition of Ω into sets B1(t), . . . , BN(t) where Bj(t) := {x ∈ Ω :
µj(t, x) = supi=1,...,N µi(t, x)} . We can show that

c (1 + [F ′(a1)]+) ≥ µj(t) ≥ −c (1 + [F ′(a0)]−) on A0(t) ∩Bj(t) . (212)

Thus, for i ∈ {1, . . . , N} arbitrary∫
A0(t)∩Bj(t)

|µi(t)| ≤
∫
A0(t)∩Bj(t)

|µj(t)|+
∫
A0(t)∩Bj(t)

|µi(t)− µj(t)|

≤ c(a0, a1) +

∫
A0(t)∩Bj(t)

|µi(t)− µj(t)| .
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Summing up over j = 1, . . . , N , the latter yields∫
A0(t)

|µi(t)| ≤ N c(a0, a1) +
N∑
j=1

∫
Ω

|µi(t)− µj(t)| .

Now we apply the inequality (191) in the proof of Lemma 8.7 with A := A0(t) =: B and
δ := b0, and we obtain that

‖µ(t)‖L1(Ω) ≤ c(b0)

(
‖∇µ(t)‖L1(Ω) +

∫
A0(t)

|µ(t)|
)

≤ c(b0)

(
‖∇µ(t)‖L1(Ω) +N c(a0, a1) +

N∑
j=1

∫
Ω

|µi(t)− µj(t)|

)
≤ C0

(
‖∇µ(t)‖L1(Ω) + ‖Πµ(t)‖L1(Ω;RN−1) + 1

)
.

We apply the Proposition 8.17 to control ‖Πµ(t)‖L1(Ω;RN−1), and the fact that ‖∇µ‖L1(Q) ≤
C0,σ, and the claim follows.

We recall that we can always express ρ = ∇h∗(µ) with the mapping of Lemma 5.7. If σ > 0,
we thus obtain that

∇ρ = (∇µ ·D2h∗(µ)) , (213)

and using the relation (120), this shows that

|∇ρ| ≤ C1 % |∇µ| . (214)

If α ≥ 2 (we in fact always assume α > 3 if σ > 0), it follows that
√
σ ‖∇ρ‖

L
2, 2α

2+α (Q)
≤ C̃ ‖%‖L∞,α(Q) ‖

√
σ∇µ‖L2(Q) ≤ C0 . (215)

We will need the following statement.

Lemma 8.19. Assume σ > 0. Then ‖ ln %‖W 1,0
2 (Q) ≤ C0 σ

−1/2.

Proof. Let 1 > γ > 0. Using (213), (214), we obtain that

|∇ ln(%+ γ)| ≤ C1
%

%+ γ
|∇µ| ≤ C1 |∇µ| .

Thus,
√
σ ‖∇ ln(%+ γ)‖L2(Q) ≤ C . Let ε > 0. For t ∈]0, T [, we can always show that

|{x ∈ Ω : ln(%(t) + γ) ≤ ε−1}| ≥ |Ω| − C0 e
− 1
ε .

Thus, applying (191) (see the proof of Lemma 8.7), we see that there is a decomposition ]0, T [=
I1 ∪ I2 such that{∫

Ω
| ln(%(t) + γ)| ≤ C∗(δ)

(
(‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1

)
for t ∈ I1

|{x ∈ Ω : ln(%(t) + γ) ≥ −ε−1}| ≤ δ for t ∈ I2 .
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In particular, choosing γ < 2−1 e−1/ε,{∫
Ω
| ln(%(t) + γ)| ≤ C∗(δ) (‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1) for t ∈ I1

|{x ∈ Ω : %(t) ≥ 2−1 e−1/ε}| ≤ δ for t ∈ I2 .

Due to the global mass conservation, we find parameter ε0 > 0, δ0 > 0 depending only on the
data such that I2 ≡ ∅ for all δ ≤ δ0 and ε ≤ ε0. Thus∫

Ω

| ln(%(t) + γ)| ≤ C∗(δ0) (‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1
0 ) for t ∈]0, T [ .

It follows that
∫
Q
| ln(%(t) + γ)| ≤ C∗(δ0) (C0 σ

−1/2 + ε−1
0 ), and letting γ tend to zero, the

claim follows.

We now resume the estimates obained in the two last sections for the chemical potentials.

Proposition 8.20. Let (%, q, v, φ, R, RΓ) satisfy the dissipation inequality. Assume that µ :=
Eq + M (%, q)1 is a measurable mapping from [0, T ] into L1(Ω; RN) and that the vector of
total masses ρ̄ :=

∫
Ω
ρ =

∫
Ω

R(%, q) belongs to CΦ∗([0, T ]) and satisfies ρ̄(t) ∈ {ρ̄0}⊕W
for all t ∈]0, T [. Then

(1) Define T ∗ := inf{t ∈ [0, T ] : mini=1,...,N ρ̄i(t) = 0}. Then T ∗ ≥ T0 > 0 with T0

depending only on the data. For all t ∈ [0, T ∗[, we have ‖q‖L1(Qt;RN−1) ≤ C0(t);

(2) If s+ ŝΓ = 0, then ‖q‖L1(Q;RN−1) ≤ C0.

(3) If dist(ρ̄0,Mcrit) > 0, then [q]Lw
(◦N ln)

L1(Q;RN−1) ≤ C0.

If σ > 0, there is C0,σ such that

(1) For all t ∈ [0, T ∗[, we have ‖µ‖L1(Qt;RN ) ≤ C0,σ(t);

(2) If s+ ŝΓ = 0, then ‖µ‖L1(Q;RN ) ≤ C0,σ.

(3) If dist(ρ̄0,Mcrit) > 0 then [µ]Lw
(◦N ln)

L1(Q;RN ) ≤ C0,σ.

Remark 8.21. Recall also that if τ > 0, then independently on additional conditions, there is
C0,σ,τ > 0 depending on B0 and σ, τ such that ‖µ‖L1(Q) ≤ C0,σ,τ (Proposition 8.1).

9 Compactness I

Our aim in this section is to derive a general compactness tool in order to pass to the limit with
approximate solutions to the problem (P ). Since we do not want to specify with which of the
approximation parameters δ, σ or τ we pass to the limit, we will considers families indexed by a
generic parameter ε > 0.
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In order to obtain the compactness we shall need the informations on distributional times deriva-
tive contained in the system (102), (103). For technical reasons it is convenient to express these
informations in an older (though elementary) fashion (see [Hop51], Lemma 5.1 for the inspiring
precursor of all Aubin–Lions–type techniques). For the sake of brevity, we introduce an auxiliary
vectorA associated with (%, q, v, φ, R, RΓ) and the auxiliary quantities (95) via

A := (J, % v, r, r̂, ∇v, % v ⊗ v, v ⊗ (1 · J), p, nF ∇φ) ∈ [L1(Q)]a , (216)

where a > 1 is the number of scalar compnents of the vector A. A functional F belongs
to C([0, T ] ; L (L1(Q), [C1

c (Ω; Rk)]∗)) if F maps [0, T ] × L1(Q) into [C1
c (Ω; Rk)]∗ and

satisfies moreover the conditions

t 7→ F(t, y) is absolutely continuous for all y ∈ L1(Q)

sup
‖y‖L1(Q)≤R, |t1−t2|≤δ

‖F(t1, y)−F(t2, y)‖[C1
c (Ω;Rk)]∗ → 0 for δ → 0 (217)

We consider a ’solution family’ {(%ε, qε, vε, φε, Rε, RΓ,ε)}ε>0 which might for example corre-
spond to free energy functions {hε}ε>0 and mobility matrices {Mε}ε>0. We assume that the
conditions

hε(ρ) ≥ c0 |ρ|α − c1, for all ρ ∈ RN
+

Mεξ · ξ ≥ λ |P1⊥ξ|2 for all ξ ∈ RN .
(218)

are satisfied uniformly in ε.

At first we need to extract weakly convergent subsequences.

Lemma 9.1. Consider a family {(%ε, qε, vε, φε, Rε, RΓ,ε)}ε>0 which satisfies a uniform bound
in the class B(T, Ω, α, N − 1, Ψ, ΨΓ). Define auxiliary quantities ρε, Jε, rε, r̂ε, pε, nFε and
Aε in the fashion of (95), (216).

Assume that there is a mapping F ∈ C([0, T ] ; L ([L1(Q)]a, [C1
c (Ω; RN+3)]∗)) such that

for almost all t ∈]0, T [( ∫
Ω
ρε(t) · ψ∫

Ω
%ε(t) v

ε(t) · η

)
= F(t, Aε)(ψ, η) , ∀ (ψ, η) ∈ C1

c (Ω; RN)× C1
c (Ω; R3) .

(219)

Assume that for almost all t ∈]0, T [, φε(t) satisfies in the weak sense

−ε0 (1 + χ)4φε(t) =
z

m
· ρε(t), −ν · ∇φε(t) = 0 on Σ, φε(t) = φ0(t) on Γ . (220)

Then, there are

ρ ∈ L∞,α(Q; RN
+ ), J ∈ L2, 2α

1+α (Q; RN×3), −R ∈ LΨ(Q; Rs), −RΓ ∈ LΨ̂Γ(S; RŝΓ)

v ∈ W 1,0
2 (Q), p ∈ L∞,1(Q) ∩ Lmin{1+ 1

α
, 5

3
− 1
α
}(Q)

φ ∈ L∞(Q) ∩ L∞(0, T ; W 1,β(Ω))
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and a subsequence {εn}n∈N such that as n→∞:

ρεn → ρ weakly in Lα(Q; RN)

ρεn(t)→ ρ(t) weakly in Lα(Ω; RN) for almost all t ∈ [0, T ]

ρ̄εn → ρ̄ strongly in C([0, T ]; RN)

Jεn → J weakly in L2, 2α
1+α (Q; RN×3)

Rεn → R weakly in L1(Q; Rs), RΓ,εn → RΓ weakly in L1(S; RŝΓ)

vεn → v weakly in W 1,0
2 (Q; R3)

pεn → p weakly in L1+min{ 1
α
, 2

3
− 1
α
}(Q)

φεn → φ strongly in W 1,0
2 (Q)

z

m
· ρεn ∇φεn →

z

m
· ρ∇φ weakly in L1(Q; R3)

%εn v
εn → % v weakly in L2, 6α

6+α (Q; R3)

(%εn v
εn)(t)→ %(t) v(t) weakly in L

2α
1+α (Ω; R3) for almost all t ∈ [0, T ]

%εn v
εn ⊗ vεn → % v ⊗ v weakly in L

5α−3
3α (Q; R3×3) .

Proof. At first, using the bounds in the natural class B we extract a subsequence such that

ρεn → ρ weakly in Lα(Q; RN), ρ̄εn → ρ̄ strongly in C([0, T ]; RN)

Jεn → J weakly in L2, 2α
1+α (Q; RN×3)

Rεn → R weakly in L1(Q; Rs), RΓ,εn → RΓ weakly in L1(S; RŝΓ)

vεn → v weakly in W 1,0
2 (Q; R3)

pεn → p weakly in L1+min{1/α, 2/3−1/α}(Q)

%εn v
εn → ξ weakly in L2, 6α

6+α (Q; R3)

%εn v
εn ⊗ vεn → ξ̃ weakly in L

5α−3
3α (Q; R3×3)

φεn → φ weakly W 1,0
2 (Q)

nFεn ∇φεn → kL weakly in L1(Q; R3)

vεn ⊗ (1 · Jεn)→ ξ̂ weakly in L1(Q; R3×3) .

It is then easily seen that the corresponding quantityAεn defined via (216) satisfies

Aεn → A := (J, ξ, r, r̂, ∇v, ξ̃, ξ̂, p, kL) weakly in [L1(Q)]a .

We now make use of the identity (219). Due to the fact that the mapping F is linear in the
second argument, we obtain for almost all t ∈]0, T [ that

lim
n→∞

( ∫
Ω
ρεn(t) · ψ∫

Ω
%εn(t) vεn(t) · η

)
= F(t, A)(ψ, η) ∀ (ψ, η)C1

c (Ω; RN)× C1
c (Ω; R3) .

(221)
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Thus, for almost all t ∈ [0, T ], we realise that the entire sequence {ρεn(t)} converges as
distributions. Since it is uniformly bounded in Lα(Ω), we obtain that {ρεn(t)} weakly converges
in Lα(Ω). The limit must be identical with ρ(t) for almost all t ∈ [0, T ]. Thus, using the Remark
9.3 hereafter, ρεn → ρ strongly in [W 1,0

2 (Q)]∗, and this allows to show that %εn vεn → % v as
distributions in Q. Clearly ξ = % v.

Next we define φ(t) ∈ W 1,2(Ω) to be the unique weak solution to the problem

−ε0 (1 + χ)4φ(t) =
z

m
· ρ(t), −ν · ∇φ(t) = 0 on Σ, φ(t) = φ0(t) on Γ .

We can verify due to the Remark 9.3 that for almost all t ∈]0, T [ the convergence φεn(t) →
φ(t) strongly in W 1,2(Ω) is valid.

Thus, we also obtain that z
m
· ρεn ∇φεn → z

m
· ρ∇φ weakly in L1(Q). It follows that kL =

nF ∇φ.

The relation (221) implies that %εn(t) vεn(t) converges as distributions to %(t) v(t) for almost all
t ∈]0, T [, and therefore also weakly in L2α/(1+α)(Ω). Since 2α/(1 +α) > 6/5, it also follows
%εn v

εn → % v strongly in [W 1,0
2 (Q)]∗. This in turn allows to show that %εn v

εn⊗vεn → % v⊗v
as distributions, that means ξ̃ = % v ⊗ v.

Remark 9.2. The condition (219) is naturally motivated by the structure of the weak formulation.

Remark 9.3. � Let 1 ≤ p ≤ +∞. Let K : Lp(Ω) → W 1,p(Ω) be a linear, bounded,
compact operator. Assume that {un}n∈N ⊂ Lp(Q) is a sequence such that un(t) →
u(t) weakly in Lp(Ω) for almost all t ∈]0, T [. Then K(un(t)) → K(u(t)) strongly in
W 1,p(Ω) for almost all t ∈]0, T [.

� If vn → v weakly in W 1,0
2 (Q) and un(t) → u(t) strongly in [W 1,2(Ω)]∗ for almost all

t ∈]0, T [, then un vn → u v weakly in L1(Q).

We next can obtain the strong convergence of the velocity field. This result is in principle known
(see [Lio98], page 9). For the convenience of the reader, we give a proof in the Appendix.

Corollary 9.4. Assumptions of Lemma 9.1. Then, there is a subsequence such that %εn (vεn −
v) converges to zero strongly in L1(Q) and pointwise almost everywhere in Q.

We now can prove the conditional compactness of the family {ρε}ε>0. We will need the following
auxiliary statements.

