
Proceedings of the 4th Workshop on Deep
Learning for Knowledge Graphs co-located with
International Semantic Web Conference 2021

Mehwish Alam1, Davide Buscaldi2, Michael Cochez3, Francesco Osborne4,
Diego Reforgiato Recupero5, Harald Sack1

1 FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Germany
2 Laboratoire d’Informatique de Paris Nord, France

3 Vrije Universiteit Amsterdam, the Netherlands
4 Knowledge Media Institute (KMi), The Open University, UK

5 University of Cagliari, Italy

Organizing Committee

– Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infras-
tructure, Germany

– Davide Buscaldi, Universitè Paris 13, USPC, Paris, France
– Michael Cochez, Vrije University of Amsterdam, the Netherlands
– Francesco Osborne, Knowledge Media Institute (KMi), The Open Uni-

versity, UK
– Diego Reforgiato Recupero, University of Cagliari, Cagliari, Italy
– Harald Sack, FIZ Karlsruhe - Leibniz Institute for Information Infrastruc-

ture, Germany

Program Committee

– Achim Rettinger, Trier University, Germany
– Angelo Salatino, Knowledge Media Institute, Open University, United

Kingdom
– Blerina Gkotse, CERN, Switzerland.
– Danilo Dess̀ı, FIZ-Karlsruhe, Karlsruhe Institute of Technology, Germany.
– Femke Ongenae, Ghent University, Belgium.
– Finn Årup Nielsen, Technical University of Denmark, Denmark.
– Genet Asefa Gesese, FIZ-Karlsruhe, Karlsruhe Institute of Technology,

Germany.
– Heiko Paulheim, University of Mannheim, Germany.
– Max Berrendorf, LMU Munich, Germany.
– Mayank Kejriwal, University of Southern California, USA.
– Peter Bloem, Vrije Universiteit Amsterdam, the Netherlands.
– Rima Türker, FIZ-Karlsruhe, Karlsruhe Institute of Technology, Germany.
– Russa Biswas, FIZ-Karlsruhe, Karlsruhe Institute of Technology, Germany.
– Thiviyan Thanapalasingam, University of Amsterdam, the Netherlands.

Preface

Knowledge Graphs have been used in various machine learning tasks by deriving
latent feature representations of entities and relations. Knowledge Graphs rep-
resent formal semantics by describing entities and relationships between them,
and can use ontologies as a schema layer of reference. This way, it is possible to
retrieve implicit knowledge through logical inference rather than only allowing
queries that request explicit knowledge. Deep Learning methods have emerged
from machine learning approaches and became essential for the resolution of
several tasks within the artificial intelligence spectrum. Recently, Deep Learn-
ing methods have been used in conjunction with Knowledge Graphs (i.e., to
represent relationship of the graph in a vector space, to allow companies find
patterns in real-time between interconnected entities, to keep track of invento-
ries of parts further allowing finding materials used in different products, etc.).
Therefore, it has become critical that the Deep Learning and Knowledge Graphs
communities join their forces in order to develop more effective algorithms and
applications. This workshop aimed at reinforcing the relationships between these
communities and intended to be at the center of shared works around topics such
as Deep Learning, Knowledge Graphs, Natural Language Processing, Computa-
tional Linguistics, Big Data, and so on.

Therefore, the goal of this workshop was to provide a meeting forum where
discussions between the relevant stakeholders (researchers from academia, in-
dustry and businessmen) could be stimulated within the Deep Learning and
Knowledge Graphs domains. As the previous edition, this year we noticed a
general attention to our workshop given the more than 10 submissions we re-
ceived and the high number of participants we noticed during the workshop day.
Eight papers have been accepted and discussed within the workshop by authors
from different international institutions. They covered topics such as Knowledge
Graph embeddings, entity summarization, entity type prediction, semantic en-
tity enrichment. We had as invited speaker Prof. Aldo Gangemi who discussed
how knowledge graph embeddings are both an opportunity and a matter of con-
cern for the cognitive scientist, what patterns can be found and what else can
be discovered in the direction of human-centred semantics. We really thank him
for his great talk. We also thank the program committee for their time and work
for reviewing the submitted papers. Although the workshop was held remotely
due to the COVID-19 pandemic, it has been successful by more than 60 partic-
ipants from all around the world. On the workshop website6 it is possible to see
screenshots reflecting some moments of the workshop.

December 2021 Mehwish Alam
Davide Buscaldi
Michael Cochez

Francesco Osborne
Diego Reforgiato Recupero

Harald Sack
6 https://alammehwish.github.io/dl4kg2021/

Contents

Quality Assessment of Knowledge Graph Hierarchies using KG-BERT,
Kinga Szarkowska, Veronique Moore, Pierre-Yves Vandenbussche, Paul Groth

Language Models As or For Knowledge Bases, Simon Razniewski, An-
drew Yates, Nora Kassner, Gerhard Weikum

GraphPOPE: Retaining Structural Graph Information Using Position-
aware Node Embeddings, Jeroen Den Boef, Joran Cornelisse, Paul Groth

Challenges of Applying Knowledge Graph and their Embeddings to a
Real-world Use-case, Rick Petzold, Genet Asefa Gesese, Viktoria Bogdanova,
Thorsten Zylowski, Harald Sack, Mehwish Alam

Knowledge Graph Embeddings or Bias Graph Embeddings? A Study
of Bias in Link Prediction Models, Andrea Rossi, Paolo Merialdo, Do-
natella Firmani

Integrating Contextual Knowledge to Visual Features for Fine Art
Classification, Giovanna Castellano, Giovanni Sansaro, Gennaro Vessio

Generating Table Vector Representations, Aneta Koleva, Martin Ringsquandl,
Mitchell Joblin, Volker Tresp

Understanding Class Representations: An Intrinsic Evaluation of Zero-
Shot Text Classification, Fabian Hoppe, Danilo Dess̀ı, Harald Sack

Quality Assessment of Knowledge Graph Hierarchies
using KG-BERT
Kinga Szarkowska1, Véronique Moore2, Pierre-Yves Vandenbussche2 and
Paul Groth1

1University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
2Elsevier Amsterdam, Radarweg 29a, 1043 NX Amsterdam, Netherlands

Abstract
Knowledge graphs in both public and corporate settings need to keep pace with the constantly growing
amount of data being generated. It is, therefore, crucial to have automated solutions for assessing the
quality of Knowledge Graphs, as manual curation quickly reaches its limits. This research proposes
the use of KG-BERT for a triple (binary) classification task that assesses the quality of a Knowledge
Graphs’s hierarchical structure. The use of KG-BERT allows the textual as well structural aspects of a
Knowledge Graph to be leverage for this quality assessment (QA) task. The performance of our proposed
approach is measured using four different Knowledge Graphs: two branches (Physics and Mathematics)
of a corporate Knowledge Graph - OmniScience, a WordNet subset, and the UMLS Semantic Network.
Our method yields high-performance scores on all four KGs (88-92% accuracy) making it a relevant tool
for quality assessment and knowledge graph maintenance.

Keywords
Ontology Maintenance, Knowledge Graphs, Hierarchical Knowledge Graphs, hierarchy evaluation, triple
classification, contextual word embeddings, BERT, KG-BERT.

1. Introduction

Knowledge Graphs are at the heart of many data management systems nowadays, with ap-
plications ranging from knowledge-based information retrieval systems to topic recommen-
dation [1]and have been adopted by many companies [1]. Our research originated with the
need for the automatic quality assessment (QA) of OmniScience [2], Elsevier’s cross-domain
Knowledge Graph powering applications such as the Science Direct Topic Pages.1

A Knowledge Graph (KG) is a graph representation of knowledge, with entities, edges, and
attributes [3]. Entities represent concepts, classes or things from the real world, edges represent
the relationships between entities, and attributes define property-values for the entities. We
refer to these sets as "triples".

A number of QA dimensions have been identified for KGs [4]. Here, we focus on the semantic
accuracy dimension: the degree to which data values correctly represent the real-world facts
(or concepts) [4]. More specifically, we focus on the hierarchy evaluation of KGs: whether

ISWC 2021: Deep Learning for Knowledge Graphs, October 24–28, 2021, Virtual Conference
" kinga.szarkowska@gmail.com (K. Szarkowska); v.malaise@elsevier.com (V. Moore);
p.vandenbussche@elsevier.com (P. Vandenbussche); p.t.groth@uva.nl (P. Groth)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.sciencedirect.com/topics/index

mailto:kinga.szarkowska@gmail.com
mailto:v.malaise@elsevier.com
mailto:p.vandenbussche@elsevier.com
mailto:p.t.groth@uva.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.sciencedirect.com/topics/index

its hierarchical structure is correctly represented. To do this, we employ contextual word
embeddings [5] and investigate the use KG-BERT method [6]’s binary classification task. It is
a binary triple classification task, as for a given KG triple (entity, relation, entity/literal) the
classifier will return whether a given triple is correct or not.

KG-BERT takes advantage of the textual representation of the data for assessing the veracity
of KG triples and uses transfer learning to fine-tune embeddings pre-trained using the BERT
model [5] for a triple classification task. Our novel contribution is to use textual representations
of the KG hierarchy in combination with KG-BERT to evaluate hierarchy quality. We evaluate
the performance of this method on four different KGs.

The paper is structured as follows: in the related work section, we present KGs evaluation
frameworks and approaches for triple classification tasks. In the methodology section, we
describe the datasets that were used for this research, along with our sampling strategy, a
detailed description of the KG-BERT method and the evaluation metrics that we have selected.
In the results section, we present results for the four selected KGs. Lastly, we summarize the
outcomes of our research and propose future directions for exploration.

2. Related Work

In this section, we present KGs quality assurance frameworks and methods developed for KGs
triple classification tasks.

2.1. Knowledge Graph Quality Assurance Frameworks

One of the first frameworks that has been widely used for the data quality assessment of a
hierarchical triples structure was developed in 1996 by Wang and Strong [7]. They identified
four main quality dimensions: intrinsic, contextual, representational, and accessibility [7].
A framework proposed in 2007 [8] and built on [7] introduces a taxonomy of Information
Quality dimensions. Zaveri et al. [4] focused on a quality evaluation framework for linked data,
gathering 18 quality dimensions (with 69 quality metrics), including the dimensions introduced
by [7]. Chen et al. [9] adjusted the framework proposed by [4] for KGs. They created 18
requirements on knowledge graphs quality and mapped them to knowledge graph applications.
Raad and Cruz [10] also gathered evaluation methodologies for ontologies. Raad and Cruz
distinguished several validation criteria (such as accuracy, completeness, consistency) and
presented four evaluation approaches.

The dimension that maps to the evaluation (assessment) of automatically expanding large
scale KGs is the semantic accuracy dimension [4], or just accuracy [10]. Zaveri et al. [4] define
it as the degree to which data values correctly represent real-world concepts. Our research
develops a method to evaluate one component of this dimension: whether the hierarchy of a
KG is accurate.

2.2. Knowledge Graph Triple Classification

We propose to use a (binary) triple classification task approach to address the problem of KG
hierarchy evaluation. We describe how our method compares with the current state-of-the-art

in KG evaluation.
A triple classification task aims to predict whether an unseen Knowledge Graph triple is true

or not. For that we can consider KGs entities and their relationships as real-valued vectors,
and assess the triples plausibility. Real-valued vector representations are called Knowledge
Graph embeddings [11]. There are two types of approaches for creating the KG embeddings:
translational distance models and semantic matching models [11]. The main difference is
the use of scoring function: translational models use distance-based functions and semantic
matching models use similarity-based scoring functions. Examples of translational models
are: TransE [12], TransH [13], TransR [14], or TransG [15]. RESCAL [16] and DistMult [17]
are representatives of semantic matching models. All of these methods use only the data’s
structural information, and do not leverage external information such as entity type, or textual
description, to improve model performance.

KG-BERT was introduced to address this limitation by taking advantage of textual information
in addition to structural information [6]: instead of creating Knowledge Graph embeddings to
represent the structure of the data (using the relationships presented in the data), it uses a textual
(distributed) representation of the triples in a corpus. It first creates a representations of each
of the entities in a triple using pre-trained BERT [5] embeddings. These embeddings are then
updated to minimize the loss function for the triple classification task. Finally, a binary classifier
predicts from its embedding, whether a triple is true or not with an associated confidence score.

One consequence of initialization through BERT is that the model takes advantage of knowl-
edge encoded within BERT during its training. This feature was one of the reasons to explore
the use of KG-BERT for the this evaluation task.

3. Methodology

We elaborate now on our technical and methodological decisions. First, we present the datasets
that are used in this research. Each dataset is from a different domain and used in a different
community, but they all hierarchically structured. We introduce our negative sampling ap-
proaches as we evaluate our results against a gold set of triples that should only be true. We
then describe KG-BERT in more detail, along with the evaluation approach.

3.1. Datasets

We selected four Knowledge Graphs from different domains (described in more details in Table
1), which are all hierarchical knowledge graphs (structured with the classification inclusion [18]
relation). We discarded here the benchmark datasets of WN11 and FB13 typically used for triple
classification tasks, as they contain a wide variety of relationships and were not representative
of our target KGs.

WordNet [19] is a large lexical database representing relationships between words in the
English language. It is widely used for tasks such as natural language processing or image
classification [20]. We extracted a subset of WordNet focused on the classification inclusion

Table 1
Overview of the experimental datasets

Dataset Example of the Triple No. of Triples No. of Entities

WordNet Refried Beans is a Dish 62,323 48,048
UMLS Enzyme is a Chemical 500 135
Physics Seismology is a concept of Geophysics 5,404 3,697
Mathematics Outlier is a concept of Summary Statistics 2,770 2,126

relation: we extracted only nouns - excluding proper names - in a hyponymy relation. We
performed this filtering on the hyponymy Wordnet subset.2

The Unified Medical Language System (UMLS) [21] is a comprehensive ontology of
biomedical concepts. UMLS is made of two distinct KGs: the Semantic Network and a Metathe-
saurus of biomedical vocabularies. The Semantic Network represents broad subject categories
together with their semantic relations. It groups and organizes the concepts from the Metathe-
saurus in one of the four relationships: "consist of", "is a", "method of", "part of".

We selected the Semantic Network for our research because it has more generic concepts
than the Metathesaurus and is better structured. We decided to investigate the performance
of our model on the subset of that network consisting of the triples in a hierarchical ("is a")
relationship (the classification inclusion relation).

OmniScience [2] is an all-science domains knowledge graph that is used, amongst others,
for the annotations of research articles. It connects external publicly available vocabularies
with the entities required in Elsevier platforms and tools. It is maintained by scientific experts
from Elsevier. OmniScience is a poly-hierarchy, in which scientific concepts can belong to
multiple domains. The relationship between OmniScience concepts can be described as a
hyponymy relation, or "is a" relation. OmniScience has several domain branches, such as
Physics, Mathematics, or Medicine and Dentistry. We used two branches as test cases, namely
Physics and Mathematics.

3.2. Negative Sampling

We considered all of the KGs above to consist of correct triples. Therefore, negative sampling
is necessary to prepare a training set for a classification problem. We followed the approach
proposed in [22] and use the 1:3 ratio for negative samples. We followed three strategies to
generate these negative samples:

1. per each head entity we randomly sample a tail entity;
2. per each tail entity we randomly sample a head entity;
3. per each pair we exchange the head entity with the tail entity, which gives us “reversed”

samples, that should help train the model with respect to the direction of the relation.

After sampling 3 negative examples per each proper pair, we filtered out all of the generated
samples did that occur in the original set of triples from KG to ensure that there are not
contradictory samples in the training set.

2The subset is available at https://www.w3.org/TR/wordnet-rdf/.

https://www.w3.org/TR/wordnet-rdf/

3.3. Data preparation

Two approaches of dataset preparation were selected. In the first approach, negative examples
were generated globally and then the dataset was split into three subsets: training, validation,
and test dataset. A proportion 80/10/10 was used for WordNet and OmniScience branches. For
the UMLS split 90/5/5 was selected, as the dataset is much smaller and we wanted to give the
model a higher number of training examples.

In the second approach, in order to test the ability of the model to generalize to unseen triples,
the KGs triples were first divided into three datasets (with the same proportion as before). Then
for each of the datasets, negative triples were generated separately. In the end, we excluded the
examples that occurred in the intersection of the datasets. A summary of the datasets used for
the experiments is presented in Table 4.

Table 2
Number (#) of correct and incorrect triples

Experiment Performance Experiment Generalization Experiment
Dataset Train Set Val Set Test Set Train Set Val Set Test Set

WordNet 49,075 / 99,481 6,096 / 12,474 6,070 / 12,499 48,797 / 148,294 6,210 / 18,659 6,221 / 18,670
UMLS 447/957 28/51 25/53 362/840 47/134 50/127
Physics Branch 4,340 / 12,857 565 / 1,585 499 / 1,651 4,321 / 12,835 541 / 1,613 540 / 1,609
Mathematics Branch 2,221 / 6,536 272/823 277/818 2,215 / 6,561 277/822 277/825

3.4. KG-BERT

KG-BERT is a state-of-the-art method [6] for triple classification tasks. The main idea behind
it is to represent the KG triples as text, using their labels to create a lexicalization in natural
language and gather contextual sentences from a corpus. This text can then be used to fine-tune
the existing pre-trained BERT embeddings, for a classification task. As part of this lexicalization,
we explored a set of equivalent ways to represent the notion of hyponymy. In our cases, where
we had access to a large corpus is a concept of gave the best performance for the model for
OmniScience and is a for UMLS.

The format of the model’s input is as follows: each of the triple elements is separated by the
[SEP] token, and at the beginning of the input a [CLS] token is added. Each entity name, as
well as the relation’s textual description is tokenized. An example of such a representation for
the text "Linear Algebra is a concept of Mathematics" is: [CLS] linear algebra [SEP] is a concept
of [SEP] mathematics [SEP]. In the case of the absence of words in the vocabulary, the model is
considering their sub-words and is adding specified tokens for the missing parts of the sentence.
Cross-entropy is used as a loss function. For our research, we used the code3 provided by the
authors [6] as a basis. We obtained good performance with "bert-base-uncased" BERT base.

3https://github.com/yao8839836/kg-bert

https://github.com/yao8839836/kg-bert

4. Experiments and Results

In this section, the performance of the KG triple classification task and its ability to generalize
are discussed. By Pp and Pn we refer to the value of precision for positive classes and negative
classes respectively, by Rp and Rn we refer to the value of recall for positive and negative classes
respectively. Our primary goal is to use the method for KG maintenance, therefore precision
for positive examples and recall for negative examples is important (rather than a combined
F1 value). With a high score of precision for positive examples, we want to be sure that all
returned positives are true positives. With recall for negative examples, we want to be sure that
all of the negative examples will be returned by the method, meaning every potential incorrect
triple will be returned. Therefore we will focus on these two metrics.

Table 3 presents performance scores for the experiments. WordNet and UMLS were trained
using is a as relation phrase, and OmniScience branches were trained with is a concept of. All of
the models were trained using random seed equal to 42, and bert-base-uncased as a BERT base.
Below we comment in detail on the results.

Table 3
Performance of the model

Dataset Accuracy Precision: P/N Recall: P/N TP FN FP TN

WordNet 90.33% 84.65% 93.16% 86.03% 92.42% 5,222 848 947 11,552
UMLS 91.02% 80.00% 97.92% 96.00% 88.68% 24 1 6 47
Physics 92.41% 81.23% 96.15% 87.58% 93.88% 437 62 101 1,550

Mathematics 88.12% 75.43% 92.68% 78.70% 91.32% 218 59 71 747

Results generalization:
WordNet 90.22% 81.82% 92.86% 78.27% 94.20% 4,869 1,352 1,082 17,588
UMLS 81.35% 60.49% 98.96% 98.00% 74.80% 49 1 32 95
Physics 91.53% 80.07% 95.53% 87.04% 93.04% 470 70 112 1,497

Mathematics 91.01% 87.08% 92.11% 75.45% 96.24% 209 68 31 794

Results domain generalization:
Physics 79.77% 55.1% 89.95% 69.34% 82.92% 346 153 282 1,369

Mathematics 76.98% 52.91% 92.49% 81.95% 75.31% 227 50 202 616

4.1. Performance KG-BERT for different hierarchical Knowledge Graphs

The KG-BERT method applied as a triple classifier is tested using dataset splits described in
Table 4. First, the best set of hyperparameters is selected. For this, the model was tested with a
combination of: different numbers of epochs, of learning rates, of maximum sentences length,
and of training batch size using a grid search approach. We chose the model with the highest
accuracy score on the validation set.

We note a high (>88%) accuracy for all of the KGs, and also high scores for all the metrics
selected by us as important (Pp and Rn). OmniScience’s Physics Branch evaluation gets the
highest scores, while the Mathematics Branch gets the lowest for that experiment.

4.2. Model generalization to fully unseen triples

We investigated the model’s ability for generalizing on unknown data. We performed two
experiments: the first of them (generalization), applied to all four datasets, uses the second split
of data reported in Table 4, and the second sampling approach described in subsection 3.3; the
second experiment (domain generalization) tested specifically whether a model trained on one
OmniScience branch could be applied to another branch. We tested the model trained on one
branch with the test set generated for the other branch, for both branches.

Again, we note a high (>90%) accuracy in the generalization experiments for all of the KGs,
except from UMLS dataset, where the accuracy is equal to 80%. We discuss the performance
on UMLS further in the Discussion section. The Physics Branch classification result gets the
highest accuracy score, but the Mathematics Branch achieved the highest scores in independent
values for Pp and Rn.

The results for the domain generalization experiment that tested how a model trained on the
Mathematics branch of OmniScience performed when classifying examples from the Physics
branch (and another way round) are as follows: 80% accuracy for Physics branch being a test
set, and 77% for Mathematics branch. Pp is equal to 55% and 53% accordingly, and Rn is equal to
83% and 75%. Even if the accuracy score and Rn are relatively high, we note the low ability of
the model to properly classify positive examples (Pp equal to 53-55% in both cases). This means
that a model should be trained per domain for a better performance.

4.3. Prediction of long-distance hierarchy using the model

We carried out an experiment to check whether the model can predict a hierarchical relationship
between concepts further apart in the hierarchical structure. We created some datasets with
triples containing concepts at different levels or hierarchical depth (different hop-levels). As
a point of terminology, given the two triples Optics is a concept of Physics and Fiber Optics is a
concept of Optics, we consider the triple Fiber Optics is a concept of Physics a 2-hop triple. The
three datasets are described in table 4 .

Table 4
Number (#) of correct and incorrect triples for long-distance hierarchy prediction experiment

Dataset Train Set Val Set
Test Set

1-hop 2-hop

WordNet 49,075 / 99,481 6,096 / 12,474 6,070 / 12,499 96,236 / 288,246
Omni. Physics Branch 4,340 / 12,857 565 / 1,585 499 / 1,651 3,532 / 10,325
Omni. Math Branch 2,221 / 6,536 272 / 823 277 / 818 1,099 / 3,054

For all of the datasets, scores such as accuracy, Pp, and Rn are decreasing with the increase of
hop distance. For Pp the decrease is substantial in every dataset (20-30% decrease). For WordNet
Pp decreased to 51% for the 2-hop triples, for Physics to 68%, and for Mathematics Branch Pp
decreased to 45%. Rn decreased less suddenly (5-8%). For 3-hop, 4-hop, and pairs with more

concepts in-between Pp and Rn continued to decrease. This shows that our model performs
well to predict a direct hypernym relationship, but not for hypernym at more than one hop
distance.

4.4. Evaluation of classification error output

We performed an error analysis on the incorrectly classified triples output. We found triples
such as blue is a clothing, cold is an apartment or smoker is a passenger car were classified as
a FP examples in WordNet: these are clearly pure errors of the model’s output. In the FP
examples for Mathematics and Physics branch of OmniScience, we noticed words overlap
between two concepts from the considered triples. For Mathematics branch 43.5% of FP have
3-letter overlapping subwords, almost 30% FP have 4-letter, 23% have 5-letter, and 17.4% have
6-letter overlap. For Physics branch we noted 3-letter overlap for 36.63% of FP, 28% FP noted
4-letter, 21.8% have a 5-letter, and almost 20% have 6-letter overlap. Therefore, we can see that
the model has difficulties with establishing the hierarchy between concepts with a large lexical
overlap in their naming.

5. Discussion

Performance scores across the selected metrics for QA are high (Precision for positive triples
and Recall for negative triples). For every dataset, we noted an accuracy score above 88%.
Accuracy for the generalization experiment, where we wanted to see how the model can deal
with examples that it did not use for training, yielded decent results (accuracy above 80%).
However, testing a model build on one OmniScience branch on another scientific domain of the
same KG did not give accurate results. Therefore, the model can generalize well, but needs to
be trained per domain.

The reproducibility of the method tested here is a strong point: we showed that this approach
can be used on four very different datasets used in different research contexts. However, the
accuracy for the UMLS dataset was not as high as the others. The main reason for the lack of
performance is the small size of the sample. We further investigated the converge of the model,
and concluded that for OmniScience’s Physics and Mathematics datasets, the model started to
learn with around 1.7k examples. Moreover, for the Physics branch we noted good results from
6.8k training examples (40% of the data), and for Mathematics branch from around 5.6k (65 % of
the data). These proportions should be taken into consideration when applying our method.

Our recommendation on how to prepare the model for hierarchy evaluation is as follows:

• the model should be trained per domain,
• relation sentence (or lack of it) could be selected as one of the hyperparameters, and used

for the models’ optimization,
• proper negative sampling strategy should be selected, the one that can be the most

representative strategy of the possible errors in the KGs,
• depending on the scientific domain, different BERT bases could be selected (e.g. bio-

clinical-bert [23] or sci-bert [24] could be used for KGs in the medical or biological domain).

