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Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions

and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace

gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data

records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle

number size distributions, and 70,817 for chemical composition data. The observatories represent nine different

environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric

conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions

which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for

comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite

retrieval method evaluation, among others. Data have been acquired and processed following international

recommendations for quality assurance and have undergone multiple stages of quality assessment.
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Design Type(s) observation design • data integration objective • time series design

Measurement Type(s) aerosol

Technology Type(s)
cloud condensation nuclei counter • scanning mobility particle sizer •
quadrupole time-of-flight mass spectrometry

Factor Type(s) environmental condition

Sample Characteristic(s)

State of Alaska • marine biome • The Netherlands • rural area • Greece
• sea coast • Switzerland • alpine • Germany • continental shelf •
Republic of Ireland • Japan • French Republic • South Korea • urban
biome • Finland • subpolar coniferous forest biome • Sweden

Background & Summary
Cloud condensation nuclei (CCN) are the subset of aerosol particles able to form cloud droplets. They
influence cloud microstructure and precipitation processes, which in turn affect the radiative properties
of clouds, atmospheric circulation and thermodynamics, as well as radiative budgets1. This has implica-
tions at various scales. In terms of radiative forcing, aerosol-cloud interactions are the least under-
stood anthropogenic influence on climate2. The uncertainty in aerosol-induced radiative forcing
of ±0.70Wm− 2 (from a mean of −0.55Wm− 2) is twice the uncertainty for CO2 (±0.35, mean
+1.68Wm− 2). At the regional scale, aerosol-cloud interactions can change radiation and precipitation
processes2,3. Reducing the large uncertainty in aerosol effects is a major challenge in increasing confidence
in global and regional climate change projections2,4,5.

Key to uncertainty reduction is a better understanding of both large-scale/long-term and regional
scale/short-term aerosol properties including their number concentration, number size distribution,
chemical composition and ability to form cloud droplets. While proxies of these variables are observed by
satellites, the resolution is too coarse for studying aerosol-cloud interactions, making numerous in-situ
measurements necessary1,6. Many short-term datasets from intensive field measurements are available7–10

that enhance our process understanding but often provide a patchy and skewed picture of aerosol
characteristics as such efforts are designed to explore particular ambient conditions at varying locations.
Collocated long-term observations of CCN activity, particle number size distribution and chemical
composition are sparse, especially in the vertical dimension8,11,12. To evaluate models’ performances
against measurements in order to improve climate projections, observationally derived long-term
regionally representative aerosol properties are indispensable.

Quality assured long-term and regionally-representative datasets acquisition requires that the
following criteria be met: (i) an infrastructure consisting of several observing locations that are
representative of a variety of environments; (ii) harmonized aerosol measurement techniques following
standard operation procedures, and ideally with instruments regularly calibrated at certified calibration
centers for quality assurance; (iii) harmonized quality assessment for data; and, (iv) concurrent
measurements of sufficient types of aerosol properties to resolve aerosol-cloud processes. Particle number
concentrations alone do not constrain cloud condensation nuclei concentrations because unresolved
variations in their size, hygroscopicity and mixing state (which is a function of their chemical
composition) introduce important uncertainty in predicted CCN number concentration13,14. It is the
combination of measured variables that makes datasets useful to study aerosol-cloud interactions.

At the European level, the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS),
among other objectives, aims at increasing the ‘availability of long-term observational data relevant to
climate and air quality research on the regional scale produced with standardized or comparable
procedures’ (http://www.actris.eu/). ACTRIS’ particular focus on the comprehensive characterization
of aerosol particles makes it the largest network of long-term ground based stations of collo-
cated observations of CCN, particle number size distributions and online particle chemical composition.
Complementary networks, such as the Atmospheric Radiation Measurement Program (ARM, http://dis.
arm.gov/sites), the World Meteorological Organization’s Global Atmosphere Watch (WMO-GAW,
https://gawsis.meteoswiss.ch/GAWSIS//index.html#/), and individual initiatives are covering other
regions of the world.

Here, we present a harmonized dataset of CCN number concentrations and particle number size
distributions for 11 stations, and particle chemical composition for a subset of these stations. Available
data have been collected from observatories globally. Criteria were a) the use of a Droplet Measurement
Technologies Continuous-Flow Streamwise Thermal Gradient Chamber, also CCN counter (CCNC),
a validated type of mobility particle size spectrometer (MPSS), and an Aerodyne Research Inc. aerosol
mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM); b) data quality (see Methods
and Technical Validation); and c) data covering at least 75 % of all seasons of one year. Among these
stations are eight ACTRIS (GAW) sites, one Earth System Research Laboratory site of the US National
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Oceanic and Atmospheric Administration, and two Asian initiatives. The entire data record spans 98,677
instrument hours for CCN data, 157,880 for particle size distribution and 70,817 for chemical
composition, and represents nine different environments. The general instrumental set-up and location-
related specifics are described in the Methods section. The records are available as Network Common
Data Form (NetCDF) files (Data Citation 1) whereby each file contains data from one instrument
(CCNC, MPSS or AMS) and station. These NetCDF records are additionally available through the
ACTRIS data portal (http://actris.nilu.no/Content/Products). The harmonized multi-year data of three
key variables (cloud condensation nuclei, particle number size distribution and chemical composition) for
aerosol-cloud interactions is a unique collection to test satellite retrieval methods and to evaluate global
climate models targeting the reduction of the related uncertainty in radiative forcing.

Methods
This section provides an overview of the general experimental design followed by descriptions of the
individual measurement sites and instruments. Where applicable, discussions of site-related specificities
are included. Information on recommended operation procedures for data quality assurance for all three
aerosol instrument types is provided in more detail since standard operation procedures are currently
being developed or have only recently been established. Additionally, we report site-specific instrumental
calibration and particle loss calculations where applicable.

General study design
Table 1 provides an overview of stations with their names, geographical location, available data files and
measurement protocols.

A prerequisite to be considered in this work were parallel and standard measurements of cloud
condensation nuclei concentrations and aerosol number size distributions covering at least 75 % of one
year. These data (Data Citation 1) were provided from 11 stations (see Table 1, Figs 1,2). At six of these
stations, additional standard aerosol chemical composition data were available (see Table 1). Stations
include eight shared ACTRIS/GAW sites (marked with an asterisk in Table 1) in Europe, two in Asia and
one in North America. The represented environments include continental background, rural background,
urban, coastal, boreal forest, Arctic, Mediterranean and high altitude conditions. At most stations more
data of one or two variables are available, however, those time periods are not included here if CCN data
were not available.

Figure 3 presents the general instrumental set-up with cloud condensation nuclei counters and
mobility particle size spectrometer measurements for the poly- and monodisperse operation alternatives,
and the optional chemical composition measurement. In the case of polydisperse CCN measurements,
the aerosol is sampled and all sizes are simultaneously measured by the CCNC. In the monodisperse case,
a size selection prior to the CCN analysis occurs. While different information can be gained by the two
measurement options, this aggregated dataset considers only the time series of CCN number
concentrations at various supersaturations (SS, see Table 2). Time series are also provided for the
submicrometer aerosol number size distribution and, where available, chemical species including
particulate sulfate, nitrate, ammonium, organics, chloride and sea salt. In some cases, all three types of
instruments shared the same aerosol inlet, while at other stations, separate, yet closely positioned, inlets
were used.

All data originators (instrument principle investigators) submitted data in their preferred format
(Nasa Ames 1001 from EBAS or instrument specific format) to this effort from which the first author
constructed the time series and converted all data to standard temperature and pressure (STP) where
necessary. Temperature and pressure data were either available from the data originators or in the
EBAS data base (http://ebas.nilu.no). Thereafter, all data types were averaged to the full hour with the
time stamp being the end of the measurement interval and the time series were converted to UTC. In case
of the Puy de Dôme observatory (PUY), averages are over 4 h due to longer CCN monodisperse scan
times. Further data treatment associated with quality assurance is explained in the ‘Technical Validation’
section. Hereafter, this dataset is called ‘aggregated’ or ‘secondary’ dataset. Several of the primary
measurement datasets, this is without the processing and aggregation by the first author, were archived in
and are available from the EBAS data base. EBAS is the primary data repository for all ACTRIS
near-surface data, also hosting GAW-World Data Center for Aerosols (GAW-WDCA, http://www.
gaw-wdca.org) and all European Monitoring and Evaluation Programme (EMEP) data amongst
others.

Site description and inlet systems
This section includes details about the measurement stations’ characteristics and regional representa-
tiveness, together with specificities of the aerosol inlet systems. Generally, all inlet systems comply with
the WMO-GAW aerosol and ACTRIS standards and recommendations. The basic rules of aerosol
sampling include15:

(a) in case of cloud presence at the station, keeping droplets either from entering or evaporating them to
sample the residuals;
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(b) keeping diffusional and inertial particles losses as well as evaporation of volatile particulate
components to a minimum;

(c) ensuring relative humidity o40 % upstream of the instruments in the sample line. At RH o40 %,
the particle diameter will change less than 10 % as compared to fully dry particles, and thus will not

Station Abbreviation Geographical location/type Geoposition Sample Protocol

BRW Barrow, USA, Arctic maritime 71°19’N, 156°37’W
11m

BRW_CCN P_CCNC_BRW

BRW_SIZE P_size_BRW

BRW_Ntot P_size_BRW

CES* Cabauw, The Netherlands, near coast, rural- background 51°58‘N, 04°56‘E
− 1 m

CES_CCN P_CCNC_CES

CES_SIZE P_size_CES

CES_Ntot P_size_CES

CES_chemistry P_QACSM_CES

FIK* Finokalia, Crete, Greece, coastal background, Mediterranean 35°20’N, 25°40‘E
250m

FIK_CCN P_CCNC_FIK

FIK_SIZE P_size_FIK

FIK_Ntot P_size_FIK

FIK_chemistry P_QACSM_FIK

JFJ* Jungfraujoch, Switzerland, high alpine, background 46°33’N, 07°59‘E
3580 m

JFJ_CCN P_CCNC_JFJ

JFJ_SIZE P_size_JFJ

JFJ_Ntot P_size_JFJ

JFJ_chemistry P_TOFACSM_JFJ

MEL* Melpitz, Germany, continental background 51°32’N, 12°56’E,
86 m

MEL_CCN P_CCNC_MEL

MEL_SIZE P_size_MEL

MEL_Ntot P_size_MEL

MEL_chemistry P_QACSM_MEL

MHD* Mace Head, Ireland, coastal background 53°20’N, 09°54‘W
5m

MHD_CCN P_CCNC_MHD

MHD_SIZE P_size_MHD

MHD_Ntot P_size_MHD

MHD_chemistry P_TOFAMS_MHD

NOT Noto Peninsula, Japan, coastal background 37°27‘N 137°22‘E
0m

NOT_CCN P_CCNC_NOT

NOT_SIZE P_size_NOT

NOT_Ntot P_size_NOT

PUY* Puy de Dôme, France, mountain, continental background 45°46’N, 02°57’E
1465 m

PUY_CCN P_CCNC_PUY

PUY_SIZE P_size_PUY

PUY_Ntot P_size_PUY

SEO Seoul, South Korea, urban, monsoon-influenced 37°34′N 126°58′E
38 m

SEO_CCN P_CCNC_SEO

SEO_SIZE P_size_SEO

SEO_Ntot P_size_SEO

SMR* Hyytiälä, Finland, rural background, boreal forest 61°51’N, 24°17‘E
181m

SMR_CCN P_CCNC_SMR

SMR_SIZE P_size_SMR

SMR_Ntot P_size_SMR

SMR_chemistry P_QACSM_SMR

VAV* Vavihill, Sweden, rural background 56°01’N, 13°09‘E
172m

VAV_CCN P_CCNC_VAV

VAV_SIZE P_size_VAV

VAV_Ntot P_size_VAV

Table 1. Metadata record. Stations with one asterisk form part of the ACTRIS network.
*ACTRIS Network station.
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introduce biases for size determination or change other characteristics. Furthermore, no
condensation of water vapor in the inlet system will occur which could impair instrument
performance.

