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Abstract

The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular
differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and
intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to
investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given
proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes
constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing
certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the
cells in the various types.
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Introduction

Cellular responses to external stimuli characterize structural and

functional cellular processes. These responses on the other hand

are determined by the dynamics of the underlying genetic

networks. Therefore, the understanding of their dynamical

characteristics can be used to generate novel insight into the

properties of gene regulatory networks. In dynamical systems

theory, the investigations how system-level behavior changes as a

function of particular parameter, using a given deterministic

model, is subject of bifurcation analysis. Determining mathemat-

ically the existence, number and stability of distinct attractors

(steady states and limit cycles) provides a detailed and compre-

hensive picture of the dynamical structure of the system, from

which various functional properties can be further extrapolated.

It is known, for e.g., that cells in multicellular organisms switch

between distinct cell fates, such as proliferation or differentiation in

specialized cell types. Theoretical studies of complex networks

suggest that they can exhibit organized dynamics, e.g. have a

number of stable attractors in which large fractions of the genes

exhibit identical behavior (steady or oscillatory), despite their

global interdependence. This raises the possibility that attractor

states represent various cell types [1–5], or more generally,

different cell fates [6,7].

However, this approach is too idealistic because cellular

networks are inherently noisy. It was shown that noise can shift

or join basins of attraction, i.e. straightforward correspondence

between deterministic attractors and their stochastic counterparts

can not be established. Therefore, we generalize here the

deterministic systems theory to stochastic dynamical systems and

investigate the complexity of genetic networks’ behavior in terms

of stochastic bifurcations. In general, stochastic bifurcations are

characterized with a qualitative change of the stationary

probability distribution, e.g., a transition from unimodal to

bimodal distribution [8–11]. Such a change in the distribution

results in a change of other stochastic characteristics of the system

that can be observed experimentally as well (e.g. variances,

correlation functions and power spectra of the oscillations).

Additionally, stochastic bifurcations can also become apparent

through a change of stability of trajectories belonging to a certain

set with a given invariant measure [12]. The first type of stochastic

bifurcations is called P-bifurcations (phenomenological bifurca-

tions), whereas the second one, D-bifurcations (dynamical

bifurcations) [13]. Moreover, stochastic bifurcations can also

consist of two steps: P-bifurcations and D-bifurcations, separated

in the parameter space by a certain bifurcation interval. Thus, this

approach generally provides a qualitative description of the

system’s behavior, both, when estimating its bifurcation structure

from noisy experimental data or when analyzing it using a given

mathematical model.

Here, we address the question how (large) complex networks

can give rise to various coherent responses (associated with

deterministic stable attractors) under stochastic influence. In

particular, we study the qualitative transformation of the

distribution of the phase variables of identical genetic oscillators

which constitute the synthetic genetic network under consider-

ation. In the deterministic limit, the network displays multistable

behavior, which in turn contributes to the complex behavior which

is observed in the stochastic case. Additionally, in order to explain

the ubiquitous nature of cellular diversity in multicellular

organisms, it is important to understand how the reaction

dynamics allowing for cell differentiation evolves in relation to

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19696



the intercellular dynamics of the network and the inherent

stochasticity. Thus, using the concept of stochastic bifurcations

and adopting a dynamical systems model, we propose a

description for terminal cell fate in a stochastic environment. In

particular, we consider the dynamics of cellular network to be

determined by two separate factors: i) stochastic and ii) external

factor. Under stochastic factor we understand the presence of

random fluctuations which can arise from infrequent molecular

events involving small number of molecules. Additionally, the

presence of stochastic fluctuations in genetic networks can be

regarded as a ‘‘survival factor’’. It is known e.g., that a sufficient

amount of noise can induce jumps between coexisting states in the

network [14]. This can be interpreted as an ability of the system to

adapt to changing environmental conditions. In addition to the

stochastic factors, the dynamics of genetic networks is very often

determined via the influence of external factors, such as external

environmental signals or a (co)regulating network in the system.

Hence, we investigate separately how the influence of these factors

is reflected in the dynamical structure of genetic networks and

describe the stochastic bifurcation transitions which occur under

the given system’s conditions.

Methods

Structure of the Model
Recently, the study of complex biological networks has profited

from the notion of reduced complexity which synthetic biology

offers. In particular, the design of artificial genetic units resembling

submodules of natural circuitry (e.g. switches [15,16] and

oscillators [17–20]) on the one hand offers the opportunity to

study specific cellular functions and signaling pathways for which

limitations occur in the natural environment, and on the other

hand, it allows to investigate synthetic systems for improvement or

regulation of given biological properties. Thus, we consider here a

model proposed in Ref. [21], that describes a population of

synthetic gene relaxation oscillators coupled via intercellular

signaling mechanism, known as quorum sensing mechanism.