6. Conclusion

In this study, we explored the use of contextual word embeddings for quality assessment of
knowledge graph hierarchies. We used KG-BERT, which uses textual information about KGs
triples to enrich structure-based embeddings. We described how to use this approach for quality
assessment and showed that it works well for both large scale corporate knowledge graphs
as well as subsets of one publicly available knowledge graph (WordNet). Moreover, we tested
whether the model can generalize across unseen examples and between domains.

We see different paths for future work. First, exploring how to apply the method for the
KG maintenance in a real-life practical settings: besides using this framework for a global QA
pipeline in real life, this method can also be tested to propose a candidate placement in an existing
KG for an incoming candidate concept (by assessing the plausibility of all possible combinations
of that candidate with existing concept from a given domain or KG). We have observed good
empirical results, but still have to test the idea at scale for the automatic development of KGs.

Secondly, testing the method on other KGs, particularly KGs that have a less consistent
hierarchical structure would add value to our understanding of the limitations of the use of
BERT embeddings for quality assessment.

In terms of QA methods for the triples assessment, a gold set based approach (assessing the
quality of a KG by rebuilding it and comparing it with the original set) could help assessing the
feasibility of this method for the automatic generation of large KGs.

References

[1] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge
graphs: Lessons and challenges, Commun. ACM 62 (2019) 36–43. URL: https://doi.org/10.
1145/3331166. doi:10.1145/3331166.

[2] V. Malaisé, A. Otten, P. Coupet, Omniscience and extensions – lessons learned from design-
ing a multi-domain, multi-use case knowledge representation system, in: C. Faron Zucker,
C. Ghidini, A. Napoli, Y. Toussaint (Eds.), Knowledge Engineering and Knowledge Man-
agement, Springer International Publishing, Cham, 2018, pp. 228–242.

[3] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L.
Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo, S. M. Rashid,
A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, A. Zimmermann, Knowledge graphs, 2021.
arXiv:2003.02320.

[4] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment for
linked data: A survey, Semantic Web 7 (2015) 63–93. doi:10.3233/SW-150175.

[5] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional
transformers for language understanding, CoRR abs/1810.04805 (2018). URL: http://arxiv.
org/abs/1810.04805. arXiv:1810.04805.

[6] L. Yao, C. Mao, Y. Luo, KG-BERT: BERT for knowledge graph completion, CoRR
abs/1909.03193 (2019). URL: http://arxiv.org/abs/1909.03193. arXiv:1909.03193.

[7] R. Wang, D. Strong, Beyond accuracy: What data quality means to data consumers, J.
Manag. Inf. Syst. 12 (1996) 5–33.

https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166
http://dx.doi.org/10.1145/3331166
http://arxiv.org/abs/2003.02320
http://dx.doi.org/10.3233/SW-150175
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.03193
http://arxiv.org/abs/1909.03193

[8] B. Stvilia, L. Gasser, M. Twidale, L. Smith, A framework for information quality assessment,
Journal of the Association for Information Science and Technology 58 (2007) 1720–1733.
doi:10.1002/asi.20652.

[9] H. Chen, G. Cao, J. Chen, J. Ding, A Practical Framework for Evaluating the Quality of
Knowledge Graph, 2019, pp. 111–122. doi:10.1007/978-981-15-1956-7_10.

[10] J. Raad, C. Cruz, A survey on ontology evaluation methods, 2015. doi:10.5220/
0005591001790186.

[11] Y. Dai, S. Wang, N. Xiong, W. Guo, A survey on knowledge graph embedding:
Approaches, applications and benchmarks, Electronics 9 (2020) 750. doi:10.3390/
electronics9050750.

[12] A. Bordes, N. Usunier, A. García-Durán, J. Weston, O. Yakhnenko, Translating embeddings
for modeling multi-relational data, in: NIPS, 2013.

[13] Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on
hyperplanes, in: AAAI, 2014.

[14] H. Lin, Y. Liu, W. Wang, Y. Yue, Z. Lin, Learning entity and relation embeddings for
knowledge resolution, Procedia Computer Science 108 (2017) 345–354. URL: https://
www.sciencedirect.com/science/article/pii/S1877050917305628. doi:https://doi.org/
10.1016/j.procs.2017.05.045, international Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

[15] H. Xiao, M. Huang, X. Zhu, Transg : A generative model for knowledge graph embedding,
2016, pp. 2316–2325. doi:10.18653/v1/P16-1219.

[16] M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-
relational data., 2011, pp. 809–816.

[17] B. Yang, W.-t. Yih, X. He, J. Gao, l. Deng, Embedding entities and relations for learning
and inference in knowledge bases (2014).

[18] J. J. Odell, Advanced object-oriented analysis and design using UML, Cambridge ; New
York : Cambridge University Press ; New York : SIGS Books, 1998. URL: http://www.loc.
gov/catdir/toc/cam024/97018368.html, includes bibliographical references and index.

[19] C. Fellbaum (Ed.), WordNet: An Electronic Lexical Database, Language, Speech, and
Communication, MIT Press, Cambridge, MA, 1998.

[20] A. Benitez, S. Chang, Image classification using multimedia knowledge networks, Pro-
ceedings 2003 International Conference on Image Processing (Cat. No.03CH37429) 3 (2003)
III–613.

[21] O. Bodenreider, The unified medical language system (umls): Integrating biomedical
terminology, 2004.

[22] B. Athiwaratkun, A. Wilson, Hierarchical density order embeddings, ArXiv abs/1804.09843
(2018).

[23] E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, M. McDermott,
Publicly available clinical BERT embeddings, in: Proceedings of the 2nd Clinical Natural
Language Processing Workshop, Association for Computational Linguistics, Minneapolis,
Minnesota, USA, 2019, pp. 72–78. URL: https://www.aclweb.org/anthology/W19-1909.
doi:10.18653/v1/W19-1909.

[24] I. Beltagy, K. Lo, A. Cohan, Scibert: A pretrained language model for scientific text, in:
EMNLP, 2019.

http://dx.doi.org/10.1002/asi.20652
http://dx.doi.org/10.1007/978-981-15-1956-7_10
http://dx.doi.org/10.5220/0005591001790186
http://dx.doi.org/10.5220/0005591001790186
http://dx.doi.org/10.3390/electronics9050750
http://dx.doi.org/10.3390/electronics9050750
https://www.sciencedirect.com/science/article/pii/S1877050917305628
https://www.sciencedirect.com/science/article/pii/S1877050917305628
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.045
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.045
http://dx.doi.org/10.18653/v1/P16-1219
http://www.loc.gov/catdir/toc/cam024/97018368.html
http://www.loc.gov/catdir/toc/cam024/97018368.html
https://www.aclweb.org/anthology/W19-1909
http://dx.doi.org/10.18653/v1/W19-1909

Language Models As or For Knowledge Bases
Simon Razniewskia, Andrew Yatesa,b, Nora Kassnerc and Gerhard Weikuma

aMax Planck Institute for Informatics
bUniversity of Amsterdam
bLMU Munich

Abstract
Pre-trained language models (LMs) have recently gained attention for their potential as an alternative
to (or proxy for) explicit knowledge bases (KBs). In this position paper, we examine this hypothesis,
identify strengths and limitations of both LMs and KBs, and discuss the complementary nature of the two
paradigms. In particular, we offer qualitative arguments that latent LMs are not suitable as a substitute
for explicit KBs, but could play a major role for augmenting and curating KBs.

1. Introduction

The ability of pre-trained contextual language models (LMs) to capture and retrieve factual
knowledge has recently stirred discussion as to what extent LMs could be an alternative to, or
at least a proxy for, explicit knowledge bases (KBs). LMs, such as BERT [1], GPT [2] or T5 [3]
are huge transformer-based neural networks trained in a self-supervised manner on huge text
corpora, in order to predict sentence completions or masked-out text parts. In a setting called
(masked) prompting or probing [4], these LMs complete a text sequence intended to elicit a
relational assertion for a given subject. For example, GPT-3 correctly completes the phrase “Alan
Turing was born in” with “London”, which can be seen as yielding a subject-predicate-object
triple ⟨ Alan Turing, born in, London ⟩.

Starting from the LAMA probe [5], many works have explored whether this LM-as-KB
paradigm could provide an alternative to structured knowledge bases such as Wikidata. Ex-
emplary analyses investigated the inclusion of entity information [6], how to turn LMs into
structured KBs [7], and how to incrementally add knowledge without side effects [8]. Other
work studied how accuracy relates to the neural network’s storage capacity [9] and whether
QA performance scales with model size [10]. Another focus area is how LMs-as-KBs can be
further augmented with a text retrieval component, to include informative passages (e.g., from
Wikipedia) [11, 12, 13].

Although most works make their speculative nature clear (e.g., the title of [5] ends with a
question mark), there is an implicit suggestion that LMs could replace structured KBs. On the
other hand, NLP-centric works have identified various kinds of inconsistencies in LM outputs
[14] or questioned their quantitative performance [15].

This paper discusses the potential of LMs as KBs and its “softer” variation of LMs for KBs.

Deep Learning for Knowledge Graphs (DL4KG)
Envelope-Open srazniew@mpi-inf.mpg.de (S. Razniewski); ayates@mpi-inf.mpg.de (A. Yates); kassner@cis.lmu.de (N. Kassner);
weikum@mpi-inf.mpg.de (G. Weikum)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:srazniew@mpi-inf.mpg.de
mailto:ayates@mpi-inf.mpg.de
mailto:kassner@cis.lmu.de
mailto:weikum@mpi-inf.mpg.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

LM-as-KB Structured KB

Construction Self/Unsupervised Manual or semi-automatic
Schema Open-ended Typically fixed
Maintenance
- adding facts Difficult, unpredictable side effects Easy
- correcting/deleting Difficult Easy

Knows what it knows No, assigns probability to everything Yes, content enumerable
Entity disambiguation No/limited Common
Provenance No Common

Table 1
Differences of LMs-as-KBs and structured KBs

.

2. Background

LM-as-KB refers to efforts to use an LM as a source of world knowledge, as proposed by
[5]. The knowledge representation is inherently latent, given by the entirety of the neural
network’s parameter values (in the billions). LMs in general have greatly advanced tasks like
text classification, machine translation, information retrieval, and question answering (see, e.g.,
survey [16]).

KBs, on the other hand, have been steadily advanced since the mid 2000s (with early works
like DBpedia, Freebase and Yago) [17]. They represent knowledge in the form of subject-
predicate-object (SPO) triples along with qualifiers for non-binary statements. KBs have become
key assets in major industry applications [18, 19], including search engines. A major issue for
ongoing KB research is quality assurance as the KB is grown and maintained. This includes
human-in-the-loop approaches throughout the KB life-cycle [20, 21, 22].

All LM-as-KB examples that follow are based on the GPT-3 daVinci model [2], one of the
largest pre-trained LMs as of October 2021.

3. LM-as-KB

3.1. Intrinsic Considerations

The following are principal differences between LMs-as-KBs and structured KBs.

Predictions vs. lookups: While content of structured KBs can be explicitly looked up, LMs
have a latent representation and output probabilities at probing time. This has the advantage of
not requiring any schema design upfront. However, it implies that it is not possible to enumerate
the knowledge stored in an LM, nor can we look up whether a certain fact is contained or not.
For predictions with very high confidence scores, this is still viable. However, even top-ranked
predictions often have low scores and near-ties. Properly calibrating scores and thresholding is
a black art.
Example: GPT-3 does not have tangible knowledge that Alan Turing was born in London; it

merely assigns this a high confidence of 83%. Yann LeCun, on the other hand, is given medium
confidence in being a citizen of France and Canada (67% and 26%), but he actually has French and
USA citizenship, not Canadian. The LM assigns USA a very low score. The Wikidata KB, on the

other hand, only states his French citizenship, not USA. Wikidata is incomplete, but it does not
contain any errors.
Statistical correlations vs. explicit knowledge: Errors made by LMs-as-KBs are not random,
but exhibit systematic biases [23, 15] due to frequent values and co-occurrences (including
indirect co-occurrences captured latently).

Example: When prompting GPT-3 for awards won by Alan Turing, its top-confidence prediction
is the Turing Award, and lower-ranked outputs include “Nobel Prize” and “the war” (none of them
correct).
Awareness of limits: In KBs, absence of facts is explicit and easy to assert. Wikidata even
supports a way of stating non-existence (no-value statements) to impose a local-closed-world
view while following a general open-world assumption [24]. LM’s latent representations
inherently lack awareness of cases where no object exist, and so they easily produce non-zero
or even high scores for incorrect assertions.
Example: Alan Turing was homosexual and never married. When prompting GPT-3 with the

phrase “Alan Turing married”, the top prediction is “Sara Lavington” with score 21%, and for the
prompt “Alan Turing and his wife” it is “Sara Turing” (his mother’s name). This is a case of LM
hallucination [25, 26]. In contrast, Wikidata has an explicit statement ⟨ Alan Turing, spouse, no

value ⟩ denoting that he was unmarried.
Coverage: The scope of KBs is usually limited by the fixed set of predicates specified in the
KB schema. These can be hundreds (or even a few thousands) of interesting relations, but will
hardly ever be complete. In particular, “non-standard relations”, such as worked with colleague ,
song is about person (or event), movie based on person’s biography , are missing in all of the major
KBs. LMs, on the other hand, latently tap into the full text of Wikipedia, books, news, and more,
and are thus able to capture some of these predicates.
Example: Creatively prompting GPT-3 can yield impressive nuggets of knowledge: the input

phrases “Turing’s colleague” and “Turing worked with” result in outputs like John Womersley, Hugh
Alexander, Gordon Welchman (all correct). Likewise, the prompt “The Imitation Game film is about
the life of” is completed with the high-confidence output Alan Turing. These anecdotes indicate the
great power of LMs to go beyond the current scope and coverage of explicit KBs.
Curatability: In structured KBs, a knowledge curator can correct, add or remove assertions. For
LMs, this is an open challenge, as these operations require major (non-monotonic) re-training,
or the addition of explicit exceptions, which means reverting to a KB [27, 28].
Example: For the prompt “Alan Turing died in the town of”, GPT-3 returns the top prediction

“Warrington”, which is wrong (he died in Wilmslow). The LM does not provide any hint on how to
fix this (e.g., by changing the training corpus or parameters), and a knowledge curator has no way
to tackle such errors.
Provenance: LMs have no ability to trace their outputs back to specific source documents
(and passages) in the training data. KBs, on the other hand, consider reference sources as an
indispensable pillar of scrutable veracity. Provenance is crucial for giving explanations to users,
including knowledge engineers who maintain the KB and end-users in downstream applications.
Also, without provenance, LMs have no way of pinpointing an incorrect prediction’s root cause
and correcting the underlying corpus (e.g., removing misleading documents).

Example: Reconsider the previous example of predicting “Warrington” as Turing’s death place.
The LM itself does not give any cue where this comes from. A diligent and smart Google user could
detect a possible origin, namely, news and other reports about a memorial plaque at 2 Warrington
Crescent in Maida Vale, London, which is near Turing’s birth place. However, the knowledge
engineer cannot be certain that this is indeed the culprit.
Correctly predicted facts need explanations, too. For example, the assertion that Turing was engaged
with Joan Clarke may appear puzzling given his homosexuality. Pointing to explicit provenance is
crucial evidence.

3.2. Pragmatic Considerations

Entity disambiguation: Although LMs are lauded for their ability to disambiguate words
based on context, this happens latently, and there is no easy way to explicitly build this into
probing procedures [9, 6]. Consequently, LMs mix up facts from distinct entities that share
surface forms. Although structured KBs cannot perform disambiguation on their own either,
they can correctly separate assertions.
Example: GPT-3 completes “Turing was a famous” with “mathematician”, “computer”, “code”

etc., stemming from very different entities (including the Turing Machine).
Numbers and singletons: LMs are good at latently capturing knowledge about predicates
with few possible object values, such as nationality or language-spoken. However, when the
object values are rarely occurring values or even singletons (i.e., occurring only with a single
subject), the latent representation is bound to produce errors, and explicit KB storage is superior.
The same applies to many cases of numeric values, where the value distribution exhibits high
entropy.

Example: For the input “The Turing Institute’s address in London is”, GPT-3 returns “Dilly’s Den”
or “the street called Dilly’s Den” (possibly derived from the famous Piccadilly Circus; the correct
value is British Library, 96 Euston Road, London NW1 2DB). Rephrasing the prompt does not lead
to success either.
Subjects with zero or many objects: An important case where the brittleness of LM predic-
tions becomes a significant problem is when a subject entity has no object value for a given
predicate or has many distinct true values. The zero-value case often leads to the pitfall that the
LM must predict some value. In the many-values case, we could go deep in the ranking of the
LM output, but this would usually result in a wild mix of valid and spurious objects, and there
is no guideline for how deep we should go into the ranking.

Example: To obtain a list of Turing Award winners, we could prompt GPT-3 with the phrase “the
Turing Award was won by” and receive various predictions like “Stuart Shieber”, “John Hopcroft”
and “Andrew Yao” (1 false, 2 correct). There are currently 73 winners, all captured in Wikidata. By
probing LMs, we would have to go very deep in the prediction ranking to see all of them, but only
in a confusing mix of true and false positives.
As for zero-objects, the prompt for “the first woman on the moon was” returns Sally Ride, Eileen
Collins and others. These are astronauts, but unfortunately, none of them ever landed on the moon.
The ground-truth for this example is empty.

We summarize the main differences in Table 2.

4. LM-for-KB

Our view of how to harness the great potential of LMs is to leverage them for KB curation:
maintaining high quality as the KB grows throughout its life-cycle. This is a major pain point in
KB practice [20, 21, 22]. For example, when adding new entities, one needs to ensure that they
are not duplicates (with slightly different alias names) of existing entities. Likewise, keeping
the type system (aka ontology) clean while gradually extending it and ensuring the correctness
of new facts are never-ending challenges.

The envisioned role of LMs is to scrutinize SPO assertions considered for augmenting the KB.
For example, a new fact such as ⟨ Leonardo da Vinci, has won, Turing Award ⟩ could be “double-
checked” by prompting the LM as to whether it yields high-confidence predictions for this
candidate assertion. This is akin to the way knowledge graph embeddings [29] have been
considered for KB completion. However, the key difference is that KG embeddings draw from
the KG itself, and thus do not provide complementary evidence. LMs, on the other hand,
bring in a new and largely independent perspective, by tapping into text corpora (including
Wikipedia, but also news, books etc.). If the LM does not yield sufficiently confident support for
the candidate fact, it should be refuted.

The converse direction, using LMs to predict assertions and thus generate candidates for new
facts, is conceivable too. However, this needs major research to advance prediction accuracy.

5. Conclusion

In this paper we discussed the strengths and limitations of LMs as KBs in comparison to
structured KBs. We believe that LMs cannot broadly replace KBs as explicit repositories of
structured knowledge. While the probabilistic nature of LM-based predictions is suitable
for task-specific end-to-end learning, the inherent uncertainty of outputs does not meet the
quality standards of KBs. LMs cannot separate facts from correlations, and this entails major
impediments for KB maintenance. We advocate, on the other hand, that LMs can be valuable
assets for KB curation, by providing a “second opinion” on new fact candidates or, in the absence
of corroborated evidence, signal that the candidate should be refuted. Other ways of combining
the strengths of latent knowledge (LMs) and structured knowledge (KBs) could be promising as
well, such as “KB-for-LM” approaches that allow a LM to look up facts from an external memory
(e.g., [12, 30, 31, 32]) and thus have the potential to combine the strengths of both approaches.

References

[1] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional
transformers for language understanding, in: NAACL, 2019.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models are
unsupervised multitask learners, 2019. OpenAI technical report.

[3] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
Exploring the limits of transfer learning with a unified text-to-text transformer, arXiv
(2019).

[4] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural language processing, arXiv (2021).

[5] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, A. Miller, Language
models as knowledge bases?, in: EMNLP, 2019.

[6] N. Poerner, U. Waltinger, H. Schütze, E-BERT: Efficient-yet-effective entity embeddings
for BERT, in: Findings of EMNLP, 2020.

[7] C. Wang, X. Liu, D. Song, Language models are open knowledge graphs, arXiv (2021).
[8] R. Wang, et al., K-adapter: Infusing knowledge into pre-trained models with adapters,

arXiv (2021).
[9] B. Heinzerling, K. Inui, Language models as knowledge bases: On entity representations,

storage capacity, and paraphrased queries, in: EACL, 2021.
[10] A. Roberts, C. Raffel, N. Shazeer, How much knowledge can you pack into the parameters

of a language model?, in: EMNLP, 2020.
[11] F. Petroni, P. Lewis, A. Piktus, T. Rocktäschel, Y. Wu, A. H. Miller, S. Riedel, How context

affects language models’ factual predictions, in: AKBC, 2020.
[12] K. Guu, K. Lee, Z. Tung, P. Pasupat, M.-W. Chang, Realm: Retrieval-augmented language

model pre-training, in: ICML, 2020.
[13] P. Lewis, et al., Retrieval-augmented generation for knowledge-intensive NLP tasks, in:

NeurIPS, 2021.
[14] Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze, Y. Goldberg,

Measuring and improving consistency in pretrained language models, arXiv (2021).
[15] B. Cao, H. Lin, X. Han, L. Sun, L. Yan, M. Liao, T. Xue, J. Xu, Knowledgeable or educated

guess? revisiting language models as knowledge bases, in: ACL, 2021.
[16] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep learning based natural

language processing, Computational intelligence magazine (2018).
[17] S. Razniewski, P. Das, Structured knowledge: Have we made progress? an extrinsic study

of KB coverage over 19 years, in: CIKM, 2020.
[18] N. Noy, et al., Industry-scale knowledge graphs: lessons and challenges, CACM (2019).
[19] G. Weikum, L. Dong, S. Razniewski, F. Suchanek, Machine knowledge: Creation and

curation of comprehensive knowledge bases, in: Foundations and Trends in Databases,
2021.

[20] J. Taylor, Automated knowledge base construction, AKBC invited talk, 2020. https://youtu.
be/JsB4T35We0w?t=12032 .

[21] A. Piscopo, E. Simperl, What we talk about when we talk about Wikidata quality: a
literature survey, in: Symposium on Open Collaboration, 2019.

https://youtu.be/JsB4T35We0w?t=12032
https://youtu.be/JsB4T35We0w?t=12032

[22] K. Shenoy, F. Ilievski, D. Garijo, D. Schwabe, P. Szekely, A study of the quality of Wikidata,
arXiv (2021).

[23] E. M. Bender, T. Gebru, A. McMillan-Major, S. Shmitchell, On the dangers of stochastic
parrots: Can language models be too big?, in: FAccT, 2021.

[24] H. Arnaout, S. Razniewski, G. Weikum, J. Z. Pan, Negative knowledge for open-world
Wikidata, in: Companion Proceedings of the Web Conference, 2021.

[25] A. Rohrbach, et al., Object hallucination in image captioning, in: EMNLP, 2018.
[26] C. Wang, R. Sennrich, On exposure bias, hallucination and domain shift in neural machine

translation, in: ACL, 2020.
[27] C. Zhu, A. S. Rawat, M. Zaheer, S. Bhojanapalli, D. Li, F. Yu, S. Kumar, Modifying memories

in transformer models, in: arXiv, 2020.
[28] N. D. Cao, W. Aziz, I. Titov, Editing factual knowledge in language models, in: EMNLP,

2021.
[29] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches

and applications, TKDE (2017).
[30] T. Févry, L. B. Soares, N. FitzGerald, E. Choi, T. Kwiatkowski, Entities as experts: Sparse

memory access with entity supervision, in: EMNLP, 2020.
[31] H. Sun, L. B. Soares, P. Verga, W. W. Cohen, Adaptable and interpretable neural memory

over symbolic knowledge, in: NAACL, 2021.
[32] N. Kassner, O. Tafjord, H. Schutze, P. Clark, Enriching a model’s notion of belief using a

persistent memory, in: arXiv, 2021.

GraphPOPE: Retaining Structural Graph Information
Using Position-aware Node Embeddings
Jeroen B. den Boef1,2, Joran Cornelisse2 and Paul Groth1

1University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
2Socialdatabase, Slego 1A, 1046 BM Amsterdam, The Netherlands

Abstract
Exponential computational cost arises when graph convolutions are performed on large graphs such as
knowledge graphs. This computational bottleneck, dubbed the ‘neighbor explosion’ problem, has been
overcome through application of graph sampling strategies. Graph Convolutional Network architectures
that employ such a strategy, e.g. GraphSAGE, GraphSAINT, circumvent this bottleneck by sampling sub-
graphs. This approach improves scalability and speed at the cost of information loss of the overall graph
topology. To improve topological information retention and utilization in graph sampling frameworks,
we introduce Graph Position-aware Preprocessed Embeddings (GraphPOPE), a novel, feature-enhancing
preprocessing technique. GraphPOPE samples influential anchor nodes in the graph based on centrality
measures and subsequently generates normalized geodesic, Cosine or Euclidean distance embeddings for
all nodes with respect to these anchor nodes. Structural graph information is retained during sampling
as the position-aware node embeddings act as a skeleton for the graph. Our algorithm outperforms
GraphSAGE on a Flickr benchmark dataset. Moreover, we demonstrate the added value of topological
information to Graph Neural Networks.

Keywords
Graph Convolutional Networks, Graph Neural Networks, Graph Topology, Feature Embeddings

1. Introduction

Data that emphasizes relationships between data points, e.g. social networks, general knowledge,
protein interactions, can be formally represented as graphs. Within machine learning there
has been much interest in leveraging these graphs representations leading to the inception
of graph learning and Graph Neural Networks (GNN) [1]. Graph neural networks have been
successfully applied to a wide variety of tasks utilizing graph-structured data ranging from
knowledge graphs to social networks [2, 3, 1, 4].

