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Abstract

We investigate the Gibbs properties of the fuzzy Potts model on the d-dimensional
torus with Kac interaction. We use a variational approach for profiles inspired by that
of Fernández, den Hollander and Martínez [17] for their study of the Gibbs-non-Gibbs
transitions of a dynamical Kac-Ising model on the torus. As our main result, we show that
the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the
fuzzy Kac-Potts model. On the way to this result we prove a large deviation principle for
color profiles with diluted total mass densities and use monotocity arguments.

1 Introduction

In previous years we have seen a number of measures describing systems with interacting
components appearing in mathematical statistical mechanics which have lost the Gibbs prop-
erty as a result of a transformation [12, 26, 14, 15, 9]. Such a loss is indicated by the failure of
continuity of conditional probabilities at a given site, when the conditioning is varied away from
this site. Interesting sources of non-Gibbsian behavior include time evolutions or deterministic
transformations which reduce the complexity of the local state space. A prototypical example
of a system of the second type is the fuzzy Potts model (fuzzy PM) [19, 27, 25, 21, 18, 1].
It is obtained from the ordinary PM by partitioning the local state space {1, 2, . . . , q} into
subclasses and observing the Potts distribution after identification of the spin-values inside
the subclasses.

It has been noted in some cases for mean-field models [23, 21, 20] when the appropriate
notion of mean-field Gibbsianness is employed, the question of continuity can be reduced to
variational problems. For systems for which lattice results and mean-field results are available
it turns out that these results are often in a striking parallel [24, 15]. It is an open challenge to
understand this relation better.

One way to approach the relation between the lattice and mean-field is via Kac models (KM)
[3, 6, 5, 10, 7, 4] in which there is a parameter which makes the interaction long-range but a
spatial structure remains.

The first rigorous result relating Gibbs properties of a KM to that of a mean-field model was
obtained in [17] in the case of independent time-evolutions from an initial Kac-Ising model.
The relation between a spatial model and a mean-field model was set up as follows. The
authors put the model on a torus in d dimensions, with spins sitting on a grid of spacing 1/n,
and looked at a single-site conditional probability in the large n-limit. The limiting object they
studied then was a specification kernel giving the dependence of a single-site probability as
a function of a magnetization profile. The existence of the limiting kernel was achieved using

1



a combination of a large deviation principle (LDP) in equilibrium for the Ising model [6], a path
LDP, and techniques from hydrodynamic limits. It was not possible to give sharp parameter
values for the Gibbs-non-Gibbs (GnG) transition but sufficient conditions on time and initial
temperature values to be non-Gibbsian could be provided.

In our present study of the fuzzy Kac-Potts model (fuzzy KPM) we ask related questions. Our
main result is Theorem 2.7 where we provide precise threshold values dividing Gibbsian and
non-Gibbsian behavior. To our knowledge this is the first sharp result for GnG in a Kac-model.

1.1 Strategy of proof and further results

The Hamiltonian of the KPM can be written in terms of an empirical color distribution field
and we start by noting a LDP for the empirical color distribution field as the grid on the
torus shrinks. The minimizers of the rate function for this LDP provide us with the equilib-
rium phases, and it is easy to see that the absolute minimizers must be flat (spatially ho-
mogeneous). Therefore the critical value for phase transitions in the KPM is given by the
corresponding mean-field result (the Ellis-Wang Theorem [11]).

Next, to investigate the Gibbsian properties of the fuzzy model we analyze limiting expres-
sions for the single-site conditional probabilities (the specification kernel). The idea to prove
equality of critical parameters dividing GnG in mean-field with the corresponding critical pa-
rameters in the KPM is then to make rigorous the statement that there are no worse condi-
tionings than spatially homogeneous conditionings. As an intermediate step we prove a LDP
for color profiles for a spatially diluted KPM in Proposition 2.5. This and the corresponding
non-homogeneous variational problems are interesting in their own right. We relate the spec-
ification kernel to solutions of such variational problems where the dilutions are prescribed by
the conditioning profile. Finally this is supplemented by monotonicity arguments in the dilution
to show sharpness of the mean-field values for the KM.

2 Model and main results

2.1 The Kac-Potts model

Let Td := Rd/Zd be the d-dimensional unit torus. For n ∈ N, let Td
n be the (1/n)-

discretization of Td defined by Td
n := ∆d

n/n, with ∆d
n := Zd/nZd the discrete torus of size

n. For n ∈ N, let Ωn := {1, . . . , q}∆d
n be the set of Potts-spin configurations on ∆d

n. We will
call elements of {1, . . . , q} colors. The energy of the configuration σ := (σ(x))x∈∆d

n
∈ Ωn

is given by the Kac-type Hamiltonian

Hn(σ) := − 1

2nd

∑
x,y∈∆d

n

J(
x− y
n

)1σ(x)=σ(y), σ ∈ Ωn (1)
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where 0 ≤ J ∈ C(Td) is a continuous interaction-functions on Td which is symmetric and
J 6≡ 0. The Gibbs measure associated with Hn is given by

µn(σ) :=
1

Zn
exp(−βHn(σ)), σ ∈ Ωn (2)

with β ∈ [0,∞) the inverse temperature and Zn the normalizing partition sum.