Lemma 9.5. Consider the mapping R ∈ C(R0,+ × RN−1; RN
+ ) (cf. (5.3)). For x ∈ R+ ×

RN−1, we denote x = (x1, x̄). Let K ⊂ L1(Ω; RN) be a weakly sequentially compact set,
andK∗ ⊂ L1(Ω) a sequentially compact set. Let φ1, φ2, . . . ∈ C∞(Ω) be a countable, dense
subset of C(Ω; RN).

For all δ > 0, there are C(δ) > 0 and m(δ) ∈ N such that

‖R(w1)−R(w2)‖L1(Ω)

≤ δ

(
1 +

∑
i=1,2

‖w̄i‖W 1,1(Ω)

)
+ C(δ)

m∑
i=1

∣∣∣∣∫
Ω

(R(w1)−R(w2)) · φi
∣∣∣∣
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for all w1, w2 ∈ L1(Ω; R+ × RN−1) such that

R(wi) ∈ K, wi1 ∈ K∗, w̄i ∈ W 1,1(Ω; RN−1) for i = 1, 2 .

Proof. Clearly, it is sufficient to prove the claim for all w1, w2 ∈ L1(Ω; R+×RN−1) such that
R(wi) ∈ K , wi1 ∈ K∗ and w̄i ∈ W 1,1(Ω; RN−1) for i = 1, 2 and such that

‖R(w1)−R(w2)‖L1(Ω) ≥ δ .

If this is not true, there is δ0 > 0 such that for all n ∈ N and i = 1, 2, we can find wi,n ∈
L1(Ω; R+ × RN−1) such that R(wi,n) ∈ K , wi,n1 ∈ K∗, w̄i,n ∈ W 1,1(Ω; RN−1) (i = 1, 2)
satisfying moreover the properties

‖R(w1,n)−R(w2,n)‖L1(Ω)

≥ δ0

∑
i=1,2

‖w̄i,n‖W 1,1(Ω) + n
n∑
i=1

∣∣∣∣∫
Ω

(R(w1,n)−R(w2,n)) · φi
∣∣∣∣ (222)

‖R(w1,n)−R(w2,n)‖L1(Ω) ≥ δ0 . (223)

Since we assume that R(wi,n) ∈ K for i = 1, 2 and since K is a bounded set of L1(Ω), we
obtain first that ‖w̄i,n‖W 1,1(Ω) ≤ C for all n ∈ N. Thus we can extract a subsequence that we
not relabel such that for almost all x ∈ Ω there exists w̄i(x) := limn→∞ w̄

i,n(x).

Moreover aswi,n1 ∈ K∗, we can extract a subsequence such thatwi,n1 → wi1 strongly inL1(Ω)
and almost everywhere in Ω. Consequently, we obtain for a subsequence and for i = 1, 2 that

wi,n → wi := (wi1, w̄
i) strongly in L1(Ω; R+ × RN−1) and a. e. in Ω .

Now using that R(wi,n) ∈ K , we can pass to a subsequence again to see that R(wi,n)→ ui

weakly inL1(Ω; RN) for i = 1, 2. Obviously the continuity of R and the pointwise convergence
yield ui = R(wi). We next use the second implication of (222), that is,

n∑
i=1

∣∣∣∣∫
Ω

(R(w1,n)−R(w2,n)) · φi
∣∣∣∣ ≤ c n−1 ,

so that we easily conclude that R(w1) = R(w2) almost everywhere in Ω. It remains to observe
that R(w1,n)−R(w2,n)→ 0 in L1(Ω) to show that the condition (223) is violated.

In order to apply the Lemma 9.5 in the context of parabolic problems, we introduce the following
way of speaking:

Remark 9.6. We say that a family of vector-valued functions {uε}ε∈[0,1] ⊂ C([0, T ]; L1(Ω)) is
compact in L1(Ω) uniformly in time if and only if the family

⋃
ε∈[0,1]

⋃
t∈[0,T ]{uε(t)} is sequen-

tially compact in L1(Ω).

We now state and prove our main compactness tool.
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Corollary 9.7. For n ∈ N, let wn : [0, T ] → L1(Ω; R+ × RN−1) be continuous. Assume
that wn1 is compact in L1(Ω) uniformly in time (sense of Remark 9.6). Moreover assume that
there is C1 independent on n such that

[w̄n]Lw
(◦N ln)

L1(Q) + ‖∇w̄n‖L1(Q) ≤ C1

Suppose that ‖R(wn)‖L∞,α(Q) ≤ C1, and that the sequence {R(wn(t))}n∈N converges as
distributions in Ω for almost all t.

Then, there is a subsequence (no new labels) for which ρ(t, x) := limn→∞R(wn(t, x))
exists for almost all (t, x) ∈ Q, and R(wn(t, x))→ ρ strongly in L1(Q; RN).

Proof. For n ∈ N, the assumptions imply that R(wn(t)) ∈ Lα(Ω; RN) for all t ∈ [0, T ]. We
define K ⊂ L1(Ω; RN) via K :=

⋃
n∈N

⋃
t∈[0,T ]{R(wn(t))} By assumption K is bounded

in Lα(Ω) and thus also weakly sequentially compact in L1(Ω).

By assumption again, the set K∗ :=
⋃
n∈N

⋃
t∈[0,T ]{wn1 (t)} is compact in L1(Ω).

For δ > 0, we apply the inequality of Lemma 9.5 with the following choices: w1 = wn(t),
w2 := wn+p(t). We obtain for t ∈ [0, T ] that

‖R(wn(t))−R(wn+p(t))‖L1(Ω)

≤ δ
(
1 + ‖w̄n(t)‖W 1,1(Ω) + ‖w̄n+p(t)‖W 1,1(Ω)

)
+ C(δ, K∗)

m∑
i=1

∣∣∣∣∫
Ω

(R(wn(t))−R(wn+p(t))) · φi
∣∣∣∣ . (224)

Fix ` ∈ N and define I`,n ⊂ [0, T ] via I`,n := {t ∈]0, T [ : ‖w̄n(t)‖L1(Ω) ≥ `}. Note that by
assumption

λ1(I`,n) ≤
[w̄n]Lw

(◦N ln)
L1(Q)

(◦N ln)(`)
≤ C1

(◦N ln)(`)
.

Thus λ1([0, T ] \ I`,n) ≥ T − C1

(◦N ln)(`)
.

We integrate the relation (224) over the set J := [0, T ] \ (I`,n ∪ I`,n+p) and this yields

‖R(wn)−R(wn+p)‖L1(J×Ω)

≤ δ (T + 2 sup
n
‖w̄n‖W 1,1(J×Ω))

+ C(δ)
m∑
i=1

∫
J

∣∣∣∣∫
Ω

(R(wn(t))−R(wn+p(t))) · φi
∣∣∣∣

≤ δ (T + C`) + C(δ)
m∑
i=1

∫ T

0

∣∣∣∣∫
Ω

(R(wn(t))−R(wn+p(t))) · φi
∣∣∣∣

Due to boundedness of {R(wn)} in L∞,1(Q), and the fact that λ1([0, T ] \ J) ≤ 2 C1

(◦N ln)(`)
,
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we obtain that

‖R(wn)−R(wn+p)‖L1(Q)

≤ 4 sup
n
‖R(wn)‖L∞,1(Q)

C1

(◦N ln)(`)
+ δ (T + C`)

+ C(δ)
m∑
i=1

∫ T

0

∣∣∣∣∫
Ω

(R(wn(t))−R(wn+p(t))) · φi
∣∣∣∣ .

The vector fields R(wn) weakly converges in L1(Ω; RN) for almost all t to some element
ρ ∈ L∞,α(Q; RN). Invoking the triangle inequality,∫ T

0

∣∣∣∣∫
Ω

(R(wn(t))−R(wn+p(t))) · φi
∣∣∣∣ ≤ 2 sup

k≥n

∫ T

0

∣∣∣∣∫
Ω

(R(wk(t))− ρ(t)) · φi
∣∣∣∣ .

Thus

sup
p≥0
‖R(wn)−R(wn+p)‖L1(Q)

≤ 4 sup
n
‖R(wn)‖L∞,1(Q)

C1

(◦N ln)(`)
+ δ (T + C`)

+ 2C(δ)
m∑
i=1

sup
k≥n

∫ T

0

∣∣∣∣∫
Ω

(R(wk(t))− ρ(t)) · φi
∣∣∣∣ .

Invoking the Fatou Lemma and the bounds in L∞,α, we have

lim sup
n→∞

sup
k≥n

∫ T

0

∣∣∣∣∫
Ω

(R(wk(t))− ρ(t)) · φi
∣∣∣∣ = lim sup

n→∞

∫ T

0

∣∣∣∣∫
Ω

(R(wn(t))− ρ(t)) · φi
∣∣∣∣

≤
∫ T

0

lim sup
n→∞

∣∣∣∣∫
Ω

(R(wn(t))− ρ(t)) · φi
∣∣∣∣ .

The vector fields R(wn(t)) weakly converges in L1(Ω) for almost all t.

Therefore lim supn→∞
∣∣∫

Ω
(R(wn(t))− ρ(t)) · φi

∣∣ = 0 for almost all t. Thus

lim sup
n→∞

sup
k≥n

∫ T

0

∣∣∣∣∫
Ω

(R(wk(t))− ρ(t)) · φi
∣∣∣∣ = 0 .

It next follows that

lim sup
n→∞

sup
p≥0
‖R(wn)−R(wn+p)‖L1(Q)

≤ 4 sup
n
‖R(wn)‖L∞,1(Q)

C1

(◦N ln)(`)
+ δ (T + C`) ,

and since ` and δ are arbitrary, lim supn→∞ supp≥0 ‖R(wn) − R(wn+p)‖L1(Q) = 0. This
means that {R(wn)} is a Cauchy sequence in L1(Q). In particular, we can extract a subse-
quence such that limn→+∞R(wn) exists almost everywhere in Q.
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Corollary 9.8. Assumptions of Lemma 9.1. Assume moreover that the family of the total mass
densities {%ε}ε≥0 is compact in L1(Ω) uniformly with respect to time (sense of Remark 9.6).
Then

ρεn → ρ strongly in L1(Q; RN)

∃q(t, x) := lim
n→∞

qεn(t, x) for almost every (t, x) such that %(t, x) > 0 .

Consequently, the identity ρ = R(%, q) is valid at almost every point of the set {(t, x) :
%(t, x) > 0}.

Proof. We at first obtain the convergence properties of Lemma 9.1 for a sequence {εn}n∈N. We
definewn = (%εn , q

εn), and verify easily that all requirements of the Corollary 9.7 are satisfied.
We apply the Corollary 9.7, and we first obtain that ρεn = R(%εn , q

εn) converges strongly in
L1(Q) and pointwise almost everywhere.

Next we use the formula (111) and the inequalities of Lemma 5.7 to see that for a certain
λ ∈ [0, 1]

|R(%εn , q
εn)−R(%, qεn)| = Rs(λ %εn + (1− λ) %, qεn)| |%εn − %|

≤ C max{%εn , %}
α−1

2 |%εn − %| .

The latter implies that

‖R(%εn , q
εn)−R(%, qεn)‖L1(Q) ≤C (sup

n
‖%εn‖Lα(Q) + ‖%‖Lα(Q)) ‖%εn − %‖L 2α

1+α (Q)

→ 0 .

Thus passing to a subsequence we obtain also that R(%, qεn) converges almost everywhere in
Q. Next, we use the fact that for all s > 0, the mapping R is a bijection between [s, +∞[×RN−1

and {ρ ∈ RN
+ : ρ · 1 ≥ s}. Thus, from the existence of limn→∞R(%(t, x), qεn(t, x)), we

first obtain that

lim inf
n→∞

qεn(t, x) = lim sup
n→∞

qεn(t, x) for almost all(t, x) such that %(t, x) > 0 . (225)

Next we use the estimates available on qεn to see for k, ` > 0 that

meas{(t, x) ∈ Q : |qεn| ≥ k} =

∫ T

0

|{x ∈ Ω : |qεn(t)| ≥ k}|

=

∫
{t : ‖qεn (t)‖L1(Ω)≤`}

|{x ∈ Ω : |qεn(t)| ≥ k}|

+

∫
{t : ‖qεn (t)‖L1(Ω)>`}

|{x ∈ Ω : |qεn(t)| ≥ k}|

≤ 1

k

∫
{t : ‖qεn (t)‖L1(Ω)≤`}

‖qεn(t)‖L1(Ω) + λ1({t : ‖qεn(t)‖L1(Ω) > `})

≤ T
`

k
+ [qεn ]Lw

(◦N ln)
L1(Q)

1

(◦N ln)(`)
≤ C

(
`

k
+

1

(◦N ln)(`)

)
.
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Combining the latter observation and (225) we see that that there is a setN (k, `) with measN (k, `) ≤
C ( `

k
+ 1

(◦N ln)(`)
) such that

lim
n→∞

qεn(t, x) exists in RN−1 for all (t, x) ∈ {(t, x) : %(t, x) > 0} \ N (k, `) .

Choosing appropriate sequences of numbers `, k, the measure of N (k, `) can be made arbi-
trarily small.

We then use that ρεn = R(%εn , q
εn) to see that ρεn also converges almost everywhere in Q to

R(%, q), and the claim follows.

In order to pass to the limit in the boundary reaction terms, we also discuss the strong conver-
gence of the relative chemical potentials on the boundary Γ.

Lemma 9.9. Assumptions of Corollary 9.8. Then

∃ q(t, x) := lim
n→∞

qεn(t, x) for almost every (t, x) ∈ S+(%) .

Proof. By definition, the surface S+(%) is relatively open and possesses an open neighbour-
hood U inQ such that |U∩{(t, x) : %(t, x) = 0}| = 0. Thus, for (t0, x

0) ∈ S+(%) arbitrary,
there is R > 0 such that the cube QR(t0, x

0) with radius R > 0 and centered at (t0, x
0) is

contained in U . For all ε > 0, there is a constant c = c(Ω, ε) such that

‖u‖L1(ΓR(x0)) ≤ ε ‖∇u‖L1(ΩR(x0)) + c(ε, Ω) ‖u‖L1(ΩR(x0)) for all u ∈ W 1,1(Ω) .

Here ΓR and ΩR denote the intersectoin of Γ and Ω with QR(x0), the three-dimensional cube
with radius R centered at x0. With the help of this inequality, we obtain for almost all t ∈
]t0 −R, t0 +R[ that

‖qεn(t)− q(t)‖L1(Γ∩QR(x0)) ≤ε (‖∇qεn(t)‖L1(Ω) + ‖∇q(t)‖L1(Ω))

+ c(ε, Ω) ‖qεn(t)− q(t)‖L1(Ω∩QR(x0)) .

