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ABSTRACT. We prove for a wide class of kernels K(x, y) that viscosity solutions of the integro-
differential equation ∫

Rn

δu(x, y)K(x, y)dy = f(x)

locally belong to some Gevrey class if so does f . The fractional Laplacian equation is included in this
framework as a special case.

1. INTRODUCTION

Recently, a great attention has been devoted to equations driven by nonlocal operators of fractional
type. From the physical point of view, these equations take into account long-range particle interactions
with a power-law decay. When the decay at infinity is sufficiently weak, the long-range phenomena may
prevail and the nonlocal effects persist even on large scales (see e.g. [5,1]).

The probabilistic counterpart of these fractional equation is that the underlying diffusion is run by a
stochastic process with power-law tail probability distribution (the so-called Pareto or Lévy distribu-
tion), see for instance [1,2]. Since long relocations are allowed by the process, the diffusion obtained
is sometimes referred to with the name of anomalous (in contrast with the classical one coming from
Poisson distributions). Physical realizations of these models occur in different fields, such as fluid dy-
namics (and especially quasi-geostrophic and water wave equations), dynamical systems, elasticity
and micelles, see, among the others [7, 8, 1, 1]. Also, the scale invariance of the nonlocal probability
distribution may combine with the intermittency and renormalization properties of other nonlinear dy-
namics and produce complex patterns with fractional features. For instance, there are indications that
the distribution of food on the ocean surface has scale invariant properties (see see e.g. [2] and refer-
ences therein) and it is possible that optimal searches of predators reflect these patterns in the effort of
locating abundant food in sparse environments, also considering that power-law distribution of move-
ments allow the individuals to visit more sites than the classical Brownian situation (see e.g. [2,1]).

The regularity theory of integro-differential equations has been extensively studied in continuous and
smooth spaces, see e.g. [3, 1, 1]. The purpose of this paper is to deal with the regularity theory in
a Gevrey framework. The proof combines a quantitative bootstrap argument of [1, ] and the iteration
scheme of [1, 1]. Here the bootstrap argument is more delicate than in the classical case due to the
nonlocality of the operator, since the value of the function in a small ball is affected by the values of the
function everywhere, not only in a slightly bigger ball; in particular the derivatives of the function cannot
be controlled in the whole space and a suitable truncation argument is needed to bound derivatives of
any order.

We recall that solutions of fractional equations are in general not better than Hölder continuous up
to the boundary. This provides additional conceptual difficulties even for the interior regularity since
a nonlocal term coming from far may complicate or invalidate the local estimates for the higher order
derivatives.

Before stating the main results of the paper, we recall the definition of Gevrey function. For a detailed
treatment of the theory of Gevrey functions and their relation with analytic functions we refer to [1, 1].
Let Ω ∈ Rn be an open set, we define for any fixed real number σ > 1 the class Gσ(Ω) of Gevrey
functions of order σ in Ω. This is the set of functions f in f ∈ C∞(Ω) such that for every compact
subset C of Ω there exist positive constants M and K such that for all i ∈ N∥∥Dif

∥∥
C
6M Ki (i!)σ .

We remark that the spaces Gσ (Ω) form a nested family, in the sense that Gσ (Ω) ⊆ Gτ (Ω) whenever
σ 6 τ and furthemore the inclusion is strict whenever the inequality is. Clearly the class G1 (Ω)
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coincides with Cω(Ω), that of analytical functions. It should be stressed that both the inclusions

Cω(Ω) ⊂
⋂
σ>1

Gσ (Ω)
⋃
σ>1

Gσ (Ω) ⊂ C∞(Ω)

are strict, see [1]. The notion Gevrey class of functions is quite useful in applications. For instance,
it possess a nice characterization in Fourier spaces. Moreover, cut-off functions are never analytic,
but they may be chosen to belong to a Gevrey space. Roughly speaking, for a smooth function f the
notion of Gevrey order measures "how much"the Taylor series of f diverges.