Most stations have been audited by the World Calibration Center for Aerosol Physics (WCCAP) and
pictures of some stations can be found here: https://www.tropos.de/forschung/grossprojekte-infrastruk-
tur-technologie/technologie-am-tropos/qualitaetssicherung-von-aerosolmessungen/.

Barrow (BRW)
The Barrow facility is operated under the Earth System Research Laboratory of the US National Oceanic
and Atmospheric Administration and located near the Arctic Ocean. The station is surrounded by flat
tundra, large lagoons, and lakes. The predominant wind direction is from east-northeast from the
Beaufort Sea with minimal anthropogenic pollution. Generally, the station’s environment can be
described as Arctic maritime climate affected by variations of weather and sea ice conditions in the
Central Arctic (see also https://gawsis.meteoswiss.ch/GAWSIS//index.html#/search/station/stationRe-
portDetails/489).

The aerosol inlet is a standard NOAA site system as described by ref. 16. The inlet consists of a
roughly 10 m high intake stack with 21.4 cm inner diameter with a flow of 1000 l min− 1. The sample flow
does not require specific drying due to the temperature difference between the ambient air and laboratory

Figure 1. Map of sampling sites included in the dataset. Made with Natural Earth III (http://www.

shadedrelief.com/natural3/pages/textures.html).
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Figure 2. Time coverage of the record of harmonized data. More data are available through the data portal

EBAS (http://ebas.nilu.no).
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environment. Typically, the relative humidity is o30 %. From the center part of the stack, the aerosol
sample flow is extracted and isokinetically split to the various instruments. Each stainless steel line has a
controlled flow of 3 l min− 1 to avoid particle losses. The inlet system is built in such a way that losses of
10 μm particles are o10 % and o5 % for particles between 0.01 and 1 μm.

Cabauw (CES)
The Cabauw Experimental Site for Atmospheric Research (CESAR) is operated by the Royal Netherlands
Meteorological Institute (KNMI) and located about 40 km from the North Sea at 0.7 m below sea level.
The station’s environment is typical for north-west Europe and can be described as background
continental and maritime. Influences from the cities of Utrecht and Rotterdam (20 and 30 km,
respectively) cannot be excluded8, as well as from agricultural activities of grassland management and
animal keepings17.

Aerosol is sampled at the 60 m mark from the 220m high CESAR tower. The inlet system consists of
the following sections: 1) four PM10 sampling heads, 2) two Nafion dryers (type PD-200T) to keep the
sample flow below 40 % RH, 3) a 60 m stainless steel tube with a 66.8 l min− 1 laminar flow, and 4) a
manifold to serve the various instruments with sample air18. Particle losses have been evaluated taking
into account the calculations and measurements as provided in refs 17,19.

Finokalia (FIK)
The Finokalia station (http://finokalia.chemistry.uoc.gr/) is operated by the University of Crete on the
northern coast of the island of Crete. It is located at the top of a hill and representative of maritime
background conditions as the nearest city, Heraklion, is about 70 km away. Two seasons can be
distinguished. The dry season from April to September is characterized by elevated wind speeds from the
north-northwest. In the wet season from October to April in addition to the north-northwesterly winds
influence from the south-southwest (Sahara) becomes important20. Aged aerosol populations from the
marine boundary layer, continental Europe, the Saharan desert, and summer biomass burning are
frequently observed.

Aerosol measurements are conducted in a dedicated building at the station equipped with various
aerosol inlets which are situated at 4 m above ground level. Generally, the systems consist of a sampling
head (total aerosol, PM10, PM2.5 or PM1), a short stainless steel tube with a laminar sample flow, and
dryers to keep RH below 40%.

Note that the station abbreviation ‘FIK’ is used in the GAW system, while ‘FKL’ is used in ACTRIS
and other protocols and ‘GR0002R’ in the EMEP database.

Figure 3. General measurement set-up. The upper panel shows the set-up for polydisperse cloud

condensation nuclei (CCN) measurements. Depending on the station specific set-up, the same or different inlet

systems were used for the size distribution and optional chemical composition measurements. Dashed boxes

and lines indicate that the specific set-up varied by station. The lower panel shows the same for monodisperse

CCN measurements, whereby size distributions were either measured after the same neutralizer and differential

mobility analyzer (DMA) or behind a second system (indicated with option 1 and 2). The methods section

specifies which set-up each station used. ACSM= aerosol chemical speciation monitor, AMS= aerosol mass

spectrometer, CCNC= cloud condensation nuclei counter, CPC= condensation particle counter.
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Jungfraujoch (JFJ)
The high-alpine research station Jungfraujoch is located in the Swiss Alps at 3580m above sea level on a
ridge between two mountains higher than 4000m. Aerosol measurements are conducted by the Paul
Scherrer Institute’s Laboratory of Atmospheric Chemistry. The station is considered a continental
background site since it is far away from major anthropogenic emission sources. Aerosol properties exhibit
a strong seasonal cycle with lower concentrations in winter when free tropospheric conditions prevail.
During the warm season, concentrations are higher owing to injections of more polluted boundary layer air
masses due to thermal convection. A more detailed description can be found in ref. 21. Additionally,
tourism related emissions can influence aerosol measurements particularly in the summer months and
during favorable weather conditions year-round. Such local influences of pollution have been removed from
the dataset by visual inspection to make the dataset representative of the regional background conditions22.

In the Sphinx laboratory on Jungfraujoch, the heated (~20 °C) inlet collects all aerosol particles and
cloud droplets up to 40 μm. As the cold sample flow (July mean temperature is around −1 °C) enters the
laboratory which is kept at approximately 25 °C, all condensed water evaporates, hence interstitial as well
as activated aerosol particles are measured. Losses for the whole inlet system are below 5% for particles
between 10 and 750 nm diameters. Inside the laboratory, the dried aerosol sample is distributed to a series
of instruments including the permanently installed CCNC and scanning mobility particle sizer (SMPS),
as well as to the time-of-flight aerosol chemical speciation monitor (ToF-ACSM) for the respective
measurement period. More detailed descriptions of the inlet can be found in refs 11,22,23.

Mace Head (MHD)
Mace Head is located on the west coast of Ireland roughly 100 m from the Atlantic shoreline. It is
operated by the National University of Ireland, Galway, and is a GAW, EMEP and ACTRIS station.

Protocol Name Site CCNC type Operation mode Super-saturation
(%)

Flow rate
(l min-1)

Acquisition
Software

Data processing
package

references

P_CCNC_BRW Barrow (BRW) CCN-100 polydisperse 0.20, 0.30, 0.50, 0.60,
1.00, 1.20, 1.45

0.5 standard Labview
program by Droplet
Measurement
Technologies

Custom code link

P_CCNC_CES Cabauw (CES) CCN-100 polydisperse 0.10, 0.20, 0.30, 0.50,
1.00

0.5 standard Labview
program by Droplet
Measurement
Technologies

Custom Matlab
script by ECN
Environmental
Assessment

8

P_CCNC_FIK Finokalia (FIK) CCN-100 polydisperse 0.20, 0.40, 0.60, 0.80,
1.00

0.5 standard Labview
program by Droplet
Measurement
Technologies

Data processing
Procedures within
the Igor Pro 6.37
version

43

P_CCNC_JFJ Jungfrau-joch (JFJ) CCN-100 polydisperse 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.50,

0.70, 1.00

1.0; 0.75 standard Labview
program by Droplet
Measurement
Technologies

PSI CCNC Toolkit 11,87

P_CCNC_MEL Melpitz (MEL) CCN-100 monodisperse
(DMA: Hauke
medium TROPOS-
built, CPC: TSI
Model 3010)
20–440 nm

0.10, 0.20, 0.30, 0.50,
0.70

0.5 TROPOS CCNC
Labview program for
monodisperse CCNC
measurements

TROPOS CCNC
software

46

P_CCNC_MHD Mace Head (MHD) CCN-100 polydisperse 0.10, 0.25, 0.35, 0.50,
0.75, 1.00

0.5 standard Labview
program by Droplet
Measurement
Technologies

custom Matlab code 8

P_CCNC_NOT Noto Peninsula
(NOT)

CCN-100 monodisperse
(DMA: TSI Model
3081L, CPC: TSI
Model 3776)
8–342 nm

0.10, 0.20, 0.50, 0.80 0.5 TSI Aerosol
Instrument Manager
and standard
Labview program by
Droplet
Measurement
Technologies

Scanning Mobility
CCN Analysis Tool
(http://nenes.eas.
gatech.edu/
Experiments/SMCA.
html)

29

P_CCNC_PUY Puy de Dome (PUY) Mini-CCNC monodisperse (TSI
type DMA 44 cm,
TSI CPC 3010)

0.2 0.1 with bypass
flow of 0.4

LaMP custom code LaMP custom code

P_CCNC_SEO Seoul (SEO) CCN-100 polydisperse 0.20, 0.40, 0.60, 0.80 0.5 standard Labview
program by Droplet
Measurement
Technologies

University of Seoul
mysql and perl code

P_CCNC_SMR Hyytiälä (SMR) CCN-100 polydisperse 0.10, 0.20, 0.30, 0.50,
1.00

standard Labview
program by Droplet
Measurement
Technologies

University of
Helsinki Matlab code

8

P_CCNC_VAV Vavihill (VAV) CCN-100 polydisperse 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.50,

0.70, 1.00, 1.40

standard Labview
program by Droplet
Measurement
Technologies

Lund University
custom code

Table 2. Description of cloud condensation nuclei data acquisition for each site including the instrument type, operation mode,
applied supersaturations, acquisition and data processing software and references from the literature.
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Aerosol populations represent north-east Atlantic background conditions. The closest city, Galway, is
about 90 km away. Sixty four percent of the time, air arriving at Mace Head is either clean or pristine
marine air, the remainder being polluted to different degrees, either from local sources (modified marine
air masses) or long-range transport from the UK and continental Europe24.

