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Abstract

Anisotropy is an essential feature of phase-field models, in particular when
describing the evolution of microstructures in solids. The symmetries of the crys-
talline phases are reflected in the interfacial energy by introducing corresponding
directional dependencies in the gradient energy coefficients, which multiply the
highest order derivative in the phase-field model. This paper instead considers
an alternative approach, where the anisotropic gradient energy terms are re-
placed by a wavelet analogue that is intrinsically anisotropic and linear. In our
studies we focus on the classical coupled temperature - Ginzburg-Landau type
phase-field model for dendritic growth. For the resulting derivative-free wavelet
analogue existence, uniqueness and continuous dependence on initial data for
weak solutions is proved. The ability to capture dendritic growth similar to the
results obtained from classical models is investigated numerically.

1 Introduction

Since at least the late 1980s, wavelets have been the focus of intensive research and
have developed into an indispensable tool for signal and image processing. Wavelet
compression is used, for example, in the JPEG2000 image compression standard.
From the vast literature on the mathematical theory of wavelets, we mention only the
ten lectures by Daubechies [7] which provide a classical introduction to the field and a
more recent overview by Mallat [18]. Wavelets have also been explored for their use in
numerical approximation of PDEs and operator equations [6], through Galerkin type
methods [14], in wavelet collocation methods [21, 22] or as a tool to determine sparse
grids for other common discretisation methods [5, 13, 15, 19].

A completely new role of wavelets in the context of PDEs has recently been introduced
by Dobrosotskaya and Bertozzi [8–10] in applications from image processing. The key
idea is to replace the differential operators in a Ginzburg-Landau free energy formu-
lation by a pseudo-differential operator defined in wavelet space so that a Besov or
Besov type semi-norm is used instead of the “square-gradient” H1 semi-norm. In the
Euler-Lagrange or steepest gradient descent equation the Laplacian is correspond-
ingly replaced by a wavelet analogue. The new approach, intended to improve results
for sharper image reconstructions, also introduced anisotropy of the solutions with
a four- or eight-fold symmetry. In particular, the authors determined and proved the
Γ-limit for the new energy [2, 9] and showed that it exhibits a square anisotropy of
Wulff shape [4, 12, 25], as well as that the “derivative-free” wavelet analogue of the
Allen-Cahn equation is well posed [10]. In the work presented here, we will make use
of this idea for modeling the anisotropic patterns that typically arise in the evolution of
microstructure in solids.
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An area where anisotropy is essential is crystal growth and solidification. Many as-
pects of solidification and crystal growth has been well studied throughout the last
decades, the large literature and remeining open problems in this research field can
be found in the review by e.g. Glicksman [11]. One of the most widely studied model
equations of dendritic recrystallisation goes back to Kobayashi’s work [17] which intro-
duces a phase-field model where the gradient terms has an anisotropic weight γ that
depends on the spatial gradient of the phase-field variable ∇u, specifically, a function
of the angle θ between the direction of ∇u and a reference direction, usually taken
to be the x-axis. A choice typically used in the literature for the interface energy, that
will also be used here, is γ(θ) = 1 + δ cos(nθ) , where n > 0 is an integer parameter
that leads to an n-fold symmetry and δ ≥ 0 is chosen so that for weak to moderate
anisotropy γ(θ) + γ′′(θ) (with ′ = d/dθ) is strictly positive for all θ.

This type of anisotropic weighting of the gradients has been extensively investigated,
e.g. [16, 24], also as part of models using coupled systems of PDES, for which for
example existence of solutions was shown in [3]. The model has also been used to
develop and improve numerical methods, starting with Kobayashi’s own work [17].
Recently a study on a finite element method applied to a very similar model has
been carried out [1], which in addition to describing a stable scheme also gives and
overview of various numerical approaches for phase-field models and their sharp in-
terface limits.

Here, we introduce instead for the leading order derivative a wavelet analogue along
the lines of Dobrosotskaya and Bertozzi [8–10]. We show that the new model of cap-
turing dendritic growth similar to Kobayashi’s original model for the case of a four-fold
symmetry. While the latter is nonlinear in the highest derivative terms, the proposed