We are interested in the large n limit for µn and prepare the analysis by rewriting the Hamil-
tonian in terms of density profiles. More precisely, for Λ ⊂ ∆d

n let πΛ : Ωn 7→ P(Td
n ×

{1, . . . , q}) ⊂ P(Td × {1, . . . , q}) be the empirical color measure vector or color profiles
of σ inside the volume Λ defined by

πσΛ :=
1

|Λ|

(∑
x∈Λ

1σ(x)=1δx/n, . . . ,
∑
x∈Λ

1σ(x)=qδx/n

)T
where δu is the point measure at u ∈ Td. In the sequel we use notation Pn := P(Td

n ×
{1, . . . , q}) and P := P(Td × {1, . . . , q}) and write πΛ(u) if we evaluate πΛ at a site
u ∈ Td and πΛ[a] for the evaluation of πΛ at a color a ∈ {1, . . . , q}.

Let u ∈ Td, then for the color profile perforated at u ∈ Td we write π(u)
n := π∆d

n\bnuc where
bnuc denotes the lower-integer part of nu. Further we abbreviateMn := πn(Ωn) ⊂ Pn
and Mu

n := π
(u)
n (Ωn) ⊂ P for the sets of possible profiles of mesh-size n and possible

profiles of mesh-size n perforated at site u.

We equip P and the indicated subspaces with the weak topology, i.e. the topology corre-
sponding to convergence of continuous functions
f ∈ C(Td × {1, . . . , q},R) =: C. This convergence can be metrized in the usual way
(see for example [2, page 235]) by choosing a dense set of functions (fj)j∈N ⊂ C and
setting

d(µ, ν) :=
∞∑
j=1

2−j
|µ(fj)− ν(fj)|

1 + |µ(fj)− ν(fj)|
. (3)

Moreover since Td × {1, . . . , q} is compact and Polish also (P , d) is compact and Polish.
Notice that σ ∈ Ωn determines πσn ∈ Pn and vice versa.

Using color profiles, we can rewrite the Hamiltonian as

Hn(σ) = −nd
q∑

a=1

F (πσn[a]) (4)

with F (ν[a]) := 1
2
〈J∗ν[a], ν[a]〉 = 1

2

∫ ∫
ν[a](du)ν[a](dv)J(u−v). We will be interested

in weak limits of color profiles inP , especially those having q-dimensional Lebesgue densities
of the form ν = αλ = (α[1]λ, . . . , α[q]λ)T with α ∈ B where

B := {α = (α[1], . . . , α[q])T : 0 ≤ α[a] ∈ L∞(Td, λ)

with
q∑

a=1

α[a](x) = 1 for λ-a.a x ∈ Td}.
(5)

In what follows we will often write α instead of αλ. Next we provide the LDP for the KPM.
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Proposition 2.1 The measures µ̂n = µn ◦ (πn)−1 satisfy a LDP with rate nd and ratefunc-
tion I − infν∈P I(ν) where

I(ν) =

{
−β
∑q

a=1〈J ∗ α[a], α[a]〉+ 〈S(α|eq), λ〉 if ν = αλ with α ∈ B
∞ otherwise.

(6)

and the relative entropy is given by S(α|eq) =
∑q

a=1 α[a] log qα[a].

Notice that we can rewrite the interaction part of the rate function as a punishing term for
spatial inhomogeneities and a local term, i.e.

I(ν) =
β

2

q∑
a=1

∫
du

∫
dv
[
α[a](u)− α[a](v)

]2
J(u− v)

+ 〈S(α|eq)− β
q∑

a=1

J ∗ α[a]2, λ〉.
(7)

From this we see that global minimizers of I must be flat profiles where α[a](u) is indepen-
dent of u ∈ Td. Hence the complete analysis of global minimizers (leading to the correspond-
ing limit theorem for µ̂n) is presented in the Ellis-Wang Theorem [11].

Before we state the main result about GnG of the fuzzy KPM in the next subsection, let us
make the following definitions. These are the natural extensions to the Potts situation from
the Ising situation in [17].

Definition 2.2 Given any sequence (µn)n∈N with µn a probability measure on Ωn for every
n ∈ N, define the single-spin conditional probabilities at site u ∈ Td as

γun(·|α(u)
n ) := µn

(
σ(bnuc) = · |π(u),σ

n = α(u)
n

)
α(u)
n ∈Mu

n. (8)

(a) We call a color profile α ∈ B good for a sequence of probability measures (µn)n∈N if
there exists a neighborhoodNα ⊂ B of α such that for all α̃ ∈ Nα and for all u ∈ Td

γu(·|α̃) := lim
n↑∞

γun(·|α(u)
n ) (9)

exists for all sequences (α
(u)
n )n∈N withα(u)

n ∈Mu
n for every n ∈ N such that limn↑∞ α

(u)
n =

α̃ in the weak sense. Moreover the limit must be independent of the choice of (α
(u)
n )n∈N.