As in [1, ] we consider a quite general kernelK = K(x, y) : Rn× (Rn\ {0})→ (0,+∞) satisfying
some structural assumptions. From now we assume that s ∈ (1/2, 1).

We suppose that K is close to the kernel of the fractional Laplacian in the sense that

(1.1)

there exist a0, r0 and η ∈ (0, a0/4) such that∣∣∣∣ |y|n+2sK(x, y)

2− 2s
− a0

∣∣∣∣ 6 η for all x ∈ B1, y ∈ Br0\ {0}.

Since we are interested in the Gevrey regularity, in order to ensure that our solution are C∞ we assume
that K ∈ C∞ (B1 × (Rn\ {0})) and moreover

(1.2)


for all k ∈ N ∪ {0} there exist Hk > 0 such that∥∥Dµ

xD
ϑ
yK(·, y)

∥∥
B1
6

Hk

|y|n+2s+|ϑ|

for all µ, ϑ ∈ Nn, |µ|+ |ϑ| = k, y ∈ Br0\ {0}.
Furthermore, since we need a quantitative asymptotic control on the tails of the derivatives of K , we
assume that

(1.3)

{
there exist ν > 0 and Λ > 0 such that

Hk 6 Λk (k!)ν for all k ∈ N ∪ {0}.
We adopt the following notation for the second increment

δu(x, y) = u(x+ y) + u(x− y)− 2u(x).

Our main result is about the Gevrey regularity of the integro-differential operators with a general kernel
K .

Theorem 1.1. Suppose f is in Gτ (B6) and suppose that u ∈ L∞(Rn) is a viscosity solution of

(1.4)

∫
Rn
δu(x, y)K(x, y)dy = f(x) inside B6

with s ∈ (1/2, 1). Assume that K : B1 × (Rn\ {0})→ (0,+∞) satisfies assumptions (1.1), (1.2),
and (1.3) for η sufficiently small.
Then there exists a 0 < R < 5 wich depends only on n, f , and ‖u‖Rn such that u ∈ Gσ (BR) for
each σ > max{1 + ν, τ} and R 6 R.

Furthermore we specialize the analysis to the case of the fractional Laplacian kernel and obtain the
following

Corollary 1.2. Suppose f is in Gτ (B6) and suppose that u ∈ L∞(Rn) is a viscosity solution of

(1.5) (−∆)su(x) = f(x) inside B6

with s ∈ (1/2, 1).
Then there exists a 0 < R < 5 wich depends only on n, f , and ‖u‖Rn such that u ∈ Gσ (BR) for
each σ > max{2, τ} and R 6 R.
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We remark that most of the difficulties in our problems come from having the equation in a domain
rather than in the whole of the space and from the fact that we look for local, rather than global,
estimates. For instance, if a summable u satisfies

(−∆)su(x) + f(x) = 0

for every x ∈ Rn and f belongs to some Gevrey class, then so is u, and this can be proved directly
via Fourier methods, see e.g Theorem 1.6.1 of [1].

Concerning the Gevrey exponent σ = max{1+ν, τ} in Theorem 1.1, we think that it is an interesting
open problem to establish whether or not such exponent is optimal or it can be lowered, for instance,
to the value max{ν, τ} (in our case, the exponent value σ is due to a nonlocal boundary effect and
the worst factor comes from the higher derivatives of the kernel).

Remark 1.3. In the sequel we will adopt some notations in order to keep the esposition clear. For
Ω ∈ Rn, u a measurable function defined in Ω or Rn, and K a kernel, then

‖u‖Ω = ‖u‖L∞(Ω)

and

IK(u) =

∫
Rn
δu(x, y)K(x, y)dy .

2. INCREMENTAL QUOTIENTS

In this section we recall some basic facts and results about incremental quotients.