The usage of oscillating units in the study of dynamical properties

of genetic networks in general is of significant importance, since a

vast range of proteins that govern fundamental physiological

processes, such as insulin secretion [22], cell cycle and circadian

rhythms [23,24] display oscillatory behavior.

The underlying genetic circuit (Fig. 1) contains a toggle switch

composed of two genes, lacI, denoted here as u, and cI857 (v), that

inhibit each other by repressing transcription from their respective

promoters P1 and P2. This circuit is known to lead to bistable

behavior [15]. The promoter P2 also drives the expression of a third

gene, luxI (w) that synthesizes a small autoinducer (AI ) molecule,

which is able to diffuse in and out of the cell. The AI activates

transcription of promoter P3. Placing a second copy of the u gene

under the control of this promoter provides both an additional

feedback loop to the toggle switch, and a mechanism that couples

the switch to all cells in the population via quorum sensing.

The time evolution of the proteins involved in the genetic circuit

represented in Fig. 1 can be described by the following

dimensionless equations:

dui

dt
~a1f (vi){uiza3h(vi) ð1Þ

dvi

dt
~a2g(ui){vi ð2Þ

dvi

dt
~e(a4g(ui){vi)z2d(ve{vi)zji(t) ð3Þ

dve

dt
~

de

N

XN

i~1

(vi{ve) ð4Þ

where the subindex i denotes the cell index, with N being the total

number of cells. The activity of the promoters P1, P2 and P3 are

described by the Hill functions f (v), g(u) and h(w), respectively,

defined as:

f (v)~
1

1zvb
, g(u)~

1

1zuc
, h(w)~

wg

1zwg
: ð5Þ

The parameters a1 and a2 determine the expression strength of

the toggle switch genes, while a3 represents the activation of u

from promoter P3. The expression of the lux gene w is measured

by the parameter a4. we stands for the extracellular and wi for the

intracellular concentration of AI . Time has been rescaled by the

lifetime of u and v, assumed to be equal. The parameter e
measures the ratio between the lifetimes of the toggle-switch genes

and the AI and is assumed to be small. This separates the

dynamics of the cells into two very different time scales: with fast

dynamics of u, v and we and slow dynamics of wi. Thus, the

parameter e controls the stiffness of the oscillator and therefore it

has a constant, nonzero value, which we fix here at 0.01. The

dynamics of the AI (investigated in detail in [21]) introduces an

additional feedback loop into the toggle switch and can lead to

oscillatory behavior even in isolated cells [21]. The coupling

coefficients d and de depend mainly on the diffusion of the AI

through the cell membrane. We assume that the experiments are

carried out in a continuously stirred, constant volume flow reactor.

The extracellular medium is homogeneous and the number of cells

is kept constant by continuous dilution of the cell culture by the

steady inflow of fresh growth medium and outflow of extracellular

medium and cells.

One can biologically manipulate the relevant parameters by

controlling e.g. the number of plasmids per cell, protein decay rate

or pH of the solution etc., which enables experimental control of

the circuits dynamics. The stochastic factor is represented using an

additive noise source ji(t), which is a Gaussian white noise with

zero mean and correlation given by Sji(t)jj(t’)T~2Ddijd(t{t’),
where dij is the Kronecker delta, d(t{t’) is the Dirac function and

D is the constant that characterizes the noise intensity.

The corresponding stochastic differential equations are of

Langevin type. The numerical integration is done using the

scheme, based on the Euler – Maruyama difference approxima-

tion and correction according to the Heun method [25,26].

We note here that a multiplicative noise source does not change

qualitatively the results presented in this work (results not shown).

Furthermore, we model the influence of various external factors in

its most simplified sense, using external harmonic forcing. In this

case, the Eq. 1 is substituted with

dui

dt
~a1f (vi){uiza3h(vi)zC cosvext ð6Þ

Here, C represents the amplitude of the external force, whereas

vex describes its frequency.

Stochastic Behavior of Cellular Networks
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Results

Dynamical behavior of a single cell
Stochastic bifurcation structure. The dynamical structure

of cellular networks is influenced by the characteristics of its

constituent parts (distinct cells), whose behavior however displays

changes when switching from deterministic to stochastic

dynamical systems representations. Therefore, we evaluate

initially the dynamical changes which occur in a single cell

especially when the expression strength of one of the genes

(constituting the genetic oscillator), the parameter a1, is changed.