Many of the initial teething problems of GNNs have been resolved [5, 6, 7, 8, 9, 10]. Graph
Convolutional Networks (GCN) combined a convolutional smoothing kernel with a spectral
graph representation to achieve state of the art results on transductive node classification tasks
[5]. While accurate in a transductive setting, this approach to node classification tasks fails to
generalize well to unseen nodes [6]. GraphSAGE opened up the avenue for inductive graph

ISWC2021: Workshop on Deep Learning for Knowledge Graphs (DL4KG), October 25, 2021
Envelope-Open jeroen@socialdatabase.com (J. B. d. Boef); joran@socialdatabase.com (J. Cornelisse); p.t.groth@uva.nl (P. Groth)
GLOBE https://pgroth.com/ (P. Groth)
Orcid 0000-0001-5649-2778 (J. B. d. Boef); 0000-0003-0183-6910 (P. Groth)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jeroen@socialdatabase.com
mailto:joran@socialdatabase.com
mailto:p.t.groth@uva.nl
https://pgroth.com/
https://orcid.org/0000-0001-5649-2778
https://orcid.org/0000-0003-0183-6910
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

convolution models by learning general embedding generation functions for node features [6].
The GraphSAGE propagation rule utilizing a mean aggregator function is nearly equivalent
to the one utilized in transductive GCNs and can be viewed as a linear approximation of
localized spectral convolution. Additionally, primitive skip connections are performed by
concatenating previous neighborhood representations of nodes with the current neighborhood
representation. GraphSAGE also introduced a complementary NeighborSampler dataloader
which improved scalability by introducingmini-batch training toGraphConvolutional Networks.
The NeighborSampler aids embedding computation by sampling neighboring nodes iteratively
and constructing mini-batches of nodes. Bipartite graphs are subsequently constructed to
simulate the computation flow of GNNs. While inductive by nature and competitively accurate
when introduced, the GraphSAGE model is constrained by its set neighborhood sampling
function, as this restricts the convolutional kernel to a fixed size. The introduction of Graph
Attention Networks (GAT) resolved this constraint by using an attention mechanism as a
dynamic smoothing kernel [7]. When combined with a self-attention mechanism, this approach
to graph convolution produces competitive results on both inductive and transductive tasks
[7, 11].

1.1. Present work

Graph sampling architectures improve scalability and speed for Graph Convolutional Networks
on large graphs at the cost of information loss with respect to overall graph topology. In an effort
to improve topological information retention and utilization in graph sampling frameworks, we
propose a general preprocessing technique for Neural Networks operating on graph-structured
data, called GraphPOPE (Graph POsition-aware Preprocessed Embeddings). In this framework,
topological information is embedded into the feature matrix through the generation of relative
distance embeddings. By sampling anchor nodes from a given graph, identification points are
determined. Normalized relative distance embeddings are then generated for all pairings of
nodes and anchor nodes. These embeddings serve as a skeleton of the graph and identify
which neighborhood a node belongs to. Intuitively, GraphPOPE embeddings can be interpreted
as node2vec neighborhood embeddings for the whole graph, whereas node2vec generates
second-order random walks neighborhood embeddings for individual nodes [12]. This makes
GraphPOPE applicable to Multi Layer Perceptrons and local pooling models such as Graph
Convolutional Networks alike, as topological information beyond the scope of a convolutional
kernel is provided.

2. Related Literature

Conceptually, GraphPOPE is closely related to recent advances in GNNs that seek to improve
topological information usage through position-aware convolutional layers. We consider
GraphPOPE closely intertwined with graph sampling techniques as it mitigates topological
information loss.

0Code implementations are publicly available on Github: https://github.com/JeroendenBoef/GraphPOPE

https://github.com/JeroendenBoef/GraphPOPE

2.1. Graph Sampling Approaches

to GNNs favor scalability and speed over embedding or self-attention strategies by sampling
subgraphs for training. Notable instances of this approach are Cluster-GCN and GraphSAINT,
which both address the main computational bottleneck of GCNs [8, 9]. This computational
bottleneck has been dubbed the neighbor explosion problem and is twofold: First, outputs of a
GCN for a single node require data from neighbouring nodes in the previous layer of the network
[8, 9]. Every layer within a GCN requires another 𝑛-hop neighbors where 𝑛 depends on the
convolutional kernel size, increasing computational cost exponentially for every layer. Second,
back-propagation of a GCN requires all of the embeddings in the computation graph to be stored
in GPU memory. Cluster-GCN proposes a solution to this bottleneck by preceding training
with a clustering phase. Clusters of nodes belonging to dense subgraphs are identified during
this clustering phase. These subgraphs are then used to restrict neighborhood search, acting as
boundaries for the convolutional kernel. This relatively simple strategy introduces scalability to
graph convolutional networks while reducing computational costs by a large margin. However,
the employed clustering algorithm introduces additional heavy computational costs.

GraphSAINT adopts a similar approach to Cluster-GCN, marginally improving accuracy but
substantially decreasing computation time [9]. The improved computational speed is mainly
achieved through employment of inexpensive sampling algorithms, contrasting the expensive
clustering algorithm utilized by Cluster-GCN.

2.2. Information Loss:

While sampling graphs during training mitigates the neighbor explosion problem and reintro-
duces scalability to GCNs, it nevertheless results in the loss of information. Restricting the
GCN to specific clusters or completely disconnected subgraphs during training withholds or
even removes edges and thus information from the graph. Chiang and colleagues identify this
shortcoming for Cluster-GCN and introduce stochastic multiple clustering in an effort to reduce
clustering bias and restore lost information simultaneously [8]. However, stochastic multiple
clustering exclusively addresses the issue of cut edges during stochastic gradient descent batch
updates, disregarding information loss preceding this phase.

A residual weakness within GNNs is their inability to distinguish between node positions
with regards to the broader context of graph structure [13]. Not taking node features into
account, two nodes can reside within opposite sides of a graph while having a topologically
identical neighbourhood structure. Attempted heuristics range from attempts at deeper GNNs
to node feature augmentation using position-aware convolutional layers [10].

3. Method: GraphPOPE

The inclusion of position-aware node embeddings as a general preprocessing technique for
graph-based Neural Networks is motivated by the perceived topological information loss in
graph sampling GCNs. Embedding this information into the node features before subgraph
sampling could improve model performance. We first describe the geodesic GraphPOPE algo-
rithm, which samples anchor nodes stochastically and subsequently generates position-aware

Figure 1: Schematic overview of the GraphPOPE embedding generation

node embeddings for all nodes in a given graph (Section 3.1). Embedding enhancement through
biased anchor node sampling and algorithmic time complexity are detailed in Section 3.2. Finally,
we introduce a faster, embedding space approximation of the geodesic GraphPOPE in Section
3.3. A schematic overview of the GraphPOPE algorithm is depicted in figure 1.

3.1. Geodesic Distance Embeddings

This section details the GraphPOPE anchor node sampler and geodesic distance embedding
generator algorithm (Algorithm 1 - GraphPOPE-geodesic), which assumes the output matrix
is concatenated with the feature matrix so that all nodes are enriched with their respective
distance embeddings. Let 𝒢(𝒱 ,ℰ) denote graph 𝒢 with nodes 𝒱 and edges ℰ, 𝑛 the amount
of anchor nodes 𝒱𝑠 to sample, 𝑑 the geodesic distance function used to derive relative node
distances and 𝐷𝑁×𝑛 the geodesic distance matrix generated by GraphPOPE. The intuition behind
this algorithm is that for each node 𝑣𝑖 in the graph, normalized geodesic distances between this
node and all sampled anchor nodes 𝒱𝑠 are computed and added to feature vector v𝑣, which
is subsequently added to the relative distance matrix 𝐷 at index 𝑖. Anchor nodes are sampled
stochastically to reduce algorithm complexity and prevent bias in the data. The distance function
employed for this computation is either a single-source or all-pairs shortest path algorithm,
returning 0 if the target node is unreachable and 1

𝑑(𝑣𝑖,𝑢𝑗)
otherwise. As this distance function

serves as an approximation of how many hops a node is from an anchor node, it can be replaced
by similar but faster distance functions.

3.2. Biased Anchor Node Sampling

The vanilla GraphPOPE (Algorithm 1) avoids bias through stochastic sampling of anchor nodes.
This approach to sampling has a potential drawback of sampling less influential nodes. We
introduce biased anchor node sampling based on node centrality which replaces the stochastic
sampler in Algorithm 1 and alleviates this aforementioned phenomenon.

In this algorithm (see Appendix A, Algorithm 2: Biased Sampler), centrality scores are derived
for all nodes and the highest ranking nodes are selected as anchor nodes. This extension upon
the vanilla GraphPOPE algorithm aims to increase and stabilize the amount of topological

1𝑗 is utilized as an enumeration of 𝑢 ∈ 𝒱𝑠 in line 3 to insert 𝑑𝑖𝑗 into vector 𝑣𝑣 at index 𝑗

Algorithm 1 GraphPOPE-geodesic
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Distance function 𝑑
Output: Geodesic distance matrix 𝐷𝑁×𝑛

1: Stochastically sample 𝑛 anchor nodes 𝒱𝑠 from 𝒱
2: for 𝑣𝑖 ∈ 𝒱 do
3: for 𝑢𝑗 ∈ 𝒱𝑠 do
4: 𝑑𝑖𝑗 ←

1
𝑑(𝑣𝑖,𝑢𝑗)

5: Embedding vector v𝑣[𝑗] ← 𝑑𝑖𝑗 1
6: end for
7: 𝐷[𝑖] ← v𝑣
8: end for

information encoded in the distance embeddings by selecting nodes with higher centrality
scores.

The geodesic distance matrix generation of Algorithm 1 employs a single-source shortest
path algorithm for distance function 𝑑 with time complexity 𝑂(𝑉 + 𝐸) [14]. With this function
being utilized for every combination of sampled anchor node 𝑉𝑠 with every node 𝑣𝑖 ∈ 𝑉, this
results in an overall complexity of 𝑂(𝑉 (𝑉𝑠(𝑉 + 𝐸))). This can be simplified to a notation of
𝑂(𝑉𝑠(𝑉 2 + 𝑉𝐸)), which is close to a worst-case complexity of 𝑂(𝑉 4) for a densely connected,
directional graph (𝐸 = 𝑉 2) with 𝑉𝑠 = 𝑉. This is nevertheless an extreme scenario, divergent
from most average cases. When treated as an all-pairs shortest path problem on a directed
graph and computed in parallel, this complexity can be improved to 𝑂(𝑉 (𝑉 + 𝐸)). An example
of such an approach is the Floyd-Warshall algorithm, which generates a complete mapping of
all shortest paths in a given graph. While this all-pairs approach to the shortest path derivation
reduces the complexity from approximately 𝑂(𝑉 3) to 𝑂(𝑉 2), it is substantially more costly with
regards to memory usage.

Biased anchor node sampling through node centrality introduces additional time complexity.
Betweenness centrality would likely identify well connected, influential nodes most accurately
as it denotes the fraction of shortest paths that pass through a given node. Nodes with a high
betweenness centrality score would logically be more connected than those with a lower score,
and thus less likely to return 0 when fed into distance function 𝑑. As this centrality measure
requires shortest path computation, biased sampling has similar scalability issues to the shortest
path algorithms employed in Algorithm 1. As faster approximations for betweenness centrality,
other measures such as eigenvector-, clustering coefficient-, degree-, farness- and closeness
centrality are utilized for centrality function 𝑐 [15].

3.3. Embedding Space Approximation

In order to resolve the exponential scaling complexity of GraphPOPE-geodesic, we propose
an embedding space alternative. This algorithm (see Appendix A, Algorithm 3: GraphPOPE-
node2vec) utilizes Node2vec to generate local neighborhood embeddings𝒱𝐸 for every node 𝑣𝑖 in
𝒱 [12]. Anchor nodes can then be sampled stochastically or with a bias by K-means clustering
𝒱𝐸 into 𝑛 clusters and utilizing the cluster centroids as pseudo anchor nodes 𝒱𝐸𝑠. Classical

K-means has a time complexity of 𝑂(𝑛2) which can be reduced to 𝑂(𝑛) through cluster shifting
[16]. Moreover, the necessity of biased sampling is reduced for this algorithm, as edge traversal
is not utilized in the distance computation. As a result, information loss does not occur in
a similar fashion to the geodesic distance calculation. Distance between 𝒱𝐸 and 𝒱𝐸𝑠 is then
calculated through parallelized matrix multiplications, which has a linear complexity of 𝑂(𝑛).
Algorithms used for the distance function are Cosine similarity, Cosine distance and Euclidean
distance.

4. Experiments

We evaluate position-aware node embeddings by performing node property predictions on two
benchmark datasets: Flickr and PubMed [9, 17]. In all experiments, predictions are performed on
nodes that are unseen during training but included in the preliminary GraphPOPE embedding
generation. This is thus considered a supervised, transductive learning setting. We usedWeights
& Biases for experiment tracking and hyperparameter optimization [18]. Sections 4.1 and 4.2
detail the experimental setup and data, respectively.

4.1. Experimental Setup

Experiments were conducted with an Ubuntu OS, GTX 2060 and RTX 3060 NVIDIA GPUs
and Intel i7-5820K and Intel gold 6130 CPUs. Geodesic distances are derived with Networkx
and all models are implemented through a combination of Pytorch, Pytorch Geometric and
an abstraction layer of Pytorch Lightning [19, 20, 21, 22]. Our baseline model is a vanilla
GraphSAGE architecture, consisting of 2-3 SAGE convolutional layers with intermediate batch
normalization layers, the GraphSAGE mini-batch NeighborSampler, a hidden dimension size
of 256, a dropout rate of 0.5 and a cross-entropy loss function [23, 6, 21]. GraphPOPE models
used for experimentation are divided into two categories, geodesic and node2vec approaches.
Geodesic iterations consist of the vanilla GraphPOPE-stochastic version and its biased alter-
natives. Specifically betweenness-, closeness-, degree-, clustering coefficient-, eigenvector
centrality and PageRank-based versions. Node2vec implementations are normalized Cosine and
Euclidean distances supported by biased anchor node sampling through K-means clustering.
All experiments were conducted utilizing identical architecture and hyperparameters with the
exception of optimized batch sizes, amount of convolutional layers (2 or 3) and GraphPOPE
settings.

Hyperparameter optimization was conducted separately per dataset for
GraphPOPE-geodesic, GraphPOPE-node2vec and the vanilla GraphSAGE baseline to ensure
unbiased comparison. These optimizations are implemented through hyperparameter sweeps
with a Bayesian search method to optimize validation accuracy [18]. Sweeps are performed
over 𝑛 anchor nodes, batch size 𝐵 and the amount of convolutional layers ℓ.

Experiments are run for a max of 300 epochs using early stopping mechanics and a learning
rate monitor. A starting learning rate of 0.001 is employed which is reduced upon stagnation of
validation loss. Finally, an Adam optimizer is used for all models and early stopping is provoked
if validation accuracy does not increase for 20 epochs [24, 25].

Themotivation behind this experimental setup is twofold. It allows us to assess whether graph
sampling GCNs can be improved through introduction of additional topological information.
Moreover, it reduces the possibility of experimental bias as the convolutional kernel introduces
unfavourable conditions. Convolutional kernels already have access to topological information
of local node neighborhoods, rendering the information gain of GraphPOPE less potent.

4.2. Data

Two graph datasets of contrasting size and density are employed. Test partition nodes are unseen
during training with a separate dataloader that is exclusively instantiated upon conclusion of
training.
Flickr dataset We use the Flickr dataset introduced with GraphSAINT [9]. In the dataset,

edges denote shared metadata among images such as locations or users. Labels are manually
merged tags and represent 7 entities such as animals, nature, humans, etc. Features are 500-
D bag of words extractions of SIFT image descriptions. The graph contains roughly 89,250
nodes with 899,756 edges connecting them. Similar to Zeng and colleagues, edge weights are
normalized in-degrees and a fixed-partition split is applied to the data, resulting in 50/25/25
train/val/test split [9].
Citation dataset The PubMed medical citation graph is used to assess performance on a

smaller, less challenging node property prediction dataset [17]. In this directed graph, nodes
represent scientific publications regarding diabetes research from the PubMed database, edges
indicate outgoing citations and labels represent publication categories. The dataset consists of
19,717 nodes divided over 3 classes with 44,338 edges. We employ the FastGCN partition split,
resulting in 500 validation and 1000 test nodes, leaving the remaining 18,217 nodes for training
[26].

5. Results

We provide experimental results detailing accuracy metrics on the tasks, feature importance of
𝑛 anchor nodes and hyperparameter sweeps. Reported accuracy scores are averages of 20 runs
in a range of fixed global seeds to ensure reproducibility. Tables 1 detail the results. Accuracy
scores are accompanied by their respective standard error and highest accuracy values are
denoted in bold. on benchmarking tasks. Optimized hyperparameters are given in Appendix A,
Table 2.

Table 1 shows an accuracy increment for all geodesic GraphPOPE models with respect
to the baseline on the Flickr dataset. Moreover, GraphPOPE-geodesic implementations that
employ biased sampling of anchor nodes generally experience more substantial accuracy gains.
Contrastingly, node2vec-based approximations yield no improved performance. Results on
PubMed indicate a homogeneous performance of 89% accuracy.

Results on Flickr indicate that configurations with more anchor nodes generally experience a
more substantial increase in performance except for node2vec approximations. Increasing the
amount of anchor nodes from 32 to 256 for an unoptimized, geodesic GraphPOPE with closeness
centrality sampling raises accuracy from 51.98% to 53.05%. Moreover, validation accuracy yields
an 88% positive correlation with the amount of anchor nodes over 90 hyperparameter sweeps

on the aforementioned configuration. PubMed experiments display a contrasting trend where
the amount of anchor nodes provide diminishing returns. On this smaller dataset, the amount
of anchor nodes have a linear correlation of -25%, resulting in an optimal configuration with 64
anchor nodes to maximize validation accuracy.

Table 1
Averaged prediction results over 20 runs on optimized hyperparameters. Biased K-means anchor node
sampling is utilized for N2V implementations.

Flickr PubMed

Name Acc Acc

Betweenness centrality 52.93 ± 0.23 89.14 ± 0.67
Closeness centrality 52.55 ± 0.24 89.28 ± 0.65
Degree centrality 52.92 ± 0.23 89.32 ± 0.63
Clustering coefficient 52.63 ± 0.23 89.40 ± 0.59
Eigenvector centrality 52.48 ± 0.17 89.29 ± 0.60
PageRank 52.94 ± 0.25 89.05 ± 0.55
Stochastic 52.75 ± 0.24 89.55 ± 0.56
N2V-cdist 51.70 ± 0.29 89.52 ± 0.39
N2V-Euclidean 51.68 ± 0.30 89.52 ± 0.39
Baseline 51.78 ± 0.17 89.51 ± 0.35

6. Discussion

Our experimental results on the Flickr dataset display trends of accuracy gain for GraphPOPE-
enhanced architectures with a more substantial improvement on larger datasets. Additionally,
accuracy gains improve upon biased anchor node sampling. The amount of anchor nodes corre-
lates positively with an increase in validation accuracy. This suggests that additional topological
information can be beneficial to sampling-assisted Graph Convolutional Networks. Specifically
for larger graphs, where the fraction of topological information beyond the convolutional kernel
is higher.

GraphPOPE-node2vec poses an ineffective embedding-space alternative. Whereas compu-
tation complexity is improved, model accuracy is not. This phenomenon might be explained
by the fact that convolutional kernels employed by GCNs already have access to the local
neighborhood information encoded by node2vec.

Scalability is a recurring bottleneck for GNNs. Our time complexity stems from the algorithm’s
geodesic distance calculation. Overcoming these scalability issues could prove beneficial for
graph learning on large datasets, given the substantial accuracy increments on such graphs.
Embedding-space approximations of the distance calculation could provide a solution for
the memory and computation time bottlenecks, removing the need for costly edge traversal
operations. Alternatively, models could be trained to approximate the distance function. Finally,
deep learning alternatives for the identification of influential nodes in the graph could accelerate
performance of biased anchor node sampling, potentially improving another time complexity
component.

7. Conclusion

We introduced GraphPOPE, a novel prepossessing technique designed to improve topological
information retention and utilization in Graph Neural Networks. Our algorithm is applicable to
any Neural Network that has access to graph-structured data and operates through position-
aware node embedding generation. We demonstrate an accuracy gain on graph benchmarking
datasets Flickr and PubMed with the application of our position-aware node embeddings, which
can be improved additionally at the cost of additional time complexity. Our experimental results
indicate that larger graphs benefit more from increased amounts of topological information
retention. Finally, we propose approximations for future research to reduce time complexity,
thus increasing applicability to real-world scenarios.

References

[1] W. L. Hamilton, Graph representation learning, Synthesis Lectures on Artifical Intelligence
and Machine Learning 14 (2020) 1–159.

[2] W. Fan, Y. He, Y. Ma, E. Zhao, D. Yin, Q. Li, J. Tang, Graph neural networks for social
recommendation, arXiv (2019) 417–426.

[3] S. Arora, A survey on graph neural networks for knowledge graph completion (2020).
arXiv:2007.12374 .

[4] T. Thanapalasingam, L. van Berkel, P. Bloem, P. Groth, Relational graph convolutional
networks: A closer look, CoRR abs/2107.10015 (2021). arXiv:2107.10015 .

[5] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 (2016).

[6] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs,
Advances in Neural Information Processing Systems 2017-Decem (2017) 1025–1035.
arXiv:1706.02216 .

[7] P. Velicković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention
networks, arXiv (2017) 1–12. arXiv:1710.10903 .

[8] W. L. Chiang, Y. Li, X. Liu, S. Bengio, S. Si, C. J. Hsieh, Cluster-GCN: An efficient algorithm
for training deep and large graph convolutional networks, Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
257–266. doi:10.1145/3292500.3330925 . arXiv:1905.07953 .

[9] H. Zeng, H. Zhou, A. Srivastava, V. Prasanna, R. Kannan, GraphSAINT: Graph sampling
based inductive learning method, arXiv (2019). arXiv:1907.04931 .

[10] J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, 36th International Con-
ference on Machine Learning, ICML 2019 2019-June (2019) 12372–12381. arXiv:1906.04817 .

[11] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec, Open graph
benchmark: Datasets for machine learning on graphs, arXiv preprint arXiv:2005.00687
(2020).

[12] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data
mining, 2016, pp. 855–864.

http://arxiv.org/abs/2007.12374
http://arxiv.org/abs/2107.10015
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1710.10903
http://dx.doi.org/10.1145/3292500.3330925
http://arxiv.org/abs/1905.07953
http://arxiv.org/abs/1907.04931
http://arxiv.org/abs/1906.04817

[13] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, arXiv
preprint arXiv:1810.00826 (2018).

[14] A. Bhargava, Grokking Algorithms: An illustrated guide for programmers and other
curious people, Simon and Schuster, 2016.

[15] X. He, N. Meghanathan, Alternatives to betweenness centrality: A measure of correlation
coefficient, 2016. doi:10.5121/csit.2016.61301 .

[16] M. Pakhira, A linear time-complexity k-means algorithm using cluster shifting, 2014.
doi:10.1109/CICN.2014.220 .

[17] Z. Yang, W. W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learning with graph
embeddings, 2016. arXiv:1603.08861 .

[18] L. Biewald, Experiment tracking with weights and biases, 2020. URL: https://www.wandb.
com/, software available from wandb.com.

[19] A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dynamics, and function
using NetworkX, Technical Report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library (2019) 8024–8035. URL: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[21] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch geometric, arXiv
preprint arXiv:1903.02428 (2019).

[22] W. Falcon, et al., Pytorch lightning, GitHub. Note: https://github.com/PyTorchLight-
ning/pytorch-lightning 3 (2019).

[23] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, CoRR abs/1502.03167 (2015). URL: http://arxiv.org/abs/1502.03167.
arXiv:1502.03167 .

[24] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

[25] I. Loshchilov, F. Hutter, Fixing weight decay regularization in adam, CoRR abs/1711.05101
(2017). URL: http://arxiv.org/abs/1711.05101. arXiv:1711.05101 .

[26] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast learning with graph convolutional networks via
importance sampling, CoRR abs/1801.10247 (2018). URL: http://arxiv.org/abs/1801.10247.
arXiv:1801.10247 .

A. Appendix

http://dx.doi.org/10.5121/csit.2016.61301
http://dx.doi.org/10.1109/CICN.2014.220
http://arxiv.org/abs/1603.08861
https://www.wandb.com/
https://www.wandb.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1801.10247

Algorithm 2 Biased sampler
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Centrality function 𝑐
Output: Anchor nodes 𝒱𝑠

𝐶 ← 𝑐(𝒢)
2: Sample 𝑛 highest 𝐶𝑖 anchor nodes 𝒱𝑠 from 𝒱

Algorithm 3 GraphPOPE-node2vec
Input: Graph 𝒢(𝒱 ,ℰ); Sampling amount 𝑛; Distance function 𝑑; Node2vec algorithm 𝑧; K-

means clustering algorithm 𝑘; Bias setting 𝑏 ∈ {𝑇 𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}
Output: Normalized embedding distance matrix �̃�𝑁×𝑛

Node2vec embedding 𝒱𝐸 ← 𝑍(𝒢)
if 𝑏 == 𝑇 𝑟𝑢𝑒 then

3: clustering centroids 𝐶 ← 𝐾(𝒱𝐸)
Sample 𝑛 pseudo anchor nodes 𝒱𝐸𝑠 from 𝐶

else
6: if 𝑏 == 𝐹𝑎𝑙𝑠𝑒 then

Stochastically sample 𝑛 anchor nodes 𝒱𝐸𝑠 from 𝒱𝐸
end if

9: end if
𝐷 ← 𝑑(𝒱𝐸, 𝒱𝐸𝑠)
Normalize 𝐷

Table 2
Optimized hyperparameter settings for GraphSAGE and GraphPOPE-enhanced GraphSAGE. Hyperpa-
rameters depicted are 𝑛 anchor nodes 𝒱𝑠, batch size 𝐵 and convolutional layers ℓ.