(b) A color profile α ∈ B is called bad for (µn)n∈N if it is not good for (µn)n∈N.

(c) (µn)n∈N is called Gibbs if it has no bad profiles in B.

Remarks: 1) Definition 2.2 (a) implies continuity of α 7→ γu(·|α) in the metric d(·, ·) defined
in (3) for all u ∈ Td at good profiles.

2) For the KPM (µn)n∈N all color profiles α ∈ B are good since

γu(k|α) =
exp(β(J ∗ α[k])(u))∑q
l=1 exp(β(J ∗ α[l])(u))

(10)
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and hence (µn)n∈N is Gibbs in the sense of Definition 2.2 (c).

3) Definition 2.2 assigns the notion of Gibbsianness to a sequence of probability measures
that live on different spaces. This is different from the notion of Gibbsianness used for example
in lattice systems [13, 14, 15, 16], but in that respect similar to the definition of Gibbsianness
used in the mean-field setting [19, 21]. Since there is spatial dependence in our case it makes
sense to call the quantity in (10) a specification kernel and α a boundary condition.

4) Definition 2.2 does not consider sequences (α
(u)
n )n∈N whose weak limit is singular with

respect to λ. But in Proposition 2.1 we saw that in the thermodynamic limit we can ignore
profiles that are singular w.r.t. the Lebesgue measure or do not lie in the set B.

2.2 The fuzzy Kac Potts model

Consider the KPM under the local discretisation map T : {1, . . . , q} 7→ {1, . . . , s} where
1 < s < q and

∑s
i=1 ri = q. Apply T to all sites simultaneously and consider the fuzzy Kac

Potts measure µTn := µn ◦ T−1.

Definition 2.3 We call the generalized fuzzy KPM Gibbs if all profiles α ∈ B are good for
the sequence µTn .

In order to determine Gibbsianness of the fuzzy KPM, similar to (8), we write for the single-site
kernels

γun,β,q,(r1,...,rs)(k|ν) := µTn (σ(bnuc) = k|π(u),σ
n = ν) (11)

where β is the inverse temperature of the KPM and ν ∈Mu
n with s colors.

Proposition 2.4 For each finite n and u ∈ Td we have the representation

γun,β,q,(r1,...,rs)(k|ν) =
rkA

u
(
βk(ν), rk,Λk(ν)

)∑s
l=1 rlA

u
(
βl(ν), rl,Λl(ν)

) (12)

where Λl(ν) = {x ∈ ∆d
n : ν[l](x/n) = 1/nd}, βl(ν) = β|Λl(ν)|/nd and

Au(β, r,M) := µM,β,r

(
exp
(
βnd

|M | (J ∗ πM [1])( bnuc
n

)
))

. Here µM,β,r denotes the KPM in

the subvolume M ⊂ ∆d
n with Hamiltonian

HM(σ) := − 1

2|M |
∑
x,y∈M

J(
x− y
n

)1σ(x)=σ(y),

inverse temperature β and r local states.

In view of Proposition 2.4 in order to determine GnG of the fuzzy model we must analyse
limiting behavior of the constrained KPM µM,β,r and its continuity properties. The constrained
model again satisfies a LDP similar to the one in Proposition 2.1 but now also the spatial
structure of the level sets of the conditioning comes into play. We will say that a sequence of
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diluted sets Mn ⊂ ∆d
n converges weakly to the Lebesgue density ρ if for all f ∈ C(Td) we

have
1

nd

∑
x∈Mn

δx/n(f) =
1

nd

∑
x∈Mn

f(
x

n
)→

∫
duρ(u)f(u)

as n ↑ ∞ and write Mn ⇒ ρ.

Proposition 2.5 (Diluted version of LDP for empirical color profiles). Consider a sequence of
diluted setsMn ⊂ ∆d

n withMn ⇒ ρ for some Lebesgue density ρ withNρ := ρλ(Td) > 0.
Denote ρ̃(u) := N−1

ρ ρ(u), then the measures µ̂Mn := µMn,β,q ◦ (πMn)−1 satisfy a LDP
with rate |Mn| and ratefunction Iρ̃ − infν∈P Iρ̃(ν) where

Iρ̃(ν) =

{
−β
∑q

a=1〈J ∗ ρ̃α[a], ρ̃α[a]〉+ 〈S(α|eq), ρ̃λ〉 if ν[a] = ρ̃α[a]λ, α ∈ B
∞ otherwise.

(13)

Notice that we can replace the rate |Mn| by the desired rate nd since it is arbitrarily close to
|Mn|N−1

ρ for large n. Similar to (7) we can rewrite Iρ̃ as a sum of a punishing term for spatial
inhomogeneities and a local term, i.e.