Choosing I ⊂]t0−R, t0+R[ of arbitrary small measure so that the norms ‖qεn(t)−q(t)‖L1(Ω)

are uniformly bounded for t ∈]t0 −R, t0 +R[\I , we obtain that∫
I

‖qεn(t)− q(t)‖L1(ΓR(x0)) dt ≤ C0 ε+ c(ε, Ω)

∫
I

‖qεn(t)− q(t)‖L1(ΩR(x0)) dt

Now as I × (Ω ∩ QR(x0)) is a subset of U , we obtain with the help of Corollary 9.8 that∫
I
‖qεn(t) − q(t)‖L1(ΩR(x0)) dt → 0 for n → ∞, and this yields lim supn→∞

∫
I
‖qεn(t) −

q(t)‖L1(ΓR(x0)) dt = 0. The claim follows.

It remains to enlight the global convergence property of the variables {qεn} inclusively of the
set where vacuum possibly occurs.
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Lemma 9.10. Assumptions of Corollary 9.8. Then, there are open sets K1 ⊆ K2 ⊆ . . . [0, T ],
|Km| → T for m→∞ and a subsequence such that

qεn → q weakly in L2(Km × [Ω ∪ Γ]; RN−1) for all m ∈ N
∇qεn → ∇q weakly in L2(Q; R(N−1)×3)

DR,εn → (γ1 · Eq, . . . , γs · Eq) weakly in L1(Q; Rs)

D̂Γ,R,εn → (γ̂1 · Eq, . . . , γ̂ ŝΓ · Eq) weakly in L1(S; RŝΓ) .

Proof. Let m ∈ N, and consider the sets In,m ⊆ [0, T ] defined via

In,m :=
{
t ∈ [0, T ] : ∃i ≤ N, |{x : ρεni (t, x) ≥ m−1}| ≤ m−1

}
(226)

For t ∈ In,m, we find i0 ∈ {1, . . . , N} such that

|{x : ρεni0 (t, x) ≥ m−1}| ≤ 1

m
. (227)

Recall the definition of ā0 > 0 and b̄0 > 0 in (201). For M > 0 set A(t) := {x : ā0 ≤
%εn(t, x) ≤M} satisfies

|A(t)| ≥ |{x : ā0 ≤ %εn(t, x)}| − |{x : M ≤ %εn(t, x)}|
≥ b̄0 − C0M

−α .

Thus, there is M0 depending only on the data such that |A(t)| ≥ b̄0/2. Defining next B(t) :=
A(t)∩{x : ρεni0 (t, x) < m−1}, we easily show that ifm ≥ 4/b̄0 then |B(t)| ≥ b̄0/2−1/m ≥
b̄0/4. Pursuing this reasoning we obtain for x ∈ B(t) that

µi0(t, x)− sup
j=1,...,N

µj(t, x) ≤ kB θ

mi0

ln
1

m
+ C(ā0, M0) .

It follows that |q(t, x)| ≥ c |µi0(t, x)− supj=1,...,N µj(t, x)| on B(t), and therefore

‖q(t)‖L1(Ω;RN−1) ≥
∫
B(t)

|q(t, x)| ≥ b̄0

4

(
kB θ

mi0

lnm− C(ā0, M0)

)
.

Thus, for all m ≥ m0(data), we achieve that

In,m ⊂ {t : ‖q(t)‖L1(Ω;RN−1) ≥ c lnm} .

Due to the estimate in the class Lw(◦N ln)L
1(Q), we obtain that

λ1(In,m) ≤ c̄
1

(◦N+1 ln)(m)
. (228)

Recall that in the natural class, the regularity ρ̄ ∈ CΦ∗([0, T ]) is available. Consider for k ∈ N
the compact sets Jk := {t ∈ [0, T ] : infi=1,...,N ρ̄i(t) ≤ k−1}, and define

Jn,k := {t ∈ [0, T ] : inf
i=1,...,N

ρ̄εni (t) ≤ k−1} .
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Due to the uniform convergence of ρ̄εn , there is n0 = n0(k) such that

Jn,2 k ⊆ Jk ⊆ Jn,k/2 for all n ≥ n0 .

Observe further that

t ∈ Jn,k =⇒ inf
i=1,...,N

|({x : ρεni (t, x) ≥ k−1/2}| ≤ k−1/2

=⇒ t ∈ In,√k . (229)

Moreover t ∈ In,m implies for a i0 that∫
Ω

ρεni0 (t) =

∫
{ρεni0 (t)<1/m}

ρεni0 (t) +

∫
{ρεni0 (t)≥1/m}

ρεni0 (t)

≤ m−1 |Ω|+ ‖ρεni0 ‖L∞,α(Ω)m
−1/α′ .

Thus

t ∈ In,m =⇒ t ∈ Jn,C m1/α′ . (230)

Define now Km :=]0, T [\J2−1 Cm1/α′ open. Owing to (230), Km ⊂ [0, T ] \ In,m for all n ≥
n0(m). Using the alternative of Lemma 8.8

‖qεn(t)‖L2(Ω;RN−1) ≤ Cm (‖∇qεn(t)‖L2(Ω) + 1) (231)

‖qεn‖L2(Km×Ω;RN−1) ≤ C0,m . (232)

Moreover, by the definition of Km, the inclusion (229) and (228), we see that

λ1([0, T ] \Km) ≤ λ1(In,2−1 (Cm1/α′ )1/2) ≤ C
1

(◦N+1 ln)(m)
. (233)

Making use of (232) can now extract a diagonal subsequence such that qεn → q weakly in
L2(Km × [Ω ∪ Γ]; RN−1) for all m ∈ N. Let next ζ ∈ Cc(Km) arbitrary. From (231) we
deduce that∫ T

0

ζ(t) ‖q(t)‖L2(Ω;RN−1) dt ≤ lim inf
n→+∞

∫ T

0

ζ(t) ‖qεn(t)‖L2(Ω;RN−1) dt

≤ Cm

∫ T

0

ζ(t) (A(t) + 1) dt

Here, A ∈ L2(0, T ) is a weak limit in L2(0, T ) of the sequence {‖∇qεn(t)‖L2(Ω)}. Thus, we
obtain the majoration ‖q(t)‖L2(Ω;RN−1) ≤ Cm (A(t) + 1) for almost all t ∈ Km. From this we
deduce that

‖q(t)‖L2(Ω;RN−1) ≤ Cm or t ∈ [0, T ] \Km ∪ {t : A(t) > m} .

Clearly, together with (233), this yields a bound for q in Lw(◦N ln)L
1(Q).

We then easily see that q possesses for almost all t weak partial derivatives, and that∇qεn →
∇q weakly in L2(Q; R(N−1)×3).
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Finally we can identitfy the remaining limits.

Corollary 9.11. Assumptions of Corollary 9.8. Let J , p, r and r̂ denote the weak limit of J εn ,
pεn , rεn and r̂εn constructed in the Lemma 9.1. Then, for almost all t ∈]0, T [

J = M(ρ) (∇E q +
z

m
∇φ)

p = P (%, q)

r =
s∑

k=1

γk R̄k(D
R) with DR

k = γk · Eq in Q+(%)

r̂ =
sΓ∑
k=1

γ̂k R̂Γ
k (D̂Γ,R, w0) with D̂Γ,R

k = γ̂k · Eq on S+(%) .

Proof. Exploiting the convergence properties stated in the Corollary 9.8 and the Lemma 9.1,
9.10 we see that

Jεn = M(ρεn) (∇Eqεn +
z

m
∇φεn)→M(ρ) (∇E q +

z

m
∇φ) weakly in L2, 2α

1+α (Q) .

Moreover, P (%εn , q
εn) → P (%, q) pointwise in Q+(%), while |P (%εn , q

εn)| ≤ c %αεn → 0
pointwise in Q \Q+(%). The other claims are proved similarly.

We now resume the results of the section formulating our main (conditional) compactness state-
ment.

Proposition 9.12. Consider a family {(%ε, qε, vε, φε, Rε, RΓ,ε)}ε>0 which satisfies a uniform
bound in the class B(T, Ω, α, N−1, Ψ, ΨΓ). Assume the condition (219) on the time deriva-
tives. Assume that the family %ε is compact in L1(Ω) uniformly in time (sense of Remark 9.6).

Then, there is a limiting element (%, q, v, φ, R, RΓ) ∈ B and subsequence {εn}n∈N such
that

ρεn → ρ strongly in L1(Q; RN)

J εn → J weakly in L2, 2α
1+α (Q; RN×3)

Rεn → R weakly in L1(Q; Rs), RΓ,εn → RΓ weakly in L1(S; RŝΓ)

vεn → v weakly in W 1,0
2 (Q; R3)

φεn → φ strongly in W 1,0
2 (Q)

nFεn ∇φεn → nF ∇φ weakly in L1(Q; R3)

%εn v
εn → % v strongly in L1(Q; R3)

%εn v
εn ⊗ vεn → % v ⊗ v weakly in L

5α−3
3α (Q; R3×3) .

Here the quantities ρ, J , r, r̂, p, nF obey the natural definitions (95).

We finally note an important consequence of Proposition 9.12.
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Corollary 9.13. Assumptions of Proposition 9.12. Suppose that {(%ε, qε, vε, φε, Rε, RΓ,ε)}ε>0

satisfies the enerqy inequality with mobility matrixMε ≥M , and a free energy function hε hav-
ing the property

ρε → ρ ∈ RN
0,+ =⇒ lim inf

ε→0
hε(ρε) ≥ h(ρ) .

Then the limiting element (%, q, v, φ, R, RΓ) constructed in Proposition 9.12 satisfies the
enerqy inequality with free energy function h and mobility matrix M .

Proof. We first prove that

lim inf
ε→0

∫
Qt

M(ρε)Dε ·Dε ≥
∫
Qt

M(ρ)D ·D . (234)

Since M(ρε) is a positive semidefinite matrix, we can introduce its square-root M
1
2 (ρε), and

we easily realise that

M
1
2 (ρε)→M

1
2 (ρε) strongly in Lr(Q) for all 1 ≤ r < 2α .

On the other hand, the driving forces Dε = ∇Eqε + z
m
∇φε converge weakly to D = ∇Eq +

z
m
∇φ in L2(Q) owing to the Proposition 9.1. Thus, since α > 1, it follows that

M
1
2 (ρε)Dε →M

1
2 (ρ)D weakly in L1(Q) . (235)

Since the dissipation inequality implies that M
1
2 (ρε)Dε is uniformly bounded even in L2(Q),

we can show that the weak convergence (235) takes place even in L2(Q). Thus, due to the
lower semicontinuity of the L2−norm, we obtain (234).

In order to prove the lower semicontinuity of the reaction terms, we use the lower semicontinuity
(convexity) of the functions Ψ and Ψ∗, to obtain that

lim inf
ε→0

∫
Q

(Ψ(DR,ε) + Ψ∗(−Rε)) ≥
∫
Q

(Ψ(DR) + Ψ∗(−R)) .

Analogoulsy, on the boundary

lim inf
ε→0

∫
S

(Ψ̂Γ(D̂Γ,R,ε, w0) + (Ψ̂Γ)∗(−RΓ,ε, w0))

≥
∫
S

(Ψ̂Γ(D̂Γ,R, w0) + (Ψ̂Γ)∗(−RΓ, w0)) .

10 The structure of the Navier-Stokes operator

In the section 9 we showed that boundedness in the energy class together with the existence of
weak time derivatives implies the compactness of the solution vector if the condition %(t) ∈ K∗
is satisfied, whereK∗ is a compact of L1(Ω). Using an extension of the method of Lions for the
compressible Navier-Stokes operator, we are going to show that this condition is satisfied for
the approximation schemes of interest to us. We commence formulating our main statement.

73



Proposition 10.1. Consider a family {(%ε, qε, vε, φε, Rε, RΓ,ε)}ε>0 ⊂ B which is uniformly
bounded in the natural class B(T, Ω, α, N − 1, Ψ, ΨΓ) and satisfies the assumptions of
Lemma 9.1. Let {J̄ ε}ε>0 ⊂ L2(Q; R3) be a family of perturbations such that J̄ ε → 0 strongly
in L2(Q) as ε→ 0 and such that{

lim supε→0 ‖(J̄ ε · ∇ ln %ε)
+‖L1(Q) = 0 if α > 3

J̄ ε ≡ 0 if 3
2
< α ≤ 3 .

(236)

Suppose that the identities

−
∫
Q

%ε ψt −
∫
Q

(%ε v
ε + J̄ ε) · ∇ψ =

∫
Ω

%0 ψ(0) (237)

−
∫
Q

%ε v
ε · ηt −

∫
Q

%ε v
ε ⊗ vε : ∇η −

∫
Q

pε div η +

∫
Q

S(∇vε) · ∇η (238)

=

∫
Ω

%0 v
0 · η(0) +

∫
Q

(J̄ ε · ∇)η · vε −
∫
Q

nFε ∇φε · η .

are valid for all ψ ∈ C1
c ([0, T [; C1(Ω)) and all η ∈ C1

c ([0, T [; C1
c (Ω; R3)). Assume that

either α ≥ 9/5, or that the function P of Lemma 5.4 is convex in the first variable and that
3
2
< α < 9/5.

Then for every sequence {εn}n∈N, the sequence {%εn}n∈N is compact in L1(Ω) uniformly with
respect to time (sense of Remark 9.6).

Remark 10.2. Under the assumptions of the Proposition 10.1, we apply the Lemmas 9.1, 9.4
and we find a subsequence such that

ρεn → ρ weakly in Lα(Q; RN)

ρεn(t)→ ρ(t) weakly in Lα(Ω; RN) for almost all t ∈ [0, T ]

vεn → v weakly in W 1,0
2 (Q; R3)

pεn → p weakly in L1+min{ 1
α
, 2

3
− 1
α
}(Q)

φεn → φ strongly in W 1,0
2 (Q)

z

m
· ρεn ∇φεn →

z

m
· ρ∇φ weakly in L1(Q)

%εn v
εn → % v weakly in L2, 6α

6+α (Q;R3)

(%εn v
εn)(t)→ %(t) v(t) weakly in L

2α
1+α (Ω; R3) for almost all t ∈ [0, T ]

%εn v
εn ⊗ vεn → % v ⊗ v weakly in L

5α−3
3α (Q; R3×3)

%εn (vεn − v)→ 0 strongly in L1(Q;R3) .
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and these weak limiting elements satisfy

−
∫
Q

%ψt −
∫
Q

% v · ∇ψ =

∫
Ω

%0 ψ(0) (239)

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) · ∇η (240)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η

for all ψ ∈ C1
c ([0, T [; C1(Ω)) and for all η ∈ C1

c ([0, T [; C1
c (Ω; R3)).

The section is devoted to the proof of Proposition 10.1. There is a branching in the proof: We
consider separately the cases α > 3 and 3/2 < α ≤ 3.

10.1 The case α > 3

We are going to establish after Lions convergence properties associated with the effective vis-
cous flux pεn − η′ div vεn . Here we abbreviate η′ := λ+ 2 η > 0.

Lemma 10.3. Let p, v and % denotes the weak limits according to the Remark 10.2. Then

(pεn − η′ div vεn) %εn → (p− η′ div v) % as distributions in Q .