Flickr PubMed

Name 𝑛𝒱𝑠 𝐵 ℓ 𝑛𝒱𝑠 𝐵 ℓ

GraphPOPE-geodesic 256 1550 3 64 800 2
GraphPOPE-node2vec 64 625 3 256 750 3
Baseline - 3550 2 - 2200 2

Challenges of Applying Knowledge Graph and their
Embeddings to a Real-world Use-case
Rick Petzold2,3,4, Genet Asefa Gesese1,3,5, Viktoria Bogdanova2,4,
Thorsten Zylowski2,4, Harald Sack1,3,5 and Mehwish Alam1,3,5

1FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany
2CAS Software AG, Germany
3Karlsruhe Institute of Technology, Institute AIFB, Germany
4firstname.lastname@cas.de
5firstname.lastname@fiz-karlsruhe.de

Abstract
Different Knowledge Graph Embedding (KGE) models have been proposed so far which are trained on
some specific KG completion tasks such as link prediction and evaluated on datasets which are mainly
created for such purpose. Mostly, the embeddings learnt on link prediction tasks are not applied for
downstream tasks in real-world use-cases such as data available in different companies/organizations. In
this paper, the challenges with enriching a KG which is generated from a real-world relational database
(RDB) about companies, with information from external sources such as Wikidata and learning repre-
sentations for the KG are presented. Moreover, a comparative analysis is presented between the KGEs
and various text embeddings on some downstream clustering tasks. The results of experiments indicate
that in use-cases like the one used in this paper, where the KG is highly skewed, it is beneficial to use
text embeddings or language models instead of KGEs.

Keywords
Knowledge Graph Embedding, Language Models, Clustering

1. Introduction

As discussed in [1], according to the 2017 Kaggle Machine Learning & Data Science Survey the
majority of data scientists use relational data in their work. In significant number of industries
such relational data are modeled and stored in relational databases such as MySQL and Oracle.
Data scientists make use of the data stored in these databases to perform different machine
learning applications such as clustering and classification. However, in order to apply such
algorithms directly to the data significant feature engineering efforts are required. Hence, one
way to address this issue is to convert the relational databases into a Knowledge Graph (KG)

Woodstock’21: Symposium on the irreproducible science, June 07–11, 2021, Woodstock, NY
" kulyabov-ds@rudn.ru (R. Petzold); Manfred.Jeusfeld@acm.org (V. Bogdanova); Manfred.Jeusfeld@acm.org
(T. Zylowski)
~ http://conceptbase.sourceforge.net/mjf/ (V. Bogdanova); http://conceptbase.sourceforge.net/mjf/ (T. Zylowski)
� 0000-0001-7116-9338 (G. A. Gesese); 0000-0002-9421-8566 (V. Bogdanova); 0000-0002-9421-8566 (T. Zylowski);
0000-0002-9421-8566 (H. Sack); 0000-0002-9421-8566 (M. Alam)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kulyabov-ds@rudn.ru
mailto:Manfred.Jeusfeld@acm.org
mailto:Manfred.Jeusfeld@acm.org
http://conceptbase.sourceforge.net/mjf/
http://conceptbase.sourceforge.net/mjf/
https://orcid.org/0000-0001-7116-9338
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-9421-8566
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and then learn embeddings for the obtained KG which in turn will be used as inputs to the
downstream tasks.

The relational database (RDB) used in this paper is hosted by the company CAS Software
AG1 and it contains information about German companies, i.e., their addresses, contact persons,
industrial sectors, and so on. The database is converted to a KG using the D2RQ [2] tool. In
order to apply machine learning algorithms on the KG, it is necessary to transform the KG into
low-dimensional vector space while preserving the semantics present in the KG. There exist
various approaches proposed for such purposes like DistMult [3] and ComplEx [4]. However, if
the created KG is highly skewed with not enough semantics present which is the exact scenario
in our use-case, challenges arise when trying to learn representations for the KG, i.e., KGE
models do not perform well on KGs with such characteristics. Experiments with some KGE
models are conducted to prove this.

Another alternative to KGEs, is to leverage the textual descriptions of the companies and
apply text-based embedding models to get latent representations for the companies. The textual
descriptions of the companies are extracted from their respective websites. Some downstream
company clustering tasks are performed using the representations learned using both the KGE
models. The results of the clustering indicates the effectiveness of the text-embeddings over the
KGEs. ExCut [5] performs clustering of entities by combining KG embeddings with rule mining
methods. Even though ExCut also uses a real-world KG, the quality of the KG is better and
suitable for applying KGEs as compared to the use-case (i.e., CAS-KG which is the KG generated
from the RDB provided by CAS) that is being addressed in our paper. The contributions of this
work are i) analysing real-world datasets for KG embeddings, ii) applying KG embeddings for a
downstream task, and iii) comparing text and KG embeddings on real-world datasets.

The rest of the paper is organized as follows: Section 2 discusses the process of converting
the RDB to KG followed by the challenges in mapping the KG to Wikidata and learning latent
representations for the KG using KGEs. In Section 3, latent representation learning of companies
using text embedding models is discussed. The experimental results on downstream clustering
tasks are provided in Section 4 followed by the closing remarks in Section 5.

2. Generating KG from Relational Database

Here, converting the RDB to a KG is discussed along with the challenges that occur while trying
to enrich the KG with external information and learn latent representations.

2.1. Applying D2RQ to Convert the Relational Database to a Knowledge
Graph

The first step is cleaning the database by normalizing it to BCNF and filtering out unnecessary
tables, i.e., tables with data that do not provide any useful information to learn representations
for companies. After normalizing the database, it is converted to RDF in N-Triples format
using D2RQ. As the result of the conversion, there are 5 entity types, 9,794,528 entities, 3 object
relations, 21 datatype properties, 74,220,549 triples among which 12,138,554 contain object

1https://www.cas.de/start.html

https://www.cas.de/start.html

relations and the rest 62.081.995 are triples with datatype properties. The entity types are
Company (8,945,631), City (150,377), State (16), Legal Form (45), and Person (6,98,459).

Note that there is no any direct connection between two entities of the same type. Due to
this fact, the generated KG (i.e., CAS-KG) is highly skewed and is not rich in semantics. In order
to increase the quality of CAS-KG, it is beneficial to enrich the graph with external information.

2.2. Challenges in Mapping CAS-KG to Wikidata

As discussed above CAS-KG is required to be enriched with information from external sources.
One of such sources is Wikidata which is a publicly available Linked Oped Data. An attempt
has been made to map the companies that are in CAS-KG to items in Wikidata. However, the
following two challenges arise when dealing with the mapping i) Most of the companies in the
CAS-KG are small local businesses which do not have corresponding items in Wikidata. This is
observed while trying to perform simple string-based comparison of the names of the companies
in CAS with the labels of items that are of type Organization/Business/Company in Wikidata. ii)
It was possible to map the entities of type LegalForm, and City to Wikidata items. For instance,
the Legal Form GmbH in Cas could be mapped to GmbH (Q460178) in Wikidata. However,
mapping entities of such types do not actually bring much of usable semantic enrichment
without being able to map Companies.

2.3. Applying KGEs on CAS-KG

Here, the challenge is proven by applying some KGE-based link prediction task on CAS-KG.
Since CAS-KG is huge in terms of triples and the total number of entities, it is necessary to
select a sub-graph for the experiments, which is referred to as CAS286K. CAS286K contains
285,808 entities, 3 relations, 382,964 structured triples, 306,371 training triples, 38,296 test
triples, and 38,297 validation triples. The dataset is available at https://github.com/rickpetzold/
CAS-Knowledge-Graph.

DistMult [3] and ComplEx [4] KGE models are used to learn representations for the dataset
CAS286K. These two models are selected to show the differences that they have in handling
asymmetric relations, i.e., unlike ComplEx, DistMult does not perform well with asymmetric
relation and all the 3 relations that exist in the CAS286K are asymmetric. Note that the choice
of the KGE model does not affect the purpose of these experiments which is to prove that the
KG lacks the required quality to apply a KGE model on it. Note that two different ways of
initialization are used with the ComplEx model, i.e., random initialization (ComplEx) and initial-
ization with fastText [6] embeddings (ComplEx𝑖𝑛𝑖𝑡). The fastText Embeddings are generated by
averaging embeddings of the labels and keywords associated with the corresponding entities.

The Stochastic Local Closed World Assumption (sLCWA) [7] training approach is used with
model optimization hyperparameter ranges - Embedding dimension: {64,128,256}, Optimizers:
{Adam, AdaGrad}, Regularizers: {None, L1, L2}, Weight for L1 and L2: [0.01,1.0), lr:[0.001,0.1),
batch size: {128,256,512,1024}, Loss: {BCEL, MRL}, Number of negatives: {1,2, . . . ,30}, and Margin
for MRL: {0.5,1.5, . . . , 9.5}. Number of trials: 10, epochs:100, early stopping with patience of 50
epochs evaluating every 10 epochs. For ComplEx, the optimizer, the loss, and the regularizer
are fixed to Adam, BCEL, and L2 respectively so as to reduce computational cost. The opti-

https://github.com/rickpetzold/CAS-Knowledge-Graph
https://github.com/rickpetzold/CAS-Knowledge-Graph

mal hyperparameter values for DistMult and ComplEx are embedding dimension: 128 & 100,
Regularizer: L2 & L2, weight: 0.025 & 0.0228, Loss: MRL & BCEL, negative sampler: 6 & 61,
optimizer: Adam & Adam, and Batch Size: 256 & 512. Detailed information about sLCWA and
the aforementioned loss functions is available in [7].

The results obtained are MRR 0.000034, 0.2, and 0.0074 for DistMult, ComplEx, and ComplEx𝑖𝑛𝑖𝑡
respectively. The values of each of these evaluation metrics are too low mainly with DistMult
due to some characteristics of the CAS286K dataset which already makes it hard to learn
embeddings using KGE approaches. Firstly, the entities of type Company have no incoming
relations, i.e., they never occur as tails in the KG which makes the graph highly skewed. This
indicates that there exist no single direct connection between any two entities of type Company.
Since ComplEx is better than DistMult in dealing with asymmetric relations and most of the
relations are asymmetric in CAS286K, the MRR with ComplEx (0.2) is better than with Distmult
(0.000034). Moreover, even though initializing ComplEx with FastText embeddings is better
than DistMult, it is not better than the randomly initialized ComplEx model due to the fact that
only less than 1% of the entities of type company have keywords. Pykeen2 is used to undertake
the experiments.

3. Text Embeddings

As it has already been discussed in Section 2.2 and 2.3, applying the KGE approaches in such
highly skewed KG with very limited links between entities is not beneficial. Hence, it is better
to apply text embedding models instead as it could be more feasible to find textual descriptions
for the companies. Therefore, web crawling is performed to get the textual descriptions of
companies and while doing so, those websites containing either very short or non-german text
are removed.

In order to learn representations for companies using the crawled texts, different embedding
models are used separately, i.e., pretrained fastText and GloVe [8] embeddings, Multilingual
Bert [9] & Sentence BERT [10] with/without fine tuning, and Multilingual Universal Sentence
Encoder (MUSE) [11]. BERT is fine-tuned on a multiclass-classification task with and without
removing stopwords, i.e., BERT𝑛𝑜𝑠𝑡𝑜𝑝𝑟𝑒𝑚

𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑 using 4049 companies for training & 1200 for validation
on 24 classes/sectors and (BERT𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑) using 2552 companies for training & 800 for validation
on 16 classes/sectors.

4. Downstream task: Clustering

The clustering task is to group together companies based on their industrial sectors. A gold
standard dataset is created with 503 companies where the maximum, minimum, average number
of tokens in the textual descriptions of these companies are 695, 209, and 547.67. This gold
standard contains 12 industry sectors (classes) in total, the sectors and their corresponding
number of companies are: ‘Photographers (86)’, ‘Onlineshop (51)’, ‘Webdesigner (51)’, ‘Coaching,
Training, and Workshop (50)’, ‘Real Estate Agent (50)’, ‘Dentist (50)’, ‘Advertising Agencies (46)’,

2https://pykeen.readthedocs.io/en/stable/

Table 1
Clustering results using text, KG, and combined embeddings

HDBSCAN BIRCH K-Means
Model AMI silh. AMI silh. AMI silh.

Text embeddings

fastText 0.187 -0.082 0.205 0.056 0.198 0.08
GloVe 0.234 0.093 0.582 0.132 0.543 0.13
BERT 0.245 0.017 0.463 0.125 0.432 0.1
BERT𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑 0.324 -0.022 0.467 0.229 0.46 0.256
BERT𝑛𝑜𝑠𝑡𝑜𝑝𝑟𝑒𝑚𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑 0.488 0.16 0.547 0.263 0.548 0.314
SentenceBERT 0.456 0.068 0.614 0.147 0.627 0.15
SentenceBERT𝑓𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑 0.195 0.143 0.237 0.451 0.216 0.523
MUSE 0.579 0.158 0.692 0.221 0.676 0.206

KG embeddings
DistMult 0.013 -0.087 0.01 0.057 0.003 0.106
ComplEx 0.006 -0.022 0.003 -0.094 0.0003 -0.128
ComplEx𝑖𝑛𝑖𝑡 0.014 -0.053 0.012 0.088 0.007 0.004

Combined MUSE + ComplEx𝑖𝑛𝑖𝑡 0.015 -0.03 0.01 0.074 0.006 0.151

‘Consulting (37)’, ‘IT Services (25)’, ‘Online Agencies (23)’, ‘Attorney (21)’, and ‘Travel Agencies
(13)’.

BIRCH [12], HDBSCAN [13], and K-means are selected for the clustering task. For BIRCH
the hyperparameters are the number of clusters 1-20, branching factor 10-200, and threshold
0.1-0.9. For HDBSCAN the minimal samples are 1-50 and the minimal cluster size is 2-100
whereas for K-means the number of clusters is 2-30. As the result in Table 1 indicates, the text
embeddings give better results as compared to the KG embeddings in the clustering task. This is
due to the highly skewed nature of the CAS286K dataset. Information from external resources
is required in order to improve the KGE results. Note that, the MRR results with ComplEx𝑖𝑛𝑖𝑡
is not better than ComplEx on the link prediction task. However, the opposite holds on the
clustering task because 82% of the companies in the gold standard have keywords. Note that
the combined embeddings are generated by simply concatenating representations from MUSE
and ComplEx𝑖𝑛𝑖𝑡.

5. Conclusion

In this paper, the challenges in applying KGE models on real world use-cases are discussed.
Experiments on clustering tasks are conducted using as inputs latent representations learned by
applying both KGEs and text embeddings separately. The results of the experiments prove the
initial analysis that are made about KGEs not working well on datasets with very low quality
such as CAS286K.

References

[1] M. Cvitkovic, Supervised learning on relational databases with graph neural networks,
arXiv preprint arXiv:2002.02046 (2020).

[2] C. Bizer, A. Seaborne, D2rq-treating non-rdf databases as virtual rdf graphs, in: Proceedings
of the 3rd International Semantic Web Conference, 2004.

[3] B. Yang, W.-t. Yih, X. He, J. Gao, L. Deng, Embedding entities and relations for learning and
inference in knowledge bases, in: International Conference on Learning Representations
(ICLR), 2015.

[4] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, G. Bouchard, Complex embeddings for simple
link prediction, ICML’16, JMLR.org, 2016, p. 2071–2080.

[5] M. H. Gad-Elrab, D. Stepanova, T. Tran, H. Adel, G. Weikum, Excut: Explainable embedding-
based clustering over knowledge graphs, in: Proceedings of 19th International Semantic
Web Conference, 2020, pp. 218–237.

[6] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword
information, Transactions of the Association for Computational Linguistics 5 (2016).

[7] M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, M. Galkin, S. Sharifzadeh, A. Fischer, V. Tresp,
J. Lehmann, Bringing light into the dark: A large-scale evaluation of knowledge graph
embedding models under a unified framework, arXiv preprint arXiv:2006.13365 (2020).

[8] J. Pennington, R. Socher, C. Manning, GloVe: Global vectors for word representation, in:
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532–1543.

[9] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, in: NAACL, 2019.

[10] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics, 2019.

[11] D. M. Cer, Y. Yang, S. yi Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, Y.-H. Sung, B. Strope, R. Kurzweil, Universal sentence encoder,
ArXiv abs/1803.11175 (2018).

[12] T. Zhang, R. Ramakrishnan, M. Livny, Birch: An efficient data clustering method for
very large databases, in: Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1996, pp. 103–114.

[13] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
clusters in large spatial databases with noise, in: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press, 1996, p.
226–231.

Knowledge Graph Embeddings or Bias Graph
Embeddings? A Study of Bias in Link Prediction
Models
Andrea Rossia, Donatella Firmanib and Paolo Merialdoa

aRoma Tre University, Roma, Italy
bSapienza University, Roma, Italy

Abstract
Link Prediction aims at tackling Knowledge Graph incompleteness by inferring new facts based on the
existing, already known ones. Nowadays most Link Prediction systems rely on Machine Learning and
Deep Learning approaches; this results in inherent opaque models in which assessing the robustness
to data biases is not trivial. We define 3 specific types of Sample Selection Bias and estimate their
presence in the 5 best-established Link Prediction datasets. We then verify how these biases affect the
behaviour of 9 systems representative for every major family of Link Prediction models. We find that
these models do indeed learn and incorporate each of the presented biases, with a heavily negative
effect on their behaviour. We thus advocate for the creation of novel more robust datasets and of more
effective evaluation practices.

Keywords
Link Prediction, Knowledge Graph Embeddings

1. Introduction

Knowledge Graphs (KGs) are structured repositories of information where nodes modeling
real-world entities are linked by labeled directed edges; each label represents a semantic relation,
therefore each edge linking a pair nodes represents a fact conveying that the corresponding
two entities are connected via that relation.

KGs have recently achieved widespread popularity in a variety of contexts. Large open KGs,
such as DBpedia [1], YAGO [2] and Wikidata [3], are used on a daily basis for Semantic Web
projects [4] and question answering [5]. Meanwhile, a growing number of companies rely on
private KGs to support their services. Google and Microsoft use respectively the Google KG [6]
and Satori [7] to enhance their search engines; Amazon [8] and Ebay [9] use product graphs to
improve their recommendations; social networks like Facebook [10] and LinkedIn [11] use KGs
for user profiling and advertisement.

It is therefore unsurprising that many KGs have achieved web-scale dimensions, featuring
millions of entities and billions of facts. Nonetheless, it is well-known that even even the largest

DL4KG 2021: Workshop on Deep Learning for Knowledge Graphs, held as part of ISWC 2021: the 20th International
Semantic Web Conference, October 24 - 28, 2021 (Online Event)
" andrea.rossi3@uniroma3.it (A. Rossi); donatella.firmani@uniroma1.it (D. Firmani);
paolo.merialdo@uniroma3.it (P. Merialdo)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:andrea.rossi3@uniroma3.it
mailto:donatella.firmani@uniroma1.it
mailto:paolo.merialdo@uniroma3.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and richest KGs suffer from incompleteness, as they only hold a small portion of the real-world
knowledge they should encompass [12].

Link Prediction (LP) tackles this issue by leveraging the already known facts in the KG to infer
new ones. Nowadays the vast majority of LP models learn vectorized representations of entities
and relations called embeddings using Machine Learning (ML) techniques; many of them rely
on Deep Learning architectures, featuring sequences of neural layers interspersed by activation
functions. These models have been shown to achieve state-of-the-art performances [13, 14].
In the last decade embedding-based LP has become a sparkling research area, with dozens of
novel models being proposed every year (see the work by Wang et al. [15] for a comprehensive
survey). The pioneering model TransE [16] has established the practice of evaluating these
systems computing global metrics of their predictive performances over datasets obtained from
real-world KGs.

LP datasets are usually obtained by extracting the most mentioned entities from real-world
KGs. We find that this policy leads to various forms of imbalances and biases. For instance,
the datasets sampled from Freebase [17] tend to only feature people with nationality 𝑈𝑆𝐴.
Furthermore, the same biases observed in training are also present in validation and testing: this
indirectly incentivizes models to incorporate the biases, as they can be instrumental to produce
the correct predictions and boost the evaluation results. In short, our models are yielding
the correct answers for the wrong reasons. For instance, in FB15k-237, which is considered
the most reliable dataset [13], among the 1210 training facts and 151 test facts with relation
film_budget_currency, 1164 and 146 facts respectively feature the same tail USA_dollar. We find
that in those test facts, models always predict the correct tail on the first try when the answer
is USA_dollar, whereas they never manage to guess if it is a different currency.

A few studies in the past have highlighted criticalities in LP benchmarks, mainly with regard
to test leakage [18, 19] or of unnatural distributions and structures [20, 13]. Nonetheless, to
the best of our knowledge the presence of straight-up biases had gone almost unnoticed so
far. This motivates a systematic analysis of how they affect datasets and models, especially
considering that KG embeddings have been shown to be just as vulnerable to biases as word
embeddings [21, 22]. We report an accurate comparison with these other researches in Section 5.

We provide a formal definition of 3 types of data bias that can affect LP models. We focus on the
5 best-established LP datasets and estimate for each of them the number of test samples affected
by each type of bias. We then conduct an extensive re-evaluation of 9 models representative for
all the major families of LP systems, showing how removing the biased test facts affects their
overall predictive performance. All the code and resources generated in our work are available
at our public repository.1

The paper is organized as follows. In Section 2 we overview how embedding-based models
perform the LP task; in Section 3 we discuss the main types of data bias we analyze in our work;
in Section 4 we report our experimental findings on how they affect LP models; in Section 5 we
present works related to ours and in Section 6 we provide concluding remarks.

1https://github.com/merialdo/research.lpbias

2. Link Prediction on Knowledge Graphs

We define any Knowledge Graph as 𝐾𝐺 = (ℰ ,ℛ,𝒢), where ℰ is a set of entities, ℛ is a set of
relations, and 𝒢 ∈ ℰ ×ℛ× ℰ is a set of facts connecting the entities via relations. Each fact
can be formulated as a triple ⟨ℎ, 𝑟, 𝑡⟩, where ℎ is the head, 𝑟 is the relation, and 𝑡 is the tail.

Most LP models nowadays map entities and relations to vectorized representations called
KG embeddings. These models usually define a scoring function 𝜑 to estimate the plausibility of
facts based on the embeddings of their elements. Embeddings are initialized randomly; then,
they are trained with ML methods to optimize the scores of the known facts. When the training
is over, the learned embeddings should be able to generalize and yield good 𝜑 values for unseen
true facts as well. Models may also feature deep architectures of neural layers, which can be
used in 𝜑 to process the embeddings of elements of the facts to score. The weights of neural
layers are trained jointly with the KG embeddings.

Given a trained model, a tail prediction ⟨ℎ, 𝑟, 𝑡⟩ is the process that finds 𝑡 to be the best-
scoring entity to complete the triple ⟨ℎ, 𝑟, ?⟩: i.e., 𝑡 is the answer to the question «What is the
most likely tail for head ℎ and relation 𝑟?»2:

𝑡 = argmax
𝑒∈ℰ

𝜑(ℎ, 𝑟, 𝑒). (1)

A formulation for head predictions can be defined analogously.
LP research typically relies on datasets sampled from real-world KGs. Any dataset has its

own sets ℰ , ℛ, and 𝒢, and 𝒢 is usually split into a training set 𝒢𝑡𝑟𝑎𝑖𝑛, a validation set 𝒢𝑣𝑎𝑙𝑖𝑑 and
a test set 𝒢𝑡𝑒𝑠𝑡. To evaluate the predictive performance of a model on a dataset, head and tail
predictions are performed on each test fact in its 𝒢𝑡𝑒𝑠𝑡. For each prediction, the target entity
featured in the test fact (i.e., the expected prediction) is ranked against all other entities in ℰ .
Given any test fact ⟨ℎ, 𝑟, 𝑡⟩, the tail rank can be thus computed as:

𝑡𝑎𝑖𝑙𝑅𝑎𝑛𝑘(ℎ, 𝑟, 𝑡) = |{𝑒 ∈ ℰ|𝜑(ℎ, 𝑟, 𝑒) >= 𝜑(ℎ, 𝑟, 𝑡)}| (2)

Head ranks can be computed analogously. An ideal model, or an oracle, would obtain rank 1 in
the head and tail predictions of all test facts. The set 𝑇 of all the head and tail ranks obtained in
testing are then gathered into global metrics:

• Hits@K (H@K): the fraction of ranks in 𝑇 lesser or equal than a value 𝑘.
• Mean Reciprocal Rank (MRR): the average of the inverse values of all the ranks in 𝑇 .

Both 𝐻@𝐾 and 𝑀𝑅𝑅 are always between 0 and 1; the higher their value, the better the result
they convey. These metrics can be computed in two separate settings: in the raw setting correct
answers that outrank the target one are still deemed wrong; in the filtered setting they are not
considered mistakes and do not contribute to rank computation. Raw metrics can sometimes be
misleading, so filtered metrics are generally preferred in literature [16]; therefore, in this work
we always use filtered metrics.

2In this formulation we assume higher 𝜑 scores convey better plausibility; analogous formulations are defined
for models where higher scores convey worse plausibility.