Iρ̃(ν) =
β

2

q∑
a=1

∫
duρ̃(u)

∫
dvρ̃(v)

[
α[a](u)− α[a](v)

]2
J(u− v)

+

∫
duρ̃(u)

[
−bβ,ρ̃,J(u)

q∑
a=1

α[a]2(u) + S(α[·](u)|eq)
] (14)

where we defined the site-dependent local temperature as

bβ,ρ̃,J(u) := β

∫
dvρ̃(v)J(u− v).

Let us for the convenience of the reader recall the theorem from [19] about GnG for the
mean-field fuzzy PM which summarizes the precise information on critical parameter values
on GnG.

Theorem 2.6 Consider the q-state mean-field PM at inverse temperature β, and let s and
r1, . . . , rs be positive integers with 1 < s < q and

∑s
i=1 ri = q. Consider the limiting condi-

tional probabilities of the corresponding mean-field fuzzy PM with spin partition (r1, . . . , rs).

(i) Suppose that ri ≤ 2 for all i = 1, . . . , s. Then the limiting conditional probabilities are
continuous functions of the empirical mean of the conditioning, for all β ≥ 0.

Assume that ri ≥ 3 for some i and put r∗ := min{r ≥ 3, r = ri for some i = 1, . . . , s}.
Denote by βc(r) the inverse critical temperature of the r-state mean-field PM. Then the
following holds.

(ii) The limiting conditional probabilities are continuous for all β < βc(r∗).

(iii) The limiting conditional probabilities are discontinuous for all β ≥ βc(r∗).
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We now come to the main result, stating that for the fuzzy KPM the critical parameters for
GnG are the same as for the mean-field fuzzy PM.

Theorem 2.7 Consider the q-state KPM at inverse temperature β with∫
duJ(u) = 1, and let s and r1, . . . , rs be positive integers with 1 < s < q and

∑s
i=1 ri =

q. Consider the limiting conditional probabilities of the corresponding fuzzy KPM with spin
partition (r1, . . . , rs).

(i) In case the parameters β and (r1, . . . , rs) are such that the mean-field fuzzy PM is Gibbs,
i.e. we are in the continuity region of Theorem 2.6, then also the fuzzy KPM is Gibbs. The
specification kernel is given by

lim
n↑∞

γun,β,q,(r1,...,rs)(k|α
(u)
n ) =

rk exp(β/rk
∫
dvρk(v)J(u− v))∑s

l=1 rl exp(β/rl
∫
dvρl(v)J(u− v))

(15)

where the limit as (α
(u)
n )n∈N converge to α = (ρ1λ, . . . , ρsλ)T is defined in Definition 2.2

(a).

(ii) In case the parameters β and (r1, . . . , rs) are such that the mean-field fuzzy PM is non-
Gibbs, i.e. we are in the discontinuity region of Theorem 2.6, then also the fuzzy KPM is
non-Gibbs.

We note that in case (i) the limiting kernels (15) are continuous functions of the conditioning
α.

3 Proofs

Let us start with the proofs of the large deviation results. Notice, considering Mn ≡ ∆d
n

Proposition 2.1 is a special case of Proposition 2.5.

3.1 Proof of Proposition 2.5

For convenience we write µMn for µMn,β,q. Let us proceed in two steps.

Step 1: First we derive the LDP for J ≡ 0. In this case our Gibbs measure µMn is just a
spatial product measure onMn ⊂ ∆d

n of the equidistribution on {1, . . . , q}. We consider the
exponential moment generating function of the color profile at finite discretization n for some
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F ∈ C,

µMn [exp(|Mn|πMn(F ))] = µMn [exp(

q∑
a=1

∑
x∈Mn

1σ(x)=aF (a,
x

n
))]

= µMn [
∏
x∈Mn

exp(

q∑
a=1

1σ(x)=aF (a,
x

n
))]

=
∏
x∈Mn

1

q

q∑
a=1

exp
(
F (a,

x

n
)
)
.

Due to spatial independence, we recover the important single-site logarithmic moment gen-
erating function

Λ(F (u)) := log
1

q

q∑
a=1

exp(Fa(u)).

The limit of discretization going to zero for the logarithmic moment generating function of the
color profile is given by

1

|Mn|
log µMn [exp(|Mn|πMn(F ))] =

1

|Mn|
∑
x∈Mn

Λ(F (
x

n
))→

∫
duρ̃(u)Λ(F (u)).

Notice that the diluted rate function

Iρ̃(ν) :=

{
〈S(α|eq), ρ̃λ〉, if ν = αρ̃λ with α ∈ B
∞, otherwise

is equivalent to

Λ∗ρ̃(ν) :=

{
supF∈C [ν(F )−

∫
duρ̃(u)Λ(F (u))], if ν = αρ̃λ with α ∈ B

∞, otherwise.