The resulting bifurcation diagram in Fig. 2a (Fig. 2a, zoomed

region) shows that the system is characterized with bistability in the

deterministic case: two co-existing attractors are present in the

phase plane – a stable focus F and a stable limit cycle L separated

by the unstable limit cycle L’ (the phase portrait for the bistability

area is shown in Fig. 2b). Moreover, the bistability region is

bounded by a tangent bifurcation from one side (a1~2:8605) and

a subcritical Hopf bifurcation (a1~2:8640) from the other one.

However, the behavior of the cells in reality is not deterministic.

This implies that under the influence of noise, the structure which

we observed in the deterministic case will not be sustained.

Figs. 3a–d demonstrate phase portraits of a single oscillator for

different a1 values and noise intensities D. In particular, for small

noise intensity (D~10{5), even for a1~2:85, for which in the

deterministic case there exist only one attractor, the stable focus F ,

the system performs an oscillatory behavior, similar to the motions

on the limit cycle, as shown in Fig. 3a (the phase portrait for the

same noise intensity, but for a1~3:35 is shown in Fig. 3c).

Therefore, we can state that the behavior of the system is very

similar to those of excitable systems. The corresponding stochastic

structure is characterized with one invariant set of trajectories in

the phase space. For larger noise intensities (e.g. D~10{4) then,

two main areas can be identified in the phase projections (A and B
in Figs. 3b,d), where the stochastic trajectories spend dominant

part of time. These areas correspond to the minimal (A) and

maximal (B) concentration levels of the expressed LacI protein -

the upper and the lower branches of the limit cycle.

In order to analyze in detail the stochastic behavior of the

cellular system in terms of stochastic bifurcations, we look next at

the qualitative changes of the stationary probability distributions of

the protein concentrations u. In the case of a single oscillator and

for small noise intensities, the trajectories spend most of the time in

the vicinity of the focus (which is the only stable solution in the

deterministic case), and the distribution has one maximum (curve

1 in Fig. 4a). A subsequent increase of the noise intensity D results

in more frequent visits of the phase trajectory to regions away from

the origin. In other words, the noise induces oscillations in the

Figure 1. A simplified scheme of the genetic network under investigation. Mutually repressing genes u and v form the toggle switch inside
separate cells. The AI molecule denoted as w, diffuses through the membrane, providing intercell coupling.
doi:10.1371/journal.pone.0019696.g001
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vicinity of the cycle, manifested with the appearance of two

additional maxima in the distribution (corresponding to the upper

and lower u values of the cycle). Hence, the distribution evolves

with D. For D&0:00001 a transition from unimodal to

multimodal distribution (curve 2 in Fig. 4a) occurs, i.e. the first

stochastic P-bifurcation takes place. In the case of stronger noise

intensity, however, the trajectory finds itself very rarely in the

vicinity of the stable focus. Thus, the maximum corresponding to

the focus decreases and shifts to the left, and for D&0:0001 it

merges with one of the maxima of the cycle and disappears. Here

the second stochastic bifurcation occurs, i.e. we observe a

transition from a multimodal to a bimodal distribution (curves 3
and 4 in Fig. 4a). Hence, the trajectory oscillates in the area where

in the noiseless case the cycle is located.

In contrast to the paradigmatic mathematical model we have

considered in our previous investigations [27], it is important to

note here that in the case of genetic synthetic units, we observe

qualitative transformation of the distribution of the phase variables

themselves (not the distribution of the amplitude). The peculiarities

of this probability distribution characteristics in the presence of

noise are then interrelated with the deterministic location of the

attractors in the model considered. In particular, the focus in the

phase space is situated very close to the one side of the noise-

induced stochastic cycle (see phase portrait for the noiseless case in

Fig. 2(b), and the phase portraits in the presence of noise in

Figs. 3a–d). For a1~2:85, the focus is located on the left side of the

stochastic cycle, close to the area A (Figs. 3a,b), where the

probability distribution p(u) has a maximum. For a1~3:35, the

focus shifts to the right side of the cycle and is close to the area B

(Figs. 3c,d). Thus, the contribution of the oscillations with larger

amplitude grows as the noise intensity D increases. Therefore, we

observe a shifting of the peak corresponding to the focus to the

direction of the cycle: for a1~2:85, the peak shifts to the left, as

shown in Fig. 4a (for a1~3:35, the peak shifts to the right - results

not shown). The further increase of the noise intensity D causes the

disappearance of this peak, and consequently to the stochastic

bifurcation. Due to the symmetry of the system, similar stochastic

bifurcations take place near the HB2. The difference is that the

peak of the fixed point is shifted to the right, because in the

deterministic case the focus is located close to the upper value of

the cycle.