Given k ∈ N, we observe that, for any a ∈ R, there are exactly k + 1 integers belonging to the
interval (a, a + k + 1] (and, moreover, they are consecutive, this can be easily proved by induction
over k). In particular, taking a := −(k+1)/2, we have that there are exactly k+1 integers belonging
to the interval (−(k + 1)/2, (k + 1)/2]. We call these integers j1, . . . , jk+1.

Now, we consider V ∈ Mat ((k + 1)× (k + 1)) to be the matrix

Vm,i := ji
m−1 for any i,m = 1, . . . , k + 1.

Then, we consider the vector c(k) = (c
(k)
1 , . . . , c

(k)
k+1) ∈ Rk+1 as the unique solution of

(2.1) V c = (0, . . . , 0, k!).

We remark that V is invertible, being a Vandermonde matrix, and therefore the definition of c(k) is well
posed.

With this notation, given h > 0, v ∈ Sn−1, and a function u, we consider the h-incremental quotient
of u of order k in direction v, that is

(2.2) T vhu(x) :=
k+1∑
i=1

c
(k)
i u(x+ jihv).

We remark that T vhu(x)/hk behaves like Dk
vu(x), as next result shows:

Lemma 2.1. Let r > (k + 1)h > 0 and u ∈ Ck(Br(x)). Then

T vhu(x) = hkDk
vu(x) + o(hk).

Proof. By Taylor’s Theorem

u(x+ jihv) =
k−1∑
`=0

D`
vu(x)

`!
j`ih

` +
Dk
vu(x+ ξi)

k!
jki h

k
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for some ξi ∈ Rn with |ξi| 6 (k + 1)h. Then we have

T vhu(x) =
k+1∑
i=1

k−1∑
`=0

D`
vu(x)

`!
c

(k)
i j`ih

` +
k+1∑
i=1

c
(k)
i

Dk
vu(x+ ξi)

k!
jki h

k

=
k+1∑
i=1

k∑
m=1

D`
vu(x)

`!
c

(k)
i Vm,ih

m−1 +
k+1∑
i=1

c
(k)
i

Dk
vu(x+ ξi)

k!
Vk+1,ih

k

=
k∑

m=1

D`
vu(x)

`!
(V c(k))mh

m−1 + (V c(k))k+1
Dk
vu(x)

k!
hk

+
k+1∑
i=1

c
(k)
i

Dk
vu(x+ ξi)−Dk

vu(x)

k!
Vk+1,ih

k

This and (2.1) imply

(2.3) T vhu(x) = hkDk
vu(x) + hk

k+1∑
i=1

c
(k)
i

Dk
vu(x+ ξi)−Dk

vu(x)

k!
Vk+1,i

and this gives the desired results. �

We observe that T vh (T ṽhu) = T ṽh (T vhu), hence we can extend the notation in (2.2) to the multi-index
case. Namely, if k = (k1, . . . , k`) ∈ N` and v = (v1, . . . , v`) ∈ (Sn−1)`, we define

T vhu(x) := T v1h (. . . (T v`h u(x)) . . . )

=

k1+1∑
i1=1

· · ·
k`+1∑
i`=1

c
(k1)
i1

. . . c
(k`)
i`
u(x+ ji1hv1 + · · ·+ ji`hv`)

and this definition is, in fact, independent of the order. In this way, we have the following multi-index
version of Lemma 2.1:

Lemma 2.2. Let r > (k + 1)h > 0 and u ∈ Ck(Br(x)). Then

T vhu(x) = h|k|Dk
vu(x) + o(h|k|).

To prove Theorem 1.1 we will need the following integral analogue of Lemma 2.2. From now on, we
will adopt the convention that for any kernel K(x, y)

T γhK(x, y)

denotes the incremental quotient with respect to y (i.e. letting fixed x).