Indeed, by duality (see also [8, Lemma 6.2.13]) it suffices to show that for all F ∈ C∫
duρ̃(u)Λ(F (u)) = sup

ν∈P

(
ν(F )− Iρ̃(ν)

)
. (16)

From this we see that it suffices to take ν ∈ P with Lebesgue density αρ̃ since the r.h.s. of
(16) is equal to minus infinity otherwise. In that case we can write

ν(F )− Iρ̃(ν) =

∫
duρ̃(u)

(
〈F (u), α[·](u)〉 − S(α[·](u)|eq)

)
and the supremum can be considered sitewise. Using Jensen’s inequality it is easy to see
that the supremum is attained in α[a](u) = expFa(u)/

∑q
b=1 expFb(u) and equation (16)

is indeed satisfied. That the supremum is achieved follows by convexity (detailed arguments
see for example [8, Lemma 2.6.13]). We further note that for continuous F this optimizing
profile is even continuous w.r.t. the spatial variable as well.
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Upper Bound: It suffices to consider K ⊂ P compact since µ̂Mn is exponentially tight as
is takes values in the compact set P .

We can assume without loss that 0 < infν∈K Iρ̃(ν) and hence we can pick 0 < a <
infν∈K Iρ̃(ν). For every ν ∈ K there exists a Fν ∈ C such that
ν(Fν)−

∫
duρ̃(u)Λ(Fν(u)) > a and the sets

Uν := {ν̂ ∈ P : ν̂(Fν)−
∫
duρ̃(u)Λ(Fν(u)) > a}

form an open covering of K . Using the Markov inequality we can estimate

1

|Mn|
log µ̂Mn(Uν)

=
1

|Mn|
log µMn [exp

(
|Mn|πMn(Fν)

)
> exp

(
|Mn|(a+

∫
duρ̃(u)Λ(Fν(u)))

)
]

≤ −a−
∫
duρ̃(u)Λ(Fν(u)) +

1

|Mn|
log µMn [exp

(
|Mn|πMn(Fν)

)
]

and hence lim supn↑∞
1
|Mn| log µ̂Mn(Uν) ≤ −a for all ν ∈ K . SinceK is compact it can be

covered by a finite number of Uν and thus lim supn↑∞
1
|Mn| log µ̂Mn(K) ≤ − infν∈K Iρ̃(ν).

Lower Bound: Let G ⊂ P be open and assume ν ∈ G to have a spatially flat color dis-
tribution on each of the setsCk of a partitioning after normalization by the density ρ̃(u)λ(du)
w.r.t. space. More precisely this means dν

dλ
(u) =

∑N
k=1 αkρ̃(u)1Ck(u) where

αk = (αk[a])a∈{1,...,q} with
∑q

a=1 αk[a] = 1 for all k and (Ck)k∈{1,...,N ′} a finite parti-

tion of the torus i.e. Td =
⋃N ′

k=1Ck. Assume that the first N ≤ N ′ sets in this partition have
strictly positive weight ρ̃λ(Ck) > 0.

There exists ε1 > 0 such that Nε1(ν) ⊂ G and thus using the definition (3) we have

µ̂Mn(G) ≥ µMn(πMn ∈ Nε1(ν)) = µMn(d(πMn , ν) < ε1)

= µMn

( ∞∑
j=1

2−j
|(πMn − ν)(fj)|

1 + |(πMn − ν)(fj)|
< ε1

)

≥ µMn

(K(ε1)∑
j=1

2−j
|(πMn − ν)(fj)|

1 + |(πMn − ν)(fj)|
<
ε1

2

)
where K(ε1) is large enough such that

∑∞
j=K(ε1)+1 2−j < ε1/2. Further we can estimate

µMn

(K(ε1)∑
j=1

2−j
|(πMn − ν)(fj)|

1 + |(πMn − ν)(fj)|
<
ε1

2

)
≥ µMn

(K(ε1)⋂
j=1

{ |(πMn − ν)(fj)|
1 + |(πMn − ν)(fj)|

<
ε1

2

})

= µMn

(K(ε1)⋂
j=1

{
|(πMn − ν)(fj)| < ε2

})
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where we set ε2 := ε1/(2−ε1). Notice for ν assumed to have a spatially flat color distribution
the spatial color structure breaks down on every partition Ck and we deal with empirical
measures rather then color profiles. More precisely

|(πσMn
− ν)(fj)| = |

N∑
k=1

(πσMn
− ν)(fj1Ck)|

≤
N∑
k=1

|
q∑

a=1

[n−d
∑

x∈Mn∩nCk

fj(a,
x

n
)1σ(x)=a − αk[a]

∫
Ck

duρ̃(u)fj(a, u)]|

and thus

µMn

(K(ε1)⋂
j=1

{
|(πMn − ν)(fj)| < ε2

})

≥ µMn

( N⋂
k=1

K(ε1)⋂
j=1

{
|

q∑
a=1

[n−d
∑

x∈Mn∩nCk

fj(a,
x

n
)1σ(x)=a − αk[a]

∫
Ck

duρ̃(u)fj(a, u)]| < ε2

N

})

=
N ′∏
k=1

µMn

(K(ε1)⋂
j=1

{
|

q∑
a=1

[n−d
∑

x∈Mn∩nCk

fj(a,
x

n
)1σ(x)=a − αk[a]