Aerosol measurements are conducted from a shore laboratory using the 10 m high stainless steel
community sampling duct with a diameter of 10 cm and operated at 150 l min− 1. The sample air is dried
to o40 % RH. The 50 % upper size cut-off for the carrier duct is at 10 μm, and losses of particles o1 μm
are o5 % for low and reach 30 % for 15 m s− 1 wind speeds25.

Melpitz (MEL)
The Melpitz research station is operated by the Institute for Tropospheric Research, Leipzig, which also
hosts the World Calibration Center for Aerosol Physics. The site, located 45 km north-east from Leipzig,
is representative of more anthropogenically influenced Central European background conditions26. It is
surrounded by flat grass lands, fields and forests. Westerly wind conditions bring air masses from the
Atlantic with lower aerosol particle mass concentrations, while easterly winds transport continental air
masses with more accumulated particle mass concentration27.

Online aerosol instruments are located in the container laboratory and sample from an inlet 6 m above
ground which carries a PM10 head followed by an aerosol diffusion dryer that maintains RH below 30 %
(ref. 28). Particle transmission is near 100 % for the size range from 20 to 800 nm (ref. 28).

Noto (NOT)
The Noto Ground-based Research Observatory is located at the eastern tip of the Noto Peninsula at the
west coast of Japan. The peninsula reaches about 150 km into the sea and the nearest provincial cities are
Toyama and Kanazawa, 85 and 115 km away, respectively. The remote location allows for monitoring of
atmospheric background conditions in East Asia as well as long-range transported pollution originating
from continental East Asia29.

The aerosol inlet system draws air from 14.7 m above ground at a flow rate of 78 l min− 1 through a
stainless steel tube (5.65 cm outer diameter). An isokinetic flow splitter distributes the sample air to the
individual instruments where the air is dried before analysis29.

Puy de Dôme (PUY)
Puy de Dôme is a mountain station at 1465 m altitude in the French Massif Central. Aerosol
measurements are conducted by the Laboratoire de Météorologie Physique. The station is surrounded by
forests and agricultural land and the influence of the nearest city, Clermont-Ferrand, 396 m a.s.l., 16 km
to the east, is limited, especially during night time. The area is accessible by train (electrically driven)
which stops some 500 m away, which has mostly a negligible influence on the aerosol measurements30,31.
The predominant wind direction is from the west, while the moderate altitude of the station enables
characterization of the planetary boundary layer, lower free troposphere, nocturnal residual layer and
their interfaces. The aerosol concentration is lowest during wintertime, when the influence of the free
troposphere is highest30.

As the site is covered in clouds 50% of the time during winter, aerosol is sampled from a whole air
inlet (WAI) that efficiently samples particles and droplets o35 μm at wind speeds o8 m s− 1. Due to the
temperature difference between the ambient air and the laboratory, the sample air is not actively dried
and it is typically o40% RH. After water vapor dissipation the aerosol population is thought to represent
an aerosol after the natural dissipation of a cloud. Losses are o5% for particles larger than 15 nm
(ref. 30). Particle number concentrations and size distributions are measured downstream of the
same WAI.

Seoul (SEO)
Seoul is a megacity in South Korea with more than 10 million inhabitants. Measurements were conducted
by the Yonsei University on their campus which is located in the northwestern part of the city. More
precisely, the instrumentation was located on the sixth floor of a building roughly 300 m away from the
nearest main traffic roads. The site can be characterized as urban background. It is also characteristic of
seasonal differences due to the summer monsoon32.

The sample air to the instruments was neither dried nor diluted. The length of the inlet lines to each
instrument was about 1 m built with 0.25 inch conductive tubing. Particle losses were minimal for the
submicrometer size range.

Hyytiälä (SMR)
The Station for Measuring Ecosystem- Atmosphere Relations (SMEAR II) is located in the Hyytiälä
Forestry Field Station, in southern Finland, and is operated by the University of Helsinki. It is surrounded
by boreal coniferous forest, dominated by scots pine, and is representative of the boreal environment33.
The nearest larger city, Tampere, is located 60 km to the south-west. Air masses at SMR originate from
the Arctic and Europe, but aerosol concentrations are typically low8. Local pollution sources are of minor
impact but non-negligible, as there are e.g., sawmills, light traffic, minor agriculture and houses nearby.
Local pollution is usually easily distinguished by aerosol plumes in the data.
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Cloud condensation nuclei number and particle number size distribution measurements are
conducted from a PM10 inlet 8 m above ground. The inlet flow is 150 l min − 1, and it is dried to RH
o40% before the flow is split to the individual instruments. Particle losses in the inlet system are
minimal.

Vavihill (VAV)
Vavihill station, operated by Lund University, is located in southern Sweden and is surrounded by
grasslands and deciduous forest. It serves as a continental background station appropriate to study
continental European pollution outflow to the North. South-westerly winds are dominant34. The nearest
village is 10 km away, while the largest cities are located in the west to south-east sector (Helsingborg
25 km away, Lund 46 km, Malmö and Copenhagen 60–70 km).

Aerosol is sampled through two standard PM10 inlet heads35 through a stainless steel tube roughly
reaching 2 m above the laboratory container. For the inlet connected to the particle number size
distribution measurements, the air is dried to RH o40%, whereas after the second inlet for the
polydisperse CCN measurements, no drier is used.

Instrument descriptions
Here we describe the measurement principles, major uncertainties and standard operation procedures for
the cloud condensation nuclei counter, the particle size spectrometers and the aerosol mass
spectrometers. Each general instrument description is succeeded by more detailed information for
each site.

Cloud condensation nuclei counter (CCNC)
All stations used the only commercially available CCNC, model CCN-100 from Droplet Measurement
Technologies (DMT, Boulder, USA), which is a Continuous-Flow Streamwise Thermal Gradient
Chamber, described in detail in refs 36,37. Instrument modifications are discussed under the station
headings below if applicable.

The CCNC consists of a cylindrical continuous-flow chamber in which aerosol can be exposed to a
constant (user-defined) supersaturation as follows. An aerosol sample flow is guided through the center
of the cylinder by a particle-free laminar sheath flow. Particles that activate at a critical supersaturation
lower than the set supersaturation form droplets. The size distribution of droplets (particles with
diameter larger than 1 μm) exiting the activation column after a roughly 10 s exposure to supersaturation
is counted by an optical particle counter. The centerline supersaturation is generated by applying a
controlled (and constant) streamwise temperature gradient at the cylinder wall; by maintaining the inner
wall wet, heat and water vapor continuously diffuse towards the center of the tube. Because water vapor
has a lower molecular weight than moist air, diffusion of water vapor is faster than heat and the centerline
becomes supersaturated37. A constant flow rate, chamber pressure and streamwise temperature gradient
ensure a quasi-constant supersaturation for the developed region of the flow in the chamber36.

Refs 36,38,39 provide recommendations for the operation of the CCNC. There are two main operation
modes as shown in Fig. 3. Polydisperse aerosol activation is measured when simply sampling ambient air,
while in the monodisperse operation mode, particles are size selected by means of a differential mobility
analyzer (DMA) prior to entering the CCNC.

Table 2 indicates in which mode the instruments were operated. In both cases time series with total
number concentrations of CCN at a certain supersaturation can be derived, if the scanned diameter range
in the monodisperse measurements has a sufficiently large upper detection limit such that only a very
minor fraction of droplet activating particles is not captured. This was the case for all stations with a
monodisperse measurement set-up. Therefore there is no difference in the data files presented here except
for a lower time resolution in the case of the PUY station. Independent of the operation mode, the
common supersaturations recommended to be measured are 0.1, 0.2, 0.3, 0.5 and 1.0%.

Table 2 indicates the actually measured supersaturations. At each station, at least one of these values
was measured. The supersaturation of 1.0% is recommended to compare CCN with the total number
concentration for quality assurance. See section ‘Technical Validation’ for details. Further recommenda-
tions include:

● flow rates settings a) to avoid too long residence times in the lines upstream of the activation column to
avoid diffusion losses, or too short residence times in the column that can limit droplet growth; b) to
guarantee laminar flow conditions by setting the correct aerosol to sheath flow ratio (1:10).

● setting temperatures in the correct ranges and time intervals to ensure stable supersaturation values
and reliable counting statistics, as well as stepping from the highest to the lowest supersaturation.

Main factors that introduce uncertainty in the measured CCN number concentrations are the flow rate
and the calibration of the instrument’s supersaturation, and changes in pressure e.g., during airborne
operations40. The flow rate has a direct impact on the supersaturation and together with the sheath flow is
a parameter to convert counts to a number concentration. Therefore ref. 38 recommends calibrating the
flow rate at least every six months. With respect to the supersaturation calibration, details are given in the
above mentioned references for ammonium sulfate as well as for sodium chloride in ref. 41. Briefly,
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ammonium sulfate particles (preferred over sodium chloride) of a selected size are introduced into a
condensation particle counter (CPC) and the CCNC in parallel while supersaturations are stepped
(‘S-scan’). This yields the temperature gradient needed to activate particles with the given diameter. The
temperature gradient determines the supersaturation at a given flow rate. Alternatively, the diameter of
the particles can be scanned or stepped at a fixed supersaturation (‘D-scan’). Here, the critical diameter is
derived from the given temperature gradient (supersaturation). Based on the thermodynamic properties
of ammonium sulfate particles the critical supersaturation SScrit corresponding to Dcrit or Dset, and
temperature can be determined. This can be done by applying the Aerosol Diameter Dependent
Equilibrium Model (ADDEM, ref. 42), the Aerosol Inorganic Model (AIM) like in ref. 41, the Pitzer-
interaction model43 or a specifically prepared lookup-table (Supplementary Material 1) which is based on
an implementation of the Pitzer-interaction model44 and cross-validated against ADDEM. Calibration
curves of the temperature gradient in the CCNC activation column versus the derived supersaturation are
then created based on which the uncertainty in the determination of the supersaturation can be
calculated. Generally, the target accuracy for SS>0.2% is ±10%, in relative terms, and ΔSS≤ 0.03%, in
absolute terms.

During measurements, the actual supersaturation can deviate from the target setting. For such
instances, the recommendation38 is to linearly interpolate to the target supersaturation for deviations
o20%. This was applied to this dataset. For larger deviations, data is reported as missing. Importantly,
supersaturation calibrations need to be carried out at the flow rate and pressure level at which the
instrument will be operated. Ref. 38 provides information on data processing procedures for how to
include temperature readings and treatment of diffusion losses, and, for monodisperse measurements
specifically, the correction for multiply-charged particles and inversion routines (see paragraph on
particle size spectrometers).

In case of high CCN number concentrations (>5000 cm− 3), the supersaturation and droplet sizes can
decrease, because of the higher water vapor depletion45. This can affect the derived CCN number
concentration. This dataset has not been corrected for this potential effect.