It is known that simulations of Langevin equations along the

same lines as those considered here correlate well with a discrete

description of the biochemical processes involved using, e.g., the

Gillespie approach [28]. However, we have calculated addition-

ally, using a simplied approach, the probability distributions

obtained within a discrete description. For this purpose, we

rewrote the stochastic model (1)–(4) in the Ito form i.e.,

introducing explicitly the Stratonovich drift term [29]. A typical

probability distribution calculated with modified Gillespie algo-

rithm as well as the distribution obtained using Langevin approach

are shown in Fig. 4b. The results in both cases are qualititavly the

same. Therefore, further on, we use the Langevin equations.

Additionally, the characteristic lines of the stochastic bifurca-

tions which determine the transitions between different manifes-

tations of the probability distributions are shown in Fig. 4c. The

Figure 2. Characteristics of a single oscillator in the deterministic case (D~0). (A) Bifurcation diagram. Solid lines correspond to stable, and
dashed lines to unstable solutions. The dash-dotted line indicates the unstable focus. (B) Phase portrait for the bistability region. F denotes the stable
focus, L and L

0
– the stable and unstable limit cycles, correspondingly. Unless noted differently, the parameters are defined as follows: N~1, a2~5,

a3~1, a4~4, b~c~g~2, e~0:01 and (B) a1~2:861.
doi:10.1371/journal.pone.0019696.g002
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bifurcation diagram in the a12D plane displays the distinct areas

numerated according to the number of maxima (one, two or three)

of the probability distribution. Thus, in region 1 the distribution

has one maximum, corresponding to the focus. It is bounded with

the line l1 from the right side, characterizing the stochastic

transitions to the region 3, and the appearance of two additional

maxima corresponding to the cycle - the distribution of the phase

variable now has three peaks. Furthermore, on the line l2 the

central maximum disappears or interflows with the left maximum

of the cycle, and the distribution becomes bimodal. Hence, the

lines l1 and l2 stand for the appearance respectively disappearance

of maxima corresponding to the cycle and fixed point in the

distribution p(u) and, therefore, mark the stochastic P-bifurcations.

We note here that these lines (particularly the line l2) are plotted

approximately, taking into account the complexity of the

identification of the number of maxima in the numerical

experiment. Moreover, it is complicated to understand what

happens on the line l1, after it joins the line l2. We suppose that the

maximum of the fixed point coincides with the left maximum of

the cycle and as a result, an increase of the right maximum of the

cycle is observed.

In Fig. 4c, the dashed vertical lines correspond to a tangent

bifurcation (the left line) and the subcritical Hopf bifurcation (the

right line), which bound the bistability region in the deterministic

case. On the other hand, the presence of the three-peak distribution

(region 3 in Fig. 4c) in the stochastic case is similar to the bistability

in the deterministic case, since the corresponding peaks for the focus

and the limit cycle are observed in the distribution. However, the

parameter area where region 3 is observed in the stochastic case is

significantly larger then its deterministic counterpart. We can infer

that the analog of the bistability region significantly changes

(increases) in the presence of noise.

It is important to note that even for a1 parmeter values for

which in the deterministic system the cycle is located, we have

observed in the stationary probability distribution, although

slightly visible, a peak which is characteristic for the focus (results

not shown here). Under stochastic influence, however, for the

same a1 values this peak becomes significantly more pronounced.

This is due to the fact that the focus is very close to the cycle in the

phase plane, as it was mentioned before. Therefore, the rotation

on the cycle is not uniform; when the trajectory approaches the

focus, it slows down (decelerates). This allows for the generation of

three-peak distributions for small noise intensities even for

a1wa1HB, which characterizes the right-hand-side border of the

deterministic bistability region.

As we have shown, even in the single-cell case, under stochastic

influence, the levels of expressed protein concentration can vary

with respect to the amount of noise present in the system. This

means that the cellular genetic unit compensates for the

fluctuation in the system by adapting the concentration levels to

specific intervals, most profitable for the cell under given

conditions (noise intensity present).