∫
Ck

duρ̃(u)fj(a, u)]| < ε2

N

})
where we used that µ is a product measure in the last line. Notice that for k ∈ {N +
1, . . . , N ′} the events inside the µMn-measure occur deterministically for n sufficiently large
by the assumption of convergence of the density of the setMn to zero on thoseCk and hence
the product restricts to the terms for k ≤ N . For those k let us set
ε3 := ε2/(N supj∈{1,...,J(ε1)} ‖fj‖) and introduce the empirical measures LσMn,k

(a) :=
|Mn ∩ nCk|−1

∑
x∈Mn∩nCk 1σ(x)=a. Then we can further write

µMn

(K(ε1)⋂
j=1

{
|

q∑
a=1

[|Mn|−1
∑

x∈Mn∩nCk

fj(a,
x

n
)1σ(x)=a − αk[a]

∫
Ck

duρ̃(u)fj(a, u)]| < ε2

N

})
≥ µMn

({ q∑
a=1

||Mn|−1
∑

x∈Mn∩nCk

1σ(x)=a − αk[a]ρ̃λ(Ck)| < ε3

})
≥ µMn

({ q∑
a=1

| |Mn ∩ nCk|
|Mn|

LσMn,k(a)− αk[a]ρ̃λ(Ck)| < ε3

})
≥ µMn

({
| |Mn ∩ nCk|
|Mn|ρ̃λ(Ck)

LσMn,k(a)− αk[a]| < ε3

qρ̃λ(Ck)
, for all a ∈ {1, . . . , q}

})
.

We set ε4 := mink∈{1,...,J(ε1)} ε3/(qρ̃λ(Ck)) and note that |Mn∩nCk|/(|Mn|ρ̃λ(Ck))→
1 as n ↑ ∞. Thus we can assume n large enough such that maxk∈{1,...,J(ε1)} ||Mn ∩
nCk|/(|Mn|ρ̃λ(Ck))− 1| < ε̃ < ε4/2. Let ‖ · ‖TV denote the total variational distance of
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probability measures on {1, . . . , q}. Then we have

µMn

({
| |Mn ∩ nCk|
ndρ̃λ(Ck)

LσMn,k(a)− αk[a]| < ε3

qρ̃λ(Ck)
, for all a ∈ {1, . . . , q}

})
≥ µMn

({
| |Mn ∩ nCk|
ndρ̃λ(Ck)

LσMn,k(a)− αk[a]| < ε4, for all a ∈ {1, . . . , q}
})

≥ µMn

({
|LσMn,k(a)− αk[a]| < ε4/2, for all a ∈ {1, . . . , q}

})
≥ µMn

({
‖LσMn,k − αk‖TV < ε4/4

})
.

Now we are in the position to apply the lower bound estimate in Sanov’s Theorem and write

lim inf
n↑∞

1

nd
log µ̂Mn(G) ≥

N∑
k=1

ρ̃λ(Ck) lim inf
n↑∞

1

ndρ̃λ(Ck)
log µMn

({
‖LσMn,k − αk‖TV <

ε4

4

})
≥ − inf

ν̂∈Mε4/4
(ν)

∫
duρ̃(u)S(ν̂(u)|eq)

where Mε(ν) := {ν̂ ∈ P : dν̂
dλ

(u) =
∑N ′

k=1 α̂kρ̃(u)1Ck(u) for the same partition as ν and
maxk∈{1,...,N ′} ||α̂k − αk‖TV < ε}. Letting ε4 go to zero we can replace

inf
ν̂∈Mε4/4

(ν)

∫
duρ̃(u)S(ν̂(u)|eq) by inf

ν̂∈M∩G

∫
duρ̃(u)S(ν̂(u)|eq)

where

M := {ν̂ ∈ P :
dν̂

dλ
(u) =

N ′∑
k=1

α̂kρ̃(u)1Ck(u) for some finite partition Ck of Td}.

So the proof of the lower bound is finished once we show

inf
ν∈M∩Gρ̃λ

∫
duρ̃(u)S(ν(u)|eq) = inf

ν∈Gρ̃λ

∫
duρ̃(u)S(ν(u)|eq)

where Gρ̃λ denotes the set of probability measures in G of the form αρ̃λ. The direction ’≥’
is clear. For the direction ’≤’ notice first that for every ν ∈ Gρ̃λ we can find νflat(ν) such
that νflat(ν) ∈ M ∩ Gρ̃λ. Indeed, given any finite partition (Ck)k∈{1,...,N ′} of Td where
ρ̃λ(Ck) > 0 for k ≤ N and ρ̃λ(Ck) = 0 for N < k ≤ N ′, the measure νflat(ν) with

dνflat(ν)/dλ(u) =
∑N ′

k=1 αk,ν ρ̃(u)1Ck(u) where

αk,ν [a] :=

{
ρ̃λ(Ck)

−1
∫
Ck
duρ̃(u)α[a](u), if ρ̃λ(Ck) > 0

0, otherwise

is in M . Since G is open it is enough to find a sufficiently fine partition such that
d(ν, νflat(ν)) < ε for any ε > 0. For a given ε > 0 let again K(ε) be large enough such
that