3. Forms of Data Bias

In this section, we define 3 main types of bias commonly found in LP datasets. All of them are
forms of Sample Selection Bias [23], i.e., unwanted, unrealistic patterns in a dataset caused by
imbalances in the processes and sources used to construct it. We provide definitions from the
perspective of a tail prediction ⟨ℎ, 𝑟, 𝑡⟩; analogous definitions can be used for head predictions.

Type 1 Bias. A tail prediction ⟨ℎ, 𝑟, 𝑡⟩ is prone to Type 1 Bias if the training facts mentioning
𝑟 tend to always feature 𝑡 as tail. For example, the tail prediction ⟨𝐵𝑎𝑟𝑎𝑐𝑘_𝑂𝑏𝑎𝑚𝑎, 𝑔𝑒𝑛𝑑𝑒𝑟,
𝑚𝑎𝑙𝑒⟩ is prone to this type of bias if the vast majority of gendered entities in the training set
are males: this artificially favours the prediction of male genders. In practice, we verify if the
fraction between the number of training facts featuring both 𝑟 and 𝑡 and the number of training
facts featuring 𝑟 exceeds a threshold 𝜏1. In our experiments we set 𝜏1 = 0.75.

Type 2 Bias. A tail prediction ⟨ℎ, 𝑟, 𝑡⟩ in which 𝑟 is a one-to-many or a many-to-many relation
is prone to Type 2 Bias if, whenever an entity 𝑒 is seen as head for relation 𝑟, fact ⟨𝑒, 𝑟, 𝑡⟩ also
exists in 𝒢𝑡𝑟𝑎𝑖𝑛. Type 2 Bias affects relations that have a "default" correct answer. Differently
from Type 1, facts mentioning 𝑟 may feature a variety of tails different from 𝑡; however, for each
entity 𝑒 seen as head these facts, 𝑡 tends to always be among the correct tails too. This makes
⟨𝑒, 𝑟, 𝑡⟩ artificially easier to predict. For instance, the tail prediction ⟨𝐶𝑟𝑖𝑠𝑡𝑖𝑎𝑛𝑜_𝑅𝑜𝑛𝑎𝑙𝑑𝑜,
𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝐸𝑛𝑔𝑙𝑖𝑠ℎ⟩ is prone to Type 2 Bias if most people, in addition to other languages, also
speak English. In practice, we verify if the fraction of entities 𝑒 seen as heads for relation 𝑟 and
that also display a fact ⟨𝑒, 𝑟, 𝑡⟩ exceeds a threshold 𝜏2. In our experiments we use 𝜏2 = 0.5.

Type 3 Bias. A tail prediction ⟨ℎ, 𝑟, 𝑡⟩ is prone to Type 3 Bias if a relation 𝑠 exists such that:
(i) whenever 𝑠 links two entities, 𝑟 links them as well; and (ii) the fact ⟨ℎ, 𝑠, 𝑡⟩ is present in the
training set. For example, in the FB15k dataset the producer of a TV program is almost always
its creator too; this may lead to assume that creating a program implies being its producer. In
practice, to verify if 𝑠 and 𝑟 share this correlation we check if the fraction of 𝑠 mentions in which
𝑠 also co-occurs with 𝑟 is greater than a threshold 𝜏3. In our experiments we set 𝜏3 = 0.5.

4. Data Bias in Link Prediction Benchmarks

We discuss in this section our experimental findings on the three forms of data bias defined
in Section 3. We first describe how these biases affect LP datasets; we then analyze their
consequences on the behaviour of LP models.

4.1. Data Biases in LP Datasets

We take into account the 5 most popular LP datasets in literature: FB15k, WN18, FB15k-237,
WN18RR and YAGO3-10. FB15k and WN18 have been built by Bordes et al. [16] by selecting the
facts featuring the richest entities in Freebase [17] and WordNet [24]. Toutanova and Chen [18]
and Dettmers et al. [19] have observed that such datasets suffer from test leakage due to the
pervasive presence of inverse and equivalent relations; they have filtered away such relations to
create the more challenging subsamples FB15k-237 and WN18RR. Finally, Dettmers et al. [19]

Entities Relations
Facts Test Predictions

Train Valid Test All w/o B1 w/o B2 w/o B3 w/o B✻

FB15k 14.951 1.345 483.142 50.000 59.071 118.142 115.165
(-2.5%)

108.705
(-8.0%)

101.406
(-14.2%)

93.005
(-21.3)

FB15k-237 14.541 237 272.115 17.535 20.466 40.932 39.145
(-4.4%)

36.482
(-5.5%)

40.932
(-0.0%)

36.912
(-9.8%)

WN18 40.943 18 141.442 5.000 5.000 10.000 10.000
(-0.0%)

10.000
(-0.0%)

10.000
(-0.0%)

10.000
(-0.0%)

WN18RR 40.943 11 86.835 3.034 3.134 6.268 6.268
(-0.0%)

6.268
(-0.0%)

6.268
(-0.0%)

6.268
(-0.0%)

YAGO3-10 123.155 37 1.078.868 5.000 5.000 10.000 9.725
(-2.8%)

9.992
(-0.1%)

4.876
(-51.2%)

4.593
(-54.1%)

Table 1
Dataset statistics and numbers of test predictions prone to bias.

have also created the YAGO3-10 dataset selecting the facts featuring entities linked by at least
10 different relations in the YAGO3 KG [25].

In these datasets the training, validation and test sets are sampled from the same distributions,
so any bias seen in training will also be featured in validation and testing. For each test prediction
in each dataset we verify if it is prone to any type of bias applying the definitions in Section 3.
Table 1 reports the main statistics and the number of test predictions not affected by Type 1
Bias (w/o B1), Type 2 Bias (w/o B2), Type 3 Bias (w/o B3), and by any type of bias at all (w/o
B⋆). Note that these numbers are not cumulative because the same prediction may be affected
by multiple types of bias.

The most affected dataset is YAGO3-10, with 54.1% of its test facts being prone to bias,
especially of Type 3. This confirms the finding of Akrami et al [13] that the two most common
relations in the dataset (affiliated_to and plays_for) are almost interchangeable. FB15k and
FB15k-237 are noticeably affected too, with 26.7% and 9.8% of their test facts prone to bias
respectively. The Type 3 Bias is not present at all in FB15k-237; this is not surprising, because
this dataset was built by design with no inverse or equivalent relations. WN18 and WN18RR,
finally, seem completely immune to any type of bias; this is possibly due the nature of WordNet,
which is a lexical ontology rather than a KG.

4.2. Data Biases and LP models

In this section we study how data bias affects the behaviour of LP models. As mentioned in
Section 4.1, LP benchmarks display the same biases across their training and test sets. Hence, in
addition to being exposed to bias, unbeknownst to developers, LP models are actually encouraged
to incorporate it, because such bias can help to identify the correct answers in testing. In the
long run this may favour the architectures most vulnerable to bias over the most robust ones.

To assess the severity of this condition we remove from each dataset the test predictions
prone to each type of bias, and measure how this affects the evaluation results of LP models
relying on diverse architectures. We focus on H@1 and MRR, usually considered the most
characterizing metric in LP. We stress that we do not modify the training sets of the datasets:
we just filter away the bias-prone test predictions, in the quantities reported in Table 1.

We use as a starting point the evaluation results of 19 LP models publicly shared by
Rossi et al. [14]. Due to space constraints, we report our findings on 9 models represent-

FB15k FB15k-237 YAGO3-10

Orig. w/o B1 w/o B2 w/o B3 w/o B✻ Orig. w/o B1 w/o B2 w/o B3 w/o B✻ Orig. w/o B1 w/o B2 w/o B3 w/o B✻
M

at
ri

x
D

ec
om

po
si

ti
on

C
om

pl
E
x

H
@

1
0.823 0.819

(-0.6%)
0.814

(-1.1%)
0.799

(-2.9%)
0.788

(-4.3%) 0.272 0.239
(-12.0%)

0.241
(-11.3%)

0.272
(0.0%)

0.205
(-24.6%) 0.501 0.487

(-2.7%)
0.501

(-0.1%)
0.232

(-53.7%)
0.186

(-62.9%)
M

R
R

0.855 0.851
(-0.4%)

0.846
(-1.0%)

0.835
(-2.4%)

0.824
(-3.6%) 0.367 0.338

(-7.8%)
0.337

(-8.1%)
0.367

(0.0%)
0.306

(-16.7%) 0.577 0.566
(-2.0%)

0.577
(-0.1%)

0.307
(-46.8%)

0.265
(-54.1%)

T
uc

kE
R

H
@

1

0.729 0.722
(-0.9%)

0.716
(-1.8%)

0.705
(-3.3%)

0.689
(-5.5%) 0.259 0.225

(-13.0%)
0.228

(-12.0%)
0.259

(0.0%)
0.191

(-26.3%) 0.466 0.460
(-1.1%)

0.466
(0.0%)

0.186
(-60.1%)

0.158
(-66.1%)

M
R

R

0.788 0.783
(-0.7%)

0.777
(-1.4%)

0.767
(-2.7%)

0.754
(-4.4%) 0.352 0.323

(-8.4%)
0.322

(-8.5%)
0.352

(0.0%)
0.290

(-17.8%) 0.544 0.537
(-1.3%)

0.544
(0.0%)

0.257
(-52.7%)

0.225
(-58.6%)

G
eo

m
et

ri
c

T
ra

ns
E H
@

1

0.494 0.492
(-0.3%)

0.467
(-5.3%)

0.463
(-6.2%)

0.438
(-11.2%) 0.217 0.184

(-15.3%)
0.189

(-12.8%)
0.217

(0.0%)
0.153

(-29.6%) 0.406 0.390
(-4.0%)

0.406
(0.0%)

0.135
(-66.8%)

0.083
(-79.4%)

M
R

R

0.628 0.624
(-0.6%)

0.608
(-3.1%)

0.597
(-4.9%)

0.577
(-8.1%) 0.310 0.280

(-9.7%)
0.282

(-9.1%)
0.310

(0.0%)
0.249

(-19.8%) 0.501 0.487
(-2.8%)

0.501
(0.0%)

0.219
(-56.2%)

0.172
(-65.6%)

C
ro

ss
E H
@

1

0.601 0.592
(-1.5%)

0.590
(-1.8%)

0.573
(-4.6%)

0.561
(-6.6%) 0.212 0.178

(-15.9%)
0.182

(-14.2%)
0.212

(0.0%)
0.145

(-31.7%) 0.331 0.321
(-3.0%)

0.33
(-0.1%)

0.128
(-61.4%)

0.093
(-71.8%)

M
R

R

0.702 0.695
(-1.0%)

0.693
(-1.3%)

0.677
(-3.6%)

0.666
(-5.1%) 0.298 0.267

(-10.3%)
0.267

(-10.2%)
0.298

(0.0%)
0.233

(-21.6%) 0.446 0.435
(-2.5%)

0.445
(-0.1%)

0.207
(-53.7%)

0.167
(-62.4%)

H
A

K
E H
@

1

0.745 0.739
(-0.8%)

0.734
(-1.5%)

0.721
(-3.2%)

0.708
(-4.9%) 0.249 0.218

(-12.5%)
0.223

(-10.6%)
0.249

(0.0%)
0.189

(-24.2%) 0.463 0.453
(-2.2%)

0.462
(0.0%)

0.199
(-57.1%)

0.161
(-65.2%)

M
R

R

0.796 0.791
(-0.6%)

0.786
(-1.2%)

0.775
(-2.6%)

0.763
(-4.1%) 0.347 0.319

(-8.1%)
0.320

(-7.6%)
0.347

(0.0%)
0.289

(-16.5%) 0.546 0.536
(-1.9%)

0.546
(0.0%)

0.273
(-50.0%)

0.234
(-57.2%)

D
ee

p
Le

ar
ni

ng

In
te

ra
ct

E

H
@

1

0.726 0.719
(-1.0%)

0.711
(-2.1%)

0.695
(-4.2%)

0.677
(-6.7%) 0.263 0.231

(-12.5%)
0.233

(-11.6%)
0.263

(0.0%)
0.197

(-25.3%) 0.466 0.451
(-3.2%)

0.466
(-0.1%)

0.213
(-54.4%)

0.165
(-64.7%)

M
R

R

0.786 0.780
(-0.7%)

0.774
(-1.5%)

0.760
(-3.3%)

0.745
(-5.2%) 0.355 0.326

(-8.2%)
0.325

(-8.4%)
0.355

(0.0%)
0.293

(-17.4%) 0.543 0.531
(-2.4%)

0.543
(-0.1%)

0.277
(-49.1%)

0.232
(-57.2%)

C
ap

sE H
@

1

0.019 0.015
(-23.7%)

0.014
(-29.4%)

0.011
(-40.9%)

0.007
(-66.0%) 0.073 0.040

(-45.5%)
0.064

(-13.4%)
0.073

(0.0%)
0.028

(-62.1%) 0.000 0.000
(0.0%)

0.000
(0.0%)

0.000
(0.0%)

0.000
(0.0%)

M
R

R

0.087 0.075
(-13.0%)

0.073
(-15.5%)

0.072
(-16.5%)

0.056
(-35.9%) 0.160 0.126

(-21.1%)
0.145

(-9.6%)
0.160

(0.0%)
0.108

(-32.4%) 0.000 0.000
(0.0%)

0.000
(0.0%)

0.000
(0.0%)

0.000
(0.0%)

R
SN

H
@

1

0.723 0.717
(-0.9%)

0.71
(-1.9%)

0.690
(-4.6%)

0.674
(-6.8%) 0.198 0.163

(-17.8%)
0.169

(-15.0%)
0.198

(0.0%)
0.130

(-34.6%) 0.492 0.477
(-2.9%)

0.426
(-0.1%)

0.164
(-61.6%)

0.118
(-72.3%)

M
R

R

0.777 0.771
(-0.7%)

0.765
(-1.6%)

0.748
(-3.7%)

0.734
(-5.6%) 0.280 0.247

(-11.5%)
0.249

(-10.9%)
0.280

(0.0%)
0.214

(-23.6%) 0.560 0.547
(-2.2%)

0.51
(-0.1%)

0.231
(-54.8%)

0.187
(-63.5%)

A
ny

B
U

R
L

H
@

1

0.815 0.810
(-0.5%)

0.804
(-1.3%)

0.795
(-2.4%)

0.782
(-4.0%) 0.269 0.236

(-12.2%)
0.237

(-12.0%)
0.269

(0.0%)
0.201

(-25.5%) 0.492 0.477
(-2.9%)

0.491
(-0.1%)

0.218
(-55.7%)

0.169
(-65.6%)

M
R

R

0.837 0.833
(-0.4%)

0.827
(-1.2%)

0.818
(-2.2%)

0.806
(-3.7%) 0.353 0.324

(-8.2%)
0.322

(-8.9%)
0.353

(0.0%)
0.290

(-18.0%) 0.560 0.547
(-2.2%)

0.559
(-0.1%)

0.282
(-49.5%)

0.238
(-57.4%)

Table 2
Evaluation results on FB15k, FB15k-237 and YAGO3-10 before and after removing the test predictions
prone to bias.

ing all the families in their work: ComplEx [26] and TuckER [27] for the Matrix Decomposition
models; TransE [16], CrossE [28] and HAKE [29] for the Geometric models; InteractE [30],
RSN [31] and CapsE [32] for the Deep Learning models; and the rule-based AnyBURL [33] as a
baseline. Complete results for all the 19 models are available in our online repository.

Table 2 shows the results for datasets FB15k, FB15k-237 and YAGO3-10. If models were
immune to biases, removing bias-prone test predictions should not heavily affect their metrics.
On the contrary, we observe impressive performance drops across all models. YAGO3-10 results
display the largest worsening, with models losing 50% to 70% of their H@1 and MRR. In FB15k-

WN18 WN18RR

Orig. w/o B✻ w/o
inverse

w/o
symmetric

w/o
inverse or
symmetric

Orig. w/o B✻ w/o
inverse

w/o
symmetric

w/o
inverse or
symmetric

M
at

ri
x

D
ec

om
po

si
ti
on

C
om

pl
E
x

H
@

1

0.944 0.944
(0.0%)

0.807
(-14.5%)

0.929
(-1.6%)

0.215
(-77.2%) 0.443 0.443

(0.0%)
0.443

(0.0%)
0.161

(-63.6%)
0.161

(-63.6%)

M
R

R

0.951 0.951
(0.0%)

0.827
(-13.0%)

0.937
(-1.4%)

0.295
(-69.0%) 0.489 0.489

(0.0%)
0.489

(0.0%)
0.230

(-52.9%)
0.230

(-52.9%)
T

uc
kE

R

H
@

1
0.946 0.947

(0.0%)
0.812

(-14.2%)
0.932

(-1.5%)
0.232

(-75.4%) 0.429 0.429
(0.0%)

0.429
(0.0%)

0.141
(-67.1%)

0.141
(-67.1%)

M
R

R

0.951 0.951
(0.0%)

0.826
(-13.1%)

0.938
(-1.4%)

0.290
(-69.5%) 0.459 0.459

(0.0%)
0.459

(0.0%)
0.185

(-59.6%)
0.185

(-59.6%)

G
eo

m
et

ri
c

T
ra

ns
E H
@

1

0.406 0.406
(0.0%)

0.009
(-97.8%)

0.514
(+26.6%)

0.037
(-91.0%) 0.028 0.028

(0.0%)
0.028

(0.0%)
0.042

(+50.5%)
0.042

(+50.5%)

M
R

R

0.646 0.646
(0.0%)

0.334
(-48.4%)

0.713
(+10.2%)

0.135
(-79.1%) 0.206 0.206

(0.0%)
0.206

(0.0%)
0.110

(-46.5%)
0.110

(-46.5%)

C
ro

ss
E H
@

1

0.733 0.732
(0.0%)

0.774
(+5.6%)

0.668
(-8.9%)

0.148
(-79.8%) 0.381 0.381

(0.0%)
0.381

(0.0%)
0.073

(-80.8%)
0.073

(-80.8%)

M
R

R

0.834 0.834
(0.0%)

0.797
(-4.5%)

0.793
(-4.9%)

0.208
(-75.1%) 0.405 0.405

(0.0%)
0.405

(0.0%)
0.106

(-73.7%)
0.106

(-73.7%)

H
A

K
E H
@

1

0.943 0.944
(0.0%)

0.803
(-14.9%)

0.928
(-1.6%)

0.196
(-79.2%) 0.453 0.453

(0.0%)
0.453

(0.0%)
0.177

(-61.0%)
0.177

(-61.0%)

M
R

R

0.950 0.950
(0.0%)

0.823
(-13.4%)

0.936
(-1.4%)

0.278
(-70.7%) 0.497 0.497

(0.0%)
0.497

(0.0%)
0.243

(-51.1%)
0.243

(-51.1%)

D
ee

p
Le

ar
ni

ng

In
te

ra
ct

E

H
@

1

0.946 0.946
(0.0%)

0.811
(-14.3%)

0.932
(-1.5%)

0.232
(-75.4%) 0.427 0.427

(0.0%)
0.427

(0.0%)
0.138

(-67.7%)
0.138

(-67.7%)

M
R

R

0.950 0.949
(0.0%)

0.821
(-13.5%)

0.936
(-1.4%)

0.273
(-71.3%) 0.458 0.458

(0.0%)
0.458

(0.0%)
0.184

(-59.8%)
0.184

(-59.8%)

C
ap

sE H
@

1

0.846 0.846
(0.0%)

0.699
(-17.4%)

0.828
(-2.1%)

0.042
(-95.0%) 0.337 0.337

(0.0%)
0.337

(0.0%)
0.071

(-79.0%)
0.071

(-79.0%)

M
R

R

0.890 0.890
(0.0%)

0.748
(-15.9%)

0.873
(-1.8%)

0.123
(-86.2%) 0.415 0.415

(0.0%)
0.415

(0.0%)
0.158

(-61.9%)
0.158

(-61.9%)

R
SN

H
@

1

0.912 0.912
(0.0%)

0.773
(-15.2%)

0.895
(-1.9%)

0.142
(-84.5%) 0.346 0.346

(0.0%)
0.346

(0.0%)
0.074

(-78.5%)
0.074

(-78.5%)

M
R

R

0.928 0.928
(0.0%)

0.793
(-14.6%)

0.912
(-1.7%)

0.190
(-79.5%) 0.395 0.395

(0.0%)
0.395

(0.0%)
0.124

(-68.7%)
0.124

(-68.7%)

A
ny

B
U

R
L

H
@

1

0.947 0.947
(0.0%)

0.815
(-13.9%)

0.933
(-1.5%)

0.247
(-73.9%) 0.458 0.458

(0.0%)
0.458

(0.0%)
0.184

(-59.9%)
0.184

(-59.9%)

M
R

R

0.953 0.953
(0.0%)

0.833
(-12.6%)

0.94
(-1.3%)

0.318
(-66.6%) 0.497 0.497

(0.0%)
0.497

(0.0%)
0.243

(-51.1%)
0.243

(-51.1%)

Table 3
Variations in the evaluation results on WN18 and WN18RR after removing the test predictions prone
to bias or influenced by inverse and symmetric relations.

237, often considered the most reliable dataset, their decrease is still between 20% and 35%. In
FB15k they lose around 5% of the original metrics, but this apparent robustness is likely due to
the presence of inverse relations facilitating predictions.

Table 3 reports the results for WN18 and WN18RR. As already described in Section 4.1, in
these datasets test predictions do not appear prone to bias. Nonetheless this does not make
them more reliable; on the contrary, their test predictions seem only enabled by the presence
of symmetric and (in WN18) inverse relations. Table 3 also displays that removing the test
predictions featuring symmetric or inverse relations results in plummeting H@1 and MRR
values, with a decrease usually between 50% and 75%.

4.3. Key Takeaways

We find that the policies used to generate LP datasets have led to severe forms of selection bias;
this, in turn, has made significant fractions of their test sets artificially easier to predict than the
others. Our results prove that LP models are indeed sensitive to these forms of bias, as filtering
away the affected test predictions heavily worsens their evaluation metrics. Both neural and
rule-based LP models appear equally vulnerable to this phenomenon: this proves that the issue
is not rooted in the technique used to learn the facts, but rather in the data sources themselves.
Not all datasets are interested by this condition to the same extent. YAGO3-10 and FB15k-237
are the most affected, and show the heaviest drop in performance when removing the biased
test facts. Wordnet-based datasets, on the other hand, do not display bias at all.

The bias problem, in itself, can probably be avoided by just skipping the test facts prone to
bias during evaluation. However, suggesting to just adopt this practice would be naive from our
part. Quite worryingly, even in bias-free datasets we observe that most correct predictions are
just enabled by the presence of inverse and symmetric relations. In other words, in 𝑎𝑙𝑙 datasets,
when removing the test predictions affected by either bias or inverse/symmetric relations, the
predictive performance of models plummets.

This makes us wonder how many of the remaining test facts are actually predictable. If we
just removed the bias-prone test predictions, we may mostly end up with test sets that not even
humans, with the information available in training, can infer; if this was the case, the whole
task would become pointless. We intend to conduct further studies in this regard, asking this
question directly to human workers. If the outcome will prove that most non-biased test facts
are indeed unpredictable, then it will be painfully necessary to replace the current datasets
with novel ones extracted in more sensible ways, possibly keeping humans in the loop for the
selection of training and test facts.

5. Related Works

The works most related to ours consist in analyses that highlight criticalities of the current LP
benchmarking techniques. So far, compared to the wide body of literature proposing new LP
models, a relatively small effort has been devoted to analyzing their evaluation practices.

Toutanova and Chen [18] have been the first to notice the presence of test leakage in FB15k
due to inverse relations. They have assessed the severity of the issue by proving that a simple
model based on observable features achieves competitive performance on the dataset; they have
proceeded to remove these relations from FB15k generating the more challenging FB15k-237.

A similar study has been carried out by Dettmers et al. [19] on FB15k and WN18, showing
that a trivial system based on inverse relations can achieve state-of-the-art results on both
datasets; the authors have then generated WN18RR as a more challenging subsample of WN18.

Akrami et al. [13] have carried out an extensive analysis quantifying the effect of various
artificial patterns in LP datasets, such as inverse relations and Cartesian product relations.
In addition to confirming the above mentioned observations on FB15k and WN18 they have
found that LP performances are boosted in FB15k and FB15k-237 by the redundant structures
of Cartesian product relations, and in YAGO3-10 by the presence of equivalent relations.

Nayyeri et al. [34] refer to KGs in which facts also feature additional numerical weights to
convey various meanings, e.g., the confidence of each fact. They acknowledge that the presence
of bias in these values hinders the effectiveness of the learned embeddings, and propose a
Weighted Triple Loss that, while taking advantage of these weights, is also robust to their biases.

Rossi and Matinata [20] have shown that the distributions of entities in all LP datasets are
wildly skewed: a few entities are featured in thousands of training facts, making them easier to
learn and predict, whereas the others may only occur a handful of times. The rich and easily
predictable entities are over-represented in testing, thus affecting fairness of such benchmarks.

The same concerns have been shared by Mohamed et al. [35]; to overcome this issue, they
have proposed novel stratified versions of the Hits@K and MRR metrics, called Strat-Hits@K
and Strat-MRR respectively. These metrics should estimate of the predictive performance of
models in a fairer way, unbiased by the popularity over-represented entities.

All these works share the same spirit of ours in their goal to identify the shortcomings of
current LP evaluation approaches, in order to drive research towards more realistic and healthy
practices. Our main difference lies in our definition and identification of bias structures that had
so far gone unnoticed, as well as our systematic methodology of re-computing the predictive
performances of a wide variety of models after removing the biased test facts.