Proposition 2.3. Let 0 < ε < r and K ∈ C∞(B1 × Rn\Br−ε) satisfying condition (1.2). Then for
each γ ∈ Nn

lim
h→0

∫
r<|y|

1

h|γ|
|T γhK(x, y)| dy =

∫
r<|y|

∣∣Dγ
yK(x, y)

∣∣ dy .
Proof. For ε > h(|γ|+ 1) > 0 we set

fh(x, y) =
1

h|γ|
|T γhK(x, y)| ,

it follows from Lemma 2.1 that fh(x, y) converges pointwise in Ω to

f(x, y) =
∣∣Dγ

yK(x, y)
∣∣ .
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The idea is to show that there exists a g ∈ L1(Ω) such that fh(y) 6 g(y). From (2.3) it follows that
there exists ξi ∈ Rn with |ξi| 6 h(|γ|+ 1) and positive constants A and Ai such that

fh(x, y) 6 |Dγ
yK(x, y)|+

|γ|+1∑
i=1

c
(|γ|)
i

∣∣Dγ
yK(x, y + ξi)−Dγ

yK(x, y)
∣∣

|γ|!
V|γ|+1,i

6 A
∣∣Dγ

yK(x, y)
∣∣+

|γ|+1∑
i=1

Ai
∣∣Dγ

yK(x, y + ξi)
∣∣ .

From condition (1.2) and ε < r we have∣∣Dγ
yK(x, y + ξi)

∣∣ 6 H|γ|

|y + ξi|n+2s+|γ|

6
H|γ|

(|y| − |ξi|)n+2s+|γ|

6
H|γ|

(|y| − ε)n+2s+|γ| .

Since this last estimate is independent of h, the proposition follows from the Lebesgue dominated
convergence theorem. �

3. AN A PRIORI ESTIMATE

In this section we deduce the following a priori estimate of Friedrichs type for solutions of (1.4). It will
be the key tool in proving the Gevrey regularity of the solutions of the equation.

Lemma 3.1. Let u be a solution of (1.4) with s ∈
(

1
2
, 1
)

and f ∈ C∞(B6). Then for any 0 < r <
r + δ < 5 and p > 0 the following estimate holds∥∥∇p+2u

∥∥
Br
6 C

[
1

δ

∥∥∇p+1u
∥∥
Br+δ

+
1

δ2
‖∇pu‖Br+δ

+δ2s−1
∥∥∇p+1f

∥∥
Br+δ

+
Hp+12p

δp+2
‖u‖Rn

]
,

where C is a constant depending only on n and s.

We note that the estimate above corresponds to Lemma 5.7.1 of [1]. It should be stressed that while
in the local case the estimate for a generic p is easily deduced from the estimate for p = 0 by differ-
entiating the equation, in the nonlocal case we have to be more accurate in order to take account of
the long range interactions. In particular to obtain this estimate we will exploit the bootstrap machinery
developed in the [1, ] to prove the C∞ regularity of solutions.

Proof. First of all we recall that by Theorem 5 of [1, ] viscosity solutions of (1.4) are of class C∞. Now
we choose a C∞ cutoff function η(x) > 0 such that

η(x) =

{
1 B4

0 Rn\B5

and

(3.1) ‖∇η(x)‖B5
6 2 .
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Now for γ ∈ Nn with |γ| = p and ei a unit vector we set γ∗ = γ+ei and define for each 0 < h < 1
p+2

w(x) =
1

hp+1
T γ∗h u(x) .

By linearity w(x) = w1(x) + w2(x) where

w1(x) =
1

hp+1
T eih (η T γh u(x)) ,

and

w2(x) =
1

hp+1
T eih ((1− η) T γh u(x)) .

The strategy is to get a good estimate of |IK(w1)| inside B1 using the technique of [1, ]. We stress
the fact that w2(x) ≡ 0 for x ∈ B1 since η ≡ 1 there.
From the triangle inequality we have that

(3.2)

|IK(w1)| = |IK(w)− IK(w2)|
6 |IK(w)|+ |IK(w2)|

=

∣∣∣∣ 1

hp+1
T γ∗h f(x)

∣∣∣∣+ |IK(w2)| .