Reliability and comparability of the datasets presented here were ensured by the application of the
ACTRIS technical standards as described above (if not described otherwise below). In the case of the
non-ACTRIS stations and earlier measurements, the same procedures were followed nevertheless as they
had been established as ‘good practice’ within the community beforehand. For each station’s CCN
measurements, Table 2 provides details on the data treatment protocol which includes information on the
deployed instrument model, its operation mode, and acquisition and data processing software used to
create the data record. References describing data acquisition and processing following the protocols are
included. Protocols for CCN datasets are named ‘P_CCNC_nameofstation’.

Station specific CCNC remarks
BRW. The instrument had been calibrated at a lower pressure level (840 hPa) than the operational level
(sea level). Therefore the uncertainty in the supersaturation determination is between 10 and 20%.

CES. Specific particle losses due to the inlet line from the manifold and within the instrument have been
calculated. Transmission of particles starting at the size range expected to activate at 1% supersaturation
(roughly 50 nm) is >90%. The losses have been taken into account.

FIK. At Finokalia, the CCNC is connected to a PM1 head. The instrument is calibrated regularly with
sodium chloride particles. Differences to the ACTRIS SOP calibration with ammonium sulfate are
described in detail in ref. 43.

JFJ. The CCNC measured behind the above described aerosol inlet with a total flow of 1 l min− 1 until
February 2013, and thereafter with a flow of 0.75 l min− 1. The performance of the CCNC varied
throughout the measurement period. In 2012 the instrument ran comparably to conditions reported in
ref. 11 with a maximum uncertainty of reported supersaturations of 10%. In 2013, after exchanging the
Nafion membrane, the instrument calibration curves varied more strongly throughout the year leading to
a maximum uncertainty of 16%. In 2014, the maximum uncertainty was 4%. A comparison of CCN data
at 1% supersaturation with the integrated SMPS particle number concentration showed that the CCN
concentration in 2012 was underestimated by about 40% while it was overestimated by about 30% in
2013 after the membrane exchange. Data for these two years were corrected accordingly (see Fig. 4).

MEL. A DMA is used to perform size-segregated CCN measurements. The aerosol to sheath air flow
rate is kept at 1:10. Multiply-charged particles cannot be avoided in the selection process, hence CCN
data is corrected by applying the bipolar charge distribution46. To quality check CCN data, particle
number size distributions from a separate dual mobility particle size spectrometer (described below) have
been used.

NOT. Monodisperse CCN analysis was performed following the Scanning Mobility CCN Analysis
(SMCA) system29,47. The sample air was dried with two silica gel diffusion dryers. Subsequently particles
were selected by their mobility diameter with a DMA. The monodisperse aerosol sample flow was split
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between a CPC and the CCNC for measurements of total particle and CCN number size distributions.
The CCNC was calibrated regularly with ammonium sulfate following a procedure comparable to the
ACTRIS SOP. Data analysis was conducted with the SMCA software package47 which includes multiple-
charge correction for particle and CCN number size distributions.

PUY. Different from all other stations, at PUY a miniature version of the DMT CCNC-100
is operated48 at only one supersaturation (0.2%) in the monodisperse mode. The aerosol flow is
0.015 l min− 1 adjusted with a sheath flow to 0.1 l min − 1 total. To reduce particle losses a bypass flow of
0.4 l min− 1 is added. Standard calibration and operation procedures do not differ from the ACTRIS SOP.

SEO. Since measurements were conducted before the ACTRIS projects and outside of Europe,
calibration and operation of the CCNC were based on the methods described in ref. 41. Those methods
constitute a major reference to the current ACTRIS recommendations.

SMR. In addition to the polydisperse CCN measurements described in this study, size-resolved CCN
number concentration measurements were performed concurrently since 2007. Those measurements are
described in detail in ref. 49 and are available from the EBAS data base.

Figure 4. Data quality check for polydisperse measurements at 1% supersaturation. Each panel (a–g) shows

for each station, in alphabetical order, the ratio of the total particle number to CCN1.0 when the number of

particles o30 nm (N30) makes up between 10 and 20 % (right) and o10% (middle) of the total particle

number. Results are presented in logarithmic bins where the color code shows the number of points per bin.

The slopes and correlation coefficients of the curves are provided. The black line denotes the 1:1 line and the

dashed black lines indicate the range of expected uncertainty from particle counting. The left panels show box

and whiskers plots of the ratio N30o10%/CCN1.0 with the median, interquartile range, 10th and 90th

percentiles, and points beyond the 2.5th and 97.5th percentile. The grey solid lines and dashed lines indicate the

same as black lines in the right hand side plots. The number of total points is provided (pnts) as well as the

geometric mean (GeoMean) and geometric standard deviation (GSD).
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There are no specific remarks for the stations MHD and VAV.

Mobility particle size spectrometers
The mobility particle size spectrometer, often called scanning mobility particle sizer (SMPS) or the
similar differential mobility particle sizer (DMPS), measures the number size distribution of
submicrometer particles by counting particles of the different sizes that are selected based on their
electrical mobility. Commonly, an MPSS consists of an impactor, a bipolar diffusion charger (often called
neutralizer), a DMA, and a CPC setup in series. The bipolar diffusion charger brings the particles into an
approximate bipolar charge equilibrium. The DMA is a cylinder with a charged electrode at its center. At
the outer side the aerosol sample enters and is then guided to the bottom in a laminar flow by particle free
sheath air. By applying a voltage between outer cylinder and electrode, all charged particles move towards
the center rod and only particles of a certain size move directly towards the exit of the column and are
counted. The upstream impactor removes particles larger than the upper DMA size limit, which enables
correction for larger multiply charged particles with the same mobility diameter as singly charged smaller
particles. The scanning of different voltages in the DMA results in an electrical mobility distribution. This
can be transformed into particle number size distributions by using an inversion method. All inversion
methods applied here have been tested and yield reliable results50. A DMA transfer function is included
in the inversion calculation to account for the transmission of particles through the DMA at the given
flow rate and particle size. Additionally, diffusion losses in the whole system (including the neutralizer)
are considered via the ‘effective length’, as well as the counting efficiency of the CPC in particular with
respect to their lower cut-off diameters50.

The reliability of the measurements is subject to a number of operating parameters as summarized
below based on refs 39,50:

● flow rates: A 1% error in the sheath air flow rate result in a shift of 1% in selected the particle mobility.
At the typical ratio of aerosol to sheath air flow 1:10, a leak in the sheath air flow of 1% results in a 10%
error in the aerosol flow which directly impairs the particle number concentration.

● Leaks and contamination of the flows result in large errors that are difficult to quantify.
● The mobility of the particle depends on the actual temperature and pressure at which the system is

operated. This aspect is important for e.g., mountain stations. Pressure changes of 30 hPa result in a 1%
error in sizing.

● The relative humidity of the aerosol as well the sheath air flow should be kept o40% to avoid
hygroscopic growth of particles which would change their diameter.

MPSSs are calibrated by verifying the sizing with polystyrene latex (PSL) spheres of a given size. The
instrument should determine the particle size within the PSL size uncertainty of 2.5% and the tolerable
variance in the sheath air flow rate of 1%. This implies that flow rates were regularly if not continuously
checked. In addition, zero-checks were conducted to avoid false counts.

Details on each station’s mobility particle size spectrometer are given in Table 3. Different from the
CCNC, there are several commercial models available and some user groups operate their own custom-
built versions. Due to the many different models as well as the sensitivity of the measurements to a
number of operational parameters as outlined above, comparability of results can be hampered. For this
reason it is particularly important to ensure compliance with the standard technical requirements,
operation procedures and the use of validated inversion routines for data analysis as provided by ref. 50
which serves as guideline within ACTRIS and WMO-GAW among others. All stations followed these
guidelines including non-ACTRIS sites, if not stated otherwise. In Table 3, datasets from station operators
that participated in the intercomparison described in ref. 50 are marked with ‘*’. In addition to their
instruments, also inversion routines have been tested.

Despite compliance with the protocols, deviation of results between instruments is expected. In a
number of intercomparison workshops at the WCCAP (ref. 50) it was found that uncertainties within
10% can be expected for particles in the size range 20 to 200 nm, while deviations become significantly
larger for smaller particles. Also at the higher end, divergence was observed. This should be kept in mind
when interpreting particle size distributions and size resolved number concentrations.

Table 3 provides details on the size distribution data treatment protocol which includes information
on the deployed instrument model, its operation mode, and acquisition and data processing software
used to create the data record. References describing data acquisition and processing following the
protocols are included. Protocols for size distribution datasets are named ‘P_size_nameofstation’.

Site specific remarks
JFJ. The JFJ SMPS is connected to the total air aerosol inlet and operates with a sample flow of 0.3 l
min− 1 and a sheath flow of 3 l min− 1. To validate the integrated particle number concentration as
derived from the SMPS measurements, in addition to participating in intercomparisons at the WCCAP
(ref. 50), it is compared to the number concentration determined by the CPC for periods in which very
few particles under 20 nm are present. Particles larger than 600 nm play only a minor role in the number
concentration at the measurement site. A size-independent, time-dependent correction factor is
determined and applied. Periods with over 20% discrepancy are removed from further data analysis22.
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SEO. As measurements were taken outside the ACTRIS geographical reach, the instrument did not
participate in intercomparison activities. Details of its operation are provided in ref. 32.

There are no specific remarks for the stations BRW, CES, FIK, MEL, MHD, NOT, PUY, SMR,
and VAV.

Aerosol mass spectrometers
A variety of aerosol mass spectrometers has been developed within the past 15 years by Aerodyne
Research Inc. (ARI, Billerica, USA)51,52 to measure submicrometer non-refractory aerosol chemical
composition. Most typically, particulate ammonium, nitrate, sulfate, chloride and organics are reported.
Among the instruments are the ones equipped with a quadrupole (Q-AMS) or time-of-flight mass
spectrometers in the compact version C-ToF (ref. 53) and high resolution version HR-ToF (ref. 54) which
have been deployed in numerous short-term field campaigns55,56. For long-term observations, a
monitoring type version of the AMS, the aerosol chemical speciation monitor (ACSM), has been
developed57 with either a quadrupole (Q-ACSM) or time-of-flight58 (ToF-ACSM) mass spectrometer.
The Q-ACSM has been used extensively and validated within the ACTRIS network stations59. In this
work, four datasets originate from the Q-ACSM, and one each from the ToF-ACSM and HR-ToF-AMS.
Below follows a joint description of all mass spectrometer types, while specificities are presented under
the station headings.