6. Conclusion

We have reported an analysis on the presence of bias across the 5 best-established datasets
for Link Prediction on KGs. We have defined 3 main types of Selection Sample Bias, and we
have observed that they affect significant portions of the test predictions in 3 datasets out of
5. We have then analyzed how removing such bias-prone predictions alters the evaluation
results of 9 models representing the main families of Link Prediction systems. The result is
generally a significant drop in predictive performance. This proves that a large part of the
correct predictions output by models on those datasets is indeed facilitated by the presence of
bias. The very low values obtained on this de-biased test scenario suggests that many of the
remaining test facts may not be predictable at all.

We thus call for the production of more effective and robust datasets for Link Prediction, and
for the definition of more thorough evaluation methods that take into account their properties.

References
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, Dbpedia: A nucleus for a web of open data,

in: The semantic web, Springer, 2007.
[2] T. P. Tanon, G. Weikum, F. M. Suchanek, YAGO 4: A reason-able knowledge base, in: ESWC, 2020.
[3] D. Vrandecic, M. Krötzsch, Wikidata: a free collaborative knowledge base, CACM (2014).
[4] E. Hovy, R. Navigli, S. P. Ponzetto, Collaboratively Built Semi-structured Content and Artificial Intelligence:

The Story So Far, Artif. Intell. (2013).
[5] W. Yih, M. Chang, X. He, J. Gao, Semantic Parsing via Staged Query Graph Generation: Question Answering

with Knowledge Base, in: ACL, 2015.
[6] A. Singhal, Introducing the knowledge graph: things, not strings, 2012. URL: https://www.blog.google/

products/search/introducing-knowledge-graph-things-not/, blogpost in the Official Google Blog.

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

[7] R. Qian, Understand your world with bing, 2013. URL: https://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing/, blogpost in Bing Blogs.

[8] X. L. Dong, Building a broad knowledge graph for products, in: ICDE, 2019.
[9] R. Pittman, Cracking the code on conversational commerce, 2017. URL: https://www.ebayinc.com/stories/

news/cracking-the-code-on-conversational-commerce/, blogpost in Ebay Inc. Stories.
[10] T. Stocky, L. Rasmussen, Introducing graph search beta, 2014. URL: https://newsroom.fb.com/news/2013/01/

introducing-graph-search-beta/, blogpost in Facebook Newsroom.
[11] Q. He, B.-C. Chen, D. Agarwal, Building the linkedin knowledge graph, 2016. URL: https://engineering.

linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph/, blogpost in LinkedIn Blog.
[12] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, D. Lin, Knowledge base completion via search-based

question answering, in: WWW, 2014.
[13] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, C. Li, Realistic Re-evaluation of Knowledge Graph Completion

Methods: An Experimental Study, in: SIGMOD, 2020.
[14] A. Rossi, D. Barbosa, D. Firmani, A. Matinata, P. Merialdo, Knowledge graph embedding for link prediction:

A comparative analysis, ACM TKDD (2021).
[15] M. Wang, L. Qiu, X. Wang, A survey on knowledge graph embeddings for link prediction, Symmetry (2021).
[16] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings for modeling

multi-relational data, in: NIPS, 2013.
[17] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for

structuring human knowledge, in: SIGMOD, 2008.
[18] K. Toutanova, D. Chen, Observed versus latent features for knowledge base and text inference, in: CVSC,

2015.
[19] T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2d knowledge graph embeddings, in: AAAI,

2018.
[20] A. Rossi, A. Matinata, Knowledge Graph Embeddings: Are Relation-Learning Models Learning Relations?, in:

PIE, 2020.
[21] J. Fisher, D. Palfrey, C. Christodoulopoulos, A. Mittal, Measuring social bias in knowledge graph embeddings,

arXiv preprint arXiv:1912.02761 (2019).
[22] S. Bourli, E. Pitoura, Bias in knowledge graph embeddings, in: ASONAM, IEEE, 2020.
[23] J. J. Heckman, Sample selection bias as a specification error, Econometrica (1979).
[24] G. A. Miller, Wordnet: a lexical database for english, CACM (1995).
[25] F. Mahdisoltani, J. Biega, F. M. Suchanek, YAGO3: A knowledge base from multilingual wikipedias, in: CIDR,

2015.
[26] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex Embeddings for Simple Link Prediction,

in: ICML, 2016.
[27] I. Balazevic, C. Allen, T. M. Hospedales, TuckER: Tensor Factorization for Knowledge Graph Completion, in:

EMNLP - IJCNLP, 2019.
[28] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, H. Chen, Interaction embeddings for prediction and explanation

in knowledge graphs, in: WSDM, 2019.
[29] Z. Zhang, J. Cai, Y. Zhang, J. Wang, Learning Hierarchy-Aware Knowledge Graph Embeddings for Link

Prediction, in: AAAI, 2020.
[30] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, P. P. Talukdar, InteractE: Improving Convolution-based Knowl-

edge Graph Embeddings by Increasing Feature Interactions, in: AAAI, 2020.
[31] L. Guo, Z. Sun, W. Hu, Learning to Exploit Long-term Relational Dependencies in Knowledge Graphs, in:

ICML, 2019.
[32] D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, D. Q. Phung, A Capsule Network-based Embedding Model

for Knowledge Graph Completion and Search Personalization, in: NAACL-HLT, 2019.
[33] C. Meilicke, M. W. Chekol, M. Fink, H. Stuckenschmidt, Reinforced Anytime Bottom Up Rule Learning for

Knowledge Graph Completion, arXiv preprint arXiv:2004.04412 (2020).
[34] M. Nayyeri, G. M. Cil, S. Vahdati, F. Osborne, A. Kravchenko, S. Angioni, A. A. Salatino, D. R. Recupero,

E. Motta, J. Lehmann, Link prediction of weighted triples for knowledge graph completion within the scholarly
domain, IEEE Access (2021).

[35] A. Mohamed, S. Parambath, Z. Kaoudi, A. Aboulnaga, Popularity agnostic evaluation of knowledge graph
embeddings, in: UAI, PMLR, 2021.

https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/
https://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph/
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph/

Integrating Contextual Knowledge to Visual Features
for Fine Art Classification
Giovanna Castellano, Giovanni Sansaro and Gennaro Vessio

Department of Computer Science, University of Bari “Aldo Moro”, Bari, Italy

Abstract
Automatic art analysis has seen an ever-increasing interest from the pattern recognition and computer
vision community. However, most of the current work is mainly based solely on digitized artwork im-
ages, sometimes supplemented with some metadata and textual comments. A knowledge graph that in-
tegrates a rich body of information about artworks, artists, painting schools, etc., in a unified structured
framework can provide a valuable resource for more powerful information retrieval and knowledge dis-
covery tools in the artistic domain. To this end, this paper presents 𝒜rt𝒢raph: an artistic knowledge
graph based on WikiArt and DBpedia. The graph, implemented in Neo4j, already provides knowledge
discovery capabilities without having to train a learning system. In addition, the embeddings extracted
from the graph are used to inject “contextual” knowledge into a deep learning model to improve the
accuracy of artwork attribute prediction tasks.

Keywords
digital humanities, visual arts, knowledge graphs, deep learning

1. Introduction

In recent years, Knowledge Graphs (KGs) have emerged as a powerful tool for describing
real-world entities and their relationships, and are increasingly used for many practical tasks,
from recommendations to risk assessment [1]. At the same time, the last decade has seen a
remarkable range of advances in Machine Learning—and particularly in Deep Learning (DL)
approaches based on neural networks [2]—, to build ever more accurate systems in a wide
range of areas, particularly computer vision and natural language processing. Combining the
expressiveness of KGs with the learning ability of deep neural networks promises to develop
even more effective algorithms for many downstream tasks.

One of the many domains that can benefit from using KGs in conjunction with DL solutions
is the artistic one. Leveraging DL algorithms in this domain, particularly Convolutional Neural
Network (CNN) models, has already proven effective in tackling several challenging tasks,
from object detection in paintings to style classification [3]. And this success is mainly due
to the growing availability of large digitized fine art collections, such as WikiArt.1 However,
while promising, most of the existing solutions rely solely on the visual features that a CNN
can automatically extract from digital images of paintings, drawings, etc. (e.g., [4, 5, 6]). This

DL4KG’21: Workshop on Deep Learning for Knowledge Graphs
" giovanna.castellano@uniba.it (G. Castellano); gennaro.vessio@uniba.it (G. Vessio)
� 0000-0002-6489-8628 (G. Castellano); 0000-0002-1282-6657 (G. Sansaro); 0000-0002-0883-2691 (G. Vessio)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.wikiart.org/

mailto:giovanna.castellano@uniba.it
mailto:gennaro.vessio@uniba.it
https://orcid.org/0000-0002-6489-8628
https://orcid.org/0000-0002-1282-6657
https://orcid.org/0000-0002-0883-2691
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.wikiart.org/

inevitably leads to the neglect of an enormous amount of knowledge—already available from
disparate sources—, relating to the “context” of each artwork. An artwork, in fact, is characterized
not only by its visual appearance, but also by various other historical, social and contextual
factors that place it in a much more complex and multifaceted scenario.

A promising way to harness this knowledge to improve the accuracy of art-based analytic
systems is to encode the contextual information of the artworks into a KG and use an appropriate
representation of the nodes in the graph, for example by means of embeddings [7], as a novel,
additional input to a deep learning model. Our research goes in this direction.

Related Work For the sake of brevity, we limit our review of the related literature only to
the work most directly linked to the research presented here. The interested reader can refer
to our recent review article [3] for a broader view on the computational analysis of art. This
paper is inspired by research conducted by Garcia et al. [8]. They combined a multi-output
model trained to solve attribute prediction tasks based on visual features with a second model
based on non-visual information extracted from artistic metadata encoded using a KG. This
model was intended to inject “context” information to improve the performance of the first
model. The general framework was called ContextNet. To encode the KG information into a
vector representation, the popular node2vec model [9] was adopted. The KG was built using
only the information provided by SemArt, a dataset previously proposed in [10] that provides
not only artwork images and their attributes, but also artistic comments intended to achieve
semantic art understanding. However, metadata are only available for artworks in the dataset,
so adding a new artwork would not result in any domain information about it. In addition, the
proposed graph has the artist node, which allows to connect artworks with the same artist, but
without considering the relationships between artists, such as artistic influence.

Our Contribution The two limitations mentioned above can be overcome by relying on a
source of knowledge external to the dataset, such as Wikipedia, which provides an enormous
amount of information, even in a structured form. Furthermore, the KG could not be treated
only as an adjacency matrix from which embeddings can be extracted as auxiliary information
to be provided to learning models. Instead, the KG can be encoded into a NoSQL database, such
as Neo4j, which can already help provide a powerful knowledge discovery framework without
explicitly training a learning system. In this paper we present 𝒜rt𝒢raph, an artistic knowledge
graph. The proposed KG integrates information collected by WikiArt and DBpedia, and exploits
the potential of the Neo4j database management system, which provides an expressive modeling
and graph query language. The proposed KG encodes a broad representation of the artistic
domain, with multiple metadata and relationships between artists. Also, we propose a novel
approach to inject contextual knowledge into a deep network.

2. 𝒜rt𝒢raph
𝒜rt𝒢raph is a KG in the art domain capable of representing and describing concepts related to
artworks. Our KG can represent a wide range of relationships, including those between artists
and their works. A comparison between our proposed KG and the one presented by Garcia et

Table 1
Comparison between our KG and the one proposed by Garcia et al. [8]. It is worth noting that, although
SemArt has more than 3000 unique artists, most of them are associated with fewer than ten artworks.

KG # nodes # edges # artists # artworks
relations
btw artworks

relations
btw artists

ContextNet 33, 148 125, 506 3166 19, 244 7 0
𝒜𝑟𝑡𝒢𝑟𝑎𝑝ℎ 74, 382 537, 883 300 63, 145 10 7

al. is provided in Table 1. It is worth noting that, at the current stage of our research, we are
only focusing on (the most popular) 300 artists, as we are interested in a richer representation
of the relationships between them and other entities.

The metadata extracted from WikiArt have been transformed into relationships and nodes
mainly related to the artworks, their genre, style, location, etc. Furthermore, since WikiArt
does not provide rich information about artists, each artist of our KG is linked not only to the
artworks produced but also to other nodes built using RDF triples extracted from DBpedia.
Extracting and integrating data from these two sources required a laborious process of data
cleaning and normalization, as well as manual intervention to resolve several inconsistencies
among the data. Overall, the conceptual scheme of 𝒜rt𝒢raph (represented in Fig. 1) includes
artwork nodes and artist nodes:

• Each artwork node is connected to the following nodes: tags (e.g., woman, sea, birds),
genre (e.g., self-portrait), style, period, series (e.g., “The Seasons” by Giuseppe Arcimboldo),
auction, media (e.g., paper, watercolor), the gallery in which the artwork is located, and
the city (or country) in which the artwork has been completed.

• Each artist node is connected to the following nodes: field (e.g., drawing, sculpture),
movement (e.g., Surrealism, Renaissance, Pop Art), training (e.g., Accademia di Belle Arti
di Firenze), Wikipedia categories (e.g., living people, people from Florence), other artists
(influences or teaching, and patrons).

This structure allows the creation of a network between artists, which is useful for further
analysis. In total, the resulting KG contains 74, 382 nodes and 537, 883 edges, with 300 artists,
63, 145 artworks, 81 genres, 49 styles, and a huge plethora of metadata and textual comments
describing them (Table 1).
𝒜rt𝒢raph has been implemented in Neo4j2 on an i5-10400 system, with a 2.90 GHz CPU and

16GB of RAM. We preferred Neo4j to other existing solutions as it is a native graph database
that provides a powerful and flexible framework for storing and querying graph-like structures.
Using Neo4j, connections between data are stored and not calculated at query time. Cypher,
which is the declarative query language adopted by Neo4j, takes advantage of these stored
connections to provide an expressive and optimized language for graphs to execute even complex
queries extremely quickly.

To allow for a visual exploration of the graph, we have created a web interface that uses
JavaScript to connect to Neo4j (Fig. 2). The goal is to provide the end user—as mentioned above,

2https://neo4j.com

https://neo4j.com

Figure 1: Scheme of𝒜rt𝒢raph. The nodes correspond to relevant entities in the artistic domain, while
the edges represent existing relationships between them.

Figure 2: The home page of the developed web interface and an example of artist page.

not only a generic user but especially any art historian—directly with an easy-to-use exploration
tool to view the properties of an artwork or an artist. An art historian, in fact, rarely analyzes
artworks as isolated creations, but typically studies how different paintings, even from different
periods, relate to each other, how artists from different countries and/or periods have exercised
a influence on their works, how artworks completed in one place migrated to other places, and
so on. The home page randomly loads artists and artworks. Each artist is associated with a
page that reports information such as the biography, the works produced, etc. We leveraged the
information provided by DBpedia to show also the fields, movements, other artists who have
been influenced by the current artist, and many other tags. By clicking on the buttons, the user
can browse the graph interactively. The page layout of an artwork is very similar to that of an
artist and reports size, period, material, etc. It is also possible to browse the artworks according
to the city/country in which they were completed or are currently located. When provided by

DBpedia, a textual description of the artwork is also shown.
The developed web interface can also show the results of some queries that can be particularly

useful for art analysis, such as: retrieving the direct and indirect influencing connection between
artists with different degrees of separation; identifying artworks that are stored in a country
other than those in which they were completed; retrieving all the works that are are kept in a
specific place; etc. On the tested platform, each query takes about a few tens of milliseconds.
The ability to query the graph database already provides information retrieval and knowledge
discovery capabilities in the art domain without having to train a learning system.

3. Multi-Task Multi-Modal Classification

𝒜rt𝒢raph encodes a valuable source of contextual knowledge to integrate with visual features
automatically learned by deep neural networks to develop more powerful learning models in
the art domain. Several tasks, in fact, could be addressed, such as artwork attribute prediction,
multi-modal retrieval and artwork captioning, which are attracting increasing interest in this
domain.

To this end, we propose a new classification model that is used in this paper to predict the
artist, style and genre of a given artwork. The model is inspired by multi-modal learning: graph
embeddings are extracted from 𝒜rt𝒢raph using node2vec to provide the context information of
the artwork; this information is intended to improve the accuracy of visual features extracted
from the artwork using a pre-trained state-of-the-art CNN, i.e. ResNet50 [11]. The main idea
is to learn how to project the visual features extracted by ResNet50 into the context space
provided by the graph embeddings. This is done by an encoder module, consisting of two fully
connected layers with a tahn activation function, so that values are between −1 and +1. The
training phase focuses on minimizing the mean squared error (MSE) loss between the predicted
embedding p𝑗 and the true context embedding u𝑗 , for a given artwork instance 𝑗:

ℓ𝑒(p𝑗 ,u𝑗) = ‖p𝑗 − u𝑗‖22.

Then the predicted context features are combined (by concatenation) with the visual features.
Instead of adding a single output layer and learning each classification task separately, we adopt
a multi-task solution. In this way, features are shared between the tasks allowing the model to
simultaneously exploit the semantic correlation between them to achieve better accuracy. Given
a number of task 𝑇 (three in our work, corresponding to the artist, style and genre classification)
and a set of 𝑁 instances, the overall loss function is:

ℒ = (1− 𝛾)

⎡⎣ 𝑇∑︁
𝑖=1

𝜆𝑖

𝑁∑︁
𝑗=1

ℓ𝑐(z𝑖𝑗 , 𝑐𝑙𝑎𝑠𝑠𝑖𝑗)

⎤⎦+ 𝛾
1

𝑁

𝑁∑︁
𝑗=1

ℓ𝑒(p𝑗 ,u𝑗),

where 𝛾 weights the encoder module error, 𝜆𝑖 are hyperparameters that weight the contribution
of each task 𝑖, ℓ𝑒 is the aforementioned MSE loss and ℓ𝑐 is the cross-entropy loss function
defined as:

ℓ𝑐(z𝑗 , 𝑐𝑙𝑎𝑠𝑠𝑗) = − log

(︂
exp(z𝑗 [𝑐𝑙𝑎𝑠𝑠𝑗])∑︀

𝑖 exp(z𝑗 [𝑖])

)︂
,

Figure 3: Proposed multi-task multi-modal model. A concatenation layer receives both the contribu-
tion of visual embeddings, extracted from ResNet50 trained on digitized images of the artworks, and
graph embeddings extracted from our KG, respectively. The overall network learns to minimize the
error made to predict the correct artist, style and genre of a given input and, at the same time, an MSE
loss to project visual and contextual features in the same multidimensional space.

where, for a given artwork 𝑗, z𝑗 is the predicted output and 𝑐𝑙𝑎𝑠𝑠𝑗 is the true label. An overall
scheme of the proposed model is shown in Fig. 3.

The experiments were conducted on Google Colaboratory. The artwork images were resized
to 224×224, as required by ResNet50, and normalized using the mean and standard deviation of
ImageNet. The size of the visual embeddings produced by ResNet50 (without the output layer)
is 2048, while the size chosen for the node2vec embeddings is 128. As an optimizer, we used
Adam with learning rate 10−4 and momentum 0.9. The batch size was set to 32. In addition,
we empirically found the following values for: 𝛾, which was set to 0.4; 𝜆𝑎𝑟𝑡𝑖𝑠𝑡, set to 0.5; 𝜆𝑠𝑡𝑦𝑙𝑒,
set to 0.2; and 𝜆𝑔𝑒𝑛𝑟𝑒, set to 0.2. In other words, giving more importance to the classification
loss and the artist contribution to this loss generally provides better performance.

It is worth noting that graph embeddings should not be learned on the entire graph, otherwise
a bias would be introduced so that the model has already seen the test entities and their
connections with the rest of the graph. Instead, we assume that at test time only the visual
appearance of the artwork is known to the model, but the context information learned during
training has already served to allow it to generalize beyond just the visual features. For this
reason, we randomly divided our graph (and consequently the image set) into three sets: 80%
for training, 10% for validation and 10% for test. The validation set was used to tweak the
hyperparameters. Embeddings were only learned from the “training” graph.

The results obtained, expressed in terms of classification accuracy, are provided in Table 2.

Table 2
Results for the artist, style and genre classification tasks.

Method Artist Style Genre

Fine-tuned ResNet 61.13% 62.65% 65.32%
ContextNet 62.20% 62.24% 65.93%
Proposed 62.50% 65.93% 66.52%

As a baseline for comparing our method, we experimented with a fine-tuned ResNet50, trained
only on the digitized images. In addition, we compared our method with the ContextNet model
proposed by Garcia et al. [8], which is also based on ResNet50 and uses graph embeddings only
as a “regularization” signal but not as an additional input mode during training. We can see
that models that incorporate contextual knowledge are better than the baseline method based
only on visual features. Moreover, our model is able to better exploit context representation,
with higher accuracy than ContextNet for all three tasks.

4. Conclusion & Future Work

In this paper, we have presented 𝒜rt𝒢raph, an artistic knowledge graph primarily intended
to provide art historians with a rich and easy-to-use tool to perform art analysis. This effort
can foster the dialogue between computer scientists and humanists that is currently sometimes
lacking [12]. Indeed, contrary to other works, we are not only interested in leveraging the
KG information to learn classification tools, but also to help tackle knowledge discovery tasks.
Humanists are interested not only in a classification model, but also in uncovering relationships,
connections, trends and changes over the course of art history over time. Once stable, we
will make 𝒜rt𝒢raph publicly available to provide the pattern recognition and computer vision
community with a good basis for further research on automatic art analysis.

As a future work, we want to tackle other significant tasks, such as multi-modal retrieval.
Furthermore, we want to expand the proposed learning model by leveraging the Graph Convo-
lutional Network framework, as recently done for example in [13].

Acknowledgments

G.V. acknowledges the financial support of the Italian Ministry of University and Research
through the PON AIM 1852414 project.

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D. Melo, C. Gutierrez, S. Kirrane, J. E. L.
Gayo, R. Navigli, S. Neumaier, et al., Knowledge graphs, ACM Computing Surveys (CSUR)
54 (2021) 1–37.

[2] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (2015) 436–444.

[3] G. Castellano, G. Vessio, Deep learning approaches to pattern extraction and recognition
in paintings and drawings: an overview, Neural Computing and Applications (2021) 1–20.

[4] E. Cetinic, T. Lipic, S. Grgic, Fine-tuning convolutional neural networks for fine art
classification, Expert Systems with Applications 114 (2018) 107–118.

[5] C. Sandoval, E. Pirogova, M. Lech, Two-stage deep learning approach to the classification
of fine-art paintings, IEEE Access 7 (2019) 41770–41781.

[6] G. Strezoski, M. Worring, Omniart: a large-scale artistic benchmark, ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM) 14 (2018) 1–21.

[7] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and performance: A
survey, Knowledge-Based Systems 151 (2018) 78–94.

[8] N. Garcia, B. Renoust, Y. Nakashima, ContextNet: Representation and exploration for paint-
ing classification and retrieval in context, International Journal of Multimedia Information
Retrieval 9 (2020) 17–30.

[9] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: ACM SIGKDD,
2016, pp. 855–864.

[10] N. Garcia, G. Vogiatzis, How to read paintings: semantic art understanding with multi-
modal retrieval, in: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, 2018.

[11] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[12] G. Mercuriali, Digital art history and the computational imagination, Int J Digit Art Hist
Issue 3 2018 Digit Space Architect 3 (2019) 141.

[13] C. B. E. Vaigh, N. Garcia, B. Renoust, C. Chu, Y. Nakashima, H. Nagahara, GCNBoost:
Artwork classification by label propagation through a knowledge graph, arXiv preprint
arXiv:2105.11852 (2021).

Generating Table Vector Representations
Aneta Koleva1,2, Martin Ringsquandl1, Mitchell Joblin1 and Volker Tresp1,2

1Siemens, Otto-Hahn-Ring 6, 81739 Munich, Germany
2Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany

Abstract
High-quality Web tables are rich sources of information that can be used to populate Knowledge
Graphs (KG). The focus of this paper is an evaluation of methods for table-to-class annotation, which is a
sub-task of Table Interpretation (TI). We provide a formal definition for table classification as a machine
learning task. We propose an experimental setup and we evaluate 5 fundamentally different approaches
to find the best method for generating vector table representations. Our findings indicate that although
transfer learning methods achieve high F1 score on the table classification task, dedicated table encoding
models are a promising direction as they appear to capture richer semantics.

Keywords
table interpretation, table classification, representation learning.

1. Introduction

Tabular data is one of the most prevalent data representations. The effort by Cafarella [1],
known as WebTables, identified and extracted more than 200 million high-quality tables from
HTML pages. The availability of such large corpus of structured data initiated several directions
of research related to the different applications of tabular data such as: table search [2], table
improvement [3], question answering [4], and semantic annotation of columns [5]. As a result of
the increasing adoption of KGs, which are often populated from tabular data, the task of aligning
tables with KGs, also referred to as table interpretation (TI), has become a highly relevant task.
In contrast to information extraction from unstructured documents, TI should leverage the
explicit relational structure. The unique table structure with rows and columns of cells and
other metadata can be exploited for discovery and disambiguation of the meaning captured in
the table. The task of TI entails three different sub-tasks. The first sub-task, which is the focus in
this paper, is the classification of tables according to classes in a given KG schema. The second
sub-task is related to linking rows from tables to existing entities in the KG. The annotation of
columns as entity attributes and the discovery of binary relations between columns is the third
sub-task of TI. While there have been several works focusing on the row-to-entity [6, 7, 8], and
column-to-attribute sub-tasks [5, 9], the task of linking a table to a class has been neglected.
However, in the case of entity tables, where one column (the core column) is associated to the
name of the entity and the remaining columns are attributes of this entity, discovering the class
of the table as a first step can greatly improve the solving of the other two sub-tasks. It is often
the case that the column names are missing or incorrect, therefore finding the name of the core

ISWC 2021 Workshop DL4KG
Envelope-Open firstname.lastname@siemens.com

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:firstname.lastname@siemens.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

column does not imply finding the class of the table. Moreover, when two tables have the same
column names and similar content (e.g., one table of class Country and one of class City), it is
not trivial to disambiguate the entities and column types based only on the table content. Once
a table has been interpreted, its content can be used for extracting new triples for enriching the
KG, a task known as KG completion, or for extracting missing facts for the KG, which is the task
of slot-filling.