∑∞
j=K(ε)+1 2−j < ε/2. Consider the finitely many evaluation functions (fj)j∈{1,...,K(ε)}

from the definition of the metric d(·, ·) see (3). The fj are uniformly continuous and hence it is

11



possible to partition the torus in such a way that for all a ∈ {1, . . . , q} and
j ∈ {1, . . . , K(ε)} we have

sup
x∈Ck
|fj(a, x)− ρ̃λ(Ck)

−1

∫
Ck

duρ̃(u)fj(a, u)| < ε

unless ρ̃λ(Ck) = 0. Again assuming the partition is ordered such that ρ̃λ(Ck) > 0 for
k ≤ N and ρ̃λ(Ck) = 0 for N < k ≤ N ′, we can estimate

d(ν,νflat(ν)) =
∞∑
j=1

2−j
|νflat(ν)(fj)− ν(fj)|

1 + |νflat(ν)(fj)− ν(fj)|
≤ ε

2
+

K(ε)∑
j=1

2−j|νflat(ν)(fj)− ν(fj)|

=
ε

2
+

K(ε)∑
j=1

2−j
∣∣∣ q∑
a=1

N∑
k=1

[
αk,ν [a]

∫
Ck

duρ̃(u)fj(a, u)−
∫
Ck

duρ̃(u)α[a](u)fj(a, u)
]∣∣∣

=
ε

2
+

K(ε)∑
j=1

2−j
∣∣∣ q∑
a=1

N∑
k=1

∫
Ck

duρ̃(u)α[a](u)
[
ρ̃λ(Ck)

−1

∫
Ck

dvρ̃(v)fj(a, v)− fj(a, u)
]∣∣∣

≤ ε

2
+
ε

2
= ε.

Finally notice that u 7→ S(ν(u)|eq) is a convex function and thus using Jensen’s inequality
we have∫

duρ̃(u)S(ν(u)|eq) ≥
N∑
k=1

ρ̃λ(Ck)S(ρ̃λ(Ck)
−1

∫
Ck

duρ̃(u)ν(u)|eq)

=
N∑
k=1

ρ̃λ(Ck)S(αk,ν |eq) =

∫
duρ̃(u)S(νflat(ν)(u)|eq).

This implies

inf
ν∈Gρ̃λ

∫
duρ̃(u)S(ν(u)|eq) ≥ inf

ν∈Gρ̃λ

∫
duρ̃(u)S(νflat(ν)(u)|eq)

≥ inf
ν∈M∩Gρ̃λ

∫
duρ̃(u)S(ν(u)|eq).

Step 2: Let us now consider the case with interaction, i.e. J 6≡ 0. We want to employ Varad-
han’s Lemma ([8, Theorem 4.3.1]) to prove the LDP as in [22, Theorem 23.19]. The conditions
in Varadhan’s Lemma are indeed satisfied since J is bounded. �
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3.2 Proof of Proposition 2.4

To compute the l.h.s. of (12) write for a fuzzy configuration η ∈ {1, . . . , s}∆d
n\bnuc where

u ∈ Td

µTn (σ(bnuc) = k|σ∆d
n\bnuc = η) =

1

Z1(η)

∑
ξ:T (ξ)=(k,η)

µn(ξ)

=
1

Z2(η)

∑
ξ:T (ξ)=(k,η)

exp
(
βnd

q∑
a=1

F (πξn[a])
) (17)

where Z1(η) and Z2(η) are the appropriate normalization constants. For notational conve-
nience we introduce the notation

πσn,Λ :=
1

nd

(∑
x∈Λ

1σ(x)=1δx/n, . . . ,
∑
x∈Λ

1σ(x)=qδx/n

)T
for the color profile on Λ ⊂ ∆d

n normalized by ∆d
n. In the next step we separate the compo-

nents in πn corresponding to the site bnuc. We have

q∑
a=1

F (πξn[a]) =
1

2

q∑
a=1

〈J ∗ πξn[a], πξn[a]〉

=
1

2

q∑
a=1

(
〈J ∗ πξ

n,∆d
n\bnuc

[a], πξ
n,∆d

n\bnuc
[a]〉+

2

nd
(J ∗ πξ

n,∆d
n\bnuc

[a])(
bnuc
n

)1ξ(bnuc)=a

)
=

1

2

∑
a:T (a)=k

(
〈J ∗ πξ

n,∆d
n\bnuc

[a], πξ
n,∆d

n\bnuc
[a]〉+

2

nd
(J ∗ πξ

n,∆d
n\bnuc

[a])(
bnuc
n

)1ξ(bnuc)=a

)
+

1

2

∑
l 6=k

∑
a:T (a)=l

〈J ∗ πξ
n,∆d

n\bnuc
[a], πξ

n,∆d
n\bnuc

[a]〉

where in the last line we used that T (ξ(bnuc)) = k assumed in (17). Notice, the first and
the third summand in the last line do not depend on the site bnuc, in other words, they only
depend on the boundary condition η. Hence in the conditional Gibbs measure (17) corre-
sponding to the above expression the third summand can be shifted into the normalization
constant in the denominator and the remaining two summands can be normalized using the
first summand. Let us introduce the levelsets of the boundary condition Λl(η) := {x ∈ ∆d

n :
η(x) = l} then we can write

13



[ ∑
ξ(bnuc):T (ξ(bnuc))=k

∑
ξΛk(η)

exp
(βnd

2

∑
a:T (a)=k

(
〈J ∗ πξn,Λk(η)[a], πξn,Λk(η)[a]〉

+
2

nd
(J ∗ πξn,Λk(η)[a])(

bnuc
n

)1ξ(bnuc)=a
))]