In general, all AMS and ACSM types sample aerosol through a critical orifice and an aerodynamic
lens system. Typically, the critical orifice has a diameter of 100 μm, restricting the sample flow to 0.08
l min − 1. The lens system focuses the particles into a narrow beam and concentrates them before they
are accelerated into a vacuum chamber and hit a vaporizer operated at 600 °C. Particles in the size
range from 150 to 450 nm are transmitted by the aerodynamic lens to about 100% efficiency, while
also a significant fraction of the particles between 70 and 1000 nm are transmitted60. The cut-offs vary
slightly between instruments as they are a function of the pumping and quality of the established
vacuum. Particles are flash vaporized and their gaseous fragments are ionized by electron impact
ionization (70 eV), before entering the mass spectrometer for separation according to their mass-to-
charge ratio. To determine the aerosol concentration, the instrumental background signal is
subtracted from the ambient signal. In the case of the ACSM, a valve switching system in front of the
critical orifice guides the sample flow in regular intervals through a filter which retains all particles. In
case of the AMS, a chopper, installed in the vacuum chamber, is regularly moved into the beam
keeping the particles from reaching the vaporizer. An additional difference in the AMS is that particles
fly through a time-of-flight region extending from the chopper to the vaporizer, where the

Proto-col name Site mobility size measurement
system

# of bins diameter
range (nm)

Acquisition
Software

Data processing
package

references

P_size_BRW Barrow (BRW) TROPOS-type custom-built SMPS 33 10–810 TROPOS custom
made

TROPOS custom
code

50

P_size_CES* Cabauw (CES) SMPS TSI 3034 70 10–516 TSI standard
software

Custom code 17,50

P_size_FIK Finokalia (FIK) TROPOS-type custom-built SMPS 71 9–849 TROPOS v4.7.2 TROPOS custom
code

50

P_size_JFJ* Jungfraujoch (JFJ) Custom built SMPS (DMA, TSI
3071 and a CPC TSI 3775)

104 20–600 PSI Labview
program

PSI SMPS Toolkit 11,22

P_size_MEL* Melpitz (MEL) TROPOS-type Dual SMPS custom
built

46 5–800 TROPOS Labview
program

TROPOS custom
software

50

P_size_MHD* Mace Head
(MHD)

Custom-built SMPS (DMA TSI
3071, CPC TSI 3010, aerosol
neutralizer TSI 3077)

89 25–500 custom Labview
program

custom Matlab code

P_size_NOT Noto Peninsula
(NOT)

TSI instruments (DMA: TSI
Model 3081L, CPC: TSI Model
3776)
8–342 nm

270 8–342 TSI Aerosol
Instrument Manager

Scanning Mobility
CCN Analysis Tool

29

P_size_PUY* Puy de Dome
(PUY)

Custom built DMPS (TSI type
DMA 44 cm, TSI CPC 3010)

26 10–400 LaMP custom code LaMP custom code

P_size_SEO Seoul (SEO) SMPS, TSI 3936L10 106 >10–478 Standard TSI
software

SMPS program by
TSI, mysql and perl
code

32

P_size_SMR* Hyytiälä (SMR) UHEL-type Custom built Dual
DMPS (Hauke DMA, CPC TSI
3025A)

51 >3–1000 University of
Helsinki Labview
code

University of Helsinki
Matlab code

88, link

P_size_VAV* Vavihill (VAV) ULUND-type Custom built Dual-
DMPS

37 >3–900 Custom made Custom made 35,89

Table 3. Description of size distribution data acquisition for each site including the instrument type,
scan width and steps, acquisition and data processing software and references from the literature.
*Operators at these stations participated in intercomparison workshops at the WCCAP50.
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aerodynamic diameter of the particles can be measured. This type of information, however, is not
included in this work as most chemical composition measurements were conducted by ACSMs and
particle size distribution data from the MPSS is available. Finally, the obtained mass spectra are de-
convoluted by applying a so-called fragmentation table based on laboratory experiments61 to report
the typical inorganic and organic aerosol components. More detailed descriptions of the functioning
of the various AMS and ACSM types can be found in refs 52–54,57,58.

To ensure reliable results, several well-established procedures52,59,62 including calibrations were
routinely carried out by instrument operators. In addition, all Q-ACSMs operated within ACTRIS
participated in an intercomparison exercise59,62 (marked with ‘*’ in Table 3) at the Aerosol Chemical
Monitor Calibration Center. Generally, the latest acquisition and analysis software were used. After
instrument transport, the lens system needs to be aligned such that the particle beam hits the vaporizer
unit centrally and all voltages need to be tuned for optimal ion detection in the mass spectrometer.
Protocols are described in refs 51,57. The instrument intercomparison described in these references took
place in 2013 during many of the reported periods in this dataset. Data from this period are not reported.
Also, the instrument-specific flow rates were determined regularly as this directly affects the mass
concentration calculation. The mass-to-charge ratios (m/z) are calibrated using three or more peaks for all
ToF mass spectrometers and two peaks for the Q-ACSM, typically including m/z 28 (N2

+). This procedure
was either automated with the help of the data acquisition software or carried out every couple of days.

To determine aerosol mass concentration, the ionization efficiency (IE) is calibrated using ammonium
nitrate, and all other species’ mass concentrations are expressed in nitrate equivalent mass. Relative to the
ionization efficiency of nitrate (IENO3), ionization efficiencies of sulfate and ammonium (RIESO4, typically
between 0.6 and 1.2, RIENH4, typically between 2.5 and 5 (ref. 58)) were determined. Refs 52,59 describe
in detail the theory and the standard calibration procedures, the latter specifically for Q-ACSMs as
suggested by the ACTRIS intercomparison facility. The IE and RIEs were determined at the beginning of
the measurement and then repeated regularly. Based on the high number of field and laboratory
measurements with the aerosol mass spectrometers, it is known that not all particles flash vaporize but
can bounce of the heater and are hence not detected52. To account for this, a correction factor, called
collection efficiency (CE), is applied. For ambient measurements, CE is typically ~0.5. However, factors
such as particle water content or the nitrate fraction also play a role and a particle composition-
dependent CE can be calculated63. The CE applied to each station’s dataset is provided in Table 4.

The detection limit is typically determined by sampling particle-free air through a filter. The signal
oscillates around zero and the detection limit is defined as three times the standard deviation specific to a
certain time resolution. Table 5 shows the one-hour detection limits for all relevant mass spectrometer
types. Data below the detection limit are not reported in the datasets.

Generally, results obtained from the Q-ACSM, ToF-ACSM and HR-ToF-AMS are in good agreement
with R2>0.9 for all species except chloride59. There is some uncertainty in the determination of the
organic aerosol (OA) mass concentration with the Q-ACMS due to variability in the detection of the ion
CO2

+ at m/z 44. This ion typically constitutes the largest single contribution to OA (f44), but as discussed
in a Q-ACSM intercomparison paper62, this f44 contribution can vary from 8.5 to 18.2% between
instruments for the same aerosol. One factor contributing to the f44 variability is the generation of a CO2

+

signal from the thermal decomposition of inorganic species on the instrument’s vaporizer and filament64.
Table 4 provides details on the chemical composition data treatment protocol which includes

information on the deployed instrument model, its operation mode, and acquisition and data processing

Protocol name site aerosol mass
spectrometer type

collection efficiency Acquisition Software Data processing
package references

P_QACSM_CES* Cabauw (CES) Q-ACSM Based on ref. 18 Aerodyne ACSM Data
Acquisition and Analysis
Software

Aerodyne ACSM Data
Acquisition and Analysis
Software

17,59

P_QACSM_FIK Finokalia (FIK) Q-ACSM 0.5 Aerodyne ACSM Data
Acquisition and Analysis
Software

Aerodyne ACSM Data
Acquisition and Analysis
Software

66,72

P_TOFACSM_JFJ Jungfraujoch
(JFJ)

ToF-ACSM 1 Tofwerk Acquility
Software

Tofware for IGOR Pro 58,67

P_TOFAMS_MHD Mace Head
(MHD)

HR-ToF-AMS a composition- dependent CE
(Middlebrook et al.63 range:
0.45–0.97

Aerodyne AMS Data
Acquisition Software

Squirrel/PIKA for IGOR
Pro

P_QACSM_MEL* Melpitz (MEL) Q-ACSM Based on Middlebrook et al.63 Aerodyne ACSM Data
Acquisition and Analysis
Software

Aerodyne ACSM Data
Acquisition and Analysis
Software

59

P_QACSM_SMR* Hyytiälä (SMR) Q-ACSM 0.52 Aerodyne ACSM Data
Acquisition and Analysis
Software

Aerodyne ACSM Data
Acquisition and Analysis
Software

70

Table 4. Description of aerosol chemical data acquisition for each site including the instrument type,
collection efficiency, acquisition and data processing software and references from the literature.
*These instruments participated in the 2013 intercomparison59.
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software, including the collection efficiency used to create the data record. References describing data
acquisition and processing following the protocols are included. Protocols for chemical composition
datasets are named ‘P_typeofmassspectrometer_nameofstation’.

Station specific remarks
CES. Contrary to the other CES instruments, the Q-ACSM sampled from a 5 m high inlet with a PM2.5

cyclone from the top of the facility building. The inlet line was 10 m long, the total flow was 9 l min − 1 and
the sample air was dried to o40% RH. A site specific routine for the determination of the CE was applied
based on ref. 18.

FIK. The ACSM was connected to the PM10 inlet and sampled aerosol through a PM1 sharp cut cyclone
(BGI Inc.) at 3.5 l min− 1. The aerosol was dried to o40% before analysis with a nafion drier (TROPOS
custom-built). The applied CE was 0.5 for all measured species. The RIE for NH4

+ was set to 5.15 derived
from the ammonium nitrate monodisperse aerosol calibration process, while RIE for
SO4

2− was set to 0.6, estimated by the fitting approach proposed by ref. 65. For all other species the
default RIE values were used. The concentrations of non-sea salt particulate sulfate and ammonium were
validated against results from concurrent PM1 filter data analyzed with ion chromatography66.

JFJ. On Jungfraujoch, a ToF-ACSM was operated67 which was connected to the main aerosol inlet and
with a bypass flow of 3 l min− 1 in addition to the instrument’s inlet flow of 0.14 l min− 1. The larger
sample flow resulted from replacing the standard critical orifice of 100 μm in the inlet lens system with a
130 μm orifice to keep the mass flow similar to standard temperature and pressure operation conditions.
Flow rate calibrations as well as the IE of nitrate and RIEs of sulfate and ammonium were carried out
monthly or bimonthly and average values were applied to the data67. The collection efficiency was
determined to be CE= 1 based on comparison of the submicrometer aerosol mass derived by the SMPS
and equivalent black carbon data from an optical measurement67.

MHD. The HR-ToF-AMS was operated as described in ref. 68 behind the community sampling system.
The concentrations of non-sea salt particulate sulfate, ammonium and nitrate were validated against
results from ion chromatography68. Different from other locations, at MHD also the contribution of sea
salt to the submicrometer aerosol mass is reported. The quantification is based on ref. 69.