Proof. For convenience we give a proof in the Appendix.

We next use an important property of our regularisation.

Lemma 10.4. Let %ε satisfy (237). Then %ε ∈ C([0, T ]; L1(Ω)), and for all t ∈ [0, T ]∫
Ω

%ε(t) ln %ε(t)−
∫

Ω

%0 ln %0 +

∫ t

0

∫
Ω

%ε div vε ≤ C ‖(J̄ ε · ∇ ln %ε)
+‖L1(Q) . (241)

Denote % the weak limit of {%εn}. Then %ε ∈ C([0, T ]; L1(Ω)) and for all t ∈ [0, T ]∫
Ω

%(t) ln %(t)−
∫

Ω

%0 ln %0 +

∫ t

0

∫
Ω

% div v = 0 . (242)

Proof. Owing to the Lemma 8.19, we can rely for ε > 0 on the fact that ln %ε ∈ W 1,0
2 (Q) (cf.

Lemma 8.19). Using well known time smoothing techniques, of which we spare the details here,
we can multiply the equation (237) with the function 1 + ln %ε. If follows for almost all t ∈]0, T [
that ∫

Ω

%ε(t) ln %ε(t)− %0 ln %0 +

∫ t

0

∫
Ω

%ε div vε −
∫ t

0

∫
Ω

J̄ ε · ∇ ln %ε = 0 .

The first claim (241) follows.
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The second claim (242) follows from the fact that % is a renormalised solution to (239). This was
shown in [Lio98] (for instance on page 14, see also [Lio96], Lemma 2.3) and [FNP01], section
3.5.

In order to state (241), (242) for all t ∈ [0, T ], we need %ε, % ∈ C([0, T ]; L1(Ω)). This was
proved in [Lio98], page 23. We provide a proof for convenience in the appendix.

In order to prove the compactness of the mass density we need a last observation in the follow-
ing Lemma. Comparable ideas are to find for instance in [Lio98], section 8.5.

Lemma 10.5. If p, v and % denotes the weak limits according to the Remark 10.2. Then, for
all ζ ∈ C1(Q) such that ζ ≥ 0 in Q, there holds lim infn→∞

∫
Q
pεn %εn ζ ≥

∫
Q
p % ζ +

c0 lim infn→∞
∫
Q

(%εn − %)2 ζ .

Proof. We note that pεn = P (%εn , q
εn) with the function P of Lemma 5.4. Moreover, due

to Lemma 5.4 ∂sP ≥ c0. For arbitrary nonnegative u ∈ C1(Q), we therefore obtain that
(P (%εn , q

εn)− P (u, qεn)) (%εn − u) ≥ c0 (%εn − u)2. This entails

lim inf
n→∞

∫
Q

pεn %εn ζ −
∫
Q

p u ζ ≥ lim inf
n→∞

∫
Ω

P (u, qεn) (%εn − u) ζ

+ c0 lim inf
n→∞

∫
Q

(%εn − u)2 ζ .

We note that ∇P (u, qεn) = Ps(u, q
εn)∇u +

∑N−1
j=1 Pqj(u, q

εn)∇qεnj , the Lemma 5.4 im-
plies that

|∇P (u, qεn)| ≤ c {|u|α−1 |∇u|+ |u|α |∇qεn|} .

It follows that ‖∇P (u, qεn)‖L2(Q) ≤ CuC0. Since moreover |P (u, qεn)| ≤ C |u|α, there is

a = au ∈ L∞(Q) ∩W 1,0
2 (Q) and a subsequence such that

P (u, qεn)→ a weakly in W 1,0
2 (Q) .

We easily show that
∫
Q
P (u, qεn) (%εn − u) ζ →

∫
Q
a (% − u) ζ . Note that the inequality

P (u, qεn) ≤ c |u|α implies that |a| ≤ c |u|α. We obtain that

lim inf
n→∞

∫
Q

pεn %εn ζ −
∫
Q

p u ζ ≥
∫
Q

a (%− u) ζ + c0 lim inf
n→∞

∫
Q

(%εn − u)2 ζ .

It suffices now to approximate % in Lα(Q) with functions u of C1(Q) to obtain the claim.

Lemma 10.6. Assumptions of the Proposition 10.1 for α > 3. Then for every sequence
{εn}n∈N such that the convergence properties (10.2) are valid:

1 %εn(t)→ %(t) strongly in L1(Ω) for almost all t ∈]0, T [.

2 The family
⋃
t∈[0,T ]

⋃
n∈N{%εn(t)} is sequentially compact in L1(Ω).

76



Proof. We consider an arbitrary sequence of times {tn}n∈N ⊂]0, T [ such that tn → t∗ for
n→∞. We choose for j ∈ N a nonnegative function fj ∈ C1(R) with the following properties

fj(s)


= 0 for s ≤ j−1

∈ [0, 1] for s ∈ [j−1, 2j−1]

= 1 for s ≥ 2 j−1

, |f ′j(s)| ≤ c j .

We define ζj,n ∈ C1
c (Q) via

ζj,n(t, x) := fj(tn − t) fj(dist(x, ∂Ω)) .

Note that ζj,n → ζj uniformly inQ for n→∞ with ζj := fj(t
∗−t) fj(dist(x, ∂Ω)). Moreover

|∇4ζj,n| ≤ c j and

‖ζj,n − χ[0,tn] χΩ‖
L

2, 2α
α−2 (Q)

≤ c

(
1

j

) 1
2

+α−2
2α

. (243)

We then express∫
Q

pεn %εn ζj,n =

∫
Q

(pεn − η′ div vεn) %εn ζj,n

+ η′
∫
Q

div vεn %εn (ζj,n − χ[0,tn] χΩ) + η′
∫
Qtn

div vεn %εn .

Thus, because of the identity (241)

η′
∫

Ω

(%εn(tn) ln %εn(tn)− %0 ln %0) +

∫
Q

pεn %εn ζj,n

=

∫
Q

(pεn − η′ div vεn) %εn ζj,n + η′
∫
Q

div vεn %εn (ζj,n − χ[0,tn] χΩ) .

Moreover, owing to (242),

η′
∫

Ω

(%(t∗) ln %(t∗)− %0 ln %0) +

∫
Q

p % ζj,n

=

∫
Q

(p− η′ div v) % ζj,n + η′
∫
Q

div v % (ζj,n − χ[0,t∗] χΩ) .

Thus, subtracting the two latter identities

η′
∫

Ω

(%εn(tn) ln %εn(tn)− %(t∗) ln %(t∗)) +

∫
Q

(pεn %εn − p %) ζj,n

=

∫
Q

((pεn − η′ div vεn) %εn − (p− η′ div v) %) ζj,n

+ η′
∫
Q

div vεn %εn (ζj,n − χ[0,tn] χΩ)− η′
∫
Q

div v % (ζj,n − χ[0,t∗] χΩ) .
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Due to (243)∣∣∣∣∫
Q

div vεn %εn (ζj,n − χ[0,tn] χΩ)

∣∣∣∣ ≤ ‖ div vεn %εn‖L2, 2α
2+α (Q)

‖ζj,n − χ[0,tn] χΩ‖
L

2, 2α
2−α (Q)

≤ C0 j
−1 .

Moreover, we easily show that ‖ζj,n−χ[0,t∗] χΩ‖
L

2, 2α
α−2 (Q)

≤ c j−1+|tn−t∗|1/2, and therefore∣∣∣∣∫
Q

div v % (ζj,n − χ[0,t∗] χΩ)

∣∣∣∣ ≤ C0 (j−1 + |tn − t∗|1/2) .

Since ζn,j → ζj uniformly in Q, the Lemma 10.3 implies that

lim
n→∞

∫
Q

((pεn − η′ div vεn) %εn − (p− η′ div v) %) ζj,n

= lim
n→∞

∫
Q

((pεn − η′ div vεn) %εn − (p− η′ div v) %) ζj = 0 .

Further

lim
n→∞

∫
Q

(pεn %εn − p %) ζj,n = lim
n→∞

∫
Q

(pεn %εn − p %) ζj ≥ c0 lim
n→∞

∫
Q

(%εn − %)2 ζj

= c0 lim
n→∞

∫
Q

(%εn − %)2 (ζj − χ[0,t∗] χΩ) + c0 lim
n→∞

∫
Qt∗

(%εn − %)2

≥ c0 lim
n→∞

∫
Qt∗

(%εn − %)2 − ‖%εn − %‖2
L∞,α(Q)

(
1

j

)1+α−2
α

It follows that there is r > 0 such that

η′ lim inf
n→∞

∫
Ω

(%εn(tn) ln %εn(tn)− %(t∗) ln %(t∗))

+ c0 lim inf
n→∞

∫
Qt

(%εn − %)2 ≤ C0 j
−r .

(244)

Since %εn ∈ C([0, T ]; D∗(Ω)), we show easily that %εn(tn) → %(t∗) as distributions in Ω,
and this added to (244) yields

%εn(tn)→ %(t∗) strongly in L1(Ω) . (245)

We now deduce both claims of the Lemma.

In order to estabilsh (1), we choose tn = t ∈ [0, T ] fixed. Then, due to (245), we see that
%εn(t)→ %(t) strongly in L1(Ω). The claim (1) follows

In order to prove (2), we observe that %εn ∈ C([0, T ]; L1(Ω)) for all n ∈ N and that also
% ∈ C([0, T ]; L1(Ω)). This was observed in Lemma 10.4. Consider any sequence in the
set
⋃
t∈[0,T ]

⋃
n∈N{%εn(t)}. Such a sequence is of the form {%εnk (tk)}k∈N. We can always

extract a subsequence such that tk → t∗ ∈ [0, T ], an applying the result (245), it follows
that %εnk (tk) → %(t∗) strongly in L1(Ω). Thus, the set

⋃
t∈[0,T ]

⋃
n∈N{%εn(t)} is sequentially

compact in L1(Ω).
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10.2 The case 3/2 < α ≤ 3

Since we cannot rely on the condition α > 3, additional technical problems occur. Nevertheless
the passage to the limit can be carried over using an extension of the method of Lions (α ≥ 9/5,
[Lio98], Chapter 5) and Feireisl, Novotný and Petzeltová (3/2 < α < 9/5, [FNP01]) . Here we
have to assume that the approximate solutions satisfy global mass conservation exactly (the
perturbation J̄ ε in (239), (240) vanishes). In particular

−
∫
Q

%ε ψt −
∫
Q

%ε v
ε · ∇ψ =

∫
Ω

%0 ψ(0) for all ψ ∈ C1
c ([0, T [; C1(Ω)) (246)

The Lemma 10.3 and the further reasoning have to be modified. Here we will stick to the ap-
proach of Feireisl, Novotný and Petzeltová in [FNP01]. One introduces for k ∈ N the cutoff
function

Tk(%ε) := min{%ε, k} .

It is possible to extract a subsequence (which might be a different one for all values of k), and
to find ak ∈ L∞(Q) such that

Tk(%ε)→ ak weakly in Lp(Q) for all 1 < p <∞ .

Exploiting the a priori bounds it follows that

‖Tk(%ε)(t)− %ε(t)‖L1(Ω) ≤ (|{x : %ε(t, x) ≥ k}|1/α′ ‖%ε‖Lα(Ω) ≤ C0

(
1

k

) α
α′

,

so that ‖ak(t) − %(t)‖L1(Ω) ≤ C0

(
1
k

) α
α′ . Thus, ak is an approximation of %. Now, the argu-

ments of [FNP01], Lemma 4.4 allow to prove that the limit % is also a renormalised solution to
(239), and to obtain the following statement.

Lemma 10.7. Let %ε satisfy (246). Define

Lk(%) :=

{
% ln % if ρ ≤ k

% ln k + %− k otherwise

Then, for all ε > 0, the function %ε belongs to C([0, T ]; L1(Ω)) and for all t ∈ [0, T ]∫
Ω

Lk(%ε)(t)−
∫

Ω

Lk(%0) +

∫ 0

t

∫
Ω

Tk(%ε) div vε = 0 . (247)

Denote % the weak limit of {%εn}. Then % ∈ C([0, T ]; L1(Ω)) and for all t ∈ [0, T ]∫
Ω

Lk(%)(t)−
∫

Ω

Lk(%0) +

∫ t

0

∫
Ω

Tk(%) div v = 0 . (248)

Proof. We can reproduce the proof [FNP01], Lemma 4.4 (see also the section 4.6) one to
one.
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With the same method as in the Lemma 10.3, one moreover proves

Lemma 10.8. Let p, v and % denotes the weak limits according to 10.2. Then, for one subse-
quence possibly depending on k

(pεn − η′ div vεn)Tk(%εn)→ (p− η′ div v) ak weakly in L1(Q) .

Proof. For conveninence, the reader can find a proof in the appendix.

We next can establish the essential property of Lemma 10.5 also if α ≤ 3.

Lemma 10.9. For all t ∈ [0, T ] there holds:

lim sup
n→∞

∫
Qt

(pεn Tk(%εn)− p ak) ≥ c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− ak)2 .

If P is moreover a convex function of % (see Lemma 5.9), then

lim sup
n→∞

∫
Qt

pεn Tk(%εn) ≥
∫
Qt

p Tk(%) + c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− Tk(%))2 .

Proof. We note that we can represent pεn = P (%εn , q
εn) with the function P of Lemma 5.4.

Recall that ∂sP ≥ c0. For arbitrary nonnegative u ∈ C1(Q), we have

(P (%εn , q
εn)− P (u, qεn)) (Tk(%εn)− Tk(u)) ≥ c0 (Tk(%εn)− Tk(u))2 .

As in the proof of the Lemma 10.5, we use that the functionsP (u, qεn) have a bounded gradient
in L2,2α/(1+α)(Q) for fixed u. Exploiting the weak convergence pεn ⇀ p and Tk(%εn) ⇀ ak,
we can show that

lim sup
n→∞

∫
Qt

pεn Tk(%εn)−
∫
Qt

p Tk(u) ≥
∫
Qt

β(u) (ak − Tk(u))

+ c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− Tk(u))2 .

Here, β(u) denote a weak limit of P (u, qεn). Since ak ≤ k almost everywhere in Q, it is
possible to represent ak = Tk(ak). Therefore, we can approximate ak with functions Tk(u),
u ∈ C1(Q), and it follows that

lim sup
n→‘∞

∫
Qt

pεn Tk(%εn)−
∫
Qt

p ak ≥ c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− ak)2 .

If P is a convex function depending only on %, then we follow [FNP01], Lemma 4.3.

At last we prove the equivalent of Lemma 10.6.

Lemma 10.10. 1 %εn(t)→ %(t) strongly in L1(Ω) for almost all t ∈]0, T [.

2 The family
⋃
t∈[0,T ]

⋃
n∈N{%εn(t)} is sequentially compact in L1(Ω).