Figure 3. Phase portraits of a single oscillator for a1~2:85 and different values of the noise intensity D: (A) D~0:00001 and (B)
D~0:0001 and for a1~3:35 and (C) D~0:00001 and (D) D~0:0001. A and B indicate the areas in which the stochastic trajectories spend most of
the time.
doi:10.1371/journal.pone.0019696.g003
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Previously, it was shown that for isochronous systems (the

frequency of oscillations does not depend on their amplitude) near

the subcritical Hopf bifurcation, an effect similar to coherence

resonance (CR) can be observed [27,30]. The CR phenomenon,

also known as autonomous stochastic resonance, shows that an

optimal amount of noise enhances an intrinsic periodic behavior in

stochastic nonlinear systems [31]. However, the model of the

genetic circuit we consider here is rather anisochronous (i.e. the

frequency depends on the amplitude of oscillations). Nevertheless,

the degree of this dependence, or the difference between the

frequencies of oscillations near the fixed point F and far away

from it, is rather small. This allows for a CR-like effect to be

observed here, manifested through a minimal width of the

spectrum for intermediate noise intensities (Fig. 5a,b). These

values of the noise intensity are further related to the D value at

which the stochastic bifurcation takes place. In the current case,

the CR-like effect is observed in the vicinity of the bottom part of

line l1, in the region to the left of the tangent bifurcation of the

deterministic system. In particular, for a1~2:83 respectively 2:85

and small noise intensity (region 1 in Fig. 4c), the spectral

maximum corresponds to the frequency of oscillations near the

focus F (curve 1 in Fig. 5a,b). As the contribution of the

oscillations on the stochastic cycle grows with the increase of noise,

a second spectral maximum at a lower frequency appears,

corresponding to the oscillations on the stochastic cycle. Since

the frequencies of these two maxima are close to each other, one

wide spectral line is observed near the stochastic bifurcation line l1
(curve 2 in Fig. 5a,b). Above this line (l1), however, the spectral

maximum is determined mainly by the oscillations on the cycle.

Thus, near l1 the spectrum narrows down (curves 3 in Fig. 5a,b).

When the noise intensity is increased even further, then the

spectrum becomes wider again (curves 4 in Fig. 5a,b). This means

that an optimal value of the noise intensity exists, for which the

spectrum of stochastic oscillations has minimal width: the effect of

CR depends on the distance from HB1 (distance from

a1HB1
~2:864). The more this value is approached, the CR-like

effect becomes more pronounced (the CR-like effect is more

evident for a1~2:85 then for a1~2:83, as shown in Fig. 5).

Figure 4. Stochastic bifurcations in a single oscillator. (A) Probability distributions p(u) for a1~2:85 and different values of D (indicated in the
figure). (B) The comparison of probability distributions p(u) for the Gillespie algorithm (red curves) and Langevin equations (black curves) calculated
for a1~2:86 and D~0:001. (C) Stochastic bifurcation diagram in the a12D plane. The regions of the diagram are numerated according to the
number of maxima of the probability distribution. Lines l1 and l2 stand for the stochastic bifurcations. The dashed vertical lines correspond to a
tangent bifurcation (the left line) and the subcritical Hopf bifurcation (the right line) in the deterministic system.
doi:10.1371/journal.pone.0019696.g004
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This CR-like effect which we demonstrate here shows that for

specific, intermediate noise intensities, the genetic unit displays

most ordered dynamical behavior, even under ongoing stochastic

influence. We speculate that the noise which is inherently present

in biological systems is profitable for the underlying networks,

resulting in a coordinated dynamical behavior.

Cellular fate controlled by external signal. The

expression of a particular protein of interest is in general

determined via the influence of ‘‘external’’ factors, such as

environmental signals or (co)regulating networks in the cellular

organism. Hence, despite stochastic influence, the dynamics of the

network is influenced also by external signals, which contribute to

the regulation of the gene expression in the system. The form and

the strength of interaction which leads to regulation of protein

expression can vary from standard periodic signals (e.g. genes

which are regulated via the circadian clock) to complex ones which

integrate the outputs from various genetic and/or signaling

networks. In what follows we investigate, in the most simplified

form, the influence of external factors on protein production, if a

periodic signal signal is considered under stochastic conditions.

The system is now described by substituting Eq. 1 with Eq. 6. For

a small amplitude of the external forcing and under very small

noise (D of order 10{6), the spectrum becomes very wide, but it is

possible to distinguish two separate frequencies, the

eigenfrequency of the oscillator v0 and the frequency of the

external signal vex. As already discussed, in the presence of noise,

oscillations are induced in the system to the left of the tangent

bifurcation. A further increase of the amplitude value results in

shifting of the line of eigenoscillations towards the frequency of

forcing (Fig. 6). The corresponding effect does not change when

considering cellular networks of any size (results not shown). Thus,

external factors influence strongly the expression of a particular

gene, by modifying the intervals of expression of the particular

protein. Additionally, the strength of interaction translated in the

amplitude of the external signal influences the regulation of the

protein expression, by adapting the eigenfrequency of protein

expression.