SMR. The Q-ACSM was operated 20 m away from the CCNC and DMPS at SMR, sampling from 4m
above ground behind a PM2.5 cyclone to prevent dust and pollen from entering70. The inlet was a 1 cm
outer diameter stainless steel tube operated with a 3 l min− 1 bypass flow. The aerosol sample air was
dried. The CE is estimated yearly from a correlation study with the particle mass derived from the
number size distribution measurements, taking into account black carbon concentrations, measured
separately at SMR. Organic aerosol mass is verified via comparison with a semi-continuous organic
carbon/elemental carbon analyzer71 (Sunset Laboratory Inc.).

There are no specific remarks for MEL.

Code availability
Table 6 provides information on the custom codes used to acquire and process the datasets.

Data Records
The aggregated data files (Data Citation 1) are available in standardized Network Common Data Form
from figshare. A link to the data is also provided on the ACTRIS secondary data portal: http://actris.nilu.
no/Content/Products. The files are self-explanatory as they contain all data and metadata, i.e. information
about the global attributes, dimensions and variables. A large number of data fields is included within the
global attributes in each file. Many were adopted from the National Center for Atmospheric Research
Research Aviation Facility file format (http://www.eol.ucar.edu/raf/software/netCDF.html) such as
coordinates, time coverage, etc. Additional fields include date of file creation, contact information,

Species Q-ACSM57 ToF-ACSM58 HR-ToF-AMS54

ammonium 201 23 5

organics 105 26 3

sulfate 17 2 1

nitrate 9 3 o1

chloride 8 1 2

Table 5. One-hour detection limits for various aerosol mass spectrometers types. Units are in ng m− 3

and detection limits have been recalculated to the hour, based on equation 4 in ref. 58.
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acknowledgment recommendations, type of platform, instrument information, measurement uncertainty,
type of environment sampled, major atmospheric influences (e.g., biomass burning) etc. Table 7 lists the
set of attributes (n= 47). The time stamp is standardized to seconds since 1 January 1970 UTC (UNIX
time). Aerosol variable names are also standardized. All records are fully quality-controlled as described
in section ‘Technical Validation’, invalid data have been removed and all missing data are flagged.

All data are stored in files separated by station and measurement instrument. All concentrations are
corrected to standard temperature and pressure and the time stamp is the end of the averaging interval in
UTC. In the NetCDF files, the version number and revision date are included.

The 11 data records from cloud condensation nuclei measurements can be found in files named
‘CCN_Instrument_Project[Database]_PlatformType_PlatformName[StationName]_Startdate_Enddate.
nc’.

Table 2 describes the measurement methods, operational parameters and applied codes to create the
CCN time series. The file contains the time series of CCN concentrations in cm− 3 at each available
supersaturation.

The 11 data records for particle size distribution measurements are available separately for each
station named ‘NSD_Instrument_Project[Database]_PlatformType_PlatformName[StationName]_Start-
date_Enddate.nc’. Table 3 provides details on the measurement instruments, operational parameters and
applied codes to produce the size distribution time series. The files contain the time series of particle
concentrations per size bin in the format dN/dlog10(dp) in cm− 3, with N being the particle number
concentration and dp the bin diameter. The midpoint diameter of each size bin is provided in nm. From
the size distribution the total number of particles was calculated and is provided in the files named
‘N_Instrument_Project[Database]_PlatformType_PlatformName[StationName]_Startdate_Enddate.nc’.

Chemical composition data from 6 stations is available in separate files named ‘Comp_Instrument_-
Project[Database]_PlatformType_PlatformName[StationName]_Startdate_Enddate.nc’. Table 4 lists the
instrument types, operational parameters, applied codes and collection efficiencies to create the time
series. The mass concentrations in μg m− 3 for each chemical component are provided.

Most of the primary measurement data included in the aggregated NetCDF data records are archived
in the primary (no harmonization of data as applied in this work) data repository EBAS (http://ebas.nilu.
no) in Nasa Ames 1001 format, the required format for ACTRIS and GAW-WDCA data. The files also
include comprehensive metadata and quality measures defined within ACTRIS and GAW-WDCA. All
submissions of ACTRIS and GAW-WDCA near-surface data are identified in the EBAS database with a

Item link Accessibility

All TROPOS custom codes (CCNC
and SMPS)

Available upon request from the
corresponding authors

BRW CCNC analysis code Available upon request from the
corresponding authors

All CES custom codes (CCNC,
SMPS)

Available upon request from the
corresponding authors

All FIK customs codes (CCNC,
SMPS, ACSM)

Available upon request from the
corresponding authors

All MHD custom codes/programs http://macehead.org/ Available upon request from the
corresponding authors

All PUY custom codes (CCNC,
SMPS)

Available upon request from the
corresponding authors

All SEO custom codes (CCNC,
SMPS)

Available upon request from the
corresponding authors

All SMR custom codes (CCNC,
SMPS)

Available upon request from the
corresponding authors

All VAV custom codes (CCNC,
SMPS)

Available upon request from the
corresponding authors

All PSI custom codes (CCNC
Toolkit, SMPS Toolkit)

Available upon request from the
corresponding authors

Scanning Mobility CCN Analysis
Tool

http://nenes.eas.gatech.edu/Experiments/SMCA.html

Aerodyne Q-ACSM acquisition and
analysis software

https://sites.google.com/site/ariacsm/ Registration and login required

Aqility ToF-ACSM acquisition
software

www.tofwerk.com License purchase required

Tofware for IGOR Pro for Q- and
ToF-ACSM data analysis

www.tofwerk.com License purchase required

HR-ToF-AMS data acquisition
software

https://sites.google.com/site/tofamsdaq/ From indicated webpage,
registration and login required

AMS data analysis tools http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html From indicated webpage,
registration and login required

Table 6. Availability of data acquisition and processing codes.
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Attribute name Example content

Additional_Data_Info measured supersaturations spelled out as ‘0.1, 0.2, 0.3 %’

Altitude refers to section of the atmosphere, e.g., free troposphere

Calibration_Material_Method refers e.g., to an SOP

Cutoff_High_Diameter 40 μm

Cutoff_Low_Diameter 20 nm

Data_Contact Email address

Data_Info activation as CCN under various supersaturations, number concentration in
cm− 3

Data_Source EBAS

Environment Europe, alpine, high-altitude, 40% in free troposphere

Error_Absolute NaN

Error_Bias_Correction details described in data descriptor

Error_Characteristics counting error, accuracy of supersaturation determination from calibration,
inlet flow

Error_Relative supersaturation± 10 %, details described in data descriptor

File_ID Syn_JFJ_CCN_2016-09-19.v1

File_N_Var NaN

File_Var_Name NaN

Gassp Version 1.0

GASSP Version= * 1.0

Inlet_Sample_Flow_Dry yes

Institute Paul Scherrer Institute

Instrument DMT cloud condensation nuclei counter

Measurement_Mode monitoring

Model_Serial_Number DMT CCN-100 model

Modification_Date 2016-09-16 21:16:45.892727

Other_Inlet_Info total aerosol 20 nm to 40 μm; Weingartner et al.23, J. Geophys. Res., 104(D21),
26,809 to 26,820

PI Name 1, name 2,…, name n

Platform station

Platform_Name Jungfraujoch

Project_Name ACTRIS

Project_URL see data descriptor

pT_Conditions STP

Sampling_Conditions 40 % in free troposphere

Season all

Size_Definition none

Software Version= write_EBAS_ACTRIS_level1_from_level0.py

Software_Version write_option_files_EBAS_ACTRIS.py

Species_Short_Name total

Station_Altitude 3580

Station_ID GAW ID JFJ

Station_Lat 49.33

Station_Lon 7.59

Time_Coordinate NaN

Time_Coordinate= Time

Time_Coverage_End= 31.12.2014 23:00

Time_Coverage_Start= 01.01.2012 00:00

Time_Stamp_Info UTC, dd.mm.yyyy hh.mm.ss

Variable_Class CCN

Table 7. List of attributes contained in the file metadata. *GASSP refers to the Global Aerosol Synthesis
and Science Project through which the data were formatted to netCDF.
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Sample File Name Authors latest version on
EBAS primary
database

BRW_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Barrow_NOAA_BRW_Observatory_20.07.2007_25.06.2008.nc Jefferson, A., Sheridan, P., Ogren, J.

CES_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Cesar_tower_Cabauw_ACTRIS_01.01.2012_31.12.2014.nc Frumau, KFA, Kos, G.,Hensen, A.

FIK_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Finokalia_ACTRIS_01.01.2014_31.12.2015.nc Bougiatioti, A., Mihalopoulos, N.,
A., Nenes, A.

JFJ_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Jungfraujoch_ACTRIS_01.01.2012_31.12.2014.nc Hammer, E., Schmale, J., Motos, G.,
Gysel, M.

link

MEL_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Melpitz_ACTRIS_01.01.2012_31.12.2014.nc Henning, S., Stratmann, F. link

MHD_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Mace_Head_ACTRIS_01.01.2011_31.12.2012.nc Ovadnevaite, J., O’Dowd, C.

NOT_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_NOTO_Groundbased_Research_Observatory_nan_01.05.2014_28.02.2015.nc Iwamoto, Y., Kinouchi, K., Matsuki,
A.

PUY_CCN CCN_mini_cloud_condensation_nuclei_counter_station_Puy_de_Dome_ACTRIS_01.01.2014_01.01.2015.nc Picard, D., Sellegri, K.

SEO_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Seoul,_South_Korea_nan_01.01.2006_31.12.2010.nc Yum, S.S., Park, M.

SMR_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Smear_II_station,_Hyytiälä_ACTRIS_01.01.2012_31.12.2014.nc Paramonov, M., Aalto, P.,
Keskinen, H., Petäjä, T., Kulmala,
M.

link

VAV_CCN CCN_DMT_cloud_condensation_nuclei_counter_station_Vavihill_ACTRIS_20.12.2012_11.11.2014.nc Krisstenson, A., Wittborn, C.,
Svenningsson, Frank, G., B.,
Swietlicki, E.

link

BRW_SIZE NSD_custom_built_scanning_mobility_particle_sizer_station_Barrow_NOAA_BRW_Observatory_20.07.2007_25.06.2008.nc Birmili, W., Jefferson, A., Ogren, J.

BRW_Ntot N_custom_built_scanning_mobility_particle_sizer_station_Barrow_NOAA_BRW_Observatory_20.07.2007_25.06.2008.nc Birmili, W., Jefferson, A., Ogren, J.

CES_SIZE NSD_custom_built_scanning_mobility_particle_sizer_station_Cesar_tower_Cabauw_ACTRIS_01.01.2012_31.12.2014.nc Henzing, J.S. link

CES_Ntot N_custom_built_scanning_mobility_particle_sizer_station_Cesar_tower_Cabauw_ACTRIS_01.01.2012_31.12.2014.nc Henzing, J.S.