80



Proof. We have∫
Qtn

pεn Tk(%εn) =

∫
Qtn

(pεn − η′ div vεn)Tk(%εn) + η′
∫
Qtn

div vεn Tk(%εn)

=

∫
Qtn

(pεn − η′ div vεn)Tk(%εn)− η′
∫

Ω

(Lk(%εn(tn))− Lk(%0))

Invoking the Lemma 10.9

lim sup
n→∞

∫
Qt

pεn Tk(%εn) =

∫
Qt

(p− η′ div v) ak − η′ lim inf
n→∞

∫
Ω

(Lk(%εn(tn))− Lk(%0))

=

∫
Qt

p ak − η′
∫
Qt

div v (ak − Tk(%))− η′
∫
Qt

div v Tk(%)

− η′ lim inf
n→∞

∫
Ω

(Lk(%εn(tn))− Lk(%0))

=

∫
Qt

p ak − η′
∫
Qt

div v (ak − Tk(%)) + η′
(∫

Ω

Lk(%(t))− lim inf
n→∞

∫
Ω

Lk(%εn(tn))

)
.

Now we distinguish two cases. In general, we obtain the inequality

c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− ak)2 + η′ lim inf
n→∞

∫
Ω

(Lk(%εn)(tn)− Lk(%)(t))

≤ −η′
∫
Qt

div v (ak − Tk(%)) .

In the case where the function P is convex in the first argument, there is the stronger statement

c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− Tk(%))2 + η′ lim inf
n→∞

∫
Ω

(Lk(%εn)(tn)− Lk(%)(t))

≤ −η′
∫
Qt

div v (ak − Tk(%)) .

Thus using that both terms on the left-hand are nonnegative

c0 lim sup
n→∞

∫
Qt

(Tk(%εn)− Tk(%))2 ≤ −η′
∫
Qt

div v (ak − Tk(%))

= −η′ lim
n→∞

∫
Qt

div v (Tk(%εn)− Tk(%))

≤ |η′| ‖ div v‖L2(Q) lim sup
n→∞

‖Tk(%εn)− Tk(%)‖L2(Qt) .

This shows that c0 ‖ak − Tk(%)‖L2(Qt) ≤ |η′| ‖ div v‖L2(Q).

Thus, in both cases, we will find that ak−Tk(%) converges strongly to zero inL2(Q) as k →∞,
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and it follows that

c0 lim sup
k→∞

lim sup
n→∞

∫
Qt

(Tk(%εn)− ak)2

+ lim inf
k→∞

lim inf
n→∞

∫
Ω

(Lk(%ε)(tn)− %(t) ln %(t))

= c0 lim sup
k→∞

lim sup
n→∞

∫
Qt

(Tk(%εn)− ak)2

+ lim inf
k→∞

lim inf
n→∞

∫
Ω

(Lk(%εn)(tn)− Lk(%)(t)) ≤ 0 . (249)

Now we introduce for k > 2 and n ∈ N the variables uk,ε such that

uk,εn lnuk,εn = Lk(%εn) .

Denoting ψ the inverse of the function t 7→ t ln t in the range [2,+∞], we have

%εn − uk,εn =

{
0 if %εn ≤ k

%εn − ψ(%εn ln k + %εn − k) otherwise

Thus

‖uk,εn(t)− %εn(t)‖L1(Ω) ≤ (‖%εn(t)‖Lα(Ω) + ‖%(t)‖Lα(Ω)) k
−α . (250)

We use this to show that

uk,εn(tn) = uk,εn(tn)− %εn(tn) + %εn(tn)→ %(t) as distributions for k, n→∞ (251)

It follows that lim infk, n→∞
∫

Ω
uk,εn(tn) lnuk,εn(t) ≥

∫
Ω
%(t) ln %(t). Using the definition of

uk,εn and (249), we condluce that the equality sign is valid, showing that uk,ε(t)→ %(t) strongly
in L1(Ω), and thus due to (250) also that

%εn(tn)→ %(t) strongly inL1(Ω) . (252)

The claims (1), (2) follow using the same argument as in Lemma 10.6.

11 Existence of solutions

Weak solutions to (P ) are defined in the spirit of viscosity solutions by passing to the limit
σ → 0 and then δ → 0 in the approximation scheme (Pσ,δ) = (Pτ=0,σ,δ).

Proposition 11.1. Assumptions of the Theorems 4.4, 4.5. For σ > 0 and δ > 0 assume that
there is (µσ,δ, vσ,δ, φσ,δ) ∈ B(T, Ω, α, N, Ψ, ΨΓ) subject to the energy inequality and the
global mass conservation identity (Definition 4.2) that weakly solves (Pσ,δ).

Then, (P ) possesses a weak solution (as stated in the theorems 4.4, 4.5).
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Proof. We first show the claim under the assumptions of the Theorem 4.4 (Global existence).

The validity of the mass conservation identity implies that the vector of total mass densities
ρ̄σ,δ ∈ CΦ∗([0, T ]; RN) satisfies

ρ̄σ,δ(t) ∈ {ρ̄0} ⊕W for all t ∈ [0, T ] .

We apply the Propositions 8.1, 8.2, 8.3 and 8.20 and obtain that

[(%σ,δ, q
σ,δ, vσ,δ, φσ,δ, R

σ,δ, RΓ,σ,δ)]B(T,Ω, αδ, N−1,Ψ,ΨΓ) ≤ C0,δ

[(%σ,δ, q
σ,δ, vσ,δ, φσ,δ, R

σ,δ, RΓ,σ,δ)]B(T,Ω, α,N−1,Ψ,ΨΓ) ≤ C0 .
(253)

Here we distinguish the regularisation exponent αδ > 3 and the original growht exponent
3/2 < α < +∞ of the free energy function.

Moreover, time integration in (161) and (162) means that there is a mapping F in the class
C([0, T ] ; L ([L1(Q)]a, [C1

c (Ω; RN+3)]∗)) such that for almost all t ∈]0, T [( ∫
Ω
ρσ,δ(t) · ψ∫

Ω
%σ,δ(t) v

σ,δ(t) · η

)
=F(t, Aσ,δ)(ψ, η)

for all (ψ, η) ∈ C1
c (Ω; RN)× C1

c (Ω; R3) . (254)

Fix δ > 0. Then, by construction (see (147)), we can rely on the growth condition αδ > 3. In
order to apply the proposition 10.1, we need to verify the condition

‖((1 · Jσ) · ∇ ln %σ,δ)
+‖L2(Q) → 0 for σ → 0 . (255)

In order to show (255), note that %σ =
∑N

i=1∇h∗i (µσ) with the mapping of Lemma 5.7 (here
we can forget for a while about the δ indices). We obtain that

∇ ln %σ = %−1
σ

N∑
i,j=1

D2h∗i,j(µ
σ)∇µσj

=
D2h∗1 · 1

%σ
∇(µσ · 1) +

N−1∑
l=1

D2h∗1 · ξl

%σ
∇(µσ · ξl) ,

where ξ1, . . . , ξN−1 are chosen as to form an orthonormal basis of 1⊥. Thus, introducing for
k = 1, . . . , N the driving forces Dk := ∇µσk + zk

mk
∇φσ, we obtain that

∇ ln %σ =
D2h∗1 · 1

%σ
(1 ·D) +

N−1∑
`=1

D2h∗1 · ξ`

%σ
(ξ` ·D)−

D2h∗1 · z
m

%σ
∇φσ .

Recall that −
∑N

i=1 J
i,σ = σ (1 ·D). Thus

−
N∑
i=1

J i,σ · ∇ ln %σ = σ
D2h∗1 · 1

%σ
(1 ·D)2 −

N−1∑
`=1

D2h∗1 · ξ`

%σ
(
N∑
i=1

J i,σ) · (ξ` ·D)

−
D2h∗1 · z

m

%σ
(
N∑
i=1

J i,σ · ∇φσ)

≥ −
N−1∑
`=1

D2h∗1 · ξ`

%σ
(
N∑
i=1

J i,σ) · (ξ` ·D)−
D2h∗1 · z

m

%σ
(
N∑
i=1

J i,σ · ∇φσ) . (256)
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Recall that |ξ ·D| ≤ c |ΠD| ≤ c
√
MD ·D. Thus

‖(
N∑
i=1

J i,σ) · (ξ` ·D)‖L1(Q) ≤ ‖
N∑
i=1

J i,σ‖L2(Q) ‖ξ ·D‖L2(Q) ≤ C0

√
σ

‖(
N∑
i=1

J i,σ) · ∇φσ‖L1(Q) ≤ ‖
N∑
i=1

J i,σ‖L2(Q) ‖∇φσ‖L2(Q) ≤ C0

√
σ .

Using (120) we moreover see that |D
2h∗|
%σ
≤ C1. Thus, (256) implies that

‖((1 · Jσ) · ∇ ln %σ)+‖L1(Q) ≤ C0 C̃1

√
σ .

This establishes (255), and the Proposition 10.1 applied with J̄σ := 1 · Jσ now garanties that
the familty {%σ,δ}σ>0 is compact in L1(Ω) uniformly with respect to time (see the Remark 9.6).
It remains to apply the Propositon 9.12 in order to obtain the convergence to a weak solution
(%δ, q

δ, vδ, φδ, R
δ, RΓ,δ) ∈ B(T, Ω, α, N − 1, Ψ, ΨΓ) to (Pσ=0,δ).

For the passage to the limit δ → 0 the reasoning is the same. We have a uniform bound for
[(%δ, q

δ, vδ, φδ, R
δ, RΓ,δ)]B(T,Ω, α,N−1,Ψ,ΨΓ . Since there is no perturbation J̄δ in the mass

conservation equation, the Proposition 10.1 garanties at once the uniform in time compactness
in L1(Ω) of {%δ}δ>0, and the Propositon 9.12 garanties the convergence to a weak solution to
(P ).

It remains to discuss the case of Theorem 4.5 (Local-in-time existence). We first note that due
to the Proposition 8.1, 8.3, we have a bound

‖ρσ,δ‖L∞,α(Q) + [ρ̄σ,δ]CΦ∗ ([0,T ]) ≤ C0 . (257)

We can extract subsequences such that ρσ,δ converges weakly in Lα(Q), and ρ̄σ,δ uniformly
on [0, T ].

We define a time T ∗σ,δ via

T ∗σ,δ = inf{t ∈ [0, T [ : inf
i=1,...,N

ρ̄σ,δi (t) = 0} .

We know that T ∗σ,δ ≥ T0 > 0 where T0 is fixed by the data. At first we can extract a subse-
quence such that T ∗σ,δ → T ∗. Due to (257), we see that 0 = inf ρ̄σ,δ(T ∗σ,δ)→ inf ρ̄(T ∗).

Consider now T ′ ∈ [0, T ∗[ arbitrary. Then, for all σ ≤ σ0(T ∗−T ′), and δ ≤ δ0(T ∗−T ′), we
can apply the Propositions 8.1, 8.2, 8.3 and 8.20 and obtain the esimate (253) with T replaced
by T ′. We then finish the proof as for Theorem 4.4 with T replaced by T ′. The claim follows.

Due to Proposition 11.1 it is sufficient to prove the solvability of the problem (Pσ,δ) in order to
complete the proof of the existence Theorems. We are going to carry out this last step by means
of a Galerkin approximation described hereafter.
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Construction of approximate solutions for (Pδ,σ) We choose

(1) A countable linearly independent system η1, η2, . . . ∈ W 1,∞
0 (Ω; R3) dense inW 1,2

0 (Ω; R3)
in order to approximate the variable v;

(2) A countable linearly independent system ζ1, ζ2, . . . ∈ W 1,∞
Γ (Ω) dense in W 1,2

Γ (Ω) in
order to approximate the variable φ;

In order to approximmate the variables µ we need a countable system ψ1, ψ2, . . . of the space
W 1,∞(Ω; RN) dense in W 1,2(Ω; RN). For technical reasons, we have to require additional
properties of this set. For n ∈ N, and i, j ∈ {1, . . . , n} such that i ≤ j, we introduce the
functions η̃i,j = ηi · ηj whith η1, . . . , ηn from (1). By means of an obvious renumbering, we
denote these funtions η̃s for s = 1, . . . , n (n + 1)/2. For all n ∈ N, we assume that there is
p = p(n) > n such that the following additional conditions are valid

1 ∈ span{ψ1, . . . , ψp}

η̃s 1 ∈ span{ψ1, . . . , ψp} for all s = 1, . . . , n (n+ 1)/2

φ0
z
m
, ζs z

m
∈ span{ψ1, . . . , ψp} for all s = 1, . . . , n

(258)

Obvious corollaries of this property arev ∈ span{η1, . . . , ηn} =⇒ |v|2 ∈ span{ψ1, . . . , ψp(n)}

φ̃ ∈ span{ζ1, . . . , ζn} =⇒ (φ̃+ φ0) z
m
∈ span{ψ1, . . . , ψp(n)}

(259)

For n ∈ N, we are looking for approximmate solutions

µn ∈ C1([0, T ]; W 1,∞(Ω; RN)) vn ∈ C1([0, T ]; W 1,∞
0 (Ω; R3))

φn ∈ C1([0, T ]; W 1,∞(Ω)) (260)

following the Ansatz

µn =

p(n)∑
`=1

a`(t)ψ
`(x), vn =

n∑
`=1

b`(t) η
`(x), φn = φ0 +

n∑
`=1

c`(t) ζ
`(x) . (261)

where the vector fieds a = a(n) ∈ C1([0, T ]; Rp), b = b(n) ∈ C1([0, T ]; Rn) and c = c(n) ∈
C1([0, T ]; Rn) are to determine.

Our approximation scheme is (Pτ,σ,δ) as described in the section 6. We project this scheme
on the Galerkin space and choose τ = τn = 1

n
. In order to state approximate equations, we

need for i = 1, . . . , N the free energy functions hτn,δ (cp. (152)). In this point we introduce the
abbreviation

R∗(µ) := ∇h∗τn,δ = ∇(hδ)
∗(µn) + τn ω

′(µn) . (262)
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In order to approximate the equations (47), we consider for s ∈ {1, . . . , p(n)}∫
Ω

∂tR
∗(µn) · ψs =

∫
Ω

((R∗(µn) vn + Jn) · ∇ψs + r(µn) · ψs)

+

∫
Γ

(r̂(µn) + J0) · ψs . (263)

Introduce a Matrix-valued mapping µ 7→ A1(µ) = {ai,j(µ)}i,j=1,...,p(n) via

ai,j(µ) :=

∫
Ω

R∗`,µs(µ)ψj` ψ
i
s =

∫
Ω

(D2
l,sh
∗
δ(µ) + τn ω

′′(µ) δs,`)ψ
j
` ψ

i
s . (264)

Owing to the convexity of h∗δ and of the function ω, we see thatA1(µ) is symmetric and positive
semidefinite. Due to the Ansatz (261) for µn, we can now express (263) in the equivalent form

A1(µn(t)) a′(t) = F 1(a(t), b(t), c(t))

F 1
s :=

∫
Ω

(R∗(µn) vn + Jn) · ∇ψs +

∫
Ω

r(µn) · ψs +

∫
Γ

(r̂(µn) + J0) · ψs .