×
[ ∑
ξΛk(η)

exp
(βnd

2

∑
a:T (a)=k

〈J ∗ πξn,Λk(η)[a], πξn,Λk(η)[a]〉
)]−1

=
[ ∑
ξ(bnuc):T (ξ(bnuc))=k

∑
ξΛk(η)

exp
( ∑
a:T (a)=k

(
(
β|Λk(η)|2

2nd
〈J ∗ πξΛk(η)[a], πξΛk(η),n[a]〉

+
β|Λk(η)|

nd
(J ∗ πξΛk(η)[a])(

bnuc
n

)1ξ(bnuc)=a)
))]

×
[ ∑
ξΛk(η)

exp
(β|Λk(η)|2

2nd

∑
a:T (a)=k

〈J ∗ πξΛk(η)[a], πξΛk(η)[a]〉
)]−1

=
∑

ξ(bnuc):T (ξ(bnuc))=k

µ
Λk(η),β

|Λk(η)|
nd

,rk

[
exp

(β|Λk(η)|
nd

(J ∗ πΛk(η)[ξ(bnuc)])(
bnuc
n

)
)]

= rkµΛk(η),β
|Λk(η)|
nd

,rk

[
exp

(β|Λk(η)|
nd

(J ∗ πΛk(η)[1])(
bnuc
n

)
)]

as required. �

3.3 Proof of Theorem 2.7

(i): First note that a given sequence of boundary conditions (νn)n∈N in the single-site spec-
ification kernel (12) is represented in the sequence of level sets (Mk(νn))n∈N and in the
temperature parameters (βk(νn))n∈N corresponding to the fuzzy classes k ∈ {1, . . . , s}.
For each such fuzzy class k we have a LDP given in Proposition 2.5 with limiting dilution ρk
and limiting temperature βNρk where β is assumed to be in the uniqueness region of the
mean-field model. Notice that for any such ρk the first term in (14) is minimized by essentially
flat profiles, i.e. profiles where α[·](u) ≡ α[·] away from {u ∈ Td : ρk(u) = 0}. This
implies that the second term in Iρ̃k becomes a non-normalized mean-field rate function with
spatially homogeneous temperature parameter

bk :=

∫
duρ̃k(u)bβNρk ,ρ̃k,J(u) = β

∫
dvρk(v)

∫
duρ̃k(u)J(u− v) ≤ β.

By the Ellis-Wang Theorem [11] for the mean-field PM the minimizing profile density is thus
the equidistribution, i.e. α[l](u) ≡ 1/rk. Consequently the components of the specification
kernel (12)

Au
(
βk(νn), rk,Λk(νn)

)
= µΛk(νn),β,rk

(
exp
(βk(νn)nd

|Λk(νn)|
(J ∗ πΛk(νn)[1])(

bnuc
n

)
))
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converge to exp
(
β/rk

∫
dvρk(v)J(u−v)

)
as n goes to infinity. Hence we have the limiting

kernels (15) are continuous functions of the dilution.

(ii): Let ᾱ ∈ P({1, . . . , s}) be a point of discontinuity of the limiting conditional probabilities
of the mean-field fuzzy PM with inverse temperature β. Such a conditioning is character-
ized by the fact that for some fuzzy class rk, βᾱ[k] = βc(rk). Here βc(rk) is the critical
temperature parameter where the mean-field non-normalized rate function

IMF,ᾱ[k](α̂) := −βᾱ[k]

rk∑
a=1

α̂[a]2 + S(α̂|eq)

of the rk-states PM shows a discontinuous (first-order) jump from uniqueness to non-unique-
ness of the global minimizers (for details see [19]). Hence in every neighborhood of ᾱ there
exist ᾱ1, ᾱ2 ∈ P({1, . . . , s}) \ {ᾱ} such that the corresponding minimizers α∗1, α

∗
2 are

unique and stay at a finite distance δ > 0.

Notice that ᾱ, ᾱ1, ᾱ2 can also be interpreted as flat density profiles ν, ν1, ν2, in other words
as elements of P(Td

n×{1, . . . , s}) which are spatially homogeneous. Then, for any u ∈ Td

consider two sequences of boundary measures approaching ν1 and ν2 respectively which
have unique corresponding minimizers. Inspecting the form of the specifications given in (12)
we see different limits for the sequences going to ν1 and ν2. This proves non-Gibbsianness.
�
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