FIK_SIZE NSD_custom_built_scanning_mobility_particle_sizer_-TROPOS_type_station_Finokalia_ACTRIS_01.01.2014_31.12.2015.nc Kalivitis, N., Mihalopoulos, N. link

FIK_Ntot N_custom_built_scanning_mobility_particle_sizer_-TROPOS_type_station_Finokalia_ACTRIS_01.01.2014_31.12.2015.nc Kalivitis, N., Mihalopoulos, N.

JFJ_SIZE NSD_custom_built_scanning_mobility_particle_sizer_station_Jungfraujoch_ACTRIS_01.01.2012_31.12.2014.nc Herrmann, E., Bukowiecki, N.,
Collaud Coen, M., Gysel, M.

link

JFJ_Ntot N_custom_built_scanning_mobility_particle_sizer_station_Jungfraujoch_ACTRIS_01.01.2012_31.12.2014.nc Herrmann, E., Bukowiecki, N.,
Collaud Coen, M., Gysel, M.

MEL_SIZE NSD_custom_built_tandem_scanning_mobility_particle_sizer_station_Melpitz_ACTRIS_01.01.2012_31.12.2014.nc Sonntag, A., Wiedensohler, A. link

MEL_Ntot N_custom_built_tandem_scanning_mobility_particle_sizer_station_Melpitz_ACTRIS_01.01.2012_31.12.2014.nc Sonntag, A., Wiedensohler, A.

MHD_SIZE NSD_custom_built_scanning_mobility_particle_sizer_station_Mace_Head_ACTRIS_01.01.2011_31.12.2012.nc Ovadnevaite, J., O’Dowd, C. link

MHD_Ntot N_custom_built_scanning_mobility_particle_sizer_station_Mace_Head_ACTRIS_01.01.2011_31.12.2012.nc Ovadnevaite, J., O’Dowd, C.

NOT_SIZE NSD_scanning_mobility_particle_sizer_station_NOTO_Groundbased_Research_Observatory_nan_01.05.2014_28.02.2015.nc Iwamoto, Y., Kinouchi, K., Matsuki,
A.

NOT_Ntot N_scanning_mobility_particle_sizer_station_NOTO_Groundbased_Research_Observatory_nan_01.05.2014_28.02.2015.nc Iwamoto, Y., Kinouchi, K., Matsuki,
A.

PUY_SIZE NSD_custom_built_differential_mobility_particle_sizer_station_Puy_de_Dome_ACTRIS_01.01.2014_01.01.2015.nc Picard, D., Sellegri, K., Nicolas, J. link

PUY_Ntot N_custom_built_differential_mobility_particle_sizer_station_Puy_de_Dome_ACTRIS_01.01.2014_01.01.2015.nc Picard, D., Sellegri, K., Nicolas, J.

SEO_SIZE NSD__scanning_mobility_particle_sizer_station_Seoul,_South_Korea_nan_01.01.2006_31.12.2010.nc Yum, S.S., Park, M.

SEO_Ntot N__scanning_mobility_particle_sizer_station_Seoul,_South_Korea_nan_01.01.2006_31.12.2010.nc Yum, S.S., Park, M.

SMR_SIZE NSD_custom_built_differential_mobility_particle_sizer_station_Smear_II_station,_Hyytiälä_ACTRIS_01.01.2012_31.12.2014.nc Aalto, P., Keskinen, H., L., Petäjä,
T., Kulmala, M.

link

SMR_Ntot N_custom_built_differential_mobility_particle_sizer_station_Smear_II_station,_Hyytiälä_ACTRIS_01.01.2012_31.12.2014.nc Aalto, P., Keskinen, H., L., Petäjä,
T., Kulmala, M.

VAV_SIZE NSD_custom_built_twin_differential_mobility_particle_sizer_station_Vavihill_ACTRIS_20.12.2012_11.11.2014.nc Krisstenson, A., Wittborn, C.,
Svenningsson, Frank, G., B.,
Swietlicki, E.

link

VAV_Ntot N_custom_built_twin_differential_mobility_particle_sizer_station_Vavihill_ACTRIS_20.12.2012_11.11.2014.nc Krisstenson, A., Wittborn, C.,
Svenningsson, Frank, G., B.,
Swietlicki, E.

CES_chemistry Comp_quadrupol_aerosol_chemical_speciation_monitor_station_Cesar_tower_Cabauw_ACTRIS_01.01.2012_31.12.2014.nc Schlag, P., Frumau, A., Holzinger,
R., Kiendler-Scharr, A.

link

FIK_chemistry Comp_quadrupol_aerosol_chemical_speciation_monitor_station_Finokalia_ACTRIS_01.01.2014_31.12.2015.nc Stavroulas, I., Bougiatioti, A.,
Mihalopoulos, N.

link

JFJ_chemistry Comp_time-of-fligh_aerosol_chemical_speciation_monitor_station_Jungfraujoch_ACTRIS_01.01.2012_31.12.2014.nc Fröhlich, R. link

MEL_chemistry Comp_quadrupole_aerosol_chemical_speciation_monitor_station_Melpitz_ACTRIS_01.01.2012_31.12.2014.nc Poulain, L. link

MHD_chemistry Comp_high_resolution_time-of-fligh_aerosol_mass_spectrometer_station_Mace_Head_ACTRIS_01.01.2011_31.12.2012.nc Ovadnevaite, J., O’Dowd, C. link

SMR_chemistry Comp_quadrupole_aerosol_chemical_speciation_monitor_station_Smear_II_station,_Hyytiälä_ACTRIS_01.01.2012_31.12.2014.nc Heikkinen, L., Äijälä, M., Keskinen,
H., Aalto, P., Petäjä, T., Kulmala,
M., Ehn, M.

link

Table 8. List of file names within Data Citation 1 and their authors. Links are provided for the
corresponding primary datasets on the EBAS data base where available. ‘Primary dataset’ in this context means
that the data were submitted to EBAS prior to creating this combined dataset. The primary data might have a
different time resolution and a different temporal coverage.
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unique dataset identity number (ID-numbers). This makes potential changes and revised versions
traceable; the latest revision date is included in the data files. The ID-numbers for all data available
through EBAS that are also used in this aggregated data record are available upon request from EBAS.
The link to the last version of data is always available online through the EBAS web interface and the
ACTRIS data portal. Links to primary datasets archived in EBAS are included in Table 8 where available.

Technical Validation
The quality of the datasets was assured and assessed based on the three steps described below.

First, all data originators confirmed that they applied SOPs and recommendations provided by
ACTRIS (available after registration at http://actris.eu/) or equivalent standards or user community
established best practices. An overview of the ACTRIS SOPs is included in the ACRTIS Data
Management Plan: (http://www.actris.eu/Portals/46/Publications/DataCentre/ACTRIS_Data_Manage-
ment_Plan.pdf). The main points of each SOPs and recommendations are described in the ‘Methods’
section. ACTRIS provides documents for the operation of aerosol inlets, and operation and data
processing of aerosol size distribution and cloud condensation nuclei measurements. ACTRIS
recommendations are based on or complementary to the World Meteorological Organization Global
Atmosphere Watch, the Atmospheric Composition Change: a European Network, the European
Monitoring and Evaluation Program and the European Supersites for Atmospheric Aerosol Research
recommendations. The recommendations are harmonized across the various frameworks. Aerosol
chemical composition measurements and data analysis followed procedures as described by ref. 59 in the
case of the Q-ACSM, ref. 58 for the ToF-ACSM, and the best practice compendium for ACSM types as
described here: https://www.psi.ch/acsm-stations/acsm-best-practice. Within the user community of the
HR-ToF-AMS established procedures exist as well (http://cires1.colorado.edu/jimenez-group/wiki/index.
php?title=ToF-AMS_Main). In addition, several of the particle mobility size spectrometers and aerosol
mass spectrometers have participated in intercomparison exercises. Those instruments are marked with
‘*’ in Table 3 and Table 4. Deviations from the general recommendations are described in the ‘Methods’
section if applicable.

Second, in the case of not having published the data in a peer-reviewed journal, each originator
checked their data manually for plausibility and time periods that do not reflect ambient values
(e.g., removal of calibration periods or local contamination) as recommended by the World Data Center
for Aerosols (WDCA: http://www.gaw-wdca.org/SubmitData.aspx). In case of prior publication, quality
assurance has been described in the references as listed in Tables 3,4,5 and 9. Note that for all aerosol
chemical data the instruments have either participated in an intercomparison exercise or the dataset has
been published already. Table 9 includes also information on whether data were already publicly available
on the EBAS data base as a level 1 dataset. Level 1 data means that all steps in measuring and data
processing are quality assured, invalid data have been removed and the data are provided in standard
temperature and pressure and in native time resolution (http://www.gaw-wdca.org/SubmitData/
AdvancedDataReporting/Level1.aspx).

Third, even when operators follow SOPs and recommendations as closely as possible there is always a
chance of instrumental drifts or minor malfunctioning. This can especially be the case for monitoring
type observations where instruments are not constantly overseen and visits occur only several times a
year. Hence, we here provide general quality check metrics. We specifically emphasize CCN data checks
since there has not yet been an intercomparison or calibration exercise for this type of instrument. For the
chemical composition data, we summarize the validation results from the literature since all instruments
participated either in an intercomparison exercise or datasets have already been published.

CCN and size distribution data
For all the time series of CCN data it was checked that the number concentration of CCN at higher
supersaturations exceeded that of lower supersaturations. To validate that the number of activated
particles is determined correctly, we compared total CCN concentrations at 1.0% supersaturation to the
total particle number concentration determined from the size distribution measurements. At 1.0%
supersaturation most particles activate and the concentrations from the two instruments are comparable
under certain constraints.

Figure 4 compares the integrated particle size distributions with the counted activated particles for all
instances in which the contribution of particles o30 nm (N30) is at most 10% (middle panels) and
between 10 and 20% (right panels). When many small particles are present, a match on the 1:1 line is not
expected, since these small particles might be below the activation diameter and are hence not counted by
the CCNC. The black solid line indicates the perfect match. At most stations, many points lie within the
dashed lines denoting the propagated 10% counting error of both instruments (22.4% in total) that is
generally expected38,50. However, in many cases there is also a potential bias towards undercounting CCN
as can be seen in the left panels that show the median, interquartile range, 10th and 90th percentiles as
well as points beyond the 2.5th and 97.5th percentiles for the ratio of total particle number to activated
particles when the contribution of N30 is smaller than 10% (N30o10%/CCN1.0). The box in each left panel
includes information on the number of points (pnts), the geometric median (GeoMean) and the
geometric standard deviation (GSD). The grey dashed lines indicate the 22.4% interval around the 1:1
line. The bias is only potential, because particles with a diameter slightly larger than 30 nm might not
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activate either, as well as larger particles that are non- or only slightly hygroscopic. This means that values
of the ratios N30o10%/CCN1.0 presented here can only be partly indicative of the accuracy of the
measurements. It is important to note, that all slopes are larger than one meaning that the CCNC
measurements did not overestimate the particle concentration at any of these stations. The width of the
interquartile range or the geometric standard deviation (because data are not necessarily normally
distributed) can show how reliably and comparably the two instruments operated over time. For example,
if one of the instruments drifted, the interquartile range or GSD would become larger. These two
parameters would, however, not be impacted by a systematic stable bias in either one or both
instruments.