In order to approximate the equations (48), we consider for s ∈ {1, . . . , n}∫
Ω

R∗(µn) · 1 ∂tvn · ηs = −
∫

Ω

R∗(µn) · 1 (vn · ∇)vn · ηs +

∫
Ω

h∗τn,δ(µ
n) div ηs

−
∫

Ω

S(∇vn) · ∇ηs −
∫

Ω

(
N∑
i=1

Jn,i · ∇)vn · ηs −
∫

Ω

z

m
·R∗(µn)∇φn · ηs . (265)

Introduce a matrix-valued mapping µ 7→ A2(µ) via A2(µ) = {a(2)
i,j (µ)}i,j=1,...,n

a
(2)
i,j (µ) :=

∫
Ω

R∗(µ) · 1 ηi · ηj =

∫
Ω

(∇h∗δ(µ) + τn ω
′(µn)) · 1 ηi · ηj . (266)

Owing to the nonnegativity of ∇h∗δ and of ω′, we see that A2(µ) is symmetric and positive
semidefinite. Due to the Ansatz (261) for vn and µn, we can express (265) in the equivalent
form

A2(µn(t)) b′(t) = F 2(a(t), b(t), c(t))

F 2
s := −

∫
Ω

R∗(µn) · 1 (vn · ∇)vn · ηs +

∫
Ω

h∗τn,δ(µ
n) div ηs

−
∫

Ω

S(∇vn) · ∇ηs +

∫
Ω

(
N∑
i=1

Jn,i · ∇)ηs · vn −
∫

Ω

z

m
·R∗(µn)∇φn · ηs .

In order to determine φn, we use the ansatz φn = φ̃n +φ0 and we consider the projection onto
span{ζ1, . . . , ζn}∗ of the Poisson equation, that is

ε0 (1 + χ)

∫
Ω

∇φ̃n · ∇ζ i = −ε0 (1 + χ)

∫
Ω

∇φ0 · ∇ζ i +

∫
Ω

z

m
·R∗(µn) ζ i . (267)
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We make use of the Ansatz (261) for φn, and we see that the vector c1, . . . cn can be determined
via for a linear system Ac = f where

Ai,j := ε0 (1 + χ)

∫
Ω

∇ζ i · ∇ζj for i, j = 1, . . . , n

fi := −ε0 (1 + χ)

∫
Ω

∇φ0 · ∇ζ i +

∫
Ω

z

m
·R∗(µn) ζ i for i = 1, . . . , n . (268)

Since the matrix A is by assumption invertible, we obtain that c = A−1f =: f̃(a).

Overall, the Galerkin approximation (263), (265), (267) has the form(
A1(a(t)) 0

0 A2(a(t))

) (
a′

b′

)
=

(
F 1(a(t), b(t), f̃(a(t)))

F 2(a(t), b(t), f̃(a(t)))

)
(269)

We consider the initial conditions

a(0) = a0,n ∈ Rp, b(0) = b0,n ∈ Rn . (270)

Here we require for the reason of consistency that

µ0,n :=

p(n)∑
`=1

a0,n
` ψ` → µ0 := ∇ρh(ρ0) in L1(Ω; RN)

v0,n =
n∑
`=1

b0,n
` η` → v0 in L1(Ω; R3) as n→∞ .

(271)

We moreover assume that

‖µ0,n‖L∞(Ω) ≤ C0 , (272)

which by definition also yields for i = 1, . . . , N

ρ0,n
i := R∗i (µ0,n) ≥ c0 > 0 everywhere in Ω . (273)

At first we can obtain local existence for the problem (269), (270).

Proposition 11.2. There is ε = ε(n, a0,n, b0,n) such that the problem (269), (270) possesses
a solution in C1([0, ε]; Rp × Rn).

Proof. Recall (273). Consider the matrix A1(µ0) (cf. (264))

A1
i,j(µ

0) =

∫
Ω

D2
`,sh

∗
τn,δ(µ

0)ψj` ψ
i
s .

Owing to the strict convexity of h∗τn,δ on compact sets, A1(µ0) is positive definite and therefore
invertible, and ‖[A1(µ0)]−1‖ ≤ C(a0, n). The matrix A2(µ0) (cf. (266)) is uniformly invertible
because∇h∗τn,δ is stricly positive on compact sets, and ‖[A2(µ0)]−1‖ ≤ C(a0, n).

The system matrix A in (269) satisfies detA = detA1 detA2. Thus, A is invertible at a0, b0,
and standard perturbation arguments yield the claim.
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Next we want establish a continuation property for the solution, and we need a priori estimates.

Proposition 11.3. Assume that the approximmate system (269), (270) possesses a solution
(a, b) ∈ C1([0, T ∗[; Rp × Rn) for a T ∗ > 0. Then, µn, vn and φn satisfy the dissipation
inequality with free energy hτn,δ and mobility matrix Mσ.

Proof. We apply the ideas of Proposition 7.1. We can multiply (263) with µn. Due to the addi-
tional property (258) and to (259) on the system {ψ1, . . . , ψp}, we can also multiply (263) with
z
m
φn.

Second, we multiply (265) with vn. Due again to the additional property (258) and to (259) we
can also choose |vn|2 1 as a test function in (263) to obtain that the perturbations vanish. The
claim follows.

Next we verify a continuation criterion.

Proposition 11.4. Assumptions of Proposition 11.3. Then ‖µn‖L∞([0,T ∗]×Ω)+‖vn‖L∞([0,T ∗]×Ω)+
‖φn‖L∞([0,T ∗]×Ω) ≤ C(n).

Proof. The bound ‖R∗(µn)‖L∞,α(QT∗ ) ≤ C0 also implies that sup(t,x)∈QT∗ |R
∗(µn)| ≤

C(n). The reason is that the subset M := R∗(span{ψ1, . . . , ψp(n)}) (⊂ L1(Ω; RN)) is
parameterised by a finite dimensional linear space. Thus, there exists a constant cM such that
‖u‖L1(Ω) ≥ cM ‖u‖L∞(Ω) for all u ∈M .

We want to obtain a L∞ bound for µn. By construction we have for t ∈]0, T ∗[ arbitrary

c τn

N∑
i=1

∫
Ω

√
|µni (t)| ≤ τn

∫
Ω

Φω(µn) ≤ C0 .

Now we prove: There is c = c(n) such that |x|1/2L∞ ≤ c ‖|x · ψ|1/2‖L1(Ω) for all x ∈ Rp.

Otherwise there is for each j ∈ N a xj ∈ Rp such that |xj|1/2∞ ≥ j ‖|xj · ψ|1/2‖L1(Ω). Thus
‖|x̄j ·ψ|1/2‖L1(Ω) ≤ j−1 with x̄j = xj/|xj|L∞ . For a subsequence, x̄j → x̄ in Rp, |x̄|∞ = 1.
But since ‖|x̄ · ψ|1/2‖L1(Ω) = 0, we obtain that x̄ · ψ = 0 in Ω, and due to the choice of the
system {ψ1, . . . , ψp}, it follows that x̄ = 0, a contradiction.

It follows that

‖µn(t)‖1/2
L∞(Ω) ≤ c(n) |a(t)|1/2∞ ≤ c̃(n) ‖|µn(t)|1/2‖L1(Ω) ≤

C(n)

τn
C0 .

Thus ‖µn‖L∞([0,T ∗]×Ω) ≤ C(n).

It follows from the properties of R∗ that infi=1,...,N inf [0,T ∗]×Ω R∗i (µn) ≥ c(n) > 0. From
the bound

∫
Ω

R∗(µn(t)) · 1 |vn(t)|2 ≤ C0, we obtain that ‖vn‖L∞([0,T ∗]×Ω) ≤ C0 c(n)−1.
Analogously,

∫
Ω
|∇φn(t)|2 ≤ C0 implies that ‖∇φn‖L∞([0,T ∗]×Ω) ≤ C(n), and since φn =

φ0 on [0, T ∗]× Γ, the claim follows.

As a Corollary of these estimates, we obtain the global solvability of the approximate system.
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Corollary 11.5. Let T > 0. Then, the approximmate system (269), (270) possesses a solution
(a, b) ∈ C1([0, T ]; Rp × Rn).

Proof. Owing to the Proposition 11.2, there is T ∗ > 0 such that (269), (270) possesses a
solution (a, b) ∈ C1([0, T ∗]; Rp × Rn). Since ‖µn‖L∞([0,T ∗]×Ω) ≤ C(n), it follows from the
properties of R∗ that infi=1,...,N inf [0,T ∗]×Ω R∗i (µn) ≥ c(n).

The matrix A1(µn(t)) is invertible for all t ∈ [0, T ∗], and ‖[A1(µn(t))]−1‖ ≤ C(n). The
matrix A2(µn(t)) (cf. (266)) is uniformly invertible, and ‖[A2(µn(t))]−1‖ ≤ C(n) on [0, T ∗].
Due to the Proposition 11.4, the functions µn(T ∗), vn(T ∗) and φn(T ∗) belong to L∞(Ω) and
their norm in this space is bounded independently on t.

Thus, the problem (269), with initial data (a(T ∗), b(T ∗)) possesses solution in an intervall
[T ∗, T ∗ + ε(n)], and the claim follows reiterating this argument.

Proposition 11.6. Let n ∈ N and T > 0. The Galerkin approximation (263), (265), (267),
possesses a solution with the regularity (11) such that the dissipation inequality is valid with
free energy function hτn,δ and mobility matrix Mσ.

Uniform estimates We define

ρn := R∗(µn) = ∇(hδ)
∗(µn) + τn ω

′(µn), pn := h∗τn,δ(µ
n) .

The approximate vector of total masses ρ̄n ∈ C1([0, T ]; RN) defined via ρ̄n(t) =
∫

Ω
ρn(t)

satisfies ρ̄n(0) = ρ̄0 + τn
∫

Ω
ω′(µ0). Therefore, for c0 := |

∫
Ω
ω′(µ0)| we have

ρ̄n(t) ∈ Bc0 τn(ρ̄0)⊕W = Bc0 τn(ρ̄0)⊕ span{γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ
Γ} . (274)

We obtain for c0 τn ≤ 1
2

dist(ρ̄0,Mcrit) that the conclusion of Proposition 8.17 is valid. Apply-
ing the conclusion of the Propositions 8.1, 8.2, 8.3 and 8.20 to %n := ρn ·1 and qn := Πµn we
obtain that [(µn, vn, φn)]B(T,Ω, α,N,Ψ,ΨΓ) ≤ C0.

Passage to the limit n→∞ Due to the condition (258), we can multiply the equations (263)
with ψ = vn · ηs 1, s ∈ {1, . . . , n} arbitrary. We obtain that∫

Ω

∂t%n v
n · ηs −

∫
Ω

%n v
n · ∇(vn · ηs) =

∫
Ω

(1 · Jn) · ∇(vn · ηs) .

Thus, it follows that∫
Ω

∂t(%n v
n) · ηs −

∫
Ω

%n ∂tv
n · ηs −

∫
Ω

%n (vn · ∇)vn · ηs

−
∫

Ω

%n (vn ⊗ vn) : ∇ηs =

∫
Ω

(1 · Jn) · ∇(vn · ηs) .

Rearranging terms∫
Ω

∂t(%n v
n) · ηs −

∫
Ω

%n (vn ⊗ vn) : ∇ηs −
∫

Ω

(1 · Jn) · ∇(vn · ηs)

=

∫
Ω

%n (∂tv
n + (vn · ∇)vn) · ηs .
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Using the latter identity and (265), we obtain that∫
Ω

∂t(%n v
n) · ηs −

∫
Ω

%n (vn ⊗ vn) · ∇ηs =

∫
Ω

pn div ηs −
∫

Ω

S(∇vn) · ∇ηs

+

∫
Ω

(
N∑
i=1

Jn,i · ∇)ηs · vn −
∫

Ω

z

m
· ρn)∇φn · ηs . (275)

Due to the identities (263) and (275) we obtain for all t ∈ [0, T ] the representation( ∫
Ω
ρn(t) · ψ∫

Ω
%n(t) vn(t) · η

)
= F(t, An)(ψ, η)

for all (ψ, η) ∈ span{ψ1, . . . , ψp(n)} × span{η1, . . . , ηn} . (276)

Here F ∈ C([0, T ] ; L (L1(Q), [C1
c (Ω; RN+3)]∗)) is the functional naturally defined by the

right-hands of (263) and (265), that is

F1(t, An)(ψ) :=

∫
Ω

ρ0 · ψ +

∫ t

0

∫
Ω

(ρni v
n + Jn,i) · ∇ψi

+

∫ t

0

∫
Ω

r(µn) · ψ +

∫ t

0

∫
Γ

(r̂(µn) + J0) · ψ ,

F2(t, An)(η) =

∫ t

0

∫
Ω

%n (vn ⊗ vn) · η +

∫ t

0

∫
Ω

pn div ηs −
∫ t

0

∫
Ω

S(∇vn) · ∇ηs

+

∫ t

0

∫
Ω

(
N∑
i=1

Jn,i · ∇)ηs · vn −
∫ t

0

∫
Ω

z

m
· ρn∇φn · ηs .

As the systems span{ψ1, . . . , ψp(n)} and span{η1, . . . , ηn} are dense in C1 for n→∞, we
easily show that there is a subsequence such that ρn(t) and %n(t) vn(t) converge as distribu-
tions for all t ∈]0, T [. Thus, the conclusions of Lemma 9.1 are valid and we can produce a limit
element (µ, v, φ) ∈ B(T, Ω, α, N, Ψ, ΨΓ).

In order to obtain the strong convergence of the sequence, we use the estimate of Lemma 8.18
valid for the class B(T, Ω, α, N, Ψ, ΨΓ) and fixed σ > 0, and a variant of Corollary 9.7.
Abbreviate R = ∇(hδ)

∗ ∈ C(RN ; RN
+ ). We show that for all ε > 0, there are Cε > 0 and

mε ∈ N such that for all w1, w2 ∈ W 1,1(Ω; RN)

‖R(w1)−R(w2)‖L1(Ω) ≤ε (1 + sup
i=1,2
‖wi‖W 1,1(Ω;RN ))

+ Cε

mε∑
j=1

∣∣∣∣∫
Ω

(R(w1)−R(w2)) · φj
∣∣∣∣ .