Due to the inherent scarcity of labelled data for the first sub-task (class-annotated tables),
a table classification model must either be of low complexity (few parameters) or leverage
pre-trained models. Using pre-trained models in TI has been studied only to a very limited
extend. Hence, we explore two promising directions for making learning-based approaches
more efficient: (a) by using transfer learning, (b) by considering additional inductive biases that
are unique to tabular data representations.

We propose an experimental setup with the intention of finding the best method for generat-
ing a representation which captures the information from the table but also the row and column
structure, so that it can be later used towards solving the remaining sub-tasks of TI: row-to-entity
linking, column type annotation and relation extraction. We are interested in understanding
how pre-trained language models, such as BERT [10], and their dedicated table-based counter-
parts, for instance TaBERT [11], can be utilized for generating vector representation for table.
Surprisingly, our experiments show that a transfer learning method with a rich vocabulary
of pre-trained word embeddings achieves similar F1 score compared to more sophisticated
pre-trained language models (LM). Another interesting finding is that the inductive bias for
tabular structure in the LM pre-trained on tabular data does not bring beneficial impact to a text
pre-trained LM. However, the classification confusion matrix for this method, gives an insight
to the miss-classifications being justifiable and reasonable. Our main contributions are:

• A formal definition of table classification as a machine learning task and a protocol for
evaluating performance on this task.

• A setup for table encoding using 5 fundamentally different approaches covering a spectrum
of paradigms from general purpose document encoders to specialized pre-trained models
designed for tabular data.

• An extensive empirical evaluation of the different approaches.

2. Background

In this section, we review prior work related to solving the different sub-tasks of TI. We also
give a short overview of methods for generating vector representations of tables.

Table Interpretation The three sub-tasks of TI were first introduced in the paper by Ritze
et al. [12]. That paper also introduced the T2K Matcher, a method for iterative value-based
matching, which solves the TI tasks by matching values from the tables to values of retrieved
candidates from the KG. More recent work by Limaye et al. [9] proposed a probabilistic graphical
method which attempts to jointly solve the two sub-tasks of finding entity-to-row and column-
to-attribute alignments. Deng et al. [13] exploited word embeddings for representing the
contents of tables and utilized them for the discovery of new entities. The SemTab challenge

2

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

[14] has also motivated new approaches [15, 16]. However, the task of table-to-class annotation
is not part of this challenge.

Table classification To the best of our knowledge, the T2K Matcher is the only existing
method for solving the table-to-class task. Namely, the class of the table is chosen by ranking
the sum of the similarity scores of the column-to-property correspondences aggregated per
class. Since this method requires querying of the KG for candidate retrieval and first solving the
column-to-property alignment in order to find the correct class of a table, we do not consider it
during our experiments. In contrast to the T2K Matcher, we consider a closed book scenario,
where the instances of the KG are not available, only the classes in the KG schema.

Representation Learning on Tables Based on powerful LM, dedicated deep learning models
have recently been proposed to exploit tabular data structures, e.g., in table-based question
answering [4, 17] and KG completion from tables [18]. One benefit from using pre-trained LM
is that they can handle synonyms well, e.g., the abbreviation of New York as NY, which are
frequently occurring in tables because of the innate limitation of the cells. The other benefit
is that, due to the exposure to large textual corpora during the pre-training phase, the LM
can store implicit information learned from the data whilst pre-training, in the form of model
parameters [19]. TaBERT [11] by Yin et al. is a novel model which was pre-trained to jointly
learn representation of a natural language question, called utterance, and tables. An example of
utterance for the entity table shown in Figure 1 is the question: How much is the population
of New York?. During encoding, instead of using the full table, TaBERT samples 1 or 3 rows,
referred to as content snapshot. First, each row from the snapshot, concatenated with the
utterance, is encoded by BERT [10]. Second, the encoding of the rows are stacked and in order
to generate vector representations for each of the columns, a vertical self-attention mechanism
is used. Finally, representation for the table is generated by pooling the column representations.
Similar work is the method TAPAS by Herzig et al. [20], which is also pre-trained on tables
and text segments. Ding et al. proposed TURL [17] as a framework for pre-training, also on
tabular data, which uses the same objectives as TaBERT for learning representations of the
content of the tables. Additionally, they proposed task-specific fine-tuning on the framework
for solving the row-to-entity and column-to-attribute annotation. Wang et al. [21] presented a
novel method which exploits information within one table but also aggregates the contextual
information shared across similar tables in order to generate a vector representation that can be
used for column-to-class annotation and relation prediction tasks.

3. Problem Description

We focus on the task of table-to-class annotation. The task has been introduced together with
the two other TI sub-tasks in [12], however without a formal definition. The goal of the table-
to-class annotation is to label a table with its corresponding class according to the given KG
schema. We now provide a definition of this task as a machine learning task.

An entity table 𝑇𝑖 is a 𝑁𝑖 ×𝑀𝑖 matrix where 𝑁𝑖 and 𝑀𝑖 are the number of rows and columns of
the table 𝑇𝑖. Each element of the matrix 𝑇𝑖, 𝑟 𝑖𝑛,𝑚, contains one or more tokens, where each token

3

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

is a sequence of characters. We denote with 𝑟 𝑖𝑛,∗ and 𝑟 𝑖∗,𝑚 the 𝑛-th row and the 𝑚-th column of
the matrix 𝑇𝑖 respectively. The header of the table is the first row 𝐻𝑖 = 𝑟 𝑖0,∗. The content of the
table are the rows 𝑟 𝑖1,∗, 𝑟 𝑖2,∗, … , 𝑟 𝑖𝑁 ,∗.

Let 𝒟 = {(𝑇1, 𝑐𝑖), … , (𝑇𝑙, 𝑐𝑖)} be the set of labeled tables with 𝑙 number of tables, and each label
𝑐𝑖 ∈ 𝐶 is in the set of classes defined in the KG schema 𝒞 = {𝑐1, … , 𝑐𝑘}. A table encoder 𝐸𝜔
is a model, with a parameter vector 𝜔, which encodes each table 𝐸𝜔 ∶ {𝑇𝑖} → ℝ𝑑 to a vector
𝐸𝜔(𝑇𝑖) = 𝑥𝑖 and 𝒳 = {𝑥0, 𝑥1, … , 𝑥𝑙} is the set of feature vectors for every 𝑇𝑖 ∈ 𝒟. The final
task is to train a classification model 𝑓𝜃 ∶ ℝ𝑑 → 𝒞 so that each table vector is assigned to one
of the class labels. The problem is defined in the multi-class setting. Formally our setting is
𝑓𝜃 ∘ 𝐸𝜔 ∶ {𝑇𝑖} → 𝒞, where only the parameters 𝜃 are trained on the table classification task, i.e.,
no gradient updates are performed on 𝜔.

4. Experiments

Figure 1 shows the experimental setup for evaluating different table encoders. Given an entity
table, a table encoder generates a high-dimensional vector representation of the table. We then
train a classifier on the table-to-class task and evaluate the performance achieved by each of
the table encoders. We experiment with different types of table encoders, a simple method
such as document encoder, transfer learning methods with general-purpose pre-trained word
embeddings (Figure 1 (a)) and more complex methods which include a LM pre-trained on large
textual corpora and an approach for question-answering which has been pre-trained on tabular
data (Figure 1 (b)). The code for the experiments is accessible online 1.

4.1. Dataset

For evaluation we used the second version of the T2D gold standard dataset [12], T2Dv2. To
the best of our knowledge, the T2D sets are the only publicly available datasets which have
been annotated with table-to-class correspondence. The second version of the dataset2 contains
237 such annotations. In our experiments, we consider those classes which have at least two
tables as representatives. The resulting dataset contains 223 tables, each labeled with one of the
27 unique classes. The mean of the number of rows in the dataset is 119.2 and the mean of the
number of columns is 7.7.

4.2. Models compared

In the evaluation we used 5 different models as table encoders, varying from general purpose
document encoders to more sophisticated LM, pre-trained on tabular data.

TF-IDF or term frequency-inverse document frequency, is a term weighting scheme which
generates vector representation for a document based on the frequency of the words in the
document. It is the simplest method which we used as a table encoder.

1https://github.com/anetakoleva/tableClassification
2http://webdatacommons.org/webtables/goldstandardV2.html

4

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

Figure 1: Experimental setup for evaluation of table encoders.

Spacy pre-trained word vectors on a text extracted from blogs, news and comments. We used
the vectorizer from english-medium sized pipeline3 which contains vocabulary of size 684830.

Word2Vec pre-trained word vectors trained with FastText 4 on a Wikipedia text corpus. The
model used for the learning the vectors [22] is an extension of the original word2vec model.
It is skip-gram based and trained to learn representations for character n-grams. This model
consists of vocabulary of size 2.5 million.

BERT is a widely used, Transformer-based LM [10]. During the pre-training phase, the model
has been exposed to a large corpus of unstructured text with the objective of predicting missing
words and prediction of next sentence. This enables the model to learn the correlation of the
words and to generate different vector representation for words depending on the context.

TaBERT is a table encoding method [11], pre-trained on Web tables with the objective to be
used in question-answering tasks on tables. Since the model expects an utterance, i.e., a natural
language question, as input together with a table, in our experiments we provided an empty
space “ ”. We conducted more experiments to evaluate the influence of the utterance on the
generated table representation and we discuss these results in Section 5.

3https://spacy.io/models/en#en_core_web_md
4https://fasttext.cc/docs/en/pretrained-vectors.html

5

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

4.3. Setup

To systematically evaluate the quality of the representations generated with the different table
encoders, we compare their performance on the classification task under different scenarios. It
is important to note that we did not train or fine-tune any of the methods for table encoding, i.e.,
we used them off-the-shelf. Since the tables can be large, in order to avoid scalability issues, we
resort to sampling of rows. Namely, we first shuffle the rows in the tables and then we sample
the first 𝑞 rows. The shuffling of the rows is done only once. For the experiments, we sampled
𝑞 ∈ {1, 3, 5, 7} rows from each of the tables and used these sampled tables as input to the table
encoders.

When using TF-IDF as table encoder, the input is a set of sequences, where each sequence
corresponds to a table from the set of tables 𝒟. More formally, a table sequence for table 𝑇𝑖 is a
sequence of rows 𝑆𝑇𝑖 = (𝑟 𝑖0,∗, 𝑟 𝑖1,∗, … , 𝑟 𝑖𝑞,∗), such that 𝑞 ∈ {1, 3, 5, 7}, and the set of sequences is the
set 𝐼 = {𝑆𝑇0 , … , 𝑆𝑇𝑙}. The table encoder TF-IDF transforms the set of table sequences to the set of
feature vectors 𝐸tf-idf

𝜔 ∶ 𝐼 → 𝒳.
Word2Vec and Spacy generate the vector representation for table 𝑇𝑖 in 3 steps. First, the

sequence 𝑆𝐻𝑖 , representing the header of the table 𝑇𝑖, is encoded as the mean over the word
vectors in the sequence 𝑆𝐻𝑖 , represented as 𝑥𝑖𝐻. Second, the content of the table, is transformed
into a table sequence 𝑆𝑇𝑖 = (𝑟 𝑖1,∗… 𝑟 𝑖𝑞,∗) and encoded as the vector 𝑥𝑖𝐵, which represents the mean
over all the word vectors in 𝑆𝑇𝑖 . Finally, the vector representations for the header and for the
table content are concatenated into one vector 𝑥𝑇𝑖 = 𝑥𝑖𝐻‖𝑥

𝑖
𝐵.

Considering that there is a limit on the length of the sequence that BERT can encode in one
step, we used different transformation for the last two methods. BERT encodes each table row
by row, i.e, a sequence 𝑆 𝑖𝑟𝑧,∗ is generated for each of the rows 𝑟 𝑖𝑧,∗ of table 𝑇𝑖, where 0 ≤ 𝑧 ≤ 𝑞.
BERT generates row-wise vectors, so for each sequence 𝑆 𝑖𝑟𝑧,∗ the output is a vector 𝑥𝑟𝑧,∗ . The
vector representation for table 𝑇𝑖 is the vector 𝑥𝑇𝑖 which is the result of the mean-pooling over
the set of the BERT’s output vectors {𝑥𝑟0,∗ , … , 𝑥𝑟𝑞,∗} that correspond to the table rows. In the
same manner, the TaBERT model also first generates an encoding for each of the rows of table
𝑇𝑖 resulting in a set of vectors. This model uses vertical self-attention focused on the vertically
stacked vectors, {𝑥𝑟0,∗ , … , 𝑥𝑟𝑞,∗}. Because of the vertically aligned vectors, the output of the model
is a column vector representation {𝑥𝑟∗,0 , … , 𝑥𝑟∗,𝑀𝑖

} for each of the 𝑀𝑖 columns in table 𝑇𝑖. Finally,
we do mean-pooling over the column representations to generate the table encoding 𝑥𝑇𝑖 .

We then use the Multi-layer Perceptron (MLP) with one hidden layer of size 500, the tanh
activation function and adam optimizer as the classifier 𝑓𝜃 from Figure 1. The hyper parameters
are chosen after an extensive search and they are fixed for all of the experiments. Since the
available dataset is small, instead of splitting it once into a training set and a test set, we use
stratified K-fold validation with 𝐾 = 20 splits. Considering that the dataset is imbalanced, we
report the macro averaged F1 score. The reported scores are the average of the results on the
test set after the cross validation. To explore the effect of the column names, we also encoded
the tables with their column names masked. Specifically, for all of the tables, we substitute their
column names with the token [UNK].

6

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

Table 1
Macro-averaged F1 score.

Column names Masked column names
𝑞 = 1 𝑞 = 3 𝑞 = 5 𝑞 = 7 𝑞 = 1 𝑞 = 3 𝑞 = 5 𝑞 = 7

tf-idf 0.56 0.56 0.54 0.54 0.41 0.45 0.51 0.55
spacy 0.64 0.69 0.74 0.73 0.48 0.58 0.61 0.63

word2vec 0.69 0.76 0.76 0.78 0.61 0.77 0.76 0.80
bert 0.76 0.78 0.79 0.80 0.63 0.75 0.78 0.78

tabert 0.75 0.77 0.77 0.78 0.61 0.71 0.71 0.74

5. Results

Table 1 shows the macro averaged F1 score for the 5 table encoders on the table classification
task under two different settings: (1) given the input tables with the column names and (2)
given the input tables with their column names masked ([UNK] token). We report the achieved
F1 score for the different sizes of the input tables with the number of sampled rows 𝑞 varying
from 1 row to 7 rows. The simplest table encoder, TF-IDF achieves the lowest F1 score and
the score only got lower when the column names of the tables were masked. For the two
models with pre-trained word vectors, we observe that the model with the richer vocabulary
has higher score. Indeed, the F1 score of Word2Vec is comparable with the scores achieved by
BERT and TaBERT. In the first setting, when the column names of the tables are visible, there
is no significant difference between the scores achieved by BERT and the scores of TaBERT.
However, in the setting when the column names are masked, BERT consistently outperforms
TaBERT. Interestingly, Word2Vec is the only table encoder that was not affected by the masking
of the column names, on the contrary, it achieved better score in the case when 𝑞 = 3 and 𝑞 = 7
under the second setting compared to the setting when the column names are visible.

Figure 2 shows the row-normalized confusion matrix for the table classification task for
Word2Vec and TaBERT across the different classes. The horizontal axis shows the predicted
labels and the vertical axis shows the true labels. We observe the performance of the two
models under the same scenario: the input tables are with 𝑞 = 7 rows and the column names
are masked. The classes are ordered by the number of instances assigned to them, Country is
the class with the most instances, 33, while Airline has only 2 instances. From the confusion
matrix for TaBERT (Figure 2 right) it can be observed that more miss-classifications are for
the classes with a lower number of instances and they are not that unexpected. For instance,
miss-classifying an instance of class Person as an instance of class Scientist, is an acceptable
mistake. Similarly for the instances of classes Academic Journal and Newspaper, and Political
Party and Election. On the other hand, the miss-classifications by Word2Vec for class Wrestler
and class Animal as instances of class Film are much more unexpected and critical. Likewise,
Word2Vec miss-classifies the tables of class Scientist and of class Radio Station as instances
of the class Country which indicates a weak semantic structure in the vector representations.
These results suggest that although Word2Vec achieves higher F1 score, the TaBERT vector
representations capture semantics with a smoother transitions between classes.

7

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

Figure 2: Classification confusion matrix for Word2Vec (left) and for TaBERT (right).

TaBERT Analysis To get a better understanding of the (under-) performance of TaBERT
we analyse the influence of the utterance and its interplay with column names. In addition to
the empty string “ ” used in previous experiments, we also used a randomly generated string
with 10 characters (unique per table), and one constant string, Thing, for all tables. Moreover,
we experimented with adding the correct class of the tables as utterance, as well as a wrong
class (for instance, all the tables of class Country are encoded with the class Plant as utterance).
Figure 3 shows the results of these experiments, where the input tables were with 𝑞 = 3 rows.
The horizontal axis shows the different options that we passed as utterance to the model and
the vertical axis shows the achieved F1 score. The masking of column names has significant
influence on the generated table representation. The reason for this might be in the way how
a row is transformed into a string, i.e., the value of each table entry is concatenated with the
column name of the entry and its value. Observing the results with the different utterance, we
see that the choice of utterance does not affect the performance of the model when the column
names are not masked. Nevertheless, when the column names are masked, the influence of the
utterance is more significant. In both cases when the utterance is the wrong class or the correct
class, the achieved score is much higher, which might be attributed to a class-wide shift in the
vector space because of the grouping that these utterances cause.

6. Conclusion and Future work

In this paper we explored different types of table encoders for generating vector representations
for tabular data. Specifically, we focused on evaluating different methods for table encoding on
the sub-task for TI, table-to-class annotation. Despite the increasing interest in the problem
of TI, so far, only one approach towards this specific sub-task has been proposed. In this
direction, we provided a formal definition for the table-to-class annotation task as a machine
learning task. We conduct an empirical study with five different methods for generating vector

8

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

Figure 3: TaBERT performance with different utterances.

representation of a table and evaluate their performance on the table-to-class annotation task.
The results from our experiments show that transfer learning methods with large vocabularies
of pre-trained word embeddings perform on par with more complex and expensive modes
such as LM pre-trained on tables. An interesting finding is that the inductive bias for tabular
structure in TaBERT did not bring benefit to the performance of the BERT model. A possible
explanation for this is the missing significant utterance that the TaBERT model expects as input.
Nonetheless, the miss-classifications made by this model are reasonable, suggesting that the
vector representations capture the semantics of the tables. Future work should target closing
the gap between existing general-purpose models and model specific for encoding tabular data.
To further our work we plan to explore other existing methods for table encoding for solving
the table-to-class task, as well as for solving the entity-to-row and column-to-property tasks.

References

[1] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, Y. Zhang, Webtables: exploring the power
of tables on the web, VLDB (2008).

[2] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G. Miao, C. Wu, Recovering
semantics of tables on the web, VLDB (2011).

[3] M. Zhang, K. Chakrabarti, Infogather+: semantic matching and annotation of numeric
and time-varying attributes in web tables, in: SIGMOD, 2013.

[4] H. Sun, H. Ma, X. He, W. Yih, Y. Su, X. Yan, Table cell search for question answering, in:
WWW, 2016.

[5] J. Chen, E. Jiménez-Ruiz, I. Horrocks, C. Sutton, Learning semantic annotations for tabular

9

Aneta Koleva et al. CEUR Workshop Proceedings 1–10

data, in: IJCAI, 2019.
[6] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, V. Christophides, Matching web tables

with knowledge base entities: From entity lookups to entity embeddings, in: ISWC, 2017.
[7] P. Nguyen, N. Kertkeidkachorn, R. Ichise, H. Takeda, Tabeano: Table to knowledge graph

entity annotation, CoRR (2020). arXiv:2010.01829 .
[8] S. Zhang, E. Meij, K. Balog, R. Reinanda, Novel entity discovery from web tables, in:

WWW, 2020.
[9] G. Limaye, S. Sarawagi, S. Chakrabarti, Annotating and searching web tables using entities,

types and relationships, VLDB (2010).
[10] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional

transformers for language understanding, in: NAACL-HLT, 2019.
[11] P. Yin, G. Neubig, W. Yih, S. Riedel, Tabert: Pretraining for joint understanding of textual

and tabular data, in: ACL, 2020.
[12] D. Ritze, O. Lehmberg, C. Bizer, Matching HTML tables to dbpedia, in: WIMS, 2015.
[13] L. Zhang, S. Zhang, K. Balog, Table2vec: Neural word and entity embeddings for table

population and retrieval, in: SIGIR, 2019.
[14] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, K. Srinivas, Semtab 2019: Re-

sources to benchmark tabular data to knowledge graph matching systems, in: ESWC,
2020.

[15] S. Chen, A. Karaoglu, C. Negreanu, T. Ma, J. Yao, J.Williams, A. Gordon, C. Lin, Linkingpark:
An integrated approach for semantic table interpretation, in: SemTab@ISWC, 2020.

[16] P. Nguyen, I. Yamada, N. Kertkeidkachorn, R. Ichise, H. Takeda, Mtab4wikidata at semtab
2020: Tabular data annotation with wikidata, in: SemTab@ISWC, 2020.

[17] X. Deng, H. Sun, A. Lees, Y. Wu, C. Yu, TURL: table understanding through representation
learning, VLDB (2020).

[18] B. Kruit, P. A. Boncz, J. Urbani, Extracting novel facts from tables for knowledge graph
completion, in: ISWC, 2019.

[19] A. Roberts, C. Raffel, N. Shazeer, How much knowledge can you pack into the parameters
of a language model?, in: EMNLP, 2020.

[20] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, J. M. Eisenschlos, Tapas: Weakly supervised
table parsing via pre-training, in: ACL, 2020.

[21] D. Wang, P. Shiralkar, C. Lockard, B. Huang, X. L. Dong, M. Jiang, TCN: table convolutional
network for web table interpretation, in: WWW, 2021.

[22] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword
information, Transactions of the Association for Computational Linguistics (2017).

10

http://arxiv.org/abs/2010.01829

Understanding Class Representations: An Intrinsic
Evaluation of Zero-Shot Text Classification
Fabian Hoppe1,2, Danilo Dessì1,2 and Harald Sack1,2

1FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, Germany
2Karlsruhe Institute of Technology, Institute AIFB, Germany

Abstract
Frequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-
Shot Classification through the inclusion of external class definitions and then exploiting the relations
between classes seen during training and unseen classes (Zero-shot). However, it requires a class em-
bedding space capable of accurately representing the semantic relatedness between classes. This work
defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of
this relatedness. The results imply that textual embeddings are able to capture more semantics than
Knowledge Graph embeddings, but combining both modalities yields the best performance.

Keywords
Zero-Shot Learning, Text Classification, Class Representation, Embedding Model, Intrinsic Evaluation

1. Introduction

Managing, finding and exploring information from textual data is frequently done by applying
Text Classification. As such classifying texts according to a predefined taxonomy is a key task
in Natural Language Processing and Information Retrieval. For example within the scholarly
domain classification supports researchers to retrieve relevant articles for their research by
categorizing huge document collections according to a given schema. In order to achieve
this goal Text Classification requires a certain understanding of the information presented in
natural language texts. Typically, supervised classifiers obtain this understanding by statistically
analyzing features of large training sets. In the last decade, the required amount of task-specific
training data was to some extent reduced by pre-training large language models on the cloze
task or similar self-supervised tasks on large unlabeled corpora. Nevertheless, this still requires
a sufficient number of training examples for each class aside from the taxonomy itself. Moreover,
collecting training data is costly, because human experts have to label each document and,
therefore, this time consuming process is not feasible for many classification tasks. Classes
might follow a long-tail distribution, i.e., there are many classes with only a few examples, or
the taxonomy might get frequently extended by emerging new classes. One way of coping with
insufficient training data is to exploit external knowledge about given classes, mimicking how

Workshop on Deep Learning for Knowledge Graphs (DL4KG@ISWC2021), October 25, 2021
" fabian.hoppe@fiz-karlsruhe.de (F. Hoppe); danilo.dessi@fiz-karlsruhe.de (D. Dessì);
harald.sack@fiz-karlsruhe.de (H. Sack)
� 0000-0002-7047-2770 (F. Hoppe); 0000-0003-3843-3285 (D. Dessì); 0000-0001-7069-9804 (H. Sack)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fabian.hoppe@fiz-karlsruhe.de
mailto:danilo.dessi@fiz-karlsruhe.de
mailto:harald.sack@fiz-karlsruhe.de
https://orcid.org/0000-0002-7047-2770
https://orcid.org/0000-0003-3843-3285
https://orcid.org/0000-0001-7069-9804
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

humans learn to classify documents; this is what Zero-shot Text Classification aims to achieve.
More precisely, instead of classifying documents by comparing them to other documents of a
specific class, Zero-shot Classification exploits known relations between classes. Consequently,
it does not require training data for all classes of a taxonomy and makes it possible to predict
classes, which are not seen during training. This is achieved by transferring information from
known classes to classes that are not seen or are not sufficiently represented. Practically, Zero-
shot Classification aligns a class embedding space generated by using external knowledge with
a document embedding space, and uses the interrelation between seen and unseen classes in
their embedding space to obtain a representation for the unseen class in the aligned vector
space. The actual classification is performed by applying a distance metric to find the classes
most similar to the given documents. By definition the performance of such a classifier relies
heavily on the utilized external knowledge of the classes and how it is represented in the class
embedding space.