Using the discrete integration by parts and recalling that x ∈ B1 we get the inequality

|IK(w2)| =
∣∣∣∣∫

Rn
[w2(x+ y) + w2(x− y)− 2w2(x)] K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[w2(x+ y) + w2(x− y)] K(x, y) dy

∣∣∣∣
6

∣∣∣∣∫
Rn
w2(x+ y) K(x, y) dy

∣∣∣∣+

∣∣∣∣∫
Rn
w2(x− y) K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[
1

hp+1
T eih ((1− η) T γh u(x+ y))

]
K(x, y) dy

∣∣∣∣
+

∣∣∣∣∫
Rn

[
1

hp+1
T eih ((1− η) T γh u(x− y))

]
K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣
+

∣∣∣∣∫
Rn

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣ .
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Now, exploiting the properties of the cutoff function η we get the following estimate

|IK(w2)| 6

∣∣∣∣∣∣∣
∫

4<|x+y|<5

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

4<|x−y|<5

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

5<|x+y|

1

hp+1
u(x+ y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

5<|x−y|

1

hp+1
u(x− y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣ .
Using the triangle inequality we conclude that

|IK(w2)| 6

∣∣∣∣∣∣∣∣∣
∫

2<|y|
|x+y|<5

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
∫

2<|y|
|x−y|<5

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

3<|y|

1

hp+1
u(x+ y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

3<|y|

1

hp+1
u(x− y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣
and the RHS is majorized by

2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
B5

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy + 2 ‖u‖Rn

∫
3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy .

Inserting the inequality above into (3.2) we obtain the desired estimate inside the ball of radius 1

(3.3)

|IK(w1)| 6
∣∣∣∣ 1

hp+1
T γ∗h f(x)

∣∣∣∣+ 2 ‖u‖Rn
∫

3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy

+ 2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
B5

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy .
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Furthermore, thanks to the discrete Leibnitz rule we have that

w1(x) =
1

hp+1
[η(x+ hei)T

γ∗
h u(x) + T eih η(x)T γh u(x)]

and this implies

(3.4) ‖w1‖Rn 6
∥∥∥∥ 1

hp+1
T γ∗h u

∥∥∥∥
B5(hei)

+

∥∥∥∥1

h
T eih η

∥∥∥∥
B5

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
B5

where B5(hei) is the ball of radius 5 centered at hei.
Thanks to (3.3), (3.4), and Theorem 61 of [4, ] we get the following estimate for w1

‖w1‖C1,α(B1) 6 C
(
‖w1‖Rn + ‖IK(w1)‖B2

)
6 C

(
‖w‖B5(hei)

+

∥∥∥∥1

h
T eih η

∥∥∥∥
B5

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
B5

+

∥∥∥∥ 1

hp+1
T γ∗h f

∥∥∥∥
B2

+2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
B5

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy

+2 ‖u‖Rn

∫
3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy

 ,

where, from now on, C will denote a positive constant depending only on n and s. This means that
in calculations we will reabsorb constant factors inside C . Letting h→ 0, from (1.2), Proposition 2.3,
and (3.1) we conclude that

(3.5)

‖Dγ∗u‖C1,α(B1) 6 C
(
‖Dγ∗u‖B5

+ 2 ‖Dγu‖B5
+ ‖Dγ∗f‖L∞(B2)

+H1 ‖Dγu‖B5
+

Hp+1

22s+p+1
‖u‖Rn

)
.