Here φ1, φ2, . . . is a dense subset of Cc(Ω; RN). Then, we choose w1 = µn(t) and w2 =
µn+p(t), and integrate over the interval J = [0, T ] \ (I`,n ∪ I`,n+p) where I`,n = {t :
‖µn(t)‖L1(Ω) ≥ `}. Arguing as in the Corollary 9.7, we obtain after few steps the inequality

‖R(µn)−R(µn+p)‖L1([0,T ]×Ω) ≤
C

(◦N ln)(`)
+ ε (T + C`)

+ Cε

mε∑
j=1

∫ T

0

∣∣∣∣∫
Ω

(R(µn)−R(µn+p)) · φj
∣∣∣∣ .
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Due to Proposition 8.1, |R(µn)− ρn| = |τn ω′(µn)| ≤ C0 τ
1/α′
n . Thus, in view of Lemma 9.1,

we ensure that R(µn(t))→ ρ(t) as distributions for almost all t. This yields

lim sup
n→∞

‖R(µn)−R(µn+p)‖L1([0,T ]×Ω) ≤
C

(◦N ln)(`)
+ ε (T + C`) .

We conclude as in the proof of Corollary 9.7 that {R(µn)} converges strongly in L1(Q; RN).
Then, owing to the uniform bound [µn]Lw

(◦N ln)
L1(Q) ≤ C0, we obtain that µ := limn→∞ µ

n

exists almost everywhere in Q, and we easily identify (µ, v, φ) ∈ B(T, Ω, α, N, Ψ, ΨΓ) as
a weak solution to the problem (Pσ,δ).

A Proofs of some auxiliary statements

Proof of the Lemma 8.5

Proof. The proof relies on the availibility of a solution operator to the problem

divX = f in Ω, X = 0 on ∂Ω , (277)

for all f having mean value zero over Ω, so that for all 1 < q < +∞ the estimates

‖X‖W 1,q(Ω) ≤ cq ‖f‖Lq(Ω), ‖X‖Lq(Ω) ≤ cq ‖f‖[W 1,q′
0 (Ω)]∗

(278)

are valid. For details about the solution operator, see among others [FNP01], section 3.1.

We begin with the case α > 3. Then, for all η ∈ C1
c ([0, T [; C1

c (Ω; R3)) the function p satisfies∫
Q

p div η =−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η +

∫
Q

S(∇v) : ∇η

−
∫
Q

(
N∑
i=1

J i · ∇)η · v −
∫

Ω

%0 v
0 · η(0) +

∫
Q

nF ∇φ · η .

We make use of the estimates∣∣∣∣∫
Q

% v · ηt
∣∣∣∣ ≤ ‖% v‖L2, 6α

6+α (Q)
‖ηt‖

L
2, 6α

5α−6 (Q)∣∣∣∣∫
Q

% v ⊗ v : ∇η
∣∣∣∣ ≤ ‖% v2‖

L
1, 3α

3+α (Q)
‖∇η‖

L
∞, 3α

2α−3 (Q)∣∣∣∣∫
Q

S(∇v) : ∇η
∣∣∣∣ ≤ c ‖∇v‖L2(Q) ‖∇η‖L2(Q)∣∣∣∣∣

∫
Q

(
N∑
i=1

J iσ · ∇)η · v

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
i=1

J iσ v

∥∥∥∥∥
L2,3/2(Q)

‖∇η‖L∞,3(Q)∣∣∣∣∫
Q

nF ∇φ · η
∣∣∣∣ ≤ ‖nF ∇φ‖L∞,1(Q) ‖η‖L1,∞(Q)

≤ c ‖nF ∇φ‖L∞,1(Q)‖η‖L∞(0,T ;W 1,α(Ω)) .

(279)
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Let t ∈]0, T [ and consider according to (277) a solution to the problem

divX = %(t)− %̄(t) in Ω, X = 0 on ∂Ω

Since %̄(t) = ‖%0‖L1(Ω) for all t as a consequence of (161), we obtain the estimate

‖X‖W 1,α(Ω) ≤ c (‖%(t)‖Lα(Ω) + ‖%0‖L1(Ω)) .

Further the identity (161) also implies that

−
∫
Q

%ψt =

∫
Q

% v · ∇ψ +

∫
Q

N∑
i=1

J i · ∇ψ = 0 for all ψ ∈ C1
c (0, T ; C1(Ω)) ,

and since we assume α > 3, this yields

‖%t‖L2(0,T ; [W 1,2(Ω)]∗) ≤ ‖% v‖L2(Q) + ‖
N∑
i=1

J i‖L2(Q)

≤ c ‖% v‖
L

2, 6α
6+α (Q)

+ ‖
N∑
i=1

J i‖L2(Q) ≤ C0 .

Thus we also obtain from the properties (278) that

‖Xt‖L2(Q) ≤ c ‖%t‖L2(0,T ; [W 1,2(Ω)]∗) ≤ C0 .

Owing to the inqualities 6α/(5α−6) < 2 and 3α/(2α−3) < α, we see that |
∫
Q
p divX| ≤

C0. Thus
∫
Q
p % ≤ C0, and since % ≥ p1/α the claim follows.

If α ≤ 3, then we assume that 1 · J = 0, then p satisfies for all η ∈ C1
c ([0, T [; C1

c (Ω;R3))∫
Q

p div η =−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η +

∫
Q

S(∇v) : ∇η

−
∫

Ω

%0 v
0 · η(0) +

∫
Q

nF ∇φ · η .

We apply the estimates (279) for the right-hand except for the last one. Note now that 3α/(2α−
3) ≥ 3, and therefore β ≥ min{3, r(Ω, Γ)} > α′ by assumption. It follows that βα

β+α
> 1,

and therefore∣∣∣∣∫
Q

nF ∇φ · η
∣∣∣∣ ≤ ‖nF ∇φ‖

L
βα
β+α (Q)

‖η‖
L

βα
βα−β−α (Q)

≤ C0 ‖η‖
L∞(0,T ;W

1, 3α
2α−3 (Ω))

.

It can be shown using (161) that % is a solution to the continuity equation in the sense of
renormalised solutions (see [Lio98] or [FNP01]) and that it satisfies for all s > 0 and ψ ∈
C1
c (0, T ; C1(Ω))

−
∫
Q

%s ψt =

∫
Q

%s v · ∇ψ + (1− s)
∫
Q

ρs div v ψ .
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Defining r := 2α/(2s+ α)

‖%s(t) div v(t)‖Lr(Ω) ≤ ‖ div v(t)‖L2(Ω) ‖%(t)‖sLα(Ω) ≤ C0 ‖ div v(t)‖L2(Ω) .

Thus, ‖%s div v‖L2,r(Q) ≤ C0. Moreover, defining r̃ = 6α/(6s+ α)

‖%(t)s v(t)‖Lr̃(Ω) ≤ ‖%(t)‖sLα(Ω) ‖v(t)‖L6(Ω) ≤ C0 ‖v(t)‖L6(Ω) ,

and this shows that ‖%s v‖L2,r̃(Q) ≤ C0, r̃ = 6α/(6s+ α). Using the Sobolev inequality∣∣∣∣∫
Q

%s ψt

∣∣∣∣ ≤ C0 (‖∇ψ‖L2,r̃′ (Q) + ‖ψ‖L2,r′ (Q)) ≤ C0 ‖ψ‖
L2(0,T ;W

1, 6α
5α−6s (Ω))

.

For the choice s = 2
3
α − 1, it follows that ‖(%s)′‖

L2(0,T ; [W
1, 6α

6+α (Ω)]∗)
≤ C0. Now we consider

a solution to the problem

divX = %s(t)− %̄s(t) in Ω, X = 0 on ∂Ω

We obtain that ‖X‖
L∞(0,T ;W

1, 3α
2α−3 (Ω))

≤ C0 and that ‖Xt‖
L

2, 6α
7α−6 (Q)

≤ C0. We see again

that
∫
Q
p divX is finite, and the claim follows.

Proof of the Corollary 9.4 At first, we prove the Corollary 9.4. Here we need the following
auxiliary statement.

Lemma A.1. Let φ1, φ2, . . . ∈ C∞(Ω) be a countable, dense subset of C(Ω). Let K ⊂
L1(Ω) be a weakly sequentially compact set. We denote L1

+(Ω) the cone of nonnegative func-
tions in L1(Ω). Then, for every δ > 0, there are a constant C = C(δ) ∈ R+ and m(δ) ∈ N
such that

‖λu‖L1(Ω) ≤ δ ‖∇u‖L1(Ω) + C
m∑
i=1

∣∣∣∣∫
Ω

λuφi

∣∣∣∣
for all u ∈ W 1,1(Ω) and λ ∈ L1

+(Ω) such that λu ∈ K and ‖λu‖L1(Ω) ≥ δ.

Proof. If the claim is not true, then one can find δ0 > 0 and for each n ∈ N functions un ∈
W 1,1(Ω) and λn ∈ L1

+(Ω) such that un λn ∈ K , ‖λn un‖L1(Ω) ≥ δ0 and such that

‖λn un‖L1(Ω) ≥ δ0 ‖∇un‖L1(Ω) + n

n∑
i=1

∣∣∣∣∫
Ω

λn un φi

∣∣∣∣ (280)

Since λn un ∈ K , there is a subsequence and β∗ ∈ L1(Ω) such that λn un → β∗ weakly in
L1(Ω) and supn∈N ‖λn un‖L1(Ω) < +∞. Thus, we easily obtain that

n0∑
i=1

∣∣∣∣∫
Ω

β∗ φi

∣∣∣∣ = 0 for all n0 ∈ N ,
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and using the properties of the system {φi}, this yields β∗ = 0. On the other hand, the se-
quence ∇un is bounded in L1(Ω) owing to (280). Passing to a subsequence, we obtain that
u(x) := limn→∞ un(x) ∈ R exists for almost all x ∈ Ω. In particular, the characteristic
functions χ+

n := χ{x∈Ω :un(x)≥0} and χ−n := χ{x∈Ω :un(x)≤0} converge pointwise almost every-
where in Ω to χ+ := χ{x∈Ω :u(x)≥0} and χ− := χ{x∈Ω :u(x)≤0}. We can then use for instance
the Proposition 1. in [GMS98], Section 1.2.4, to see that

λn un χ
±
n → β∗ χ± = 0 weakly in L1(Ω) .

Together with the fact that ‖λn un‖L1(Ω) =
∫

Ω
λn un {χ+

n − χ−n }, this proves that δ0 ≤
‖λn un‖L1(Ω) → 0, a clear contradiction.

Proof of Corollary 9.4. For j ∈ N, define Ij := {t ∈]0, T [ : ‖v(t)‖L2α′ (Ω) ≤ j}.
Since α > 3/2, one always can show that 2α′ < 6, and thus that ‖v‖L2,2α′ (Q) ≤ C0. Thus,
λ1(]0, T [\Ij) ≤ c j−2.

We now define a set K = K(j) ⊂ L1(Ω) via

K :=
⋃
t∈Ij

⋃
ε>0

{%ε(t) (vε(t)− v(t))} .

Note that for t ∈ Ij , one has ‖%ε(t) v(t)‖
L

2α
1+α (Ω)

≤ ‖%ε(t)‖Lα(Ω) ‖v(t)‖L2α′ (Ω) ≤ C0 j. Thus

the set K is bounded in L
2α

1+α (Ω) and it is weakly sequentially compact in L1(Ω).

Let δ > 0 arbitrary. Consider λ := %ε(t) and u := vε(t)− v(t). According to the Lemma A.1,
if ‖λu‖L1(Ω) ≥ δ, then

‖%ε(t) (vε(t)− v(t))‖L1(Ω) ≤δ ‖∇(vε(t)− v(t))‖L1(Ω)

+ C(δ)

m(δ)∑
j=1

∣∣∣∣∫
Ω

%ε(t) (vε(t)− v(t))φi

∣∣∣∣ ,
Thus it also follows that

‖%ε(t) (vε(t)− v(t))‖L1(Ω) ≤δ max{1, ‖∇(vε(t)− v(t))‖L1(Ω)})

+ C(δ)

m(δ)∑
i=1

∣∣∣∣∫
Ω

%ε(t) (vε(t)− v(t))φi

∣∣∣∣ ,
where C(δ) depends only on the set K . We integrate over Ij ⊂]0, T [ the latter inequality and
we obtain that

‖%ε (vε − v)‖L1(Ij×Ω) ≤ δ (T + ‖∇(vε − v)‖L1(Q))

+ C(δ)

m(δ)∑
i=1

∫
Ij

∣∣∣∣∫
Ω

%ε(t) (vε(t)− v(t))φi

∣∣∣∣ dt
≤ (T + C0) δ + C(δ)

m(δ)∑
i=1

∫
Ij

∣∣∣∣∫
Ω

%ε(t) (vε(t)− v(t))φi

∣∣∣∣ dt
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We now consider the subsequence {εn}n∈N of Lemma 9.1. Using the distributional conver-
gence %εn(t) vεn(t) → %(t) v(t) and %εn(t) → %(t) for almost all t ∈]0, T [, we see that
the function gεn(t) :=

∫
Ω
%εn(t) (vεn(t) − v(t))φi converges pointwise to zero for almost all

t ∈]0, T [, and |gεn(t)| ≤ C for t ∈ Ij . Thus

lim sup
n→∞

‖%εn (vεn − v)‖L1(Ij×Ω) ≤ (T + C0) δ .

On the other hand, the sequence %εn (vεn−v) is uniformly bounded inL2, 6α
6+α (Q), and therefore

‖%εn (vεn − v)‖L1(Q) ≤ ‖%εn (vεn − v)‖L1(Ij×Ω) + ‖%εn (vεn − v)‖L1(]0,T [\Ij×Ω)

≤ ‖%εn (vεn − v)‖L1(Ij×Ω) + C0 j
−s, s := min{2, 6α

6 + α
} .

Now, lim supn→∞ ‖%εn (vεn − v)‖L1(Q) ≤ (T + C0) δ + C0 j
−s and the claim follows.

Proof of Lemma 10.3 Next we want to provide the proof of Lemma 10.3. We commence with
the fundamental technical observations due to Lions ([Lio98], page 17–21) about the compen-
sated compactness of the acceleration terms (see also [FNP01], section 3.4).

Lemma A.2. Assumptions of Proposition 10.1. Let a > 6α
5α−6

, and b > max{2, 3α
2α−3
}. Con-

sider {Xε}ε>0, X ⊂ L2(Q; R3) such that for ε→ 0

Xε → X strongly in L2(Q; R3), ∂tX
ε → ∂tX weakly in L2, a(Q;R3)

∇Xε → ∇X weakly in Lb(Q;R9) .

Then

%ε v
ε · ∂tXε + %ε v

ε ⊗ vε : ∇Xε → % v · ∂tX + % v ⊗ v : ∇X weakly in L1(Q) .

Proof. The assumptions imply that a′ < 6α
6+α

. Using Lp,q interpolation, there are r1 > 2 and
r2 > a′ and a certain interpolation exponent λ ∈]0, 1[ so that

‖%ε vε‖Lr1,r2 (Q) ≤ ‖%ε vε‖λ
L
∞, 2α

1+α (Q)
‖%ε vε‖1−λ

L
2, 6α

6+α (Q)
≤ C0 .

