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Abstract. We study the interior regularity of solutions to the Dirichlet problem
Lu = g in Ω, u = 0 in Rn \ Ω, for anisotropic operators of fractional type

Lu(x) =
∫ +∞

0

dρ

∫

Sn−1
da(ω)

2u(x)− u(x+ ρω)− u(x− ρω)
ρ1+2s

.

Here, a is any measure on Sn−1 (a prototype example for L is given by the sum
of one-dimensional fractional Laplacians in fixed, given directions).

When a ∈ C∞(Sn−1) and g is C∞(Ω), solutions are known to be C∞ inside Ω
(but not up to the boundary). However, when a is a general measure, or even
when a is L∞(Sn−1), solutions are only known to be C3s inside Ω.

We prove here that, for general measures a, solutions are C1+3s−ε inside Ω for
all ε > 0 whenever Ω is convex. When a ∈ L∞(Sn−1), we show that the same
holds in all C1,1 domains. In particular, solutions always possess a classical first
derivative.

The assumptions on the domain are sharp, since if the domain is not convex
and the spectral measure is singular, we construct an explicit counterexample for
which u is not C3s+ε for any ε > 0 – even if g and Ω are C∞.

1. Introduction

Recently, a great attention in the literature has been devoted to the study of
equations of elliptic type with fractional order. The leading example of the operators
considered is the fractional Laplacian

(1.1) (−∆)su(x) =

∫

Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy.

Several similarities arise between this operator and the classical Laplacian: for in-
stance, the fractional Laplacian enjoys a “good” interior regularity theory in Hölder
spaces and it has “nice” functional properties in Sobolev spaces (see e.g. [6, 11, 3]).
Nevertheless, the fractional Laplacian also presents some striking difference with
respect to the fractional case: for example, solutions are in general not uniformly
Lipschitz continuous up to the boundary (see e.g. [10, 8]) and fractional harmonic
functions are locally dense in Ck (see [4]), in sharp contrast with respect to the
classical case.

A simple difference between the fractional and the classical Laplacians is also
given by the fact that the classical Laplacian may be reconstructed as the sum of
finitely many one-dimensional operators, namely one can write

(1.2) ∆ = ∂2
1 + · · ·+ ∂2

n,
1
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and each ∂2
i is indeed the Laplacian in a given direction. This phenomenon is typical

for the classical case and it has no counterpart in the fractional setting, since the
operator in (1.1) cannot be reduced to a finite sets of directions.

Nevertheless, in order to study equations in anisotropic media, it is important to
understand operators obtained by the superposition of fractional one-dimensional
(or lower-dimensional) operators, or, more generally, by the superposition of differ-
ent operators in different directions, see [7]. For this reason, we consider here the
anisotropic integro-differential operator

(1.3) Lu(x) =

∫ +∞

0

dρ

∫

Sn−1

da(ω)
2u(x)− u(x+ ρω)− u(x− ρω)

ρ1+2s
.

Here a is a non-negative measure on Sn−1 (called in jargon the “spectral measure”),
and we suppose that it satisfies the following “ellipticity” assumption

inf
$∈Sn−1

∫

Sn−1

|ω ·$|2s da(ω) ≥ λ and

∫

Sn−1

da ≤ Λ,

for some λ, Λ > 0. The simplest model example is when a is absolutely continuous
with respect to the standard measure on Sn−1 (that is da(ω) = a(ω) dHn−1(ω),
for a suitable L1 function a : Sn−1 → [0,+∞]). In this case, thanks to the polar
coordinate representation, the operator L may be written (up to a multiplicative
constants) as

(1.4) Lu(x) =

∫

Rn

(
2u(x)− u(x+ y)− u(x− y)

)a (y/|y|)
|y|n+2s

dy.

When a ≡ 1 in (1.4) (i.e. when da ≡ dHn−1 in (1.3)), we have the particularly
famous case of the fractional Laplacian in (1.1).

In general, the role of the measure a in (1.3) is to weight differently the different
spacial directions (hence we refer to it as an “anisotropy”). In particular, we can
also allow the measure a in (1.3) to be a sum of Dirac’s Deltas. Indeed, a quite
stimulating example arises in the case in which

(1.5) a =
n∑

i=1

δei + δ−ei ,

where, as usual, {e1, · · · , en} is the standard Euclidean base of Rn: then the operator
in (1.3) becomes

(1.6) (−∂2
1)s + · · ·+ (−∂2

n)s,

where (−∂2
i )
s represents the one-dimensional fractional Laplacian in the ith coordi-

nate direction (compare with (1.2)).
Goal of this paper is to develop a regularity theory for solutions of

(1.7)

{
Lu = g in Ω
u = 0 in Rn\Ω,
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The class of solutions that we study are the weak ones, i.e. the ones that have finite
(weighted) energy

∫

Rn
dx

∫

R
dρ

∫

Sn−1

da(ω)

(
u(x)− u(x+ ρω)

)2

ρ1+2s
< +∞

and satisfy

1

2

∫

Rn
dx

∫

R
dρ

∫

Sn−1

da(ω)

(
u(x)− u(x+ ρω)

) (
ϕ(x)− ϕ(x+ ρω)

)

ρ1+2s

=

∫

Rn
dx g(x)ϕ(x),

for any ϕ ∈ C∞0 (Ω).

When the nonlinearity g is regular enough and the spectral measure of the op-
erator L is C∞(Sn−1) it is known that solutions of (1.7) in bounded domains are,
roughly speaking, smooth up to an additional order 2s in the derivatives: i.e. for
any β ∈ [0,+∞) such that β + 2s is not an integer, we have that u ∈ Cβ+2s

loc (Ω),
thanks to the estimate

(1.8) ‖u‖Cβ+2s(Br/2) ≤ C
(
‖g‖Cβ(Br) + ‖u‖L∞(Rn)

)
,

valid in every ball Br of Rn; see for instance Corollary 3.5 in [7] and also [11, 1].
The constant C in (1.8) depends on n, s, r, and the Cβ(Sn−1) norm of the spectral
measure.

In particular, solutions of (1.7) are C∞(Ω) if so is g and the measure a, but in
general they are not better than Cs(Rn), i.e. they are smooth in the interior, but
only Hölder continuous at the boundary. For instance, (−∆)s(1− |x|2)s+ is constant
in B1 and provides an example of solution which is not better than Cs(Rn).

In the general case of operators as in (1.3), the situation becomes quite different,
due to the lack of regularity of the kernels outside the origin. In this generality,
estimate (1.8) does not hold, and it gets replaced by the weaker estimate

(1.9) ‖u‖Cβ+2s(Br/2) ≤ C
(
‖g‖Cβ(Br) + ‖u‖Cβ(Rn)

)
,

see Theorem 1.1 in [7].

Though estimates (1.8) and (1.9) may look similar at a first glance, the additional
term ‖u‖Cβ(Rn) in (1.9) prevents higher regularity results: namely, since u is not in

general Cβ(Rn) when β > s, it follows that (1.9) is meaningful mainly when β ≤ s
and it cannot provide higher order regularity: namely, from it one can only show
that u ∈ C3s

loc(Ω), even if one assumes g ∈ C∞(Ω).

In the light of these observations, in general, when s < 1/3, one does not have
any control even on the first derivative of u. Nevertheless, we will prove here a
higher regularity result as in (1.8), up to an exponent larger than one, by relating
the differentiability properties of the solution with the geometry of the domain.
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Namely, we will show that in convex domains the solution is always C1+3s−ε
loc (Ω), for

any measure a.
The same regularity result holds true also in possibly non-convex domains with C1,1

boundary, provided that the measure a is bounded, i.e. if da(ω) = a(ω) dHn−1(ω),
with a ∈ L∞(Sn−1).

In further detail, the main result that we prove is the following:

Theorem 1.1. Let β ∈ (0, 1 + s) and assume that β+ 2s is not an integer. Assume
that either

(1.10) Ω is a convex, bounded domain,

or

Ω is a bounded domain with C1,1 boundary

and the spectral measure a is bounded.
(1.11)

Let u be a weak solution to (1.7), with g ∈ Cβ(Ω).

Then u ∈ Cβ+2s
loc (Ω) and, for any δ > 0,

‖u‖Cβ+2s(Ωδ) ≤ C ‖g‖Cβ(Ω), β ∈ (0, 1 + s)

where Ωδ is the set containing all the points in Ω that have distance larger than δ
from ∂Ω and C > 0 depends also on Ω and δ.

We think that it is a very interesting open problem to establish whether or not
a higher regularity theory holds true under the assumptions of Theorem 1.1 (for
instance, it is an open question to establish if solutions are C∞ if so are the data,
or if the C1+3s regularity is optimal also in this case). As far as we know, there are
natural examples of smooth solutions (such as the one presented in Lemma 7.2), but
a complete regularity theory only holds under additional regularity assumptions on
the spectral measure (see [11, 1, 7]) and the general picture seems to be completely
open.

The result of Theorem 1.1 also plays an important role in the proof of a Pohozaev
type identity for anisotropic fractional operators, see [9].

At a first glance, it may also look surprising that the regularity of the solution
in Theorem 1.1 depends on the shape of the domain. But indeed the convexity
assumption in Theorem 1.1 cannot in general be avoided, as next result points out:

Theorem 1.2. Let L be as in (1.6), with n = 2. There exists a bounded domain
in R2 with C∞ boundary and a solution u ∈ Cs(Ω) of

{
Lu = 1 in Ω
u = 0 in Rn\Ω,

with u 6∈ C3s+ε
loc (Ω), for any ε > 0.
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We remark that the result in Theorem 1.2 is special for the case of singular spec-
tral measures (compare, for instance, with the regularity results in case of smooth
spectral measures in [11, 1, 7]). In particular, the loss of interior regularity detected
by Theorem 1.2 is in sharp contrast with the smooth interior regularity theory that
holds true for both the classical and the fractional Laplacian.

Roughly speaking, the counterexample in Theorem 1.2 will be based on the fact
that, if the domain is not convex, there are half-lines originating from an interior
point that intersect tangentially the boundary of Ω: then, the singularity on ∂Ω
(created by the solution itself) “propagates” inside the domain due to the nonlocal
effect of the operator.

The rest of the paper is organized as follows. In Section 2 we recall the appropriate
notion of weighted norms that we will use to prove Theorem 1.1: these norms are
slightly unpleasant from the typographic point of view, but they have nice scaling
properties and they encode the “right” behavior of the functions in the vicinity of
the boundary as well.

Then, Sections 3 and 4 comprise several integral computations of geometric flavor
to estimate suitably averaged weighted distance functions in the domain into con-
sideration. More precisely, Section 3 is devoted to the case of convex domains. The
estimates obtained there will be used for the proof of Theorem 1.1 in case of convex
domains, where no structural assumption on the operator L is taken and therefore
the integrals considered are “line integrals”, as in (1.3). Section 4 is instead devoted
to the case of bounded domains with C1,1 boundary. The estimates of this part
will be used in the proof of Theorem 1.1 for C1,1 domains: since in this case the
operator L is as in (1.4), the integrals considered are “spread” over Rn. That is,
roughly speaking, in Section 3 the singularity of the line integrals is compensated
by the convexity of the domain, while in Section 4 is the operator L that somehow
averages its effect in open regions of Rn.

In Section 5 we compute the effect of a cutoff on the operator. Namely, when
proving regularity results, it is often useful to distinguish the interior regularity
from the one at the boundary (though, as shown here, in the nonlocal setting one
may dramatically interact with the other). To this goal, it is sometimes desirable
to localize the solution inside the domain by multiplication with a cutoff function:
by performing this operation, some estimates are needed in order to control the
effect of this cutoff on the operator. These estimates, in our case, are provided in
Lemma 5.1.

In Section 6 we bootstrap the regularity theory obtained in order to increase,
roughly speaking, the Hölder exponent by 2s. In our framework, the model for such
“improvement of regularity” result is given by Theorem 6.1, which somehow allows
us to say that solutions in Cα

loc are in fact in Cα+2s
loc , if the nonlinearity is nice enough

and α < 1 + s (the precise statement involves weighted norms). Section 6 contains
also Corollary 6.2, which is the iterative version of Theorem 6.1 and provides a very
general regularity result, which in turn implies Theorem 1.1 (as a matter of fact, in
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Corollary 6.2 it is not necessary to assume that g is Cβ up to the boundary, but
only that has finite weighted norm, and also the weighted norm of u is controlled
up to the boundary).

The proof of Theorem 1.2 is contained in Section 7, where a somehow surprising
counterexample will be constructed.

The paper ends with an appendix, which collects some “elementary”, probably
well known, but not trivial, ancillary results on the distance functions (in our setting,
these results are needed for the integral computations of Section 4).

2. Regularity framework with weighted norms

To study the regularity theory up to the boundary, it is convenient to use the
following notation for weighted norms. We consider the distance from a point x ∈ Ω
to ∂Ω, defined, as usual as

d(x) = dist (x, ∂Ω) = inf
q∈∂Ω
|x− q|.

We also denote

(2.1) d(x, y) = min{d(x), d(y)}.
Given σ ∈ R and α > 0, we take k ∈ N and α′ ∈ (0, 1] such that α = k + α′ and we
let

[u]
(σ)
α;Ω = sup

x6=y∈Ω

[
dα+σ(x, y)

|Dku(x)−Dku(y)|
|x− y|α′

]

and ‖u‖(σ)
α;Ω =

k∑

j=0

sup
x∈Ω

[
dj+σ(x) |Dju(x)|

]
+ [u]

(σ)
α;Ω.

(2.2)

The advantage of these weighted norms is twofold. First of all, since we write α = k+
α′ with α′ ∈ (0, 1], we can comprise the usual Hölder and Lipschitz spaces Cβ, C1+β,
C2+β, etc., with β ∈ (0, 1] with the same notation: notice for instance that when σ =

−α ∈ (0, 1], the notation [u]
(σ)
α;Ω boils down to the usual seminorm of Cα(Ω). What

is more, by choosing σ in the appropriate way, we can allow the derivatives of u to
possibly blow up near the boundary, hence interior and boundary regularity can be
proved at the same time and interplay1 the one with the other.

The weighted norms in (2.2) enjoy a monotonicity property with respect to α,

that is if α1 ≤ α2 and ‖u‖(σ)
α2;Ω < +∞ then also ‖u‖(σ)

α1;Ω < +∞. This is given by the
following:

Lemma 2.1. Let α1 ≤ α2. Then ‖u‖(σ)
α1;Ω ≤ C ‖u‖(σ)

α2;Ω, for some C > 0 only
depending on α1 and α2 (and bounded uniformly when α1 and α2 range in a bounded
set).

1Though not explicitly used in this paper, we remark that an additional advantage of these
weighted norms is that they usually behave nicely for semilinear equations, namely when the
nonlinearity in (1.7) has the form g(x) = f(x, u(x)), in which f is locally Lipschitz, but u is not.
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Proof. We write αi = ki + α′i, for i ∈ {1, 2}, ki ∈ N and α′i ∈ (0, 1]. We claim that

(2.3) k1 ≤ k2.

To prove it, suppose the converse: then k1 > k2 and therefore, being k1 and k2

integers, it follows that k1 ≥ k2 + 1. Then

α2 = k2 + α′2 ≤ k1 + α′2 − 1 ≤ k1 < k1 + α′1 = α1,

in contradiction with our assumptions. This proves (2.3).
Now we show that

(2.4) dα1+σ(x, y)
|Dk1u(x)−Dk1u(y)|

|x− y|α′1 ≤ C ‖u‖(σ)
α2;Ω.

Notice that, to prove (2.4), we can suppose that

(2.5) |x− y| ≤ d(x, y)

4
.