At locations with relatively high contributions of small particles such as SMR and VAV, a larger
spread can be observed together with a higher N30o10%/CCN1.0 ratio, which is expected. Note that at
VAV only for a very small number of instances (86) the contribution of N30 is below 10% and therefore
the statistical analysis of this quality check is less robust than at other stations. At FIK, where also a high
N30o10%/CCN1.0 ratio is observed, it has to be taken into account that larger mineral dust particles or
biomass burning aerosol are present72 which are less hygroscopic and may impair the comparison.

At JFJ, as mentioned in the ‘Methods’ section the CCN concentrations were underestimated by about
40% in 2012 and overestimated by roughly 30% in 2013. From a detailed comparison of the SMPS with a
CPC it is known that the bias stems from the CCNC. In addition, the under- and overestimations are

Station CCNC Mobility particle spectrometer Aerosol mass spectrometer

Inter-
comparison*

publication available in
EBAS†

Intercomparison† publication available
on EBAS‡

Inter-
comparison

publication available
in EBAS‡

BRW n.a. n.a. no instrument

CES n.a. participated, 2009 (ref. 50) yes passed, Dec.
201359

yes

FIK n.a. yes June 2009 on-site auditing
September 2013 passed lab

intercomparison
January 2016 passed lab

intercomparison

yes with
collocated
PM1 filter

data

yes

JFJ n.a. participated, 2009 (ref. 50)
passed, Jul. 2011, May 2014

yes does not
apply

(prototype
instrument)

yes

MEL n.a. yes (ref. 50), 2011 good on-site
intercomparison, May/Jun.

2013 passed lab
intercomparison, Jul. 2013
installation of new TSMPS
after passed intercomparison,
Aug. 2013 removal of old

TDMPS, agreement between
old and new within required
boundaries, 2015 passed on-

site intercomparison

yes passed, Dec.
2013 59, and
Mar. 2016

yes

MHD n.a. participated, 2009 (ref. 50)
recommendations for

improvement received Oct.
2012

yes does not
apply

(different
instrument

type)

68,§ yes

NOT n.a. n.a. data not yet
processed

PUY n.a. passed, Oct. 2013 yes no instrument

SEO n.a. n.a. no instrument

SMR n.a. yes participated, 2009 (ref. 50)
passed, May 2016

yes passed, Dec.
2013 (ref. 59),

and Mar.
2016

yes

VAV n.a. passed, Oct. 2013 yes no instrument

Table 9. Overview of datasets that have already been published, that were obtained from instruments
that passed an intercomparison exercise at the World Calibration Center for Aerosol Physics
(WCCAP) or that were obtained from instruments that were compared to an instrument that passed
an intercomparison exercise. Note that intercomparisons for CCNCs were not introduced before 2016
(denoted as n.a.= not available).
*the first CCNC intercomparison will take place in fall 2016 at the European Center for Aerosol Calibration.
†reports are available from the European Center for Aerosol Calibration (http://www.actris-ecac.eu/contact.
php).
‡as of 24 August 2016 as a primary dataset on http://actris.nilu.no/, archived in EBAS.
§ref. 68 describes the data quality and instrument reliability for the site, but does not discuss the dataset
included here as it covers an earlier time period.
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consistent over the range of applied supersaturations which suggests a systematic quantification error. For
that reason, the dataset has been corrected as shown for 1% supersaturation in Fig. 4.

At CES the CCN number concentration is strongly underestimated. The fact that many small particles
are present at this station can only partly explain the bias. Examination of the bias at various
supersaturations revealed that the underestimation is a function of the applied supersaturation. At higher
supersaturations the underestimation becomes larger suggesting that small particles, activating at higher
supersaturation, were not sufficiently accounted for by the CCNC. Not being due to insufficient droplet
growth to the detection limit of 1 μm, the bias most likely owes to particle losses in the sampling line
leading to the CCNC. Since this cannot be accounted for across the various supersaturations, the dataset
has not been corrected. Users must hence apply caution when using and interpreting the data.
Discrepancies are as large as a factor of 2.8 in the median.

At stations with monodisperse data not including 1% supersaturation, a different quality check
approach was used. Figure 5 (right panels) shows the integrated particle number size distribution above
the diameter indicated in the subscript versus the integrated CCN number size distribution above the
same diameter at a certain supersaturation. The selected diameter is larger than the expected activation
diameter while at the same time the number of externally mixed non-hygroscopic particles is very low
since these types of particles can impair the comparison. Supersaturations and cut-off diameters were
chosen based on ref. 73 for PUY and ref. 29 for NOT. For Melpitz, a supersaturation of 0.3% was chosen
as it represents best the supersaturation at which local clouds form. Based on long-term aerosol number
size distribution measurements at the site26,27, the accumulation mode was found to reach down to 80 nm
which was hence chosen as lower cut-off diameter. At PUY 84% of the data lie within the expected 22.4%
counting uncertainty range. At Melpitz 60% lie within this range and at NOT 45%. Deviations from the
1:1 line and a spread in the data are expected due to varying ambient conditions in which the chosen cut-
off diameter does not represent the actual activation diameter.

A quality check for the data from SEO in the forms presented above is not possible as the maximum
supersaturation was 0.8% and measurements were polydisperse. Hence we plot the CCN0.8 number
concentration against the integrated particle number size distribution larger than 43, 49 and 60 nm,
corresponding to a hygroscopicity parameter kappa of 0.3, 0.2 and 0.1, respectively (Fig. 6). A value of 0.3
has been identified as a global average for continental and urban particles74, while several other studies
found kappa to be around 0.2, and even as low as 0.1, in urban environments with fresh emissions75–77.
For Seoul, a low kappa value of 0.1 seems realistic as the corresponding size cut-off yields the best
correlation between the datasets and the slope of the linear fit is closest to the 1:1 line within the tested
range, indicating that the activation diameter is near 60 nm. The width of the interquartile range is
comparable to those of other stations with polydisperse measurements, indicating that the instruments
ran reliably.

Aerosol chemical composition
For all Q-ACSM data the uncertainty in determining the total non-refractory submicrometer mass is 9%,
while for the individual chemical components it is 15% for nitrate, 28% for sulfate, 36% for ammonium
and 19% for organic matter59. Chloride concentrations were mostly near the detection limit and are not
reported except for MHD, CES and FIK. For CES, correlation of chloride from the Q-ACSM to a
reference instrument is, however, low with R= 0.49 (ref. 17). At FIK, Q-ACSM concentrations for
particulate sulfate and ammonium were compared to collocated PM1 filter measurements and deviated
on average 19 and 15%, respectively. Particulate organics concentrations deviated on average 10% from
filter based measurements66. The ToF-ACSM data at Jungfraujoch represents most of the time >80% of
the total submicrometer particle mass derived from the SMPS data67. At MHD, the HR-ToF-AMS mass
concentrations of non-sea salt sulfate, ammonium and nitrate were compared against external datasets
and showed good agreement68.

Usage Notes
The standardized NetCDF format allows for quickly loading the data into software commonly used in the
atmospheric science community including the freely available software ‘R’. For more details on the format
and how to access NetCDF data see http://www.unidata.ucar.edu/software/netcdf/. The files are self-
explanatory as they contain all metadata and data.

The time series of the variables are designed such that they can be used without further processing. To
derive the particle number concentrations from the size distributions, the area of the curve of dN/dlog(D)
versus the bin diameter must be integrated taking the logarithm (log10) of the bin spacing into account:

Ntot ¼
Z Dmax

Dmin

dNðDÞ
dlogD

d log D

With Ntot= total particle number concentration, dN= number of particles per size bin, D= bin diameter.
Total number concentration data is provided so users can double check their integration methods.
Depending on the specific purpose, the data can also be treated with a variety of statistical analysis
methods. However, users must keep in mind the uncertainties discussed in the ‘Technical Validation’
section. To determine whether atmospheric conditions were within the expected variability or exceptional
for the available data record periods, we recommend users to work with complementary data such as
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ERA-Interim (a global atmospheric reanalysis product available from http://apps.ecmwf.int/datasets/) or
similar products. For some locations, complementary data on aerosol optical properties or trace gas
species can be obtained from the EBAS database (http://ebas.nilu.no/).

We encourage users to utilize the data for the following purposes (this is a non-exhaustive list):

● Detailed understanding of aerosol properties: A synthesized analysis including all variables can be
produced in which aerosol characteristics can be explored and compared among different
environments (e.g., remote marine versus high-altitude), throughout various seasons and large scale

Figure 5. Monodisperse CCN data quality check for MEL, NOT and PUY (a), (b) and (c), respectively.

Right panels: scatter plots for CCN number concentration at a certain supersaturation versus the integrated

particle number from size distribution measurements greater than the indicated diameter in the subscript (in

nm). The black line denotes the 1:1 line and the dashed black lines indicate the range of expected uncertainty

from particle counting. Left panels: box and whiskers plots as explained in Fig. 4.
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weather patterns (e.g., Monsoon or Arctic Haze). Also, further variables can be calculated from the
datasets. For example, combining the size distribution data with the CCN number concentration, the
fraction of activated particles can be derived whereby a common lower cut-off diameter (e.g., 30 nm)
can be defined for maximal comparability between sites. Similarly, the particle diameter at which
particles activate can be calculated following the steps as described in detail in ref. 11. Also, the
hygroscopicity parameter κ of the bulk aerosol population can be determined, following the
instructions in ref. 14.

● Improving satellite data retrievals and model representation of cloud droplet formation: Recent
publications have shown that in-situ CCN data in combination with updraft information can be used
to develop and improve estimates of CCN or cloud droplet number concentration from satellite
observations1,78. The same data can be used to derive the direct sensitivity of cloud to aerosol
perturbations for model and satellite evaluation72,79, and to understand the relative contribution of
aerosol and dynamic parameters in the variability of droplet formation80.

● Evaluating models’ representation of aerosol properties: Recent work4,81 has shown how important in-
situ aerosol measurements are to help constrain the uncertainty in aerosol-cloud processes related to
radiative forcing. The dataset will allow the modelling community to test their results against particle
number size distributions, CCN number concentration and chemical composition. Comparing global
climate model output with measurements at this level of detail is necessary as the complex climate
models rely on these variables for climate projections. Models that focus more on the chemical and
microphysical aerosol processes as well as their transport in the atmosphere can also benefit from this
dataset. In particular, the ACSM dataset can be harnessed to evaluate models’ representation of
particulate organics using the volatility basis set or similar schemes. This dataset provides new data
covering full annual cycles, which makes more comprehensive comparisons possibly than in previous
efforts covering only very limited time periods82–89.
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