By a scaling argument, from (3.5) we get the following estimate valid for any σ ∈ (0, 1]∥∥∇p+2u
∥∥
Bσ
6 C

[
1

σ

∥∥∇p+1u
∥∥
B5σ

+
1

σ2
‖∇pu‖B5σ

+σ2s−1
∥∥∇p+1f

∥∥
B2σ

+
Hp+1

2p
1

σp+2
‖u‖Rn

]
this implies, by covering, the following global estimate, valid for 0 < r < r + δ 6 5∥∥∇p+2u

∥∥
Br
6 C

[
1

δ

∥∥∇p+1u
∥∥
Br+δ

+
1

δ2
‖∇pu‖Br+δ

+δ2s−1
∥∥∇p+1f

∥∥
Br+δ

+
Hp+1 2p

δp+2
‖u‖Rn

]
.

which is the desired estimate. �

4. PROOF OF THEOREM 1.1

In this section we will adapt the iteration scheme of [1, 1] to obtain Gevrey regularity of solutions of
(1.4). The main idea here is to introduce some rescaled companions of the L∞ norms in order to
exploit effectively the estimate of Lemma 3.1.

As in [1,1] we introduce the following
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Definition 4.1. For f and u in C∞ (BR), we define the quantities

Ms
R,p(f) = sup

R/2<r<R

(R− r)2s+p+1
∥∥∇p+1f

∥∥
Br
, p ∈ N ∪ {0}

N∗R,p(u) = sup
R/2<r<R

(R− r)p+2
∥∥∇p+2u

∥∥
Br
, p ∈ {−2,−1} .

Since there is no ambiguity, in the sequel will be suppressed the explicit dependence from f and u in
Ms
R,p and N∗R,p. It is apparent from this definition that a function u ∈ C∞ (BR) will be also in Gσ (BR)

if and only if there exist positive constants M and K such that the following inequality holds for any
p > −2

(4.1) N∗R,p 6M ·Kp · [p!]σ,

where [p!] is defined as {
p! if p > 0

1 if p < 0.

Thus the strategy for proving the Theorem 1.1 will consist in showing the validity of (4.1) for solutions
of (1.4). The following lemma will be the induction step of the proof.

Lemma 4.2. Let u be a solution of (1.4) with f ∈ C∞(B6). Then there exist positive constants E
and F depending only on s and n such that the estimate

N∗R,p 6 E
[
pN∗R,p−1 + p(p− 1) N∗R,p−2 + Ms

R,p + F p Hp+1 p! ‖u‖Rn
]

holds for any p > 0.

Proof. By Theorem 5 of [1, ] we have that u ∈ C∞ (BR). Plugging the estimate of Lemma 3.1 into the
definition of N∗R,p we obtain the following

(4.2)

N∗R,p 6 C sup
R/2<r<R

(R− r)p+2

[
1

δ

∥∥∇p+1u
∥∥
Br+δ

+
1

δ2
‖∇pu‖Br+δ

+δ2s−1
∥∥∇p+1f

∥∥
Br+δ

+
Hp+12p

δp+2
‖u‖Rn

]
.

By Definition 4.1 we get the inequalities

(4.3)

∥∥∇p+1u
∥∥
Br+δ
6

1

(R− r − δ)p+1
N∗R,p−1

‖∇pu‖Br+δ 6
1

(R− r − δ)p
N∗R,p−2∥∥∇p+1f

∥∥
Br+δ
6

1

(R− r − δ)2s+p+1
Ms
R,p

and inserting them into (4.2) we have

N∗R,p 6 C sup
r∈[R/2,R]

[
(R− r)p+2

δ(R− r − δ)p+1
N∗R,p−1 +

(R− r)p+2

δ2(R− r − δ)p
N∗R,p−2

+
δ2s−1(R− r)p+2

(R− r − δ)2s+p+1
Ms
R,p + Hp+12p

(R− r)p+2

δp+2
‖u‖Rn

]
.