Many models focus on textual data as external knowledge and uses language models to
create a vector space for these classes [1, 2]. More recently, efforts are made to include explicit
knowledge by utilizing knowledge graphs, such as ConceptNet [3] or DBpedia [4]. However,
improving the state of the art by providing the best suitable external knowledge using the best
suitable embedding model requires a better understanding on how well the considered external
knowledge is actually encoded in the embedding space. Certainly, this understanding is difficult
to obtain by using extrinsic evaluation of the whole model, because these results are heavily
influenced by other factors, e.g., the used document representations as well as the model used
to perform the alignment of both spaces. Consequently, a sound judgment of the usefulness of
the class representations on their own requires a more detailed review. Therefore, this paper
proposes an intrinsic evaluation which investigates the class embedding space independently.
The main requirement of class representations is an accurate encoding of the interrelations
between classes, because these relations are exploited by Zero-shot Classification. It means that
related or similar classes should be represented close to each other and unrelated or dissimilar
classes should be further apart. Based on this intrinsic evaluation the most common external
knowledge sources and the related embedding models are investigated on the example of the
arXiv category taxonomy1. This investigation uses a newly created gold standard which is
made publicly available together with the source code for the detailed investigation of class
representations2. Thereby, this paper aims to facilitate further research into the used external
knowledge for class representations and the applied embedding models and improve Zero-shot
Text Classification.

In summary, the contribution of this work is threefold:

• An evaluation of class embeddings for Zero-shot Classification is proposed.
• A new gold standard based on the arXiv category taxonomy is provided.
• Common class representations are evaluated and insights to obtain better classification

results are discussed.

The reminder of this paper is organized as follows. Section 2 discusses the relevant related work
in Zero-shot Text Classification and the evaluation of representations. Afterwards, Section 3

1https://arxiv.org/category_taxonomy
2https://github.com/ISE-FIZKarlsruhe/IntrinsicEvaluationOfClassRepresentations

https://arxiv.org/category_taxonomy
https://github.com/ISE-FIZKarlsruhe/IntrinsicEvaluationOfClassRepresentations

introduces common external knowledge sources and embedding models and describes the
intrinsic evaluation. Section 4 reports and discusses the results of this intrinsic evaluation on
arXiv class representations. Finally, Section 5 concludes the paper and outlines future directions.

2. Related Work

One of the first works exploring Zero-shot Text Classification is the dataless classification
framework [5]. The authors use Explicit Semantic Analysis as a latent representation for
documents and classes, which avoids the alignment of both spaces. The class representations are
generated based on the class names as external knowledge resource. This research got extended
by considering several neural network based word embeddings, such as Word2Vec [1]. Due to the
omitted alignment step these approaches do not require any training data. Consequently, similar
models are deployed, where no training data is available, like categorizing German archival
documents [6]. Recently, contextualized embedding models are utilized by reformulating the
classification task as a textual entailment problem [2]. This approach continues to represent
classes by only using the class name in combination with large, self-supervised language models
as external knowledge. However, as shown by [7] for Zero-shot Image Classification already a
basic classifier using a linear transformation to align image and GloVe class embeddings can
reach state-of-the-art performance by considering Wikipedia articles as additional external
knowledge for the given classes. Recent studies in Zero-shot Text Classification also extend
their model by including explicit knowledge sources, like Knowledge Graphs (KGs), to generate
suitable class representations. For example, in [3] the ConceptNet KG is used to extract explicit
relations between words. Another work investigates the usage of DBpedia RDF2Vec embeddings
to represent arXiv categories [4]. The authors investigate whether text embedding combined
with KG embeddings would provide better class representations for a Zero-shot Classification.

Regardless of the increased focus on class representations state-of-the-art Zero-shot models
still rely on costly extrinsic evaluations to judge these representations, i.e., the quality of
embedding models is assessed by only considering the performance of the task itself. Thus,
it requires more computational power and is not suited to provide a better understanding
on the representations. Other tasks utilizing embedding models apply intrinsic evaluation
to gain a better understanding of the applied embedding model. Instead of considering the
whole system, these evaluations focus on specific intermediate subtasks. Due to their wide-
spread use especially the semantics of word embeddings is extensively investigated based on
multiple intrinsic evaluations [8]. The most popular are word semantic similarity and the word
analogy task. The word semantic similarity task evaluates the correlation between similarities
of embedding pairs to human labelled semantic similarity. This provides a direct evaluation of
the relations between words. However, the task is quite subjective and depends on the relations
considered for the human labels, e.g. a football and a globe are both spheres and would be
similar if the shape property is most important for the given task. The word analogy task (𝑎 is to
�̂� as 𝑏 is to �̂�) tries to reduce this influence by considering only a given relation which is defined
by the first pair (𝑎, �̂�). Unfortunately, it requires a careful selection of word pairs so that the
relation makes sense which increases the labelling effort. After all, both tasks provide a better
understanding of the created embedding space by direct evaluation of semantic relatedness. The

importance of such an understanding is recently highlighted in [9]. The detailed investigation
of KG embeddings by means of clustering and classification experiments raised doubt about the
semantic capabilities of common used models. Nevertheless, the literature describes several
pitfalls of intrinsic evaluation that need to be considered. Most commonly (i) it might fail to
relate intrinsic and extrinsic evaluation [10], (ii) human annotators might introduce biases
based on their background [11], (iii) low inter-annotator agreement [12]. However, intrinsic
evaluation is crucial to understand the models and to know what to improve.

3. Class Representations

Class representations play a vital role for Zero-shot Text Classification. They encode external
knowledge which is exploited to accomplish the classification of unseen or not sufficiently
represented classes. Therefore, the understanding of the relevant external knowledge and the
related embedding models is important. Before discussing how intrinsic evaluation provides
a better understanding of these class representations, the most common models are briefly
presented. Currently, two modalities of external knowledge are considered for the generation of
class representations in Zero-shot Text Classification: textual data and Knowledge Graph-based
data. Both modalities use their own embedding models.

3.1. Textual Representations

Typically, classes are described with natural language text to support the annotation by human
experts as well as provide an easily understandable definition of these classes to the users.
Therefore, this external knowledge is frequently available without any additional effort. Consid-
ering that this data informally defines the classes for the users it ranges from names of common,
well-known classes to more detailed descriptions of specific classes depending on the classifi-
cation task. In addition to these commonly available texts, classes can be linked to resources
providing more background knowledge. If these links are not already part of the taxonomy,
they can be retrieved by manual or (semi-)automatic entity-linking using the available texts.
Even for large taxonomies this additional effort is dwarfed by the task of providing thousands
of training examples for each class. One commonly used external resource is Wikipedia. As
the largest encyclopedia it provides background knowledge for many classes in a broad set of
domains.

The textual data is embedded into a vector space by using pre-trained language models. These
models learn latent representations of words based on a word prediction task. As such they
encode the usage of each word into a vector space. Words that frequently occur in the same
context are represented as similar vectors. Word2Vec [13] is one example of such an embedding
model. It provides two settings. The skip gram setting computes the embedding of a word given
its surrounding context, whereas the CBOW setting computes the embeddings of a context,
given a word. In the Word2Vec model a word is always represented by one single vector. This
poses two challenges. First, a longer text sequence requires additional normalization steps and
secondly, the ambiguity of a word considering the larger context cannot be encoded. Frequently,
the normalization falls back to averaging over all word embeddings. However, especially
for larger texts this results in representations containing less semantics. Both problems are

addressed by contextualized word embeddings such as BERT [14]. BERT uses masked language
models and transformers to predict missing words. Due to its architecture these contextualized
word embeddings provide also context embeddings which can be used as representations for
larger word sequences. The semantics encoded into both models is based on the empirical
usage of the considered words in a training corpus. One special kind of textual embedding
model is the Wikipedia2Vec [15] approach. Instead of learning only word representations
in a similar setting as Word2Vec it jointly learns representations for Wikipedia entities based
on predicting neighbours in the Wikipedia link graph. The link graph connects entities that
are mentioned in the corresponding articles of other entities and thereby provides additional
external knowledge for the representations. Due to the exploited graph structure this is similar
to the second modality which is frequently exploited: Knowledge Graph Representations.

3.2. Knowledge Graph Representations

Instead of implicitly retrieving semantics by considering the statistics of a large corpus, Knowl-
edge Graphs provide explicit semantics by defining entities and relations between those entities.
Providing explicit knowledge enables a more precise definition of the class representations and
thereby improves the understanding. However, only a small number of taxonomies already
maintain suitable references to KGs. This makes the entity-linking step described to retrieve
additional textual data also necessary for KGs. Similar to the considered corpus for textual
representations KG representations depend significantly on which KGs are utilized as external
knowledge source. On one side the large nodes of the Linked Open Data cloud, like DBpedia
or Wikidata, could be utilized or subject-specific KGs which provided more detailed domain
knowledge, but are not available for many domains and tend to contain less knowledge.

The linked entities can be transformed into a low dimensional vector by a wide range of KG
embedding models. In the scope of this paper three KG models are considered. TransE [16]
represents entities of a KG by defining relations of a KG as translations in the embedding space
from the head to the tail of triples. More specifically, given a triple <h,r,t> the model is trained
to build a vector space where 𝑡 ≈ ℎ⊕ 𝑟 holds. The training is performed by corrupting triples
to generate negative samples i.e., the tail (or head) of the triple is substituted by another entity;
the model is optimized to distinguish between corrupted and non-corrupted triples. In doing
so, given a triple <h,r,t> and a corrupted triple <h,r,t’> from the generated embeddings
space, ℎ⊕ 𝑟 should be closer to 𝑡 than 𝑡′. In opposition to that TransR [17] represents entities
and relations in different embedding spaces. The assumption behind this model is that entities
and relations in KGs are different objects and, thus, they need two distinct representations.
Given a triple <h,r,t> the model uses a translation matrix 𝑀𝑟 to move ℎ and 𝑡 from the
entity space to the relation space. The score function used by the model is given in equation
𝑓𝑟(ℎ, 𝑡) = ‖ℎ𝑀𝑟 + 𝑟− 𝑡𝑀𝑟‖22. RDF2Vec [18] is a model which adapts the Word2Vec algorithm
to graph representations. First, it creates sequences of entities and relations by performing
random walks on the graph in order to build sequences that can be used as text sentences. Then,
the skip gram or the CBOW methodologies are applied to build embedding representations of
entities and relations.

3.3. Understanding Representation Spaces

In Zero-shot Text Classification the class representations are mapped into a shared class-
document space to perform the classification by utilizing distance / similarity metrics. This
mapping is learned by aligning the subset of classes with sufficient training data and then applied
to unseen class representations. Consequently, the classification is based on the assumption that
the relevant semantic relations between classes are encoded in the class embedding space. There-
fore, a better understanding of the class representations is provided by evaluating the semantic
relatedness between the classes. The straightforward way of analysing the semantic relatedness
compares the vector similarity between a pair of embeddings to a human assigned label. This is
the same process as for the word semantic similarity task. However, the human labels are highly
subjective for class representations as well and require a detailed description on how specific
relations should be quantified. These problems can be partially circumvented by comparing the
similarity of two pairs. Such an comparison can be defined based on a triple of classes <Anchor,
A, B> and a label indicating if class 𝐴 or class 𝐵 is more similar to the 𝐴𝑛𝑐ℎ𝑜𝑟 class. The
intrinsic evaluation of an embedding space Θ predicts the label by checking if the constraint
𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(Θ(𝐴𝑛𝑐ℎ𝑜𝑟),Θ(𝐴)) > 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(Θ(𝐴𝑛𝑐ℎ𝑜𝑟),Θ(𝐵)) is true and
can be analyzed by precision, recall and f-measure in a binary classification setting.

Unfortunately, not all class combinations share some kind of relation among them, making it
necessary to select only triples where such a relation exists at least for one pair. Additionally, in
some cases the semantic similarity could be equal between the pairs. Consequently, the human
labels need to include a third value to identify the cases where it is not possible to decide. The
evaluation can either filter these cases which reduce the available labels but does not require any
additional hyperparameter or introduce a threshold as well as a minimal similarity to predict
this class as well and extend the binary classification setting to a multi-class setting.

4. Evaluation

The presented class representations are evaluated based on the proposed intrinsic evaluation
on the example of the arXiv.org computer science classes. ArXiv manages its many published
scholarly articles by categorizing them according to a taxonomy. Thereby, it represents a typical
multi-class multi-label classification.

4.1. Gold Standard: ArXiv Classes

The arXiv taxonomy provides for all classes a descriptive name and a brief description. Addition-
ally, the arXiv classes are manually mapped to the most suitable DBpedia entity, which enables
retrieving the Wikipedia abstracts as textual description of the given classes. During this step
classes like General Literature and classes without a suitable DBpedia mapping are filtered. This
leaves overall 31 classes. In order to investigate the influence of explicit domain knowledge
the classes are also mapped to AI-KG [19], a KG generated based on scholarly articles from the
computer science domain. An overview of the amount of data available for the arXiv classes is
given in Table 1.

Table 1
Overview of the external data with min, average and max number of tokens for text attributes and
number of triples containing the mapped entity for the KGs.

Attribute Size Example
min; average; max

Name 1; 2.5; 5 Artificial Intelligence

Wikipedia
abstract

22; 209.2; 494
Artificial intelligence (AI) is intelligence demonstrated by
machines, as opposed to the natural intelligence displayed
by humans and animals. Leading AI textbooks [...]

DBpedia 5; 1772.5; 7766
dbr:Artificial_intelligence dcterms:subject
dbr:Emerging_technologies . [...]

AI-KG 3; 650.8; 4091 aikg:artificial_intelligence rdf:type aikg-o:Task . [...]

The evaluation utilize mostly pre-trained embeddings models. The textual embeddings use
the skip-gram Word2Vec model3 built on the Google News dataset, the pre-trained BERT model4

built on BookCorpus and the English Wikipedia and finally skip-gram Wikipedia2Vec5. The KG
entities for DBpedia use the models pre-trained for [20] which are online available6. Based on
this code also the relevant AI-KG embeddings are trained. Additionally, the multi-class setting
uses half of the standard derivation of all class similarities as threshold and the 10th percentile
as minimum value.

The gold standard is created by random subsampling all combinations of the 31 arXiv classes
and is manually annotated by 11 experts from the computer science domain. The annotators
were instructed by a brief task description and were provided the available textual data from
arXiv (descriptive name, brief description). Overall the experts labelled 3, 000 triples with 5
votes for each triple. However, the analysis of intra- and inter-annotator agreement indicates
only a small reliability of the whole dataset. The intra-annotator agreement is calculated based
on 20 triples which were labeled twice by every annotator. The Cohen’s 𝜅 coefficient for this
agreement ranges from 0.14 to 0.9 with an average of 0.49. The inter-annotator agreement is
measured by the averaged Cohen’s 𝜅 coefficient of the 5 votes provided for each triple. It is
0.22. The Krippendorff’s 𝛼 coefficient of 0.21 confirms this low reliability. Evidently, random
subsampling includes many controversial triples, where the label depends on minor differences
in the mental model of the individual annotators. In order to create a reliable gold standard
these controversial triples are filtered out. A triple is considered as controversial if more then
one of the votes disagrees with the other votes. After this step the gold standard contains 1, 266
triples with 300 A labels, 354 B labels and 612 triples where no decision was possible.

4.2. Results and Discussion

The results are reported in Table 2. For the binary classification precision, recall and F-measure
are presented and for the multi-class classification only the micro F-measure is considered,

3https://code.google.com/archive/p/word2vec/
4https://huggingface.co/bert-base-cased
5https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
6https://github.com/nheist/KBE-for-Data-Mining

https://code.google.com/archive/p/word2vec/
https://huggingface.co/bert-base-cased
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://github.com/nheist/KBE-for-Data-Mining

because the actual class distribution is arbitrary and by definition precision, recall and F-measure
are equal in the micro setting. However, both classification settings provide similar results. This
indicates that unrelated triples and equally similar pairs are not a special case, which suggests
that binary classification with less hyperparameter is sufficient for the intrinsic evaluation.

Overall, the Wikipedia2Vec embeddings align best with the actual semantic similarities,
followed by Word2Vec generated from names and BERT using Wikipedia abstracts. All KG
embeddings could not reach this performance. Overall, no model is able to reach human-level
performance. However, the human results presented are the average of the same annotations
used for creating the gold standard and due to this biased. Independent labels would be below
these results.

Table 2
Evaluation in terms of Precision, Recall, and F-measure.

Binary Multi-Class

Model Attribute Precision Recall F-measure
Micro

F-measure
Word2Vec Name 0.668 0.757 0.709 0.484
Word2Vec Wiki abstract 0.682 0.65 0.666 0.478
BERT Name 0.591 0.593 0.592 0.379
BERT Wiki abstract 0.658 0.727 0.691 0.495

Wikipedia2Vec Wiki entity 0.738 0.74 0.739 0.563
TransR DBpedia 0.548 0.573 0.56 0.415
TransR AI-KG 0.498 0.55 0.523 0.439
TransE DBpedia 0.508 0.513 0.511 0.397
TransE AI-KG 0.501 0.597 0.545 0.42
RDF2Vec DBpedia 0.496 0.573 0.532 0.356

Human Annotator 0.947 0.853 0.881 0.86

The most apparent insight this analysis provides is the difference between both modalities. KG
embeddings in general lack behind textual embeddings. With only small differences between the
embedding models and considering that RDF2Vec exploits a similar methodology as Word2Vec
this can be explained by the smaller amount of training data. Even large KGs like DBpedia only
provide a few thousand triples for each class. A text corpus with significant more mentions of
these classes is able to provide a better semantic model.

However, the comparison between Word2Vec and BERT, where BERT represents the larger
model trained with more data, shows that the model size is not the only relevant factor. Especially,
the BERT model relies on task-specific fine-tuning, which is not possible for unseen classes in
Zero-shot Classification. These results are coherent with the extrinsic evaluation of Word2Vec
and BERT in [2] where a fine-tuned BERT model performs on a similar level as untrained
Word2Vec for unseen classes. Interestingly, the results show the main drawback of a Word2Vec
model, too. If larger texts, like the Wikipedia abstracts, are normalized by basic averaging all
embeddings get more similar and the performance decreases. On the other hand contextualized
models as BERT perform worse without the context.

A less pronounced difference in the results is given between the KG embedding models
and the used KG. TransE returns slightly better results on the domain specific AI-KG, but

TransR performs better on a larger dataset with more heterogeneous relations (DBpedia). That
illustrates that TransE struggles with heterogeneous relations and therefore benefits from more
domain-specific knowledge.

Overall, Wikipedia2Vec as a hybrid model using text and graph embeddings provides the best
semantic relatedness. Such models seem to extract the semantics from large textual corpora and
use the entity relations to emphasis or add important semantic relations. Thereby, it combines
advantages of both modalities.

5. Conclusion

This paper describes an intrinsic evaluation, which provides a better understanding of the
class vector space for Zero-shot Text Classification by checking human defined greater-than
constraints between classes. Therefore, common embeddings models using textual data and
KGs to define classes are generated for the computer science arXiv subset and evaluated with a
created gold standard. This investigation shows that textual embeddings are able to extract more
implicit knowledge compared to the explicit knowledge provide by KGs and that extending
textual embeddings with (Knowledge) Graph-based information is able to capture semantic
relatedness better than single modalities.

This line of research can be extended by an empirical study on the correlation between the
performance of unseen classes and the semantic relatedness to confirm the theoretical argument
for the intrinsic evaluation. Additionally, more embedding models using both modalities should
be evaluated with respect to semantic relatedness. Another ongoing effort is the extension of
the presented dataset considering more triples and a larger pool of domain experts. This way
the intrinsic evaluation of class representations is able to facilitate further research, and thereby
improve Zero-shot Text Classification.

References

[1] Y. Song, D. Roth, On dataless hierarchical text classification, in: Proceedings of the 28th
AAAI conference on Artificial Intelligence, 2014, p. 1579–1585.

[2] W. Yin, J. Hay, D. Roth, Benchmarking zero-shot text classification: Datasets, evaluation
and entailment approach, in: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, 2019, pp. 3914–3923.

[3] J. Zhang, P. Lertvittayakumjorn, Y. Guo, Integrating semantic knowledge to tackle zero-
shot text classification, in: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 2019, pp. 1031–1040.

[4] F. Hoppe, D. Dessì, H. Sack, Deep learning meets knowledge graphs for scholarly data
classification, in: Companion Proceedings of the Web Conference 2021, 2021, pp. 417–421.

[5] M. W. Chang, L. Ratinov, D. Roth, V. Srikumar, Importance of semantic representation:
Dataless classification, 27th AAAI conference on Artificial Intelligence (2008).

[6] F. Hoppe, T. Tietz, D. Dessì, N. Meyer, M. Sprau, M. Alam, H. Sack, The challenges of
German archival document categorization on insufficient labeled data, in: Proceedings of
the Third Workshop on Humanities in the Semantic Web, co-located with 15th Extended
Semantic Web Conference, 2020, pp. 15–20.

[7] S. Bujwid, J. Sullivan, Large-scale zero-shot image classification from rich and diverse
textual descriptions, in: Proceedings of the Third Workshop on Beyond Vision and
LANguage: inTEgrating Real-world kNowledge (LANTERN), 2021, pp. 38–52.

[8] A. Bakarov, A survey of word embeddings evaluation methods, arXiv (2018).
[9] N. Jain, J.-C. Kalo, W.-T. Balke, R. Krestel, Do embeddings actually capture Knowledge

Graph semantics?, in: 18th Extended Semantic Web Conference, 2021, pp. 143–159.
[10] B. Chiu, A. Korhonen, S. Pyysalo, Intrinsic evaluation of word vectors fails to predict

extrinsic performance, in: Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, 2016, pp. 1–6.

[11] F. F. Liza, M. Grześ, An improved crowdsourcing based evaluation technique for word
embedding methods, in: Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, 2016, pp. 55–61.

[12] F. Hill, R. Reichart, A. Korhonen, Simlex-999: Evaluating semantic models with (genuine)
similarity estimation, Computational Linguistics (2015).

[13] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in
vector space, arXiv (2013).

[14] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional
transformers for language understanding, arXiv (2018).

[15] I. Yamada, A. Asai, J. Sakuma, H. Shindo, H. Takeda, Y. Takefuji, Y. Matsumoto,
Wikipedia2Vec: An efficient toolkit for learning and visualizing the embeddings of words
and entities from Wikipedia, in: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, 2020, pp. 23–30.

[16] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings
for modeling multi-relational data, Advances in neural information processing systems
(2013).

[17] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings for
Knowledge Graph completion, in: 29th AAAI conference on Artificial Intelligence, 2015,
pp. 2181–2187.

[18] P. Ristoski, H. Paulheim, Rdf2Vec: RDF graph embeddings for data mining, in: International
Semantic Web Conference, 2016, pp. 498–514.

[19] D. Dessì, F. Osborne, D. R. Recupero, D. Buscaldi, E. Motta, H. Sack, AI-KG: an automatically
generated knowledge graph of artificial intelligence, in: International Semantic Web
Conference, 2020, pp. 127–143.

[20] J. Portisch, N. Heist, H. Paulheim, Knowledge Graph embedding for data mining vs.
Knowledge Graph embedding for link prediction–two sides of the same coin?, Semantic
Web Journal (2021).

	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Quality Assurance Frameworks
	2.2 Knowledge Graph Triple Classification

	3 Methodology
	3.1 Datasets
	3.2 Negative Sampling
	3.3 Data preparation
	3.4 KG-BERT

	4 Experiments and Results
	4.1 Performance KG-BERT for different hierarchical Knowledge Graphs
	4.2 Model generalization to fully unseen triples
	4.3 Prediction of long-distance hierarchy using the model
	4.4 Evaluation of classification error output

	5 Discussion
	6 Conclusion
	1 Introduction
	2 Background
	3 LM-as-KB
	3.1 Intrinsic Considerations
	3.2 Pragmatic Considerations

	4 LM-for-KB
	5 Conclusion
	1 Introduction
	1.1 Present work

	2 Related Literature
	2.1 Graph Sampling Approaches
	2.2 Information Loss:

	3 Method: GraphPOPE
	3.1 Geodesic Distance Embeddings
	3.2 Biased Anchor Node Sampling
	3.3 Embedding Space Approximation

	4 Experiments
	4.1 Experimental Setup
	4.2 Data

	5 Results
	6 Discussion
	7 Conclusion
	A Appendix
	1 Introduction
	2 Generating KG from Relational Database
	2.1 Applying D2RQ to Convert the Relational Database to a Knowledge Graph
	2.2 Challenges in Mapping CAS-KG to Wikidata
	2.3 Applying KGEs on CAS-KG

	3 Text Embeddings
	4 Downstream task: Clustering
	5 Conclusion
	1 Introduction
	2 Link Prediction on Knowledge Graphs
	3 Forms of Data Bias
	4 Data Bias in Link Prediction Benchmarks
	4.1 Data Biases in LP Datasets
	4.2 Data Biases and LP models
	4.3 Key Takeaways

	5 Related Works
	6 Conclusion
	1 Introduction
	2 ArtGraph
	3 Multi-Task Multi-Modal Classification
	4 Conclusion & Future Work
	1 Introduction
	2 Background
	3 Problem Description
	4 Experiments
	4.1 Dataset
	4.2 Models compared
	4.3 Setup

	5 Results
	6 Conclusion and Future work
	1 Introduction
	2 Related Work
	3 Class Representations
	3.1 Textual Representations
	3.2 Knowledge Graph Representations
	3.3 Understanding Representation Spaces

	4 Evaluation
	4.1 Gold Standard: ArXiv Classes
	4.2 Results and Discussion

	5 Conclusion