Estimating stochastic bifurcations of genetic networks
The dynamical structure of coupled cellular systems differs from

the single cellular unit. In particular, we have shown in [32] that

the network of synthetic genetic oscillators which we investigate

here is characterized with inherent multistability and multi-

rhythmicity, due to the inhibitory, phase-repulsive coupling which

is present. Moreover, the dynamics of the genetic network gives

further insight into its functional properties. Thus, in order to

investigate in detail the dynamics of the coupled system under

stochastic influence, we restrict initially our stochastic bifurcation

Figure 5. The normalized power spectra for a single oscillator and (A) a1~2:83, (B) a1~2:85 and different values of D (indicated in

the figure). The normalized spectrum is S(v)~10lg
G vð Þ
Gmax

, where G(v) is the spectral power density of the oscillations u(t) and Gmax is its maximal

value.
doi:10.1371/journal.pone.0019696.g005

Figure 6. The power spectra for a single oscillator in the
presence of noise and external harmonic forcing for a1~2:85,
D~0:000008 and different values of the external force ampli-
tude C (indicated in the figure). The eigenfrequency is marked as
v0 . The frequency of the external forcing is vex~0:038. For
convenience of the comparison of the results, the spectral power
density G(v) is not normalized here.
doi:10.1371/journal.pone.0019696.g006
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analysis on the minimal case of N~2 coupled cells. Finally, we

generalize the obtained results on a illustrative example of N~500
coupled cells.

One of the characteristic features of the coupled cellular system

is the presence of two separate Hopf bifurcations, extremely close

to each other in the parameter space (in Fig. 7a, HB1 is located at

a1~2:864 and HB2 at a1~2:869). The Hopf bifurcations HB1

and HB4 give rise to a branch of periodic orbits, corresponding to

a synchronous in-phase solution, whereas HB2 and HB3 give rise

to anti-phase solution. Additionally, a secondary bifurcation

structure appears through a pitchfork bifurcation (labeled PB in

Fig. 7a) on the anti-phase branch, resulting in a stable asymmetric

regime. This regime is characterized with the presence of large

and small amplitude oscillations in one attractor (for a detailed

explanation of the dynamical regimes, see [32]). Due to the

complexity of the bifurcation structure of the system, and in oder

to investigate the stochastic transitions more accurately, we divide

the characteristic a1 parameter interval in two separate parts,

a1[½2:85,2:9� and a1[½3:2,3:4�.
For a fixed parameter (from the first interval) a1~2:872, e.g.,

the coupled system displays a complex multistable structure,

including an unstable focus, a stable in-phase cycle, an unstable

anti-phase cycle, stable asymmetric branches (of the small and

large amplitude oscillations) and an unstable cycle from the

asymmetric branch (Fig. 7b).

In the presence of noise, however, a one-to-one correspondence

between the deterministic and the stochastic attractors can not be

established, since under noise, the lifetime of the attractors is rather

short, or they merge. Therefore, it is appropriate to investigate the

dynamical changes in the coupled system from the aspect of

transformations of the distribution of the phase variable in terms of

phenomenological stochastic bifurcations. We demonstrate here

two separate cases: i) the system is located left to the tangent

bifurcation, a1~2:8, and in the deterministic case only the focus is

stable, and ii) a1~2:872, right after the HB2, where the coexistence

of five separate attractors is present, two of them are stable (the

attractor of the in-phase oscillations and the attractor of the

asymmetric oscillations, which is manifested via two separate stable

branches - one corresponding to small, and one to large amplitude

oscillations). For a1~2:8 and a small noise intensity (D~10{5), the

trajectory naturally spends most of the time in the vicinity of the

focus and the resulting distribution has one maximum (Fig. 8a). This

means that under very small amount of noise, the genetic network

produces rather constant protein concentrations, determined by the

peak of the probability distribution. An increase of the noise

intensity D, however, leads to more frequent visits of the trajectory

to the region far away from the origin, inducing oscillations in the

vicinity of the stable cycles which exist here. Again, a stochastic

P{bifurcation occurs: a transition from a unimodal (for D~10{5)