Similarily since b′ < 3α
3+α

, there are p1 > 1 and p2 > b′ and an interpolation exponent λ ∈]0, 1[
such that

‖%ε |vε|2‖Lp1,p2 (Q) ≤ ‖%ε |vε|2‖λL∞,1(Q) ‖%ε |vε|2‖1−λ
L

1, 3α
3+α (Q)

≤ C0 .

As a consequence of Hölder’s inequality, one then finds a z > 1 such that

‖%ε vε ∂tXε‖Lz(Q) + ‖%ε vε ⊗ vε : ∇Xε‖Lz(Q) ≤ C . (281)

Since the exact value of z is not necessary to our purpose we avoid to burden the proof by
calculating this exponent. We also note that

‖%ε ∂tXε‖L2,q1 (Q) ≤ ‖%ε‖L∞,α(Q) ‖∂tXε‖L2,a(Q) ≤ C

‖%ε vε : ∇Xε‖L2,q2 (Q) ≤ ‖%ε vε‖
L

2, 6α
6+α (Q)

‖∇Xε‖L∞,b(Q) ≤ C

q1 =
aα

a+ α
>

6

5
, q2 =

6α b

(6 + α) b+ 6α
>

6

5
.

(282)
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After these preliminary observations, we now want to establish the convergence property. We
define vector fields wε, w : Q → R4 via wε := (1, vε) and analogously w := (1, v). The
first step is to show for i = 1, 2, 3 that the sequence Ai,ε := %εw

ε · ∇4X
ε
i converges weakly

in L1(Q) to Ai := %w · ∇4Xi. Here ∇4 := (∂t, ∇) is the total differential. Owing to (282),
note that ‖Aε‖L2,y(Q) ≤ C , y := min{ aα

a+α
, 6α b

(6+α) b+6α
} > 6/5. Consider now arbitrary

η ∈ C1
c (Q; R3). Then, due to the Gauss integration by parts theorem∫
Q

(%εw
ε · ∇4)Xε · η = −

∫
Q

(%εw
ε · ∇4)η ·Xε +

∫
Q

%εw
ε · ∇4(η Xε) . (283)

At this point we recall the continuity equation (237). We consider η ∈ C1
c (Q) arbitrary, and we

define ψ := η · Xε. We easily verify that ψt ∈ L1,α′(Q) and that ∇ψ ∈ L2,max{2, 6α
5α−6

}(Q).
Thus, by density we can use this test function in (237), and therefore

−
∫
Q

%εw
ε · ∇4(η Xε) =

∫
Q

J̄ ε · ∇(η ·Xε) .

Owing to the property J̄ ε → 0 strongly in L2(Q) as ε→ 0 this yields∣∣∣∣∫
Q

%εw
ε · ∇4(η Xε)

∣∣∣∣ ≤ cη ‖J̄ ε‖L2(Q) (‖∇Xε‖L2(Q) + ‖Xε‖L2(Q)) → 0 as ε→ 0 .

Owing to (283) and the strong convergence of Xε in L2(Q), it follows that∫
Q

(%εw
ε · ∇4)Xε · η → −

∫
Q

(%w · ∇4)η ·X .

Using that div4(%w) = 0 in the sense of (239), this yields that %εwε · ∇4X
ε → %w · ∇4X

as distributions. Therefore,

Ai,ε → Ai weakly in L2,y(Q) for i = 1, 2, 3 . (284)

For arbitrary i, j ∈ {1, 2, 3} and ζ ∈ Cc(Q), we now express∫
Q

vεi A
ε
j ζ =

∫
Q

(vεi − Tn(vεi ))A
ε
j ζ

+

∫
Q

%ε (Tn(vεi )− Tn(vi))w
ε · ∇4X

ε
j ζ +

∫
Q

Tn(vi) (Aεj − Aj) ζ

+

∫
Q

(Tn(vi)− vi)Aj ζ +

∫
Q

viAj ζ .

(285)

For n ∈ N and s ∈ R, we denoted Tn(s) := sign(s) min{|s|, n}. Denote Bε,n :=⋃
i=1,2,3{(t, x) : |vεi (t, x)| ≥ n}. Then, meas(Bε,n) ≤ 3 ‖vε‖L2 n−2. Then, epxloiting (281),

we obtain that∣∣∣∣∫
Q

(vεi − Tn(vεi ))A
ε
j ζ

∣∣∣∣ =

∣∣∣∣∣
∫
Bε,n

(vεi − n)Aεj ζ

∣∣∣∣∣ ≤ 2 ‖ζ‖L∞(Q)

∫
Bε,n

|vε| |Aε|

≤ 2C ‖ζ‖L∞(Q) meas(Bε,n)1/z′ ≤ 2C ‖ζ‖L∞(Q) n
−2/z′ .
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On the other hand, owing to Remark 10.2, we have %ε |Tn(vε) − Tn(v)| ≤ %ε |vε − v| → 0
almost everywhere in Q, and therefore %ε (Tn(vε) − Tn(v)) → 0 strongly in Lα−δ(Q) for all
δ > 0. We verify easily that ‖wε · ∇4X

ε‖
L

2,min{a, 6b
6+b
}
(Q)
≤ C , and thus there is δ0 > 0 such

that ‖wε · ∇4X
ε‖Lα′+δ0 (Q) ≤ C . Thus∣∣∣∣∫

Q

%ε (Tn(vεi )− Tn(vi))w
ε · ∇4X

ε
j ζ

∣∣∣∣
≤ ‖ζ‖L∞(Q) ‖wε · ∇4X

ε‖Lα′+ε0 (Q) ‖%ε (Tn(vε)− Tn(v))‖Lα−ε(Q) → 0 as ε→ 0 .

Due to the weak convergence (284)∣∣∣∣∫
Q

Tn(vi) (Aεj − Aj) ζ
∣∣∣∣→ 0 as ε→ 0 ,

and for Bn :=
⋃
i=1,2,3{(t, x) : |vi(t, x)| ≥ n},∣∣∣∣∫

Q

(vi − Tn(vi))Aj ζ

∣∣∣∣ =

∣∣∣∣∫
Bn

(vi − n)Aj ζ

∣∣∣∣ ≤ 2C ‖ζ‖L∞(Q) n
−2/z′ .

It follows from (285) that lim supε→0

∣∣∣∫Q(vεi A
ε
j − viAj) ζ

∣∣∣ ≤ C ‖ζ‖L∞(Q) n
−2/z′ , which yields

the claim.

Proof of the Lemma 10.3. Let ζ ∈ C1
c (0, T ). Consider for t ∈]0, T [ the weak solution ψε ∈

W 1,2(Ω) to the auxiliary Problem

−4ψε = %ε(t) ζ(t) in Ω, ψ = 0 on ∂Ω .

Then the estimate ‖ψε‖L∞(0,T ;W 2,α
loc (Ω)) ≤ cζ ‖%ε‖L∞(0,T ;Lα(Ω)) is valid. Moreover, u = ψt is

a weak solution to

−4u = (%ε(t) ζ(t))t = ζ(t) (− div(%ε v
ε + J̄ ε) + %ε(t) ζ

′(t), u = 0 on ∂Ω .

This yields for 6α/(6 + α) ≥ 2 that

‖ψt‖L2(0,T ;W 1,2(Ω)) ≤ cζ (‖%ε vε‖L2(Q) + ‖J̄ ε‖L2(Q)) ≤ cζ C0 .

Let η ∈ C1
c (Ω) arbitrary, and consider the field Xε := η∇ψε. Then

‖∂tXε‖L2(0,T ;W 1,2(Ω)) ≤ C0, ‖∇Xε‖L∞,α(Q) ≤ cη ‖ψε‖L∞(0,T ;W 2,α(supp η)) ≤ C0 .

Define ψ ∈ W 1,2(Ω) to be the weak solution to the auxiliary Problem −4ψ = %ε(t) ζ(t) in
[W 1,2

0 (Ω)]∗. Then it is readily proved (use the Remark 9.3) for X = ∇ψ η that

Xε → X strongly in L2(Q), ∂tX
ε → ∂tX weakly in L2(Q) ,

∇Xε → ∇X weakly in Lα(Q) .
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Since 2 > 6α/(5α − 6) and α > 3α
2α−3

(this is exactly the case for α > 3), we can show that
the assumptions of Lemma A.2 are satisfied. Thus

%ε v
ε · ∂tXε + %ε v

ε ⊗ vε : ∇Xε → % v · ∂tX + % v ⊗ v : ∇X weakly in L1(Q) .

Moreover, calling here η0 the coefficient of shear viscosity∫
Q

S(∇vε) : ∇Xε = η0

∫
Q

D(∇vε) : ∇Xε + λ

∫
Q

div vε divXε

= −η0

∫
Q

vε · 4Xε − η0

∫
Q

vε · ∇(divXε) + λ

∫
Q

div vε divXε

= η0

∫
Q

vε · curl curlXε − 2 η0

∫
Q

vε · ∇(divXε) + λ

∫
Q

div vε divXε

= η0

∫
Q

curl vε · curlXε + (λ+ 2 η0)

∫
Q

div vε divXε .

Thus∫
Q

S(∇vε) : ∇Xε =(λ+ 2 η0)

∫
Q

div vε %ε ζ

+

∫
Q

{(λ+ 2 η0) div vε∇ψε · ∇η − η0 curl vε · (∇ψε ×∇η)} .

We also note that ∫
Q

pε divXε =

∫
Q

pε %ε η ζ +

∫
Q

pε∇ψε · ∇η .

Moreover ∣∣∣∣∫
Q

(J̄ ε · ∇)Xε · vε
∣∣∣∣ ≤ ‖J̄ ε‖L2(Q) ‖∇Xε‖L∞,3(Q) ‖vε‖L2,6(Q) → 0 .

Multiplying the Navier-Stokes equation withXε and the limiting equation withX , we then easily
obtain that∫

Q

ζ η (pε − (λ+ 2 η0) div vε) , %ε →
∫
Q

ζ η (p− (λ+ 2 η0) div v) % .

Proof of the Lemma 10.8

Proof. One uses the Lemma A.2 with a vector field Xεn = ∇ψεn η, where ψεn solves

−4ψεn = Tk(%εn(t)) ζ(t) in Ω, ψεn = 0 on ∂Ω .
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Then, one obtains for all 1 < p < ∞ the bound ‖ψεn‖L∞(0,T ;W 2,p
loc (Ω)) ≤ Cp. Moreover, since

%εn are assumed renormalized solutions to (246), we obtain for k fixed that

−
∫
Q

Tk(%εn)ψt −
∫
Q

Tk(%εn) vεn · ∇ψ

= −
∫
Q

(T ′k(%εn) %εn − Tk(%εn)) div vεn ψ for all ψ ∈ C1
c (Q) .

This proves the bounds

‖∂tTk(%εn)‖
L2(0,T ; [W

1,6/5
0 (Ω)]∗)

≤ c k (‖vεn‖L2,6(Q) + ‖ div vεn‖L2(Q))

‖(∇ψεn)′‖L2,6(Q) ≤ c k (‖vεn‖L2,6(Q) + ‖ div vεn‖L2(Q) + ‖ζ ′‖L∞(Q)) .

We obtain from the Lemma A.2 that

%εn v
εn · ∂tXεn + %εn v

εn ⊗ vεn : ∇Xεn → % v · ∂tX + % v ⊗ v : ∇X weakly in L1(Q) .

But then we can conclude exactly as in the Lemma 10.3 that (pεn − η′ div vεn)Tk(%εn) →
(p− η′ div v) ak as distributions.

Finally we note that the sequence {pεn − η′ div vεn} is uniformly bounded in L1+ 2
3
− 1
α (Q) and

the claim follows.

At last we justify the continuity statements in the Lemma 10.4 and 10.7.

Proof. We use that the solution to (237), (239) is renormalised. We are going to prove the claim
for a solution to (239). The arguments for solutions to (237) case are similar. For k ∈ N, denote

fk(s) := min{k, max{s, 1/k}} for s ≥ 0 .

If % satisfies (239), we then obtain for the function F (s) := s ln s and almost all 0 < t1 <
t2 < T that ∫

Ω

(F ◦ fk)(%(t2))−
∫

Ω

(F ◦ fk)(%(t1)) +

∫ t2

t1

∫
Ω

bk div v = 0 (286)

bk = χk %+ (1− χk) (F ◦ fk)(%), χk = χ{%∈[k−1, k]} .

Thus, ∣∣∣∣∫
Ω

(F ◦ fk)(%(t2))−
∫

Ω

(F ◦ fk)(%(t1))

∣∣∣∣ ≤ ck ‖ div v‖L2(Q)

√
t2 − t1 .

Next we use that for postitive real numbersF (x2)−F (x1) = F ′(x1) (x2−x1)+1
2

∫ 1

0
F ′(λx1+

(1− λ)x2) dλ (x2 − x1)2, which yields

|x2 − x1|2

1 + max{x1, x2}
≤ F (x2)− F (x1)− F ′(x1) (x2 − x1) .
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From this inequality, we easily deduce for all u, v ∈ L∞(Ω; [k−1, k]) that∫
Ω

|u− v| ≤
(∫

Ω

(u− v)2

max{u, v}

)1/2 (∫
Ω

(u+ v)

)1/2

≤ (‖u‖L∞,1(Ω) + ‖v‖L∞,1(Ω))
1/2

(∣∣∣∣∫
Ω

(F (v)− F (u)− F ′(u) (v − u))

∣∣∣∣)1/2

.

Thus, for u = fk(%(t1)) and v = fk(%(t2))

‖fk(%(t2))− fk(%(t1))‖2
L1(Ω)

≤ 2 ‖%‖L∞,1(Q)

∣∣∣∣∫
Ω

{(F ◦ fk)(%(t2))− (F ◦ fk)(%(t1))− (1 + ln fk(%(t1))) (%(t2)− %(t1))}
∣∣∣∣

≤ C0

(
ck ‖ div v‖L2(Q)

√
t2 − t1 +

∣∣∣∣∫
Ω

(1 + ln fk(%(t1))) (%(t2)− %(t1))

∣∣∣∣)
Further, we note that

‖fk(%(t2))− fk(%(t1))‖L1(Ω) ≥ ‖%(t2)− %(t1)‖L1(Ω) − c0

(
1

k

) 1
α′

.

Thus

‖%(t2)− %(t1)‖2
L1(Ω) ≤C0

(
ck
√
t2 − t1 +

∣∣∣∣∫
Ω

(1 + ln fk(%(t1))) (%(t2)− %(t1))

∣∣∣∣)+ k−
1
α′ .

It remains to observe that % ∈ C([0, T ]; D∗(Ω)). Thus, %(t1) → %(t2) as distributions for
t2 → t1. On the other hand {%(t2)} is a bounded family in Lα(Ω). We obtain that

lim sup
t2→t1

‖%(t2)− %(t1)‖L1(Ω) ≤ k−
1
α′ ,

proving that % ∈ C([0, T ]; L1(Ω)).
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