Indeed, if |x− y| > d(x, y)/4 we use (2.3) to see that

dk1+σ(x)|Dk1u(x)| ≤ ‖u‖(σ)
α2;Ω

and therefore

dα1+σ(x, y)
|Dk1u(x)−Dk1u(y)|

|x− y|α′1 ≤ Cdα1+σ(x, y)
|Dk1u(x)|+ |Dk1u(y)|

dα
′
1(x, y)

≤ Cdk1+σ(x, y)
(
d−k1−σ(x) + d−k1−σ(y)

)
‖u‖(σ)

α2;Ω ≤ C ‖u‖(σ)
α2;Ω,

that shows (2.4) in this case. Hence, we reduce to prove (2.4) under the additional
assumption (2.5). To this goal, we observe that (2.5) implies that

(2.6) |d(x)− d(y)| ≤ |x− y| ≤ d(x, y)

4
.

Now, in view of (2.3), we can distinguish two cases: either k1 = k2 or k1 < k2.
If k1 = k2, then

α′1 = α1 − k1 = α1 − k2 ≤ α2 − k2 = α′2,
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thus we set dx = d(x) and dx,y = d(x, y) for typographical convenience and we
perform the following computation:

dα1+σ
x,y

|Dk1u(x)−Dk1u(y)|
|x− y|α′1

= dα1+σ
x,y

|Dk1u(x)−Dk1u(y)|
α′2−α

′
1

α′2 |Dk1u(x)−Dk1u(y)|
α′1
α′2

|x− y|α′1

≤ dα1+σ
x,y d

−α′1(α2+σ)

α′2
x,y

(
|Dk1u(x)|+ |Dk1u(y)|

)α′2−α′1
α′2

(
dα2+σ
x,y |Dk1u(x)−Dk1u(y)|

)α′1
α′2

|x− y|α′1

≤ dα1+σ
x,y d

−α′1(α2+σ)

α′2
x,y

(
d−k1−σ
x ‖u‖(σ)

α2;Ω + d−k1−σ
y ‖u‖(σ)

α2;Ω

)α′2−α′1
α′2

(
‖u‖α2;Ω|x− y|α′2

)α′1
α′2

|x− y|α′1

≤ C dα1+σ
x,y d

−α
′
1(α2+σ)

α′2
x,y d

− (α′2−α
′
1)(k1+σ)

α′2
x,y ‖u‖(σ)

α2;Ω.

Moreover, since k1 = k2,

α1 + σ − α′1(α2 + σ)

α′2
− (α′2 − α′1)(k1 + σ)

α′2
= 0,

hence the latter inequality proves (2.4) when k1 = k2. Let us now consider the
case k1 < k2, i.e. k1 + 1 ≤ k2. Again, we can suppose that d(x) ≤ d(y), and
then (2.5) implies that y ∈ Bd(x)/4(x), and notice that this ball lies in Ω, at distance
from ∂Ω bounded from below by 3d(x)/4. As a consequence,

|Dk1u(x)−Dk1u(y)| ≤ sup
ζ∈Bdx/4(x)

|Dk1+1u(ζ)| |x− y|

≤ Cd−k1−1−σ
x sup

ζ∈Bdx/4(x)

dk1+1+σ
ζ |Dk1+1u(ζ)| |x− y|

≤ Cd−k1−1−σ
x,y ‖u‖(σ)

α2;Ω|x− y|.
Hence we obtain

dα1+σ
x,y

|Dk1u(x)−Dk1u(y)|
|x− y|α′1

= dα1+σ
x,y

|Dk1u(x)−Dk1u(y)|1−α′1|Dk1u(x)−Dk1u(y)|α′1
|x− y|α′1

≤ dα1+σ
x,y

(
d−k1−σ
x ‖u‖(σ)

α2;Ω + d−k1−σ
y ‖u‖(σ)

α2;Ω

)1−α′1 ‖u‖(σ)
α2;Ω d

−α′1(k1+1+σ)
x,y

(
‖u‖(σ)

α2;Ω

)α′1

≤ dα1+σ
x,y d−(k1+σ)(1−α′1)

x,y d−α
′
1(k1+1+σ)

x,y ‖u‖(σ)
α2;Ω.

Since
α1 + σ − (k1 + σ)(1− α′1)− α′1(k1 + 1 + σ) = 0,

the inequality above proves (2.4) when k1 < k2.
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Having completed the proof of (2.4), we now notice that

k1∑

j=0

sup
x∈Ω

[
dj+σ(x) |Dju(x)|

]
≤

k2∑

j=0

sup
x∈Ω

[
dj+σ(x) |Dju(x)|

]
,

thanks to (2.3). This inequality and (2.4) imply the desired claim. �

3. Integral computations for convex sets

The goal of this section is to provide some (somehow optimal) weighted integral
computations of geometric type for convex sets. Similar estimates for bounded
domains with C1,1 boundary when the spectral measure a is regular will be developed
in the forthcoming Section 4. The first geometric integral computation is given by
the following:

Lemma 3.1. Let p ∈ Rn, R > 2r > 0 and ω ∈ Sn−1. Let Ω ⊂ Rn be a convex open
set, with BR(p) ⊆ Ω. Then there exists C > 0, possibly depending on n and s, such
that

(3.1)

∫ +∞

R

dρ
χΩ(p+ ρω)χ[0,r]

(
d(p+ ρω)

)

ρ1+2s
≤ CrR−1−2s.

Proof. The idea is that the set in which the integrand is non-zero “typically” occupies
a segment of length comparable to r.

More precisely, consider the half-line Θ = {p + ρω, ρ ≥ 0}. If Θ lies inside
Ω, then we are done. Indeed, in this case, by convexity, the set Ω contains the
convex envelope between the ball BR(p) and the half-line Θ, which is an horizontal
cylinder of radius R. In particular, in this case we have that d(p + ρω) ≥ R > r,
hence χ[0,r]

(
d(p+ ρω)

)
= 0, and so the left hand side of (3.1) vanishes.

As a consequence, we may and do assume that Θ ∩ (∂Ω) is non-void. Thus,
we claim that Θ ∩ (∂Ω) only contains a point. Indeed, suppose by contradiction
that p + ρ1ω and p + ρ2ω belong to ∂Ω, for some ρ2 > ρ1 ≥ 0. In particular, there
exists a sequence qj ∈ Ω such that qj → p+ ρ2ω as j → +∞.

Then, by convexity, Ω contains the convex envelope Kj of BR(p) with qj. Notice
that Kj, as j → +∞, approaches the convex envelope of BR(p) with p + ρ2ω:
therefore, for large j, the point p+ ρ1ω belongs to the interior of Kj and thus to Ω.
This is a contradiction, and so we have shown that Θ∩ (∂Ω) consists of exactly one
point, that we denote by q? = p+ ρ?ω, for some ρ? ≥ 0.

We remark that, since BR(p) lies in Ω, we have that

(3.2) ρ? ≥ R.

Now we show that

(3.3) if ρ ≥ 0, p+ ρω ∈ Ω and d(p+ ρω) ∈ [0, r], then ρ ∈ [ρ?(1− rR−1), ρ?].

Indeed, by convexity, Ω contains the interior of the convex envelope K? of BR(p)
with q?. Therefore, d(p + ρω) is controlled from below by the distance of p + ρω
to ∂K?, which will be denoted by δ.
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We remark that K? has a radially symmetric conical singularity at q?. If we let β
be the planar angle of such cone, by trigonometry we have that

δ = (ρ? − ρ) sin(β/2)

and R = ρ? sin(β/2).

Thus

(3.4) d(p+ ρω) ≥ δ =
(ρ? − ρ)R

ρ?
.

So, if d(p+ ρω) ∈ [0, r] we have that

r ≥ (ρ? − ρ)R

ρ?
,

that is ρ ≥ ρ?(1− rR−1), which proves (3.3).
Therefore, using (3.3) and the substitution t = ρ−1

? ρ, we conclude that
∫ +∞

R

dρ
χΩ(p+ ρω)χ[0,r]

(
d(p+ ρω)

)

ρ1+2s
≤
∫ ρ?

ρ?(1−rR−1)

dρ

ρ1+2s

=
1

ρ2s
?

∫ 1

1−rR−1

dt

t1+2s
≤ C

ρ2s
?

(
1

(1− rR−1)2s
− 1

)
≤ CrR−1

ρ2s
?

.

This and (3.2) imply (3.1). �
Remark 3.2. We notice that the estimate in (3.1) is optimal, since it is attained
when p = 0 and Ω = B3R.

Remark 3.3. The convexity assumption in Lemma 3.1 cannot be dropped. As a
counterexample, let us endow Rn with coordinates (x′, xn) ∈ Rn−1×R, let us take p =
0, ω = e1, and

Ω = BR ∪
{
|xn| < Re−|x

′|/R}.
Notice that Ω is not convex. Also, the points of the form (ρ, 0, · · · , 0, Re−ρ/R) belong
to ∂Ω, for any ρ ≥ 1. Hence

d(ρω) ≤ Re−ρ/R ≤ r

for any ρ ≥ R log(Rr−1). Hence
∫ +∞

R

dρ
χΩ(p+ ρω)χ[0,r]

(
d(p+ ρω)

)

ρ1+2s
≥
∫ +∞

R log(Rr−1)

dρ

ρ1+2s
=

C

(R log(Rr−1))2s
.

This quantity is larger than the right hand side of (3.1) when r is small, and this
shows that the convexity assumption is essential in such result.

Next is a variation of Lemma 3.1. Namely, the integral on the left hand side is
modified by a weight depending on the distance (and the condition d(p+ρω) ∈ [0, 2r]
is dropped).
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Lemma 3.4. Let α ∈ [s, 1 + s). Let p, q ∈ Rn, R > 0 and ω ∈ Sn−1. Let Ω ⊂ Rn

be a convex open set, with BR(p) ∪ BR(q) ⊆ Ω. Then there exists C > 0, possibly
depending on α, n and s, such that

(3.5)

∫ +∞

R

dρ
χΩ(p+ ρω)χΩ(q + ρω)

dα−s(p+ ρω, q + ρω) ρ1+2s
≤ CR−s−α.

Proof. We let ρ? = sup{ρ s.t. p+ ρω ∈ Ω} ∈ [R,+∞]. By convexity and trigonom-
etry (see e.g. (3.4)), we have that

d(p+ ρω) ≥ (ρ? − ρ)R

ρ?
,

with the obvious limit notation that the formula above reads d(p+ ρω) ≥ R if ρ? =
+∞. Since the same formula holds for q instead of p, we have that

d(p+ ρω, q + ρω) = min
{
d(p+ ρω), d(q + ρω)

}
≥ (ρ? − ρ)R

ρ?
.

Thus, the left hand side of (3.5) is bounded by

(3.6)

∫ ρ?

R

dρ
ρα−s?

(ρ? − ρ)α−sRα−s ρ1+2s
= Rs−αρ−2s

?

∫ 1

µo

dt

(1− t)α−st1+2s
,

where we used the substitution t = ρ/ρ? and the notation µo = R/ρ? ∈ (0, 1]. Now,
for any µ ∈ (0, 1], we set

ψ(µ) = µ2s

∫ 1

µ

dt

(1− t)α−st1+2s

and we claim that

(3.7) sup
µ∈(0,1]

ψ(µ) ≤ C,

for some C > 0. To check this, we recall that α−s < 1 and we notice that ψ(1) = 0.
Also, ∫ 1

0

dt

(1− t)α−st1+2s
= +∞,

so we compute, by de l’Hôpital rule,

lim
µ→0

ψ(µ) = lim
µ→0

∫ 1

µ
dt

(1−t)α−st1+2s

µ−2s
= lim

µ→0

1
(1−µ)α−sµ1+2s

2sµ−1−2s
=

1

2s
.

Thus ψ can be extended to a continuous function in [0, 1] and so (3.7) follows.
Then, we can bound (3.6) using (3.7): we obtain that the quantity in (3.6) is

controlled by

Rs−αρ−2s
? µ−2s

o ψ(µo) ≤ CRs−αρ−2s
? µ−2s

o = CRs−αρ−2s
? ·R−2sρ2s

? ,

which proves (3.5). �
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Remark 3.5. We notice that the estimate in (3.5) is also optimal, since it is attained
when p = q = 0 and Ω = B3R.

For further reference, we point out that Lemma 3.4 is of course valid in particular
when p = q. In this case, its statement simplifies in the following way:

Lemma 3.6. Let α ∈ [s, 1 + s). Let p ∈ Rn, R > 0 and ω ∈ Sn−1. Let Ω ⊂ Rn

be a convex open set, with BR(p) ⊆ Ω. Then there exists C > 0, possibly depending
on α, n and s, such that

∫ +∞

R

dρ
χΩ(p+ ρω)

dα−s(p+ ρω) ρ1+2s
≤ CR−s−α.

The next integral computation is a simple, but operational, consequence of ele-
mentary geometry:

Lemma 3.7. Let R > 0, p ∈ BR, and ω ∈ Sn−1. Let Ω ⊂ Rn be a convex open set,
with B3R ∩ (∂Ω) 6= ∅. Then there exists C > 0, possibly depending on n and s, such
that ∫ +∞

R

dρ
ds(p+ ρω)

ρ1+2s
≤ CR−s.

Proof. Let qo ∈ B3R ∩ (∂Ω). Then

d(p+ ρω) ≤ |p+ ρω − qo| ≤ |p|+ |q|+ ρ ≤ C(R + ρ).

Therefore, using the substitution ρ = Rt, we obtain
∫ +∞

R

dρ
ds(p+ ρω)

ρ1+2s
≤ C

∫ +∞

R

dρ
(R + ρ)s

ρ1+2s
= CR−s

∫ +∞

1

dt
(1 + t)s

t1+2s
,

that gives the desired result. �

4. Integral computations for C1,1 domains and bounded measures

In this section, we consider bounded domains with C1,1 boundary and bounded
spectral measures a and we obtain the corresponding results of Section 3 in this
framework. More precisely, we obtain the results analogous to Lemmata 3.1, 3.4,
3.6 and 3.7, when the convexity assumption on the domain is replaced by a regularity
assumption on the domain and the boundedness of the measure.

The counterpart of Lemma 3.1 in the setting of this section is the following:

Lemma 4.1. Let p ∈ Rn and R > 2r > 0. Let Ω ⊂ Rn be a bounded domain
with C1,1 boundary, with BR(p) ⊆ Ω. Then there exists C > 0, possibly depending
on n, s and Ω, such that

(4.1)

∫

Rn\BR

χΩ(p+ x)χ[0,r]

(
d(p+ x)

)

|x|n+2s
dx ≤ CrR−1−2s.
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Proof. First, notice that, by possibly replacing Ω with the translated domain Ω− p,
we may assume that p = 0.

Also, we can suppose that R is less then the diameter of Ω, otherwise the con-
dition BR ⊆ Ω cannot hold. Then, we perform the change of variables z = x

R
, so

that (4.1) becomes

(4.2)

∫

Rn\B1

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

|z|n+2s
dz ≤ Cr̄,

where we denoted ΩR = 1
R

Ω and r̄ = r
R

. Notice that ΩR has a bounded C1,1

norm (uniformly in R), and in fact converges to a half-space as R → 0+. As a
consequence, we can apply Proposition A.3: we obtain that there exists κ∗ > 0 such
that, if r̄ ∈ (0, κ∗] then

∣∣{x ∈ ΩR ∩ (B2k+1 \B2k) s.t. dist (x, ∂ΩR) ∈ [0, r̄]
}∣∣

≤ Cr̄Hn−1
(
(∂ΩR) ∩ (B2k+2 \B2k−1)

)(4.3)

for every k ∈ N. Now we estimate the latter term by scaling back to the original
domain and exploiting Lemma A.4. We obtain

Hn−1
(
(∂ΩR) ∩ (B2k+2 \B2k−1)

)

=
1

Rn−1
Hn−1

(
(∂Ω) ∩ (B2k+2R \B2k−1R)

)

≤ C(2k−1R)n−1

Rn−1
.

This and (4.3) give that

∣∣{x ∈ ΩR ∩ (B2k+1 \B2k) s.t. dist (x, ∂ΩR) ∈ [0, r̄]
}∣∣ ≤ C2k(n−1)r̄.

As a consequence, if r̄ ∈ (0, κ∗],

∫

B
2k+1\B2k

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

|z|n+2s
dz

≤
∫

B
2k+1\B2k

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

2k(n+2s)
dz

≤ Cr̄

2k(1+2s)
.
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By summing over k, we obtain that
∫

Rn\B1

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

|z|n+2s
dz

≤
∑

k≥0

∫

B
2k+1\B2k

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

|z|n+2s
dz

≤
∑

k≥0

Cr̄

2k(1+2s)

≤ Cr̄,

up to renaming C. This gives (4.2) when r̄ ≤ κ∗.
If instead r̄ > κ∗, then

∫

Rn\B1

χΩR(z)χ[0,r̄]

(
dist (z, ∂ΩR)

)

|z|n+2s
dz ≤

∫

Rn\B1

dz

|z|n+2s
≤ C ≤ Cr̄

κ∗
.

This shows that (4.2) also holds in this case, up to renaming constants, and this
completes the proof of Lemma 4.1. �

Following is the variation of Lemma 3.6 needed in the setting of this section:

Lemma 4.2. Let α ∈ [s, 1 + s), p ∈ Rn and R > 0. Let Ω ⊂ Rn be a bounded
domain with C1,1 boundary, with BR(p) ⊆ Ω. Then there exists C > 0, possibly
depending on α, n, s and Ω, such that

(4.4)

∫

Rn\BR

χΩ(p+ x)

dα−s(p+ x) |x|n+2s
dx ≤ CR−s−α.

Proof. Up to a translation of the domain, we suppose that p = 0. In addition, we
can suppose that R is less then the diameter of Ω, otherwise the condition BR ⊆ Ω
cannot hold. Hence we do the change of variables z = x

R
, so that (4.4) reduces to

(4.5)

∫

Rn\B1

χΩR(z)

distα−s(z, ∂ΩR) |z|n+2s
dz ≤ C

where we denoted ΩR = 1
R

Ω. Since ΩR has a bounded C1,1 norm (uniformly in R,
and indeed it converges to a half-space as R→ 0+), we can apply Corollary A.2 and
obtain that there exists κ∗ > 0 such that, for any t ∈ (0, κ∗],

Hn−1
(
{z ∈ ΩR ∩ (B2k+1 \B2k) s.t. dist(z, ∂ΩR) = t}

)

≤ CHn−1
(
(∂ΩR) ∩ (B2k+2 \B2k−1)}

)
,

for any k ∈ N. Furthermore, by Lemma A.4,

Hn−1
(
(∂ΩR) ∩ (B2k+2 \B2k−1)}

)
≤ C(2k−1)n−1.

The latter two formulas give that

Hn−1
(
{z ∈ ΩR ∩ (B2k+1 \B2k) s.t. dist(z, ∂ΩR) = t}

)
≤ C(2k−1)n−1.
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Consequently, by Coarea Formula,
∫

Rn\B1
{dist≤κ∗}

χΩR(z)

distα−s(z, ∂ΩR) |z|n+2s
dz

≤
∑

k≥0

∫
B

2k+1\B2k
{dist≤κ∗}

χΩR(z)

distα−s(z, ∂ΩR) |z|n+2s
dz

≤
∑

k≥0

1

2k(n+2s)

∫
B

2k+1\B2k
{dist≤κ∗}

χΩR(z) |∇dist(z, ∂ΩR)|
distα−s(z, ∂ΩR)

dz

≤
∑

k≥0

1

2k(n+2s)

∫ κ∗

0

dt

∫
B

2k+1\B2k
{dist(z,∂ΩR)=t}

dHn−1(z)
1

tα−s

≤
∑

k≥0

∫ κ∗

0

dt
Hn−1

(
{z ∈ ΩR ∩ (B2k+1 \B2k) s.t. dist(z, ∂ΩR) = t}

)

tα−s 2k(n+2s)

≤
∑

k≥0

∫ κ∗

0

dt
C(2k−1)n−1

tα−s 2k(n+2s)

≤
∑

k≥0

∫ κ∗

0

dt
C

tα−s 2k(1+2s)

=
∑

k≥0

Cκ1−α+s
∗

2k(1+2s)

≤ C,

(4.6)

up to renaming constants. Additionally, we have that
∫

Rn\B1
{dist≥κ∗}

χΩR(z)

distα−s(z, ∂ΩR) |z|n+2s
dz ≤

∫

Rn\B1

χΩR(z)

κα−s∗ |z|n+2s
dz ≤ C.

This and (4.6) complete the proof of (4.5) and thus of Lemma 4.2. �

Then, the result corresponding to Lemma 3.4 goes as follows:

Lemma 4.3. Let α ∈ [s, 1 + s). Let p, q ∈ Rn and R > 0. Let Ω ⊂ Rn be a bounded
domain with C1,1 boundary, with BR(p) ∪ BR(q) ⊆ Ω. Then there exists C > 0,
possibly depending on α, n, s and Ω, such that

∫

Rn\BR

χΩ(p+ x)χΩ(q + x)

dα−s(p+ x, q + x) |x|n+2s
dx ≤ CR−s−α.

Proof. Notice that d(p+x, q+x) coincides with either d(p+x) or d(q+x), therefore

1

dα−s(p+ x, q + x)
≤ 1

dα−s(p+ x)
+

1

dα−s(q + x)
.
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Furthermore, χΩ(p+x)χΩ(q+x) ≤ χΩ(p+x) and χΩ(p+x)χΩ(q+x) ≤ χΩ(q+x).
As a consequence

χΩ(p+ x)χΩ(q + x)

dα−s(p+ x, q + x) |x|n+2s
≤ χΩ(p+ x)

dα−s(p+ x) |x|n+2s
+

χΩ(q + x)

dα−s(q + x) |x|n+2s
,

and so Lemma 4.3 follows from Lemma 4.2. �

Finally, here is the counterpart of Lemma 3.7:

Lemma 4.4. Let R > 0 and p ∈ BR. Let Ω ⊂ Rn be a bounded domain with C1,1

boundary, with B3R ∩ (∂Ω) 6= ∅. Then there exists C > 0, possibly depending on n,
s and Ω, such that ∫

Rn\BR

ds(p+ x)

|x|n+2s
dx ≤ CR−s.

Proof. Let qo ∈ B3R ∩ (∂Ω). Then

d(p+ x) ≤ |p+ x− qo| ≤ |p|+ |x|+ |qo| ≤ |x|+ 4R,

therefore∫

Rn\BR

ds(p+ x)

|x|n+2s
dx ≤

∫

Rn\BR

(|x|+ 4R)s

|x|n+2s
dx = R−s

∫

Rn\B1

(|y|+ 4)s

|y|n+2s
dy = CR−s.

�

5. A localization argument

In this section we introduce an appropriate cutoff function and we discuss its
regularity properties. The goal of the cutoff procedure is, roughly speaking, to
distinguish the behavior of the solutions inside the domain from the one at the
boundary. For this we recall the notation in (2.1) and we give the following result:

Lemma 5.1. Let R > 0, Ω ⊂ Rn and α ∈ (0, 1 + s). Assume that either (1.10)
or (1.11) is satisfied and that

(5.1) B2R ⊆ Ω and B3R ∩ (∂Ω) 6= ∅.

Let w ∈ Cs(Rn), with

w ≡ 0 in BR(5.2)

and w ≡ 0 outside Ω.(5.3)

Then

(5.4) ‖Lw‖L∞(BR/2) ≤ C [w]Cs(Rn)R
−s.

In addition, if we assume also that

• either α ∈ (0, s],
• or α ∈ (s, 1 + s) and
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– for any p, q ∈ Ω with |p− q| ≤ R we have that
(5.5)



|w(p)− w(q)| ≤ ` |p− q|α
(
ds−α(p, q) +R−αds(p, q)

)
if α ∈ (s, 1],

|∇w(p)| ≤ `
(
ds−1(p) +R−1ds(p)

)
and

|∇w(p)−∇w(q)| ≤ ` |p− q|α−1
(
ds−α(p, q) +R−αds(p, q)

) if α ∈ (1, 1 + s),

for some ` > 0,

then

(5.6) Rα+s[Lw]Cα(BR/4) ≤
{

C [w]Cs(Rn) if α ∈ (0, s],

C
(

[w]Cs(Rn) + `
)

if α ∈ (s, 1 + s).

Finally, if α ∈ (1, 1 + s), we also have that

(5.7) R1+s‖∇Lw‖L∞(BR/4) ≤ C`.

Proof. For simplicity, we state and prove this results for convex open sets, i.e.
when (1.10) is assumed. The proof under condition (1.11) would be the same,
except that one should use the results of Section 4 instead of the ones of Section 3.
More explicitly, for convex open sets, in the proof of this result we will quote Lem-
mata 3.1, 3.6, 3.7 and 3.4: for bounded domains with C1,1 boundary one has instead
to quote Lemmata 4.1, 4.2, 4.4 and 4.3.

First of all, we prove (5.4). Fix x ∈ BR/2. Then w(x) = 0 and w(x+ ρω) = 0 for
any ρ ∈ (−R/2, R/2), thanks to (5.2). Accordingly,

|w(x+ ρω)| = |w(x+ ρω)− w(x)| ≤ [w]Cs(Rn)ρ
s

therefore

Lw(x) ≤ 2 [w]Cs(Rn)

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
1

ρ1+s
≤ C [w]Cs(Rn)R

−s,

which proves (5.4).
Now we prove (5.6). For this, we first consider the case α ∈ (0, 1], and we fix x1

and x2 in BR/4. Notice that if y ∈ BR/2 then w(x1 + y) = w(x2 + y) = 0, thanks
to (5.2). In particular, we have w(x1) = w(x2) = 0. As a consequence of these
observations,

Lw(xi) = −
∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
w(xi + ρω) + w(xi − ρω)

ρ1+2s

= −2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
w(xi + ρω)

ρ1+2s
,

for i ∈ {1, 2} (and possibly replacing da(ω) with da(ω) + da(−ω)). Therefore

(5.8) |Lw(x1)− Lw(x2)| ≤ 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
|w(x1 + ρω)− w(x2 + ρω)|

ρ1+2s
.



18

So, we distinguish two cases. If α ∈ (0, s], then we obtain from (5.8) that

|Lw(x1)− Lw(x2)| ≤ 2[w]Cs(Rn)|x1 − x2|s
∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
1

ρ1+2s

≤ C[w]Cs(Rn)|x1 − x2|sR−2s.

Therefore
|Lw(x1)− Lw(x2)|
|x1 − x2|α

≤ C[w]Cs(Rn)|x1 − x2|s−αR−2s.

So, if α ∈ (0, s], the result in (5.6) follows by noticing that |x1−x2| ≤ |x1|+|x2| ≤ R.
Now suppose that α ∈ (s, 1]. We define d?(ρ) = d(x1 + ρω) + d(x2 + ρω) and we

write (5.8) as

(5.9) |Lw(x1)− Lw(x2)| ≤ I1 + I2,

where r = |x1 − x2|,

I1 = 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ[0,6r]

(
d?(ρ)

) |w(x1 + ρω)− w(x2 + ρω)|
ρ1+2s

and I2 = 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ(6r,+∞)

(
d?(ρ)

) |w(x1 + ρω)− w(x2 + ρω)|
ρ1+2s

.

Now we estimate I1. For this, we fix ρ ≥ 0 such that d?(ρ) ∈ [0, 6r]. Thus, for
any i ∈ {1, 2}, we have that d(xi + ρω) ≤ d?(ρ) ≤ 6r, thus, by (5.3),

|w(xi + ρω)| = |w(xi + ρω)|χΩ(xi + ρω)

≤ [w]Cs(Rn) d
s(xi + ρω)χΩ(xi + ρω)

≤ C [w]Cs(Rn) r
s χΩ(xi + ρω).

As a consequence

(5.10) I1 ≤ C [w]Cs(Rn) r
s

2∑

i=1

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
χΩ(xi + ρω)χ[0,6r]

(
d(xi + ρω)

)

ρ1+2s
.

This and Lemma 3.1 give that

(5.11) I1 ≤ C [w]Cs(Rn) r
1+sR−1−2s,

for some C > 0.
Now we estimate I2. For this we let d?(ρ) > 6r and we will show that

|w(x1 + ρω)− w(x2 + ρω)|
≤ Crα`

(
ds−α(x1 + ρω) +R−αds(x1 + ρω)

)
.

(5.12)

To prove this, we observe that

d(x1 + ρω) ≤ d(x2 + ρω) + |x1 − x2| = d(x2 + ρω) + r.

Therefore
d?(ρ) = d(x1 + ρω) + d(x2 + ρω) ≤ 2d(x2 + ρω) + r.
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Thus, if d?(ρ) > 6r we have that

5

12
d(x1 + ρω) ≤ 5

12
d?(ρ) <

d?(ρ)− r
2

≤ d(x2 + ρω).

In particular

d(x1 + ρω, x2 + ρω) = min{d(x1 + ρω), d(x2 + ρω)} ≥ 5

12
d(x1 + ρω).

Also, of course d(x1 + ρω, x2 + ρω) ≤ d(x1 + ρω). As a consequence of these
observations, we can exploit (5.5) with p = x1 + ρω and q = x2 + ρω, and we obtain

|w(x1 +ρω)−w(x2 +ρω)| ≤ ` |x1−x2|α
((

5

12
d(x1 + ρω)

)s−α
+R−αds(x1 + ρω)

)
,

which implies (5.12).
Having completed the proof of (5.12), we can use such formula to obtain that

I2 ≤ C`rα
∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ(r,+∞)

(
d(x1 + ρω)

) ds−α(x1 + ρω)

ρ1+2s

+C`rαR−α
∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ(r,+∞)

(
d(x1 + ρω)

) ds(x1 + ρω)

ρ1+2s
.

So we use Lemma 3.6 (resp., Lemma 3.7) to bound the first (resp., the second) of
the two integrals above: we obtain

(5.13) I2 ≤ C`rαR−s−α.

This, (5.9) and (5.11) give that

|Lw(x1)− Lw(x2)| ≤ Crα
(
[w]Cs(Rn) r

1+s−αR−1−2s + `R−s−α
)
.

So, since 1 + s− α > 0, we have that r1+s−α ≤ R1+s−α and so

|Lw(x1)− Lw(x2)| ≤ C|x1 − x2|α
(
[w]Cs(Rn) R

−s−α + `R−s−α
)
,

which establishes (5.6) when α ∈ (s, 1].
It remains now to consider the case in which α ∈ (1, 1 + s). For this scope, we

modify the argument above by looking at L∂jw(x1) − L∂jw(x2), for a fixed j ∈
{1, · · · , n}. In this case, formula (5.8) becomes

|L∂jw(x1)− L∂jw(x2)| ≤ 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)
|∂jw(x1 + ρω)− ∂jw(x2 + ρω)|

ρ1+2s

≤ J1 + J2,

where r = |x1 − x2|,

J1 = 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ[0,6r]

(
d?(ρ)

) |∂jw(x1 + ρω)− ∂jw(x2 + ρω)|
ρ1+2s

and J2 = 2

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ(6r,+∞)

(
d?(ρ)

) |∂jw(x1 + ρω)− ∂jw(x2 + ρω)|
ρ1+2s

.
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First we estimate J1. We fix ρ ≥ 0 such that d?(ρ) ∈ [0, 6r] and, for any i ∈ {1, 2},
we obtain that d(xi + ρω) ≤ d?(ρ) ≤ 6r. Hence, when both x1 + ρω and x2 + ρω
belong to Ω we deduce from (5.5) that

|∂iw(x1 + ρω)− ∂iw(x2 + ρω)|
≤ ` |x1 − x2|α−1

(
ds−α(x1 + ρω, x2 + ρω) +R−αds(x1 + ρω, x2 + ρω)

)

≤ C` rα−1 ds−α(x1 + ρω, x2 + ρω).

This estimate and Lemma 3.4 imply that

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ[0,6r]

(
d?(ρ)

) χΩ(x1 + ρω)χΩ(x2 + ρω) |∂jw(x1 + ρω)− ∂jw(x2 + ρω)|
ρ1+2s

≤ C` rα−1R−s−α.

(5.14)

If instead x1 + ρω ∈ Ω and x2 + ρω 6∈ Ω, up to a set of measure zero we have
that ∂jw(x2 + ρω) = 0 and so, by (5.5),

|∂iw(x1 + ρω)− ∂iw(x2 + ρω)| = |∂iw(x1 + ρω)|
≤ `

(
ds−1(x1 + ρω) +R−1ds(x1 + ρω)

)
≤ C` ds−1(x1 + ρω)

≤ C` rα−1 ds−α(x1 + ρω)

(5.15)

Notice that in the last two steps we have used the fact that d(x1 + ρω) ≤ d?(ρ) ≤
6r ≤ 6R (together with α ≥ 1). Formula (5.15) and Lemma 3.6 imply that

∫ +∞

R/2

dρ

∫

Sn−1

da(ω)χ[0,6r]

(
d?(ρ)

) χΩ(x1 + ρω)χRn\Ω(x2 + ρω) |∂jw(x1 + ρω)− ∂jw(x2 + ρω)|
ρ1+2s

≤ C` rα−1R−s−α.

(5.16)

A similar estimate also holds by exchanging x1 and x2. Then, since also |∂iw(x1 +
ρω)− ∂iw(x2 + ρω)| = 0 if both x1 + ρω and x2 + ρω lie outside Ω, up to sets of null
measure, we obtain from (5.14) and (5.16) that

J1 ≤ C` rα−1R−s−α.

Now we also bound J2 by C`rα−1R−s−α. This can be obtained by repeating the
argument from (5.12) to (5.13), replacing w by ∂iw (and |x1−x2|α by |x1−x2|α−1).
The estimates obtained on J1 and J2 prove that

|L∂jw(x1)− L∂jw(x2)| ≤ C` rα−1R−s−α,

up to renaming C, and so

(5.17) Rα+s[L∂jw]Cα−1(BR/4) ≤ C`.

Now we observe that

(5.18) L∂jw = ∂jLw.
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This can be proved by using (5.5) to obtain that, for any x ∈ Ω and h ∈ R sufficiently
small, ∣∣∣∣

w(x+ ρω + hei)− w(x+ ρω)

h
− ∂iw(x+ ρω)

∣∣∣∣

=

∣∣∣∣
∫ 1

0

∂iw(x+ ρω + htei)− ∂iw(x+ ρω) dt

∣∣∣∣

≤
∫ 1

0

dt` |h|α−1
(
ds−α(x+ ρω + htei, x+ ρω) +R−αds(x+ ρω + htei, x+ ρω)

)
,

and then integrating and using the same argument as above.
From (5.17) and (5.18), one completes the proof of (5.6) when α ∈ (1, 1 + s).

It only remains to prove (5.7). For this, we take α ∈ (1, 1 + s) and x ∈ BR/4.
We remark that d(x) ∈ [R, 4R] and w(x + ρω) vanishes when ρ ∈ (0, R/2) (thus so
does ∂jw, for any j ∈ {1, · · · , n}), hence, recalling first (5.18) and then (5.5), we
have

|∂jLw(x)| = |L∂jw(x)|

≤ 2

∫

{|ρ|>R/2}
dρ

∫

Sn−1

da(ω)
|∂jw(x+ ρω)|

ρ1+2s

≤ C`

∫

{|ρ|>R/2}
dρ

∫

Sn−1

da(ω)
χΩ(x+ ρω)

(
ds−1(x+ ρω) +R−1ds(x+ ρω)

)

ρ1+2s
.

The term with χΩ(x + ρω) ds−1(x + ρω) at the numerator can be estimated with
C`Rs−1 by means of Lemma 3.6 (used here with α = 1). The term with ds(x+ ρω)
at the numerator can also be bounded in this way, using Lemma 3.7. From these
considerations we obtain that |∂jLw(x)| ≤ C`R−s−1, which establishes (5.7). �

6. Iterative Cα+2s-regularity

The cornerstone of our regularity theory is the following Theorem 6.1. Namely,
we show that if the solution lies in some Hölder space, than it indeed lies in a better
Hölder space (with estimates).

Theorem 6.1. Let α ∈ (0, 1 + s). Let Ω ⊂ Rn and assume that either (1.10)
or (1.11) is satisfied.

Let u ∈ Cs(Rn) ∩ Cα
loc(Ω) be a solution to (1.7), with g ∈ Cα

loc(Ω).
If α ∈ (s, 1 + s) assume in addition that

(6.1) ‖u‖(−s)
α;Ω < +∞.

Then u ∈ Cα+2s
loc (Ω) and

(6.2) ‖u‖(−s)
α+2s;Ω ≤ C

(
‖g‖(s)

α;Ω + ‖u‖Cs(Rn) + χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)

whenever α + 2s is not an integer.
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Proof. To prove (6.2), we fix p, q ∈ Ω, p 6= q, and we aim to show that

ks∑

j=0

(
dj−s(p) |Dju(p)|+ dj−s(q) |Dju(q)|

)
+ dα+s(p, q)

|Dksu(p)−Dksu(q)|
|p− q|α′s

≤ C
(
‖g‖(s)

α;Ω + ‖u‖Cs(Rn) + χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)
,

(6.3)

where ks ∈ N and αs ∈ (0, 1] are such that α + 2s = ks + α′s. To prove this, we
distinguish two cases: either |p− q| < d(p, q)/30 or |p− q| ≥ d(p, q)/30.

We start with the case |p−q| < d(p, q)/30. Without loss of generality, by possibly
exchanging p and q, we suppose that

(6.4) d(p) ≤ d(q)

and we set

(6.5) R =
d(p)

3
.

Notice that there exists p? ∈ (∂Ω) ∩ (∂B3R(p)) and

|p− q| < d(p, q)

30
=
d(p)

30
=
R

10
.

Up to a translation, we also suppose that p = 0, hence

q ∈ BR/10(p) = BR/10,(6.6)

Ω ⊇ B3R(p) = B3R(6.7)

and p? ∈ (∂Ω) ∩ (∂B3R),(6.8)

hence formula (5.1) holds true with this setting. We let η? ∈ C∞(Rn, [0, 1]) such
that η? ≡ 1 in B1 and η? ≡ 0 outside B3/2. Let us also define η(x) = η?(x/R).

Let us consider ū = ηu, ϑ = 1− η and w = ϑu. Since η? is fixed once and for all,
we can write, for any α′ ∈ (0, 1],

|ϑ(x)− ϑ(y)| = |η(y)− η(x)| =
∣∣∣η?
( y
R

)
− η?

( x
R

)∣∣∣

≤ [η?]Cα′ (Rn)

∣∣∣ y
R
− x

R

∣∣∣
α′

≤ CR−α
′ |x− y|α′ .

(6.9)

Similarly

(6.10) ∇ϑ(x) = −∇η(x) = −R−1∇η?
( x
R

)

and so, for any α′ ∈ (0, 1],

|∇ϑ(x)−∇ϑ(y)| = |∇η(x)−∇η(y)|
≤ R−1−α′‖η?‖C1+α′ |x− y|α′ ≤ CR−1−α′ |x− y|α′ .

(6.11)
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Notice also that w ≡ 0 in BR and w ≡ 0 outside Ω. Our goal is to show that w
satisfies the assumptions of Lemma 5.1. For this, when α ∈ (s, 1 + s), we need to
check condition (5.5). To this goal, we claim that, if α ∈ (s, 1 + s), then

condition (5.5) holds true with

` = C
(
‖u‖(−s)

α;Ω + [u]Cs(Rn)

)
.

(6.12)

To prove (6.12), we split the cases α ∈ (s, 1] and α ∈ (1, 1 + s).
Let us first deal with the case

(6.13) α ∈ (s, 1].

We fix x, y ∈ Ω with |x − y| ≤ R and, up to interchanging x with y, we assume
that d(y) ≤ d(x). Then there exists z ∈ ∂Ω such that |y − z| = d(y), and so

(6.14) |u(y)| = |u(y)− u(z)| ≤ [u]Cs(Rn)|y − z|s = [u]Cs(Rn)d
s(y).

Also, by (2.2), (6.1) and (6.13),

|u(x)− u(y)| ≤ [u]
(−s)
α;Ω |x− y|αds−α(y).

Therefore, recalling also (6.9),

|w(x)− w(y)| ≤ |ϑ(x)| |u(x)− u(y)|+ |u(y)| |ϑ(x)− ϑ(y)|
≤ C

(
[u]

(−s)
α;Ω |x− y|αds−α(y) + [u]Cs(Rn)d

s(y)R−α|x− y|α
)
.

This says that, in this case, condition (5.5) holds true, with ` = C
(
[u]

(−s)
α;Ω +[u]Cs(Rn)

)
,

and this proves (6.12) when α ∈ (s, 1].
Now we prove (6.12) when α ∈ (1, 1 + s). In this case, we can write

(6.15) α = 1 + α′,

with α′ ∈ (0, s), hence we use (2.2) (with index j = 1) to deduce that in this case

(6.16) ‖u‖(−s)
α;Ω ≥ d1−s(x) |∇u(x)|.

Hence, recalling (6.10) and (6.14),

|∇w(x)| ≤ |ϑ(x)| |∇u(x)|+ |∇ϑ(x)| |u(x)|
≤ C

(
‖u‖(−s)

α;Ω ds−1(x) +R−1 [u]Cs(Rn)d
s(x)

)
.

(6.17)

Now we take x, y ∈ Ω, with |x − y| ≤ R, and suppose, without loss of generality
that d(x, y) = d(y) ≤ d(x). Since α′ ∈ (0, s), we have that

(6.18) |u(x)− u(y)| ≤ [u]Cs(Rn)|x− y|s ≤ [u]Cs(Rn)R
s−α′ |x− y|α′ .

Also, using (6.15) once again, we obtain

[u]
(−s)
α;Ω ≥ dα−s(y)

|∇u(x)−∇u(y)|
|x− y|α′
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and therefore, recalling also (6.9), (6.10), (6.11), (6.14) (6.16) and (6.18),

|∇w(x)−∇w(y)|
= |ϑ(x)∇u(x) +∇ϑ(x)u(x)− ϑ(y)∇u(y)−∇ϑ(y)u(y)|
≤ |ϑ(x)∇u(x)− ϑ(x)∇u(y)|+ |ϑ(x)∇u(y)− ϑ(y)∇u(y)|

+|∇ϑ(x)u(x)−∇ϑ(x)u(y)|+ |∇ϑ(x)u(y)−∇ϑ(y)u(y)|
≤ C|∇u(x)−∇u(y)|+ CR−α

′ |∇u(y)| |x− y|α′

+CR−1|u(x)− u(y)|+ [u]Cs(Rn)d
s(y) |∇ϑ(x)−∇ϑ(y)|

≤ C [u]
(−s)
α;Ω d

s−α(y)|x− y|α′ + CR−α
′‖u‖(−s)

α;Ω d
s−1(y) |x− y|α′

+CRs−α′−1[u]Cs(Rn) |x− y|α
′
+ CR−1−α′ [u]Cs(Rn)d

s(y) |x− y|α′ .
By taking common factors and recalling (6.15), we obtain that |∇w(x)−∇w(y)| is
bounded from above by

C
(
[u]Cs(Rn) + ‖u‖(−s)

α;Ω

)
|x− y|α−1

·
(
ds−α(y) +R1−αds−1(y) +Rs−α +R−αds(y)

)
.

(6.19)

Now we observe that
1

Rα−1d1−s(y)
≤ 1

dα−s(y)
+

1

Rα−s

and
1

Rα−s ≤
1

dα−s(y)
+
ds(y)

Rα
,

as can be checked by considering the cases R ≥ d(y) and R < d(y), and recalling
that here α > 1 > s. Consequently,

R1−αds−1(y) +Rs−α ≤ 2
(
ds−α(y) +R−αds(y)

)

and then (6.19) yields that that |∇w(x)−∇w(y)| is bounded from above by

C
(
[u]Cs(Rn) + ‖u‖(−s)

α;Ω

)
|x− y|α−1

(
ds−α(y) +R−αds(y)

)
.

This and (6.17) complete the proof of (6.12) also when α ∈ (1, 1 + s).
Having completed the proof of (6.12), now we estimate ‖w‖Cs(Rn). We claim that

(6.20) [w]Cs(Rn) ≤ C [u]Cs(Rn).

To check this, we fix a, b ∈ Rn and we aim to bound |w(a) − w(b)|. To this goal,
by possibly exchanging a and b, we suppose that |a| ≥ |b|. Now we distinguish
two cases: either |b| ≥ 2R or |b| < 2R. If |b| ≥ 2R we have that both a and b lie
outside B3R/2, and so ϑ(a) = ϑ(b) = 1. Accordingly

|w(a)− w(b)| = |u(a)− u(b)| ≤ [u]Cs(Rn)|a− b|s,
and (6.20) is proved in this case. On the other hand, if |b| < 2R we use (6.8) and
we get

|u(b)| = |u(b)− u(p?)| ≤ [u]Cs(Rn)|b− p?|s ≤ C[u]Cs(Rn)R
s.
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Therefore, recalling (6.9) (used here with α = s),

|w(b)− w(b)| ≤ |ϑ(a)| |u(a)− u(b)|+ |u(b)| |ϑ(a)− ϑ(b)|
≤ C

(
[u]Cs(Rn)|a− b|s + [u]Cs(Rn)R

s ·R−s|a− b|s
)
,

which establishes (6.20) in this case too.
Now we take ` as in (6.12) when α ∈ (s, 1 + s) and, for definiteness, we also

set ` = 0 when α ∈ [0, s]: then, with this notation, we deduce by Lemma 5.1 and
formula (6.20) that

R2s‖Lw‖L∞(BR/2) ≤ CRs [w]Cs(Rn) ≤ CRs [u]Cs(Rn)

and Rα+s[Lw]Cα(BR/2) ≤ C
(

[w]Cs(Rn) + `
)
≤ C

(
[u]Cs(Rn) + `

)
,

and, in case α ∈ (1, 1 + s), also

R1+s‖∇Lw‖L∞(BR/2) ≤ C` ≤ C
(

[u]Cs(Rn) + `
)
.

As a consequence, if α = k+α′ with k ∈ N and α′ ∈ (0, 1], we can write the weighted
estimate

(6.21)
k∑

j=0

Rj+s‖DjLw‖L∞(BR/2) +Rα+s[Lw]Cα(BR/2) ≤ C
(

[u]Cs(Rn) + `
)
.

Now we show that ū ∈ Cα(Rn), with

(6.22) [ū]Cα(Rn) ≤ C
(
[u]Cs(Rn) + `

)
Rs−α.

To this goal, we distinguish two cases, either α ∈ (0, s] or α ∈ (s, 1 + s).
Let us first deal with the case α ∈ (0, s]. We let x, y ∈ Rn and we estimate |ū(x)−

ū(y)|. If both x and y lies outside B3R/2, then ū(x) = ū(y) = 0 and so |ū(x)−ū(y)| =
0. Thus we may assume (up to exchanging x and y) that y ∈ B3R/2. So, by (6.8),

(6.23) |u(y)| = |u(y)− u(p?)| ≤ C[u]Cs(Rn) R
s.

To complete the proof of (6.22) when α ∈ (0, s], we now distinguish two sub-cases:
either |x| ≥ 7R/4 or |x| < 7R/4. If |x| ≥ 7R/4, we have that ū(x) = 0 and

|x− y| ≥ |x| − |y| ≥ |x| − 3R

2
≥ R

4
.

Consequently, we use (6.23) and we get

|ū(x)− ū(y)| = |ū(y)| ≤ |u(y)| ≤ C[u]Cs(Rn) R
s

= C[u]Cs(Rn)R
s−αRα ≤ C[u]Cs(Rn) R

s−α|x− y|α,
and this establishes (6.22) in this sub-case. Now we deal with the sub-case in
which |x| < 7R/4. Then |x− y| ≤ (7R/4) + (3R/2) ≤ CR and so

|u(x)− u(y)| ≤ [u]Cs(Rn)|x− y|s ≤ C [u]Cs(Rn)|x− y|αRs−α.
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Therefore, recalling (6.9) and (6.23), we deduce that

|ū(x)− ū(y)| ≤ |η(x)| |u(x)− u(y)|+ |u(y)| |η(x)− η(y)|
≤ C [u]Cs(Rn) R

s−α|x− y|α

and this proves (6.22) also in this sub-case.
Having completed the proof of (6.22) when α ∈ (0, s], we now deal with the

case α ∈ (s, 1 + s). In this case, we take x, y ∈ Ω and we write α = k + α′,
with k ∈ {0, 1} and α′ ∈ (0, 1] and
(6.24)

` ≥ ‖u‖(−s)
α;Ω ≥ dα−s(x, y)

|Dku(x)−Dku(y)|
|x− y|α′ + d−s(z) |u(z)|+ dk−s(z) |Dku(z)|,

for any x, y, z ∈ Ω (notice that we have use (2.2) with indices j = 0 and j = k).
Also, ū (and so Dkū) vanishes in Rn \ B3R/2, therefore, to estimate |Dkū(x) −

Dkū(y)|, we may assume (up to interchanging x and y) that y ∈ B3R/2.
So we distinguish two sub-cases: either also x ∈ B7R/4 or x ∈ Rn \B7R/4.
Let us start with the sub-case x ∈ B7R/4. Notice that

B7R/4 ⊆
{
ζ ∈ Rn s.t. d(ζ) ≥ R

}
,

thanks to (6.7), so in particular d(x) ≥ R and d(y) ≥ R, and therefore d(x, y) ≥ R.
In addition, by (6.8), we have that d(x) + d(y) ≤ CR. So, from (6.24), we obtain,
for x and y as above and every ζ ∈ B7R/4,

|Dku(x)−Dku(y)| ≤ ` ds−α(x, y) |x− y|α′ ≤ C`Rs−α |x− y|α′ ,
|Dku(ζ)| ≤ ` ds−k(ζ) ≤ C`Rs−k

and |u(x)|+ |u(y)| ≤ `
(
ds(x) + ds(y)

)
≤ C`Rs.

(6.25)

We remark that we can also take ζ = x or ζ = y in (6.25) if we wish. Now we claim
that

(6.26) |u(x)− u(y)| ≤ `Rs−α′ |x− y|α′ .
Indeed, if k = 0 we have that (6.26) reduces to (6.25); if instead k = 1, we use (6.25)
to get that

|u(x)− u(y)| ≤ sup
ζ∈B7R/4

|∇u(ζ)| |x− y| ≤ C`Rs−1 |x− y|.

Also
|x− y| ≤ |x|+ |y| ≤ 3R,

thus

|u(x)− u(y)| ≤ C`Rs−1 |x− y|1−α′ |x− y|α′ ≤ C`Rs−1R1−α′ |x− y|α′ ,
up to changing the constants, and this proves (6.26).

Now we remark that

Dkū = Dk(ηu) =
1

2− k
(
ηDku+ uDkη

)
,
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for k ∈ {0, 1}, therefore

|Dku(x)−Dku(y)|

=
1

2− k
∣∣η(x)Dku(x) + u(x)Dkη(x)− η(y)Dku(y)− u(y)Dkη(y)

∣∣

≤C
(∣∣η(x)Dku(x)− η(y)Dku(y)

∣∣+
∣∣u(x)Dkη(x)− u(y)Dkη(y)

∣∣
)

≤C
(
|η(x)| |Dku(x)−Dku(y)|+ |Dku(y)| |η(x)− η(y)|

+ |u(x)| |Dkη(x)−Dkη(y)|+ |Dkη(y)| |u(x)− u(y)|
)
.

(6.27)

Also, by (6.9) and (6.11)

|η(y)− η(x)| ≤ CR−α
′|x− y|α′ and |Dkη(y)−Dkη(x)| ≤ CR−k−α

′ |x− y|α′ ,
thus, by (6.25) and (6.26),

|η(x)| |Dku(x)−Dku(y)|+ |Dku(y)| |η(x)− η(y)|
+|u(x)| |Dkη(x)−Dkη(y)|+ |Dkη(y)| |u(x)− u(y)|
≤ C`

(
Rs−α +Rs−k−α′) |x− y|α′

= C`Rs−α |x− y|α′ ,
up to renaming constants. Then, we insert this into (6.27) and we obtain the proof
of (6.22) in the sub-case x ∈ B7R/4.

Now we consider the sub-case x ∈ Rn\B7R/4. In this case ū (and so Dkū) vanishes
in the vicinity of x, therefore

|Dkū(x)−Dkū(y)| = |Dkū(y)| = 1

2− k
∣∣η(y)Dku(y) + u(y)Dkη(y)

∣∣.

Therefore, by (6.10) and (6.25),

(6.28) |Dkū(x)−Dkū(y)| ≤ C
(
|η(y)| |Dku(y)|+ |u(y)| |Dkη(y)|

)
≤ C`Rs−k.

Now we use that x is outside B7R/4 and y inside B3R/2 to conclude that |x − y| ≥
|x| − |y| ≥ R/4. Hence we deduce from (6.28) that

|Dkū(x)−Dkū(y)| ≤ C`Rs−k−α′ Rα′ ≤ C`Rs−α |x− y|α′ .
This completes the proof of (6.22) in the case α ∈ (s, 1 + s). The proof of (6.22) is
therefore finished.

Now we show that

(6.29) ‖ū‖L∞(Rn) ≤ CRs
(
[u]Cs(Rn) + `

)
.

For this, fix x ∈ Rn. If |x| ≥ 2R, then |ū(x)| = 0 and we are done, so we may
suppose that |x| < 2R. If α ∈ (0, s], we use the fact that ū(2Re1) = 0 to conclude
that

|ū(x)| = |ū(x)− ū(2Re1)| ≤ [ū]Cα(Rn)|x− 2Re1|α ≤ C[ū]Cα(Rn)R
α,
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hence, by (6.22), we see that |ū(x)| ≤ C
(
[u]Cs(Rn) + `

)
Rs−α · Rα, as desired. If

instead α ∈ (s, 1 + s), we use (2.2) with index j = 0 to see that

` ≥ d−s(x) |u(x)|.
Hence, since by (6.8) we have that

d(x) ≤ |x− p?| ≤ |x|+ |p?| ≤ 5R,

we obtain |u(x)| ≤ ` ds(x) ≤ `Rs. These considerations prove (6.29).
Now we claim that, if α = k + α′ ∈ (0, 1 + s) with k ∈ N and α′ ∈ (0, 1], then

(6.30)
k∑

j=0

Rj−s‖Djū‖L∞(Rn) +Rα−s[ū]Cα(Rn) ≤ C
(
[u]Cs(Rn) + `

)
.

Indeed, if k = 0, formula (6.30) follows by combining (6.22) and (6.29). If in-
stead k > 0, then necessarily k = 1, since k ≤ α < 1 + s < 2. Consequently, using
that ū vanishes outside B3R/2 and (6.22), we obtain

Rk−s‖Dkū‖L∞(Rn) = R1−s sup
B3R/2

|∇ū(x)| = R1−s sup
B3R/2

|∇ū(x)−∇ū(Re1)|

≤ R1−s [ū]Cα(Rn) sup
B3R/2

|x−Re1|α
′ ≤ CR1−s+s−α+α′ C

(
[u]Cs(Rn) + `

)

= C
(
[u]Cs(Rn) + `

)
.

This, (6.22) and (6.29) then imply (6.30) also in this case.

After all this (rather technical, but useful) preliminary work, we are ready to
perform the regularity theory needed in this setting. For this, we notice that ū =
uη = u(1− ϑ) = u− w, therefore

(6.31) Lū = g − Lw in B3R/2.

It is now useful to scale ū, by setting ūR(x) = R−2sū(Rx). We have that LūR(x) =
Lū(Rx). Therefore by Theorem 1.1(b) in [7],

(6.32) ‖ūR‖Cα+2s(B1/4) ≤ C
(
‖ūR‖Cα(Rn) + ‖LūR‖Cα(B1/2)

)
.

To scale back, we notice that, for any β, a > 0,

‖DjūR‖L∞(Ba) = Rj−2s‖ū‖L∞(BaR), [ūR]Cβ(Ba) = Rβ−2s[ū]Cβ(BaR),

‖DjLūR‖L∞(Ba) = Rj‖Lū‖L∞(BaR) and [LūR]Cβ(Ba) = Rβ[Lū]Cβ(BaR).

So, if we write α = k + α′, with k ∈ N and α′ ∈ (0, 1], we have that

‖ūR‖Cα(Ba) =
k∑

j=0

‖DjūR‖L∞(Ba) + [ūR]Cα(Ba)

=
k∑

j=0

Rj−2s‖Djū‖L∞(BaR) +Rα−2s[ū]Cα(BaR).

(6.33)
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Similarly, if α + 2s = ks + α′s, with ks ∈ N and α′s ∈ (0, 1],

(6.34) ‖ūR‖Cα+2s(Ba) =
ks∑

j=0

Rj−2s‖Djū‖L∞(BaR) +Rα[ū]Cα+2s(BaR)

and

(6.35) ‖LūR‖Cα(Ba) =
k∑

j=0

Rj‖DjLū‖L∞(BaR) +Rα[Lū]Cα(BaR).

From (6.30) and (6.33) we see that

(6.36) Rs ‖ūR‖Cα(Rn) ≤ C
(
[u]Cs(Rn) + `

)
.

Also, from (6.31) and (6.35),

‖LūR‖Cα(B1/2) ≤
k∑

j=0

Rj‖DjLw‖L∞(BR/2) +Rα[Lw]Cα(BR/2) + Γg,

where

Γg =
k∑

j=0

Rj‖Djg‖L∞(BR/2) +Rα[g]Cα(BR/2).

Accordingly, from (6.21),

Rs‖LūR‖Cα(B1/2) ≤ C
(

[u]Cs(Rn) + `+RsΓg

)
.

This, (6.32) and (6.36) give that

Rs ‖ūR‖Cα+2s(B1/4) ≤ C
(

[u]Cs(Rn) + `+RsΓg

)
.

As a consequence of this and (6.34), we conclude that

(6.37)
ks∑

j=0

Rj−s‖Djū‖L∞(BR/4) +Rα+s[ū]Cα+2s(BR/4) ≤ C
(

[u]Cs(Rn) + `+RsΓg

)
.

Now, from (6.4), (6.5) and (6.6), we have

d(p, q) = d(p) = 3R and
R

10
≥ |p− q| = |q|,

therefore d(q) ≤ |q− p?| ≤ 4R, thanks to (6.8). This says that d(p), d(q) and d(p, q)

are all comparable to R, hence RsΓg ≤ C‖g‖(s)
α;Ω and (6.37) gives

ks∑

j=0

(
d(p)j−s|Djū(p)|+ d(q)j−s|Djū(q)|

)
+ dα+s(p, q)

|Dksū(p)−Dksū(q)|
|p− q|α′s

≤ C
(

[u]Cs(Rn) + `+ ‖g‖(s)
α;Ω

)
.

(6.38)
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Since ū = u in BR/4, and p and q lie in such ball, thanks to (6.6), we can replace ū
with u in (6.38), and this establishes (6.3) when |p− q| < d(p, q)/30.

Let us now suppose that |p−q| ≥ d(p, q)/30 and let us prove (6.3) in this case. The
proof of this will rely on the fact that we have already proved (6.3) when |p− q| <
d(p, q)/30. We first check that

(6.39)
ks∑

j=0

dj−s(p) |Dju(p)| ≤ C
(
‖g‖(s)

α;Ω + ‖u‖Cs(Rn) + χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)
.

For this we take a sequence of points pj → p as j → +∞. Since d(p) > 0, for j large
we have that |p− pj| ≤ d(p)/100 and thus

d(pj) ≥ d(p)− |p− pj| ≥
99 d(p)

100
.

Therefore d(p, pj) ≥ 99 d(p)/100 and thus

|p− pj| ≤
d(p)

100
≤ d(p, pj)

99
<
d(p, pj)

30
.

Since we have already proved (6.3) in this case, we can use it at the points p and pj
and conclude that

ks∑

j=0

(
dj−s(p) |Dju(p)|+ dj−s(pj) |Dju(pj)|

)
+ dα+s(p, pj)

|Dksu(p)−Dksu(pj)|
|p− pj|α′s

≤ C
(
‖g‖(s)

α;Ω + ‖u‖Cs(Rn) + χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)
,

which in turn implies (6.39).
The same argument used to prove (6.39) applied to the point q instead of p gives

that

(6.40)
ks∑

j=0

dj−s(q) |Dju(q)| ≤ C
(
‖g‖(s)

α;Ω + ‖u‖Cs(Rn) + χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)
.

Now we want to prove that

(6.41) dα+s(p, q)
|Dksu(p)−Dksu(q)|

|p− q|α′s ≤ C
(
‖g‖(s)

α;Ω+‖u‖Cs(Rn)+χ(s,1+s)(α) ‖u‖(−s)
α;Ω

)
.

For this, we use the condition |p− q| ≥ d(p, q)/30 and the fact that

α + s = α + 2s− s = ks + α′s − s
to realize that

dα+s(p, q)
|Dksu(p)−Dksu(q)|

|p− q|α′s ≤ C dks+α
′
s−s(p, q)

|Dksu(p)−Dksu(q)|
dα′s(p, q)

≤ C dks−s(p, q)
(
|Dksu(p)|+ |Dksu(q)|

)

≤ C dks−s(p) |Dksu(p)|+ C dks−s(q) |Dksu(q)|.



31

This estimate, together with (6.39) and (6.40) (used here with j = ks), estab-
lishes (6.41).

Now, by collecting the estimates in (6.39), (6.40) and (6.41), we complete the proof
of (6.3) when |p− q| ≥ d(p, q)/30. This is the end of the proof of Lemma 6.1. �

By iterating Theorem 6.1, and using again the notation in (2.2), we obtain:

Corollary 6.2. Let β ∈ (0, 1 + s). Let Ω ⊂ Rn and assume that either (1.10)
or (1.11) is satisfied.

Let u ∈ Cs(Rn) be a solution to (1.7), with g ∈ Cβ
loc(Ω) and ‖g‖(s)

β;Ω < +∞.

Then u ∈ Cβ+2s
loc (Ω) and

(6.42) ‖u‖(−s)
β+2s;Ω ≤ C

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

)
,

whenever β + 2s is not an integer.

Proof. The rough idea is to iterate Theorem 6.1 say, starting with Hölder exponent
(possibly below) s, to get s + 2s, then s + 2s + 2s and so on, till we reach the
threshold imposed by β.

To make this argument rigorous we argue as follows. If β ∈ (0, s], then we use
Theorem 6.1 with α = β and we obtain (6.42). Thus, we can assume that

(6.43) β ∈ (s, 1 + s).

Given s ∈ (0, 1)∩Q (resp., s ∈ (0, 1)\Q), we fix ϑ ∈ (0, s)\Q (resp., ϑ ∈ (0, s)∩Q).
By construction, for any j ∈ N, we have that ϑ+ 2js 6∈ Q, and so in particular

(6.44) ϑ+ 2js 6∈ N.
We remark that

(6.45) ϑ < s < β,

thanks to (6.43). We let J ∈ N the largest integer j for which ϑ+ 2js ≤ β + 2s. By
construction

(6.46) ϑ+ 2Js ∈ (β, β + 2s].

Furthermore J ≥ 1, due to (6.45). We also denote by C1 > 1 the constant appearing
in (6.2) and by C2 > 1 the one appearing in Lemma 2.1 (these constants were
called C in those statements, but for clarity we emphasize now these constant by
giving to them a special name and, without loss of generality, we can suppose that
they are larger than 1). Let also C? = 2(C1 + C2)2. We claim that, for any j ∈
{1, · · · , J},
(6.47) ‖u‖(−s)

ϑ+2js;Ω ≤ Cj
?

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

)
.

The proof is by induction. First, we use Theorem 6.1 with α = ϑ ∈ (0, s): notice
that ϑ+2s is not an integer, thanks to (6.44), and therefore Theorem 6.1 yields that

(6.48) ‖u‖(−s)
ϑ+2s;Ω ≤ C1

(
‖g‖(s)

ϑ;Ω + ‖u‖Cs(Rn)

)
.
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Also, in view of (6.45) and Lemma 2.1, we have that ‖g‖(s)
ϑ;Ω ≤ C2‖g‖(s)

β;Ω. By plugging
this information into (6.48) and using that C1, C2 > 1, we see that (6.47) holds true
for j = 1.

Now we perform the induction step, i.e. we suppose that (6.47) holds true for
some j ∈ {1, · · · , J − 1} and we prove it for j + 1. For this, we use Theorem 6.1
with α = ϑ+js. We remark that ϑ+js+2s 6∈ N, thanks to (6.44), hence Theorem 6.1
applies and it gives that

(6.49) ‖u‖(−s)
ϑ+2(j+1)s;Ω ≤ C1

(
‖g‖(s)

ϑ+2js;Ω + ‖u‖Cs(Rn) + ‖u‖(−s)
ϑ+2js;Ω

)
.

Notice also that, by (6.46),

ϑ+ 2js ≤ ϑ+ 2(J − 1)s = ϑ+ 2Js− 2s ≤ β + 2s− 2s = β.

This and Lemma 2.1 imply that

‖g‖(s)
ϑ+2js;Ω ≤ C2‖g‖(s)

β;Ω.

Accordingly, we deduce from (6.49) that

‖u‖(−s)
ϑ+2(j+1)s;Ω ≤ C1

(
C2‖g‖(s)

β;Ω + ‖u‖Cs(Rn) + ‖u‖(−s)
ϑ+2js;Ω

)
.

Hence, since by inductive assumption (6.47) holds true for j,

‖u‖(−s)
ϑ+2(j+1)s;Ω ≤ C1

(
C2‖g‖(s)

β;Ω + ‖u‖Cs(Rn) + Cj
?

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

))

≤ 2C1C
j
?

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

) .(6.50)

This proves (6.47) for j + 1. The inductive step is thus completed, and we have
established (6.47).

Now we observe that

‖u‖(−s)
β;Ω ≤ C2‖u‖(−s)

ϑ+2Js;Ω,

due to (6.46) and Lemma 2.1. Thus, using (6.47) with j = J ,

(6.51) ‖u‖(−s)
β;Ω ≤ CJ+1

?

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

)
.

Now we use Theorem 6.1 for the last time, here with α = β. Notice that β+2s 6∈ N,
by the assumption of Corollary 6.2: consequently Theorem 6.1 can be exploited and
we obtain

‖u‖(−s)
β+2s;Ω ≤ CJ+1

?

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn) + ‖u‖(−s)
β;Ω

)
.

This and (6.51) imply that we can bound ‖u‖(−s)
β+2s;Ω by a constant times ‖g‖(s)

β;Ω +
‖u‖Cs(Rn), and this completes the proof of Corollary 6.2. �

With this, we can now complete the proof of the main result:

Proof of Theorem 1.1. By Proposition 4.6 in [7], we know that u ∈ Cs(Rn), with

(6.52) ‖u‖Cs(Rn) ≤ C ‖g‖L∞(Ω).
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Also, if x ∈ Ωδ then d−s(x) ≥ δ, while if x ∈ Ω then d(x) is controlled by the
diameter of Ω. From this we obtain that

‖u‖(−s)
β+2s;Ω ≥ co ‖u‖Cβ+2s(Ωδ)

and ‖g‖(s)
β;Ω ≤ Co ‖g‖Cβ(Ω)

for some co, Co > 0, possibly depending on δ and Ω. Using this, (6.52) and Corol-
lary 6.2 we obtain

‖u‖Cβ+2s(Ωδ) ≤ c−1
o ‖u‖(−s)

β+2s;Ω

≤ c−1
o C

(
‖g‖(s)

β;Ω + ‖u‖Cs(Rn)

)

≤ c−1
o C

(
Co ‖g‖Cβ(Ω) + C ‖g‖L∞(Ω)

)
.

The latter term is in turn bounded bounded by a constant, possibly depending on δ
and Ω, times ‖g‖Cβ(Ω), hence the desired result plainly follows. �

7. Constructing a counterexample

This section is devoted to the construction of the counterexample of Theorem 1.2.
For this, we start with an auxiliary lemma that says, roughly speaking, that the
operator L “looses 2s derivatives”:

Lemma 7.1. Let β ∈ (0, 1) and v ∈ Cβ+2s(Rn). Then Lv ∈ Cβ(B1) and [Lv]Cβ(B1) ≤
C [v]Cβ+2s(Rn).

Proof. Notice that by construction β + 2s ∈ (0, 3). Let x, y ∈ B1 and

r = |x− y| < 2.

Also, for any fixed ω ∈ Sn−1 and ρ ≥ 0, let

wρ,ω(x) = 2v(x)− v(x+ ρω)− v(x− ρω).

Then

|Lv(x)− Lv(y)| ≤ I1 + I2, with

I1 =

∫ r

0

dρ

∫

Sn−1

da(ω)
|wρ,ω(x)− wρ,ω(y)|

ρ1+2s

and I2 =

∫ +∞

r

dρ

∫

Sn−1

da(ω)
|wρ,ω(x)− wρ,ω(y)|

ρ1+2s
.

To estimate I1 and I2, we first prove that

(7.1) |wρ,ω(x)− wρ,ω(y)| ≤





C [v]Cβ+2s(Rn) |x− y|β+2s if β + 2s ∈ (0, 1],
C [v]Cβ+2s(Rn) ρ |x− y|β+2s−1 if β + 2s ∈ (1, 2],
C [v]Cβ+2s(Rn) ρ

2 |x− y|β+2s−2 if β + 2s ∈ (2, 3).

To prove this, let us first consider the case β+ 2s ∈ (0, 1]. In this case, we have that

(7.2) |v(x± ρω)− v(y ± ρω)| ≤ [v]Cβ+2s(Rn)|x− y|β+2s,
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for every ρ ≥ 0, and this implies (7.1) when β + 2s ∈ (0, 1].
If β + 2s ∈ (1, 2] we use the Fundamental Theorem of Calculus in the variable ρ

to write

(7.3) wρ,ω(x) =

∫ ρ

0

dτ [−∇v(x+ τω) · ω +∇v(x− τω) · ω] .

Notice also that, for any τ ∈ R,
∣∣∇v(x+ τω) · ω −∇v(y + τω) · ω

∣∣ ≤ [v]Cβ+2s(Rn)|x− y|β+2s−1,

since β + 2s ∈ (1, 2]. This inequality and (7.3) give that

∣∣wρ,ω(x)− wρ,ω(y)
∣∣ ≤

∫ ρ

0

2[v]Cβ+2s(Rn)|x− y|β+2s−1 dτ,

that establishes (7.1) in this case.
Now we deal with the case β + 2s ∈ (2, 3): for this, we use the Fundamental

Theorem of Calculus in the variable ρ twice in (7.3) and we see that

wρ,ω(x) =

∫ ρ

0

dτ

∫ −τ

τ

dσ D2
ijv(x+ σω)ωiωj.

Consequently

∣∣wρ,ω(x)− wρ,ω(y)
∣∣ ≤

∫ ρ

0

dτ

∫ τ

−τ
dσ
∣∣∣D2

ijv(x+ σω)−D2
ijv(y + σω)

∣∣∣

≤
∫ ρ

0

dτ

∫ τ

−τ
dσ [v]Cβ+2s(Rn)|x− y|β+2s−2,

since β + 2s ∈ (2, 3), and this establishes (7.1) in this case as well.
The proof of (7.1) is thus complete, and now we show that

(7.4) |wρ,ω(x)− wρ,ω(y)| ≤
{

C [v]Cβ+2s(Rn) ρ
β+2s if β + 2s ∈ (0, 1],

C [v]Cβ+2s(Rn) |x− y| ρβ+2s−1 if β + 2s ∈ (1, 3).

To prove (7.4), we distinguish three cases. If β + 2s ∈ (0, 1], we have that (7.4)
follows easily from the fact that |v(x)−v(x±ρω)| ≤ [v]Cβ+2s(Rn) ρ

β+2s, and the same
for y instead of x. If β + 2s ∈ (1, 2] we notice that

∇wρ,ω(x) = 2∇v(x)−∇v(x+ ρω)−∇v(x− ρω)

and so the Fundamental Theorem of Calculus in the space variable gives that

wρ,ω(x)− wρ,ω(y)

=

∫ 1

0

dt∇wρ,ω(y + t(x− y)) · (x− y)

=

∫ 1

0

dt
(

2∇v(y + t(x− y))−∇v(y + t(x− y) + ρω)−∇v(y + t(x− y)− ρω)
)
· (x− y).

(7.5)
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Now we notice that

(7.6)
∣∣∇v(y + t(x− y))−∇v(y + t(x− y)± ρω)

∣∣ ≤ [v]Cβ+2s(Rn) ρ
β+2s−1,

since here β + 2s ∈ (1, 2]. By inserting (7.6) into (7.5) we obtain

|wρ,ω(x)− wρ,ω(y)| ≤
∫ 1

0

dt 2[v]Cβ+2s(Rn) ρ
β+2s−1 |x− y|,

which proves (7.4) in this case.
It remains to prove (7.4) when β + 2s ∈ (2, 3). In this case, we apply the Funda-

mental Theorem of Calculus in the variable ρ once more to obtain

∂iv(y + t(x− y))− ∂iv(y + t(x− y)± ρω) = ±
∫ 0

ρ

dσ D2
ijv(y + t(x− y)± σω)ωj

and therefore
∣∣∣2∂iv(y + t(x− y))− ∂iv(y + t(x− y) + ρω)− ∂iv(y + t(x− y)− ρω)

∣∣∣

=

∣∣∣∣
∫ 0

ρ

dσ
(
D2
ijv(y + t(x− y) + σω)−D2

ijv(y + t(x− y)− σω)
)
ωj

∣∣∣∣

≤
∫ ρ

0

dσ [v]Cβ+2s(Rn)(2σ)β+2s−2

= C [v]Cβ+2s(Rn) ρ
β+2s−1,

where the condition β ∈ (2, 3) was used. By plugging this information into (7.5),
we obtain

|wρ,ω(x)− wρ,ω(y)| ≤
∫ 1

0

dtC [v]Cβ+2s(Rn) ρ
β+2s−1 |x− y|,

which establishes (7.4) also in this case.
Now we show that

(7.7) if β + 2s ∈ (0, 2], then |wρ,ω(x)| ≤ C [v]Cβ+2s(Rn) ρ
β+2s.

Indeed, if β ∈ (0, 1] we have that |v(x) − v(x ± ρω)| ≤ [v]Cβ+2s(Rn) ρ
β+2s, and this

implies (7.7) in this case. If instead β ∈ (1, 2], then we use (7.3) to see that

|wρ,ω(x)| ≤
∫ ρ

0

dτ |∇v(x+ τω)−∇v(x− τω)| ≤
∫ ρ

0

dτ [v]Cβ+2s(Rn) (2τ)β+2s−1,

which gives (7.7) also in this case.
Now we claim that there exists κ ∈ (0, β) such that

for any ρ ∈ [0, r]
∣∣wρ,ω(x)− wρ,ω(y)

∣∣ ≤ C [v]Cβ+2s(Rn) ρ
2s+κrβ−κ.

(7.8)
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To check this, we distinguish two cases. When β + 2s ∈ (0, 2], we define κ = β/2
and use (7.7) and the assumption that ρ ≤ r = |x− y| to conclude that

|wρ,ω(x)| ≤ C [v]Cβ+2s(Rn) ρ
κ+2s ρβ−κ ≤ C [v]Cβ+2s(Rn) ρ

κ+2s rβ−κ.

Since the same holds when x is replaced by y, we have that (7.8) when β+2s ∈ (0, 2]
follows from the above formula and the triangle inequality.

When instead β + 2s ∈ (2, 3), we take κ = min
{
β
2
, 1− s

}
and we use (7.1) and

the assumption that ρ ≤ r = |x− y| to deduce that
∣∣wρ,ω(x)− wρ,ω(y)

∣∣ ≤ C [v]Cβ+2s(Rn) ρ
2rβ+2s−2

= C [v]Cβ+2s(Rn) ρ
2s+κρ2−2s−κrβ+2s−2 ≤ C [v]Cβ+2s(Rn) ρ

2s+κr2−2s−κrβ+2s−2,

which provides the proof of (7.8) also in this case.
Having completed these preliminary estimates, we are now in the position to

estimate I1. For this, we use (7.8) and the fact that κ > 0 to see that, for any
fixed ω ∈ Sn−1,
∫ r

0

∣∣wρ,ω(x)− wρ,ω(y)
∣∣

ρ1+2s
dρ ≤ C [v]Cβ+2s(Rn) r

β−κ
∫ r

0

ρ2s+κ−1−2s dρ = C [v]Cβ+2s(Rn) r
β.

As a consequence, by integrating in ω ∈ Sn−1, we obtain that

(7.9) I1 ≤ C[v]Cβ+2s(Rn)r
β.

Now we estimate I2. We claim that

(7.10) I2 ≤ C[v]Cβ+2s(Rn)r
β.

To prove this, we distinguish two cases. If β + 2s ∈ (0, 1], we use (7.2) and the fact
that |x− y| = r to deduce that

∣∣wρ,ω(x)− wρ,ω(y)
∣∣ ≤ C [v]Cβ+2s(Rn) r

β+2s.

Therefore

I2 ≤ C [v]Cβ+2s(Rn) r
β+2s

∫ +∞

r

dρ ρ−1−2s = C [v]Cβ+2s(Rn) r
β,

which proves (7.10) in this case.
If instead β + 2s ∈ (1, 3) we use (7.4) to write

∣∣wρ,ω(x)− wρ,ω(y)
∣∣ ≤ C [v]Cβ+2s(Rn) r ρ

β+2s−1

and so to obtain that

I2 ≤ C [v]Cβ+2s(Rn) r

∫ +∞

r

dρ ρβ+2s−1−1−2s = C [v]Cβ+2s(Rn) r r
β−1.

This proves (7.10) also in this case.
By combining (7.9) and (7.10), we conclude that

|Lv(x)− Lv(y)| ≤ I1 + I2 ≤ C [v]Cβ+2s(Rn)r
β = C [v]Cβ+2s(Rn) |x− y|β,

from which the desired result easily follows. �
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Now we recall a useful, explicit barrier:

Lemma 7.2. Let φ(x) = (1 − |x|2)s+ and L be as in (1.6). Then Lφ(x) = c, for
every x ∈ B1, where c > 0 is a suitable constant, only depending on n and s.

Proof. Fix x = (x′, xn) ∈ B1, and let b =
√

1− |x′|2 and ξ = xn/b. Notice
that |x′|2 + x2

n < 1, thus

(7.11) |ξ| <
√

1− |x′|2
b

= 1.

Moreover, for any ρ ∈ R,

φ(x+ ρen) = (1− |x′|2 − |xn + ρ|2)s+ = (b2 − |bξ + ρ|2)s+ = b2s(1− |ξ + b−1ρ|2)s+.

As a consequence, writing φo(ζ) = (1− |ζ|2)s+, for any ζ ∈ R, and using the change
of variable t = b−1ρ,

(−∂2
n)sφ(x) =

∫

R

2φ(x)− φ(x+ ρen)− φ(x− ρen)

ρ1+2s
dρ

= b2s

∫

R

2(1− |ξ|2)s+ − (1− |ξ + b−1ρ|2)s+ − (1− |ξ − b−1ρ|2)s+
ρ1+2s

dρ

=

∫

R

2(1− |ξ|2)s+ − (1− |ξ + t|2)s+ − (1− |ξ − t|2)s+
t1+2s

dt

= (−∂2
n)sφo(ξ).

Now, we point out that φo is a function of one variable, and (−∂2
n)sφo = co, for

some co > 0, see e.g. [10]. Thus, recalling (7.11), we have that (−∂2
n)sφ(x) = co. By

exchanging the roles of the variables, we obtain similarly that

(−∂2
1)sφ(x) = (−∂2

2)sφ(x) = · · · = (−∂2
n)sφ(x) = co,

from which we obtain the desired result. �
With this, we can now construct our counterexample, by considering the planar

domain Ω ⊃ B4 in Figure A.

Proof of Theorem 1.2. The fact that u ∈ Cs(Ω) follows from Proposition 4.6 of [7].
Now suppose, by contradiction, that u ∈ C3s+ε

loc (Ω). Let θ ∈ C∞0 (B2) with θ ≡ 1
in B1, and let v = θu and w = u − v. Then v ∈ C3s+ε(Rn) and so, by Lemma 7.1
(being B1 there any ball in Rn), we have that Lv ∈ Cs+ε(Rn). Hence

(7.12) Lw = 1− Lv ∈ Cs+ε(Rn).

Now, we take η ∈ (0, 1) and we evaluate Lw at the two points x1 = 0 and x2 =
(0,−η). We notice that w = (1− θ)u, so w ≡ 0 in B1, hence w(x1) = w(x2) = 0 and

Lw(x1)−Lw(x2) =

∫ +∞

1/2

dρ

∫

Sn−1

da(ω)
w(x2 + ρω) + w(x2 − ρω)− w(ρω)− w(−ρω)

ρ1+2s
.
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4

−4

O
−6−8

Figure A. The domain of Theorem 1.2.

More precisely, since L has the form (1.6), the anisotropy takes the form in (1.5)
and we obtain that

Lw(x1)− Lw(x2)

= 2
2∑

i=1

∫

{|ρ|≥1/2}
dρ

w(x2 + ρei)− w(ρei)

|ρ|1+2s

= J1 + J2,

(7.13)

where

J1 = 2

∫

{|ρ|≥1/2}

w(ρ,−η)− w(ρ, 0)

|ρ|1+2s
dρ

and J2 = 2

∫

{|ρ|≥1/2}

w(0, ρ+ η)− w(0, ρ)

|ρ|1+2s
dρ.

Though the integrals J1 and J2 may look alike at a first glance, they are geometrically
very different: indeed the integral trajectory of J2 is transverse to the boundary
(hence the interior regularity will dominate the boundary effects), while the integral
trajectory of J1 sticks at the boundary (hence it makes propagate the singularity
from the boundary towards the interior). As an effect of these different geometric
behaviors, we will prove that

(7.14) J1 ≥ C−1ηs and |J2| ≤ Cηs+ε,

for some C > 1 (here C will denote a quantity, possibly varying from line to line,
which may depend on u, but which is independent of η). To prove (7.14) it is useful
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to observe that, since w vanishes outside Ω, the denominator in the integrands
defining J1 and J2 is bounded uniformly and bounded uniformly away from zero.
We set β = 2s/(1+2s) and we notice that β ∈ (0, 1). If ρ ∈ [−4,−4+ηβ]∪[4−ηβ, 4],
we use that w ∈ Cs(Rn) to obtain that

|w(0, ρ+ η)− w(0, ρ)| ≤ Cηs,

and so

(7.15) |J2| ≤ Cηβ+s + C

∫

{|ρ|∈[ 1
2
,4−ηβ ]}

|w(0, ρ+ η)− w(0, ρ)| dρ.

Also, if |ρ| ≤ 4− ηβ, we have that d
(
(0, ρ+ η), (0, ρ)

)
≥ ηβ − η ≥ ηβ/2, if η is small

enough. Hence we use Theorem 1.1(b) in [7] (applied here with α = s) and (7.12)
to see that

|w(0, ρ+ η)− w(0, ρ+ η)| ≤ C
(
‖w‖Cs(Rn) + ‖Lw‖Cs(Ω)

)
η3sd−2s

(
(0, ρ+ η), (0, ρ)

)

≤ Cη3s−2sβ

and therefore
∫

{|ρ|∈[ 1
2
,4−ηβ ]}

|w(0, ρ+ η)− w(0, ρ)| dρ ≤ Cη3s−2sβ.

This and (7.15) imply that

(7.16) |J2| ≤ Cηβ+s + Cη3s−2sβ = Cηβ+s.

This estimates J2. Now we estimate J1. To this goal, when ρ ∈ [−8 − 8
√
η,−8] ∪

[−6,−6− 8
√
η]∪ [4− 8

√
η, 4] we use again that w ∈ Cs(Rn) to obtain that |w(ρ,−η)−

w(ρ, 0)| ≤ Cη, and so

(7.17)

∣∣∣∣∣

∫

{ρ∈[−8− 8
√
η,−8]∪[−6,−6+ 8

√
η]∪[4− 8

√
η,4]}

w(ρ,−η)− w(ρ, 0)

|ρ|1+2s
dρ

∣∣∣∣∣ ≤ Cηs+
1
8 .

Furthermore, if ρ ∈ [−20,−8− 8
√
η] ∪ [−6 + 8

√
η, 4− 8

√
η] we have that

d
(
(ρ,−η), (ρ,−η)

)
≥ √η

if η is small enough, and thus, by Theorem 1.1(b) in [7], we see that

|w(ρ,−η)− w(ρ, 0)| ≤ C
(
‖w‖Cs(Rn) + ‖Lw‖Cs(Ω)

)
η3sd−2s

(
(0, ρ+ η), (0, ρ)

)

≤ Cη2s

and therefore

(7.18)

∣∣∣∣∣

∫

{ρ∈[−20,−8− 8
√
η]∪[−6+ 8

√
η,4− 8

√
η]}

w(ρ,−η)− w(ρ, 0)

|ρ|1+2s
dρ

∣∣∣∣∣ ≤ Cη2s.
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To complete the estimate on J1, in virtue of (7.17) and (7.18), it only remains
to consider the case in which ρ ∈ [−8,−6]. For this, if ρ ∈ [−8,−6], we have
that w(ρ, 0) = 0, and we claim that

(7.19) w(ρ,−η) ≥ cηs,

for some c > 0. To check this, fix ρ ∈ [−8,−6]. We notice that there exists ro > 0
(independent of ρ) such that the ball Bro(ρ,−ro) is tangent to ∂Ω at (ρ, 0). We
consider the function φ given by Lemma 7.2 (used here with n = 2), and we set

φ(x) = φo
(
r−1
o (x− (ρ,−ro))

)
=
(
1− r−2

o |x− (ρ,−ro)|2
)s

+
.

Exploiting Lemma 7.2 and the Comparison Principle, we obtain that u(x) ≥ cφ(x)
for any x ∈ Bro(ρ,−ro), for some c > 0. So, choosing x = (ρ,−η), we have that

|x− (ρ,−ro)|2 = |(0, ro − η)|2 = r2
o + η2 − 2roη ≤ r2

o − roη,
if η is small enough. So we obtain

u(ρ,−η) ≥ c
(
1− r−2

o |x− (ρ,−ro)|2
)s

+
≥ c
(
1− r−2

o (r2
o − roη)

)s
+

= cr−so ηs.

Since u(ρ,−η) = w(ρ,−η), thanks to the choice of the cutoff functions, the latter
formula proves (7.19), up to renaming constants.

Thus, using (7.19) (and possibly renaming c once again), we obtain that
∫

{ρ∈[−6,−8]}

w(ρ,−η)− w(ρ, 0)

|ρ|1+2s
dρ =

∫

{ρ∈[−6,−8]}

w(ρ,−η)

|ρ|1+2s
dρ ≥ cηs.

Consequently, recalling (7.17) and (7.18),

J1 ≥ cηs − Cηs+ 1
8 − Cη2s,

that gives J1 ≥ cηs, up to renaming constants. This and (7.16) complete the proof
of (7.14).

Now, by (7.12) and (7.14), we obtain that

C ≥ Lw(x1)− Lw(x2)

|x1 − x2|s+ε
≥ η−s−ε

(
J1 − |J2|

)
≥ η−s−ε

(
C−1ηs − Cηs+ε

)
≥ C−1η−ε

2
.

This is a contradiction if η is sufficiently small (possibly in dependence of the
fixed ε > 0). This shows that u cannot belong to C3s+ε

loc (Ω) and so the construction
of the counterexample in Theorem 1.2 is complete. �

Appendix A. Some basic results about the level sets of the distance
function in C1,1 domains

The goal of this appendix is to give some ancillary operational results about the
distance function from the boundary of C1,1 domains. The topic is of course of
classical flavor, and the literature is rich of results in even more general settings
(see e.g. [5]), but we thought it was useful to have the results needed for our scope
at hand, and with proofs that do not involve any fine argument from Geometric
Measure Theory.
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The following result states that a C1,1 domain satisfies an inner sphere condition,
in a uniform way. This is probably well known, but we give the details for the
convenience of the reader:

Lemma A.1. Let κ,K > 0 and Ω ⊂ Rn be such that

(A.1) Ω ∩B2κ = {x = (x′, xn) ∈ B2κ s.t. xn > h(x′)},
for a C1,1 function h : Rn−1 → R, with ‖∇h‖C0,1(Rn) ≤ K.

Then, there exists C > 0, only depending on n such that each point of (∂Ω) ∩Bκ

is touched from the interior by balls of radius

r =
1

2
min

{
κ, K−1

}
.

More explicitly, for any p ∈ (∂Ω)∩Bκ there exists q ∈ Rn such that Br(q) ⊆ Ω∩B2κ

and p ∈ ∂Br(q).
The point q is given explicitly by the formula

q = p− r (∇h(p′),−1)√
|∇h(p′)|2 + 1

.

Proof. Let p = (p′, pn) = (p′, h(p′)) ∈ (∂Ω) ∩ Bκ. By construction |p − q|2 = r2,
hence

(A.2) p ∈ ∂Br(q).

Moreover, if x ∈ Br(q) then

|x| ≤ |x− q|+ |q − p|+ |p| < 2r + κ ≤ 2κ,

hence Br(q) ⊆ B2κ.
Therefore, recalling (A.1), in order to show that Br(q) ⊆ Ω, it suffices to prove

that

(A.3) Br(q) ⊆ {x = (x′, xn) ∈ Rn s.t. xn > h(x′)}
To prove this, let

(A.4) x ∈ Br(q)

and define

ξ(x) = pn +∇h(p′) · (x′ − p′).
We claim that

(A.5) ξ(x) ≤ xn.

To check this, we use (A.2), (A.4) and the convexity of the ball to see that, for
any t ∈ (0, 1],

Br(q) 3 p+ t(x− p) = q +
r (∇h(p′),−1)√
|∇h(p′)|2 + 1

+ t(x− p).
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As a consequence

r2 >

∣∣∣∣∣
r (∇h(p′),−1)√
|∇h(p′)|2 + 1

+ t(x− p)
∣∣∣∣∣

2

= r2 + t2|x− p|2 +
2rt (∇h(p′),−1) · (x− p)√

|∇h(p′)|2 + 1

= r2 + t2|x− p|2 +
2rt√

|∇h(p′)|2 + 1

(
∇h(p′) · (x′ − p′)− (xn − pn)

)

= r2 + t2|x− p|2 +
2rt√

|∇h(p′)|2 + 1

(
ξ(x)− xn

)
.

(A.6)

Simplifying r2 to both the terms, multiplying by t−1
√
|∇h(p′)|2 + 1 and taking the

limit in t, we deduce that

0 ≥ lim
t→0+

t|x− p|2
√
|∇h(p′)|2 + 1 + 2r

(
ξ(x)− xn

)

= 2r
(
ξ(x)− xn

)
.

This proves (A.5) and we can now continue the proof of (A.3).
To this goal, we use again (A.6), here with t = 1, to observe that

0 > |x− p|2 +
2r√

|∇h(p′)|2 + 1

(
ξ(x)− xn

)

≥ |x′ − p′|2 +
2r√

|∇h(p′)|2 + 1

(
ξ(x)− xn

)
.

As a consequence,

h(x′)− xn = h(x′)− h(p′) + pn − xn
≤ ∇h(p′) · (x′ − p′) + ‖∇h‖C0,1(Rn)|x′ − p′|2 + pn − xn
≤ ξ(x)− xn +K|x′ − p′|2

< ξ(x)− xn +
2Kr√

|∇h(p′)|2 + 1

(
xn − ξ(x)

)

=
(
xn − ξ(x)

)
(

2Kr√
|∇h(p′)|2 + 1

− 1

)

(A.7)

Furthermore,
2Kr√

|∇h(p′)|2 + 1
≤ 2Kr ≤ 1.

By inserting this and (A.5) into (A.7) we conclude that h(x′) − xn < 0. This
completes the proof of (A.3) and thus of Lemma A.1. �
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As a consequence of Lemma A.1, we obtain that the level sets of the distance
function from a C1,1 domain are locally a Lipschitz graph:

Corollary A.2. Under the assumptions of Lemma A.1, there exists κ∗ ∈ (0, κ],
K∗ ≥ K > 0 only depending on n, κ and K such that for any t ∈ (0, κ∗] the level
set

(A.8) {x = (x′, xn) ∈ Bκ∗ s.t. d(x) = t}
lies in the graph of a Lipschitz function, whose Lipschitz seminorm is bounded by K∗.

Proof. First all all, we show that for any x′ ∈ Rn with |x′| ≤ κ∗ there exists a
unique xn(x′, t) ∈ R such that d(x′, xn(x′, t)) = t, i.e. the level set in (A.8) enjoys a
graph property (as long as κ∗ is sufficiently small).

Indeed, given x′ as above, we consider the point p = (x′, h(x′)) ∈ (∂Ω) given by
the graph property of ∂Ω. Notice that d(p) = 0. Also, by Lemma A.1 we know that
a tubular neighborhood of width r lies in Ω: points on the upper boundary of this
neighborhood stay at distance r > κ∗ ≥ t from ∂Ω. Therefore, by the continuity of
the distance function, we find `(x′, t) ≥ 0 such that d(p+ `(x′, t)en) = t. Notice that

p+ `(x′, t)en = (p′, pn + `(x′, t)) = (x′, h(x′) + `(x′, t))

hence we found a point xn(x′, t) = h(x′) + `(x′, t) with the desired properties.
We remark that the point (x′, xn(x′, t)) is unique in Bκ∗ . Indeed, suppose by

contradiction that (x′, xn), (x′, xn + ξ) ∈ Bκ∗ satisfy t = d(x′, xn) = d(x′, xn + ξ),
with ξ > 0. Since the gradient of the distance function agrees with the normal ν of
the projection π : Ω→ ∂Ω in the vicinity of the boundary, we obtain that

0 = d(x′, xn + ξ)− d(x′, xn) = ξ

∫ 1

0

∂nd(x′, x′ + τξ) dτ

= ξ

∫ 1

0

νn(π(x′, x′ + τξ)) dτ.

(A.9)

Notice that

νn =
1√

|∇h|2 + 1
≥ 1√

K2 + 1
,

thus (A.9) implies that

0 ≥ ξ√
K2 + 1

,

which is a contradiction, that shows the uniqueness of the value xn(x′, t).
Now we show the Lipschitz property of such graph. For this we observe that it

also follows from Lemma A.1 that the distance function in Bκ is semiconcave (see
e.g. Proposition 2.2.2(iii) in [2]), namely there exists C > 0, only depending on n,
κ and K, such that, for any x, y ∈ Bκ and any λ ∈ [0, 1],

(A.10) λd(x) + (1− λ)d(y)− d(λx+ (1− λ)y)) ≤ Cλ(1− λ)|x− y|2.
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Our goal is now to show that, for any x, y ∈ Bκ∗ , with d(x) = d(y) = t, we can
bound |xn−yn| by K∗|x′−y′|, for a suitable K∗. For this, without loss of generality,
up to exchanging the roles of x and y, we may suppose that

(A.11) xn ≥ yn.

So, fixed x and y as above, we let z = y − x and we obtain from (A.10) that

t = λt+ (1− λ)t ≤ d(x+ (1− λ)z) + C(1− λ)|z|2.
So we set ε = 1− λ ∈ [0, 1] and we obtain that

(A.12) t ≤ d(x+ εz) + Cε|z|2.
Let X = (X ′, Xn) ∈ ∂Ω such that t = d(x) = |x−X|. Then

x = X +
t (−∇h(X ′), 1)√
|∇h(X ′)|2 + 1

and

d(x+ εz) ≤ |(x+ εz)−X|

=

∣∣∣∣∣εz +
t (−∇h(X ′), 1)√
|∇h(X ′)|2 + 1

∣∣∣∣∣ ,

and so

d2(x+ εz) ≤ ε2|z|2 + t2 +
2εt z · (−∇h(X ′), 1)√
|∇h(X ′)|2 + 1

.

By comparing this and (A.12) we obtain

C2ε2|z|4 − 2εt C|z|2 =
(
t− Cε|z|2

)2 − t2

≤ d2(x+ εz)− t2 ≤ ε2|z|2 +
2εt z · (−∇h(X ′), 1)√
|∇h(X ′)|2 + 1

.

We divide by 2εt and then take the limit as ε→ 0+, hence we obtain

(A.13) − C|z|2 ≤ z · (−∇h(X ′), 1)√
|∇h(X ′)|2 + 1

.

Recalling (A.11), we also have that zn ≤ 0, and therefore (A.13) gives that

(A.14) − C|z|2 ≤ |∇h(X ′)| |z′|√
|∇h(X ′)|2 + 1

+
zn√

|∇h(X ′)|2 + 1
≤ |z′| − |zn|√

|∇h(X ′)|2 + 1
.

Now we observe that |z| ≤ |x|+ |y| ≤ 2κ∗, hence

C|z| ≤ Cκ∗ ≤
1

2
√

2(K2 + 1)
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if we choose κ∗ conveniently small. Thus we obtain from (A.14) that

|zn|√
K2 + 1

≤ |zn|√
|∇h(X ′)|2 + 1

≤ |z′|+ C|z|2 = |z′|+ |z|
2
√

2(K2 + 1)
.

In addition

|z| =
√
|z′|2 + |zn|2 ≤

√
2 max{|z′|2, |zn|2} =

√
2max2{|z′|, |zn|}

=
√

2 max{|z′|, |zn|} ≤
√

2
(
|z′|+ |zn|

)
,

therefore
|zn|√
K2 + 1

≤ |z′|+ |z′|
2
√
K2 + 1

+
|zn|

2
√
K2 + 1

and so, by taking the latter term to the left hand side,

|zn|
2
√
K2 + 1

≤ |z′|+ |z′|
2
√
K2 + 1

,

which establishes the desired Lipschitz property. �
Next is an auxiliary measure theoretic result that follows from Corollary A.2 and

the Coarea Formula:

Proposition A.3. Let Ω ⊂ Rn and p ∈ Ω. Assume that there exist κ > 0, N ∈
N ∪ {+∞} and K > 0 such that

∂Ω is covered by a family of balls Bκ(xi), with i ∈ {1, · · · , N} and xi ∈ ∂Ω,

with the property that ∂Ω ∩B8κ(xi) lies in a C1,1 graph

whose C1,1 seminorm is bounded by K,

(A.15)

for any i ∈ {1, · · · , N}.
Then, there exist κ∗ ∈ (0, κ), possibly depending on κ and K, and C > 0, possibly

depending on n, such that for any µ ∈ (0, κ∗] we have that∣∣{x ∈ Rn s.t. p+ x ∈ Ω ∩ AR1,R2,P and d(p+ x) ∈ [0, µ]
}∣∣

≤ CµHn−1
(
(∂Ω) ∩ AR1−µ,R2+µ,P

)
,

for any annulus AR1,R2,P = BR2(P )\BR1(P ), with P ∈ Rn, and R1, R2 > 0 with R2−
R1 > 2µ.

Proof. We can assume that Ω ∩ AR1,R2,P 6= ∅, otherwise we are done. Also, by
possibly translating Ω, we can suppose that p = 0.

We cover ∂Ω with a finite overlapping family of balls of radius µ centered at points
of ∂Ω, say Bµ(yj), with j ∈ {1, · · · ,Mµ}, for some Mµ ∈ N.

Notice that each ball Bµ(yj) is contained in some B2κ(xij): indeed, since yj ∈ ∂Ω,
the covering property implies that there exists ij ∈ {1, . . . , N} such that yj ∈
Bκ(xij); accordingly, if q ∈ Bµ(yj), then

|q − xij | ≤ |q − yj|+ |yj − xij | < µ+ κ ≤ 2κ,
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which says that Bµ(yj) ⊆ B2κ(xij).
This implies that we can apply (A.15) inside each ball Bµ(yj). As a consequence,

by Corollary A.2 the level sets of the distance function in Bµ(yj) are Lipschitz graphs
with respect to the tangent hyperplane of ∂Ω at yj, therefore

Hn−1
({
x ∈ Ω ∩Bµ(yj) s.t. d(x) = t

})
≤ Cµn−1,

for some C > 0. On the other hand (∂Ω) ∩Bµ(yj) is also a C1,1 graph with respect
to the tangent hyperplane of ∂Ω at yj and so

Hn−1
(
(∂Ω) ∩Bµ(yj)

)
≥ cµn−1,

for some c > 0. By comparing the latter two formulas, and possibly renaming C > 0,
we conclude that

(A.16) Hn−1
({
x ∈ Ω ∩Bµ(yj) s.t. d(x) = t

})
≤ CHn−1

(
(∂Ω) ∩Bµ(yj)

)
.

Let us now reorder the indices in such a way the balls Bµ(y1), · · · , Bµ(yLµ) intersect
the annulus AR1,R2,P , for some Lµ ∈ N, Lµ ≤ Mµ. The finite overlapping property
of the covering gives that

Lµ∑

j=1

Hn−1 ((∂Ω) ∩Bµ(yj)) ≤ CHn−1

(
(∂Ω) ∩

(
Lµ⋃

j=1

Bµ(yj)

))

and so, by set inclusions,

(A.17)

Lµ∑

j=1

Hn−1 ((∂Ω) ∩Bµ(yj)) ≤ CHn−1 ((∂Ω) ∩ AR1−µ,R2+µ,P ) .

Furthermore, the gradient of the distance function agrees with the normal of the
projection in the vicinity of the boundary (hence it has modulus 1), so we use the
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Coarea Formula and (A.16) to obtain that∣∣{x ∈ Ω ∩ AR1,R2,P s.t. d(x) ∈ [0, µ]
}∣∣

≤
Lµ∑

j=1

∣∣{x ∈ Ω ∩Bµ(yj) s.t. d(x) ∈ [0, µ]
}∣∣

=

Lµ∑

j=1

∫
{
x∈Ω∩Bµ(yj) s.t. d(x)∈[0,µ]

} dx

=

Lµ∑

j=1

∫
{
x∈Ω∩Bµ(yj) s.t. d(x)∈[0,µ]

} |∇d(x)| dx

=

Lµ∑

j=1

∫ µ

0

Hn−1
({
x ∈ Ω ∩Bµ(yj) s.t. d(x) = t

})
dt

≤ C

Lµ∑

j=1

∫ µ

0

Hn−1
(
(∂Ω) ∩Bµ(yj)

)
dt

≤ Cµ

Lµ∑

j=1

Hn−1
(
(∂Ω) ∩Bµ(yj)

)
.

This and (A.17) imply the desired result. �
When condition (A.15) is fulfilled, it is also possible to control the surface of ∂Ω

inside an annulus with the “correct power” of the size of the annulus itself. A precise
statement goes as follows:

Lemma A.4. Let Ω ⊂ Rn and assume that there exist κ > 0, N ∈ N ∪ {+∞}
and K > 0 such that ∂Ω is covered by a family of balls Bκ(xi), with i ∈ {1, · · · , N}
and xi ∈ ∂Ω, with the property that ∂Ω ∩ B8κ(xi) lies in a C1,1 graph whose C1,1

seminorm is bounded by K, for any i ∈ {1, · · · , N}.
Suppose also that Ω is bounded, with diameter less than D. Then, there exists C >

0, possibly depending on κ, K and D, such that

(A.18) Hn−1
(
(∂Ω) ∩ AR

)
≤ CRn−1,

for any R > 0, where AR = B8R \BR.

Proof. First of all, we show that for any r ∈ (0, κ/2] and any p ∈ Rn,

(A.19) Hn−1
(
(∂Ω) ∩Br(p)

)
≤ Crn−1.

To prove this, we may suppose that (∂Ω) ∩ Br(p) 6= ∅, otherwise we are done.
Hence, let q ∈ (∂Ω) ∩ Br(p). By assumption, there exists i ∈ {1, · · · , N} such
that q ∈ Bκ(xi). We observe that if y ∈ Br(p) then

|y − xi| ≤ |y − p|+ |p− q|+ |q − xi| < r + r + κ ≤ 2κ,
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hence Br(p) ⊆ Bκ(xi).
Consequently, (∂Ω) ∩ Br(p) lies in a Lipschitz graph, with Lipschitz seminorm

controlled by K and thus

Hn−1
(
(∂Ω) ∩Br(p)

)
≤
∫

{x′∈Rn−1 s.t. |x′|≤r}

√
K2 + 1 dx′ ≤ Crn−1,

and this proves (A.19).
Now we complete the proof of (A.18). We distinguish two cases: either R ≤ κ/2

or R > κ/2.
If R ≤ κ/2, we cover B8\B1 by a family of balls of radius 1/4. By scaling, this pro-

vides a finite number of balls of radiusR/4 that coverAR, sayBR/4(q1), · · · , BR/4(qM)
(notice that M is a fixed, universal number). Then, by (A.19),

Hn−1
(
(∂Ω) ∩ AR

)
≤

M∑

i=1

Hn−1
(
(∂Ω) ∩BR/4(qi)

)
≤ CRn−1,

which proves (A.18) in this case.
Thus, we now deal with the case R > κ/2. For this, we consider a non overlapping

partition of Rn into adjacent (closed) cubes of side κ/n (in jargon, a κ/n-net of Rn).
Notice that the number of these cubes needed to cover AR in this case depends
on κ (which is fixed for our purposes, since the constant C in (A.18) is allowed to
depend on κ) but also on R, therefore we need a more careful argument to bound
the number of such cubes that really play a role in our estimates. Indeed, we claim
that

the number of cubes which intersect ∂Ω is bounded

by some Co > 0 which depends only on D and κ.
(A.20)

To prove this, we may suppose that there is a cube Q∗, that intersects ∂Ω, oth-
erwise (A.20) is true and we are done. So let P∗ ∈ (∂Ω) ∩ Q∗. Let F0 = {Q∗}
and U0 = Q∗. Then, we define F1 the set all the cubes adjacent to U0 = Q∗, and we
let

U1 =
⋃

Q∈F0∪F1

Q.

Then, we let F2 the set of cubes adjacent to U1 and we set

U2 =
⋃

Q∈F0∪F1∪F2

Q,

and so on, iteratively, we let Fi+1 the set of cubes adjacent to Ui and

Ui+1 =
⋃

Q∈F0∪···∪Fi+1

Q.

Notice that Ui is a cube of side (2i+ 1)κ/n, that has Q∗ “in its center”, that is

dist (∂Ui, Q∗) = inf
a∈∂Ui, b∈Q∗

|a− b| = i.
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Also, if Q] ∈ Fi is such that (∂Ω) ∩ Q] 6= ∅, namely there exists P] ∈ (∂Ω) ∩ Q],
then we have that |P] − P∗| ≤ D, thanks to the property of the diameter. Also,

dist (P], Q∗) ≥ dist (∂Ui−1, Q∗) = i− 1

and sup
a∈∂Q∗

|P∗ − a| ≤ κ.

Therefore
D ≥ |P] − P∗| ≥ i− 1− κ,

hence i ≤ D + 1 + κ.
This means that the cubes that intersect ∂Ω lie in Ui, with i ≤ D+1+κ. Since Ui

contains (2i + 1)n/nn cubes, the number of cubes of the net which intersect ∂Ω is
at most (2(D + 1 + κ) + 1)n/nn, which proves (A.20).

Furthermore, if Q is a cube of the family, we have that Q is contained in the ball
of radius κ with the same center of Q: hence, by (A.19),

Hn−1
(
(∂Ω) ∩Q

)
≤ Cκn−1.

From this and (A.20), we obtain that

Hn−1
(
(∂Ω) ∩ AR

)
≤

∑

Q s.t. (∂Ω)∩Q6=∅

Hn−1
(
(∂Ω) ∩Q

)

≤
∑

Q s.t. (∂Ω)∩Q 6=∅

Cκn−1 ≤ CoCκ
n−1.

Then, since we are assuming in this case that R > κ/2,

Hn−1
(
(∂Ω) ∩ AR

)
≤ 2n−1CoCR

n−1,

which proves (A.18) also in this case, up to renaming constants. �
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