to a bimodal distribution (D~5:10{4) (Fig. 8b). We can state that

the increase in D influences the dynamical behavior of the genetic

network, manifested through changes in the probability for synthesis

of a given protein, the LacI in this case. The system has now a

complex trajectory, resulting in a possibility that the genetic network

expresses different LacI concentration levels, manifested through

peaks in the corresponding probability distribution. For a1~2:872
however, due to the presence of six separate branches (in the

deterministic case), even for small noise intensities, i.e. of the order

10{5, a clear multipeak distribution is manifested for the protein

concentration of the observed gene (Fig. 8c). The positioning of the

peaks in the distribution resembles the stable attractors in the

deterministic case: the middle peak of the distribution, e.g., in Fig. 8c

corresponds to the positioning of the focus and the stable branch of

the small amplitude oscillations. Thus this peak is more pronounced

in the corresponding distribution. For increased noise intensity (i.e.

D~5:10{4) however, we can not establish any longer direct

correspondence to the deterministic attractors. The trajectory which

the system performs in the phase plane is again complex, and

further leads to the disappearance of the middle peak in the

distribution, characteristic for D~10{5. Thus, a clear, bimodal

distribution emerges (Fig. 8d).

For large a1 values the positioning and the number of stable

attractors in the deterministic case changes. Namely, for

a1[½3:2,3:4� the asymmetric oscillations loose, whereas the anti-

Figure 7. Characteristics of two coupled oscillators (N~2) in the deterministic case (D~0) close to HB1 and HB2. (A) A fragment of the
bifurcation diagram. Here and in the following charts, the black lines stand for the in-phase oscillations, red for the anti-phase and blue for the
asymmetric oscillations. Solid lines correspond to stable solutions, dashed lines for unstable, and dash-dotted line indicates the unstable focus. (B)
Phase portrait for the multystability region at a1~2:872. Parameters: d~0:001, de~1.
doi:10.1371/journal.pone.0019696.g007
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phase solution gains its stability. The characteristic bifurcation

diagram is shown in Fig. 9a, and the corresponding phase plane

view for a1~3:25 in Fig. 9b. Hence, for a1~3:25, four separate

attractors exist, two of them are stable: one characterizing the in-

phase and the other one the anti-phase oscillations.

Although the region of stability of the anti-phase oscillators is

small, for small noise intensities (D~10{5) the peaks of the

probability distributions can be related to the deterministic

positions of the present attractors which are stable. One could

speculate that since both stable attractors are located very close to

each other in the phase plane (Fig. 9b), the noise leads to the

appearance of plateaus in the probability distribution (Fig. 10a).

The peaks are now wide, which results in larger interval values

where the concentration of the expressed protein can be found. In

contrast to the case for a1~2:872, the peak at the middle of the

probability distribution is not observed here. For the increased

noise intensity (D~5:10{4), we observe a clear bimodal

distribution (Fig. 10b). For a1 values exactly after the HB4

(a1~3:34), even small noise intensity (D~10{5) helps to

pronounce the peaks corresponding to the deterministic cycle.

Thus, the peaks, each located to low respectively high u values are

characteristic for the corresponding probability distribution, as

shown in Fig. 10c. A stochastic P{bifurcation is observed then for

a noise intensity D of order 10{4, manifested through a transition

to a bimodal distribution. The probability that a given protein

concentration will be expressed in the genetic network is now

restricted to two separate concentration intervals, one for low and

one for high protein values.

Following the investigations presented here, we have seen that

the dynamics of a particular network significantly varies when

switching from deterministic to stochastic systems. The latter ones

are closer to natural situations. Hence, the expressed protein

concentration levels in a given genetic network strongly depend

not only on the biologically characteristic parameters, such as the

expression strength of the genes (a1), but also on the amount of

noise D which is present in natural systems as well. The probability

that a particular protein concentration is observed for small noise

intensities could be related to the existence of deterministic

attractors in the system, whereas for noise intensities of

intermediate or larger strength, the probabilities are characetrized

via stochastic bifurcations which describe the dynamics of the

system.

However, the results for N~2 coupled cells do not differ

significantly from the single unit example, despite the more

complex bifurcation scenario present. The reason for this are the

rather narrow parameter intervals where the additional attractors,

which emerge for N~2, are stable. Thus, we observe the same

type of stochastic P{bifurcations.