Now we eliminate the dependence on r by setting

δ =
R− r
p

,
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in this way we get the following estimate

N∗R,p 6 C

[
pp+2

(p− 1)p+1
N∗R,p−1 +

pp+2

(p− 1)p
N∗R,p−2

+
pp+2

(p− 1)2s+p+1
Ms
R,p + Hp+12ppp+2 ‖u‖Rn

]
6 C

[
p

(
p

p− 1

)p+1

N∗R,p−1 + p(p− 1)

(
p

p− 1

)p+1

N∗R,p−2

+p1−2s

(
p

p− 1

)p+1+2s

Ms
R,p + Hp+12ppp+2 ‖u‖Rn

]
.

The proof follows from the fact that 2s > 1 and
(

p
p−1

)p
is bounded. �

By Theorem 5 of [1, ] we know that u is of class C∞ inside the ball B6, this implies that the quantities
N∗R,p are well defined and finite for any p > −2 and R < 6. Since Gτ (B6) ⊂ C∞ (B6) also Ms

R,p

is well defined for all p, moreover there exist positive numbers L and A such that for any R 6 6 the
derivatives of f satisfy

‖∇pf‖BR 6 L

(
A

R

)p
(p!)τ .

This implies that

Ms
R,p = sup

R/2<r<R

(R− r)2s+p+1
∥∥∇p+1f

∥∥
Br

6 L

(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ .

From Lemma 4.2 it follows that

(4.4)

N∗R,p 6 E
[
pN∗R,p−1 + p(p− 1) N∗R,p−2 + F p (p!)2 ‖u‖Rn

+L

(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ

]
.

Theorem 1.1 will proved by showing that we can chooseK andM so that (4.1) holds. For this, we are
going to proceed by induction on p. Clearly we can choose K and M so that (4.1) holds for p = −2
and p = −1, then we suppose that this choice holds up to p − 1 with p > 0 and we prove it for p.
From (4.4) we have that

N∗R,p 6 E
[
M ·Kp−1 · p[(p− 1)!]σ +M ·Kp−2 · p(p− 1)[(p− 2)!]σ

+F p (p!)2 ‖u‖Rn + L

(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ

]

= M ·Kp · [p!]σ E
[

1

K
p1−σ +

1

K2
(p(p− 1))1−σ +

1

M

(
F

K

)p
(p!)2−σ ‖u‖Rn

+
L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ (p!)τ−σ

]
.
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If we choose σ > max{2, τ} the inequality above implies that

N∗R,p = M ·Kp · [p!]σ E
[

1

K
+

1

K2
+

1

M

(
F

K

)p
‖u‖Rn

+
L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ

]
.

At this point we are left to show that it is possible to choose M and K in such a way that

(4.5) E

[
1

K
+

1

K2
+

1

M

(
F

K

)p
‖u‖Rn +

L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ

]
6 1,

for all p. It is clear that this is always the case, more precisely, since K appears always at the denom-
inator with the highest exponent in p, it is possible to choose K (depending on E, F , ‖u‖Rn , and A)
so that (4.5) holds for all M > 1.

It is well known that for s ∈ (0, 1) the fractional Laplacian (−∆)s is the translation invariant integro-
differential operator whose kernel, denoted by K0, is defined as

K0(y) = −1

2
cn,s

1

|y|n+2s

here cn,s denotes a normalization constant, see for instance [9, ] for a survey on the topic.

We observe that the kernelK0 is analytic out of the origin since it is a composition of analytic functions
(see for instance [1] Proposition 1.6.7). Furthermore it is a homogeneous function of degree−(n+2s)
and this implies that for each multi-index α ∈ Nn, the partial derivative DαK0 is a homogeneous
function of degree −(|α|+ n+ 2s).
Analiticity of K0 implies that there exist positive constants R and C such that for any y with |y| = 1
and for any α ∈ Nn we have that

|DαK0(y)| 6 C
j!

Rj
,

where j = |α|, (see, e.g. [1]).
From the homogeneity of the kernel we can conclude that conditions (1.1), (1.2), and (1.3) hold with
ν = 1 and Corollary 1.2 follows.
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