The results presented for the case of N~2 coupled cells can be

easily generalized to larger networks, since they reflect the

dynamical properties of networks of any size. We therefore

investigate next the stochastic bifurcation structure of a genetic

network consisting of N~500 separate cells, and analyze the

stochastic behavior both, when the parameter a1 is in the vicinity

of HB1 and HB2, but also for a1 close to HB3. Fig. 11 shows that

on both sides of the a1 parameter interval, changes in the

dynamical structure of the system can be captured through

stochastic bifurcations, when varying the noise intensity D.

The changes in the probability distribution which we observe

for various noise intensities reflect the changes in the dynamical

properties of the genetic network. Due to the stochastic influence,

the expression of given proteins can be confined in several

different concentration intervals, some of which are more probable

than the others, depending how strong is the noise in the system.

On the other hand, different protein concentrations in identical

cells mean also different cellular functionality. This allows us to

Figure 8. Probability distributions for a system of two coupled oscillators (N~2) in the presence of noise. (A) a1~2:8, D~0:00001; (B)
a1~2:8, D~0:0005; (C) a1~2:872, D~0:00001; (D) a1~2:872, D~0:0005.
doi:10.1371/journal.pone.0019696.g008
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speculate that the differentiation which occurs in initially identical

cellular populations is a result of a complex interplay between the

intercellular signaling mechanisms which determines the dynam-

ical structure of the network on one side, and the stochasticity

characteristic for the particular system on the other. One could

then successfully track the corresponding dynamical transitions by

means of stochastic bifurcations, and address the question how

cellular diversity evolves in relation to inherent stochasticity.

Discussion

The dynamical behavior of natural genetic networks is

influenced by two main factors: i) presence of internal

stochasticity and ii) external factors, such as inputs from

(co)regulating signaling networks. In this work we have defined

a notion of stochastic bifurcation structures suitable for studying

the behavior of genetic networks under stochastic conditions,

Figure 9. Characteristics of two coupled oscillators (N~2) in the deterministic case (D~0) close to the HB3 and HB4. (A) A fragment of
the bifurcation diagram. (B) Phase portrait for the multystability region a1~3:25.
doi:10.1371/journal.pone.0019696.g009

Figure 10. Probability distributions for a system of two coupled oscillators (N~2) in the vicinity of HB3=HB4. (A) a1~3:25,
D~0:00001; (B) a1~3:25, D~0:0005; (C) a1~3:34, D~0:00001; (D) a1~3:34, D~0:0005.
doi:10.1371/journal.pone.0019696.g010
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covering both of the previously mentioned cases. A careful

quantitative estimation of the stochastic bifurcation structure of

(in this case, using the notion of reduced complexity, synthetic)

genetic networks facilitates understanding of various natural

phenomena, e.g. how cellular diversity evolves in relation with

stochasticity and intercellular dynamics. In particular, we have

shown that under stochastic influence, the behavior, even of a

single cell, can not be directly related to the number and position

of the stable deterministic attractors. However, the changes

which occur in the probability distribution of a phase variable for

e.g., could be used to track the dynamical transitions when the

noise in the system varies. Additionally, the presence of noise

could be regarded as a ‘‘survival factor’’: we have shown that for

intermediate noise intensity, the cell exhibits most coherent

dynamical behavior, adapting the production of the correspond-

ing proteins of interest to specific intervals of concentration

values, most profitable for the cell. Considering next the

interplay between stochasticity and intercellular signaling

mechanisms, we have shown that genetic networks of any size

could preform various coherent dynamical behavior, with

proteins expressed in defined concentration intervals for different

noise intensities. This means that under changing stochastic

conditions, the probabilities of expressing certain concentration

values are different, leading to different functionality of the cells,

and thus differentiation of the cells in various types. The

switching between various cell types is further determined by the

peaks of the probability distribution showing that identical units

can express proteins with various concentration values on one

hand, and the noise intensity which determines, on the other

hand, the shape of the probability distribution for the

corresponding variable. Moreover, we have shown that external

factors, such as regulatory networks which determine the

expression of a given gene, strongly influence the produced

protein in the system, by modifying the frequency with which the

protein will be expressed. This characetristic of the network

could be additionally used to control externally the timing of

protein expression, which could further lead to optimization of

various biological processes. As a prospect, it would be

specifically intersting to study how cellular diversity is developed

under stochasticity in growing populations, using the concept of

stochastic bifurcations to follow the dynamical changes which

occur correspondingly in the genetic networks.

In our studies we consider the global homogeneous coupling that

can be easily implemented experimentally. As a future prospective it

could be interesting to study the case where the cells are not exposed

to identical environment, although the anisotropic coupling is

extremely difficult to realize in a real experiment. This question

needs a special investigation that can be addressed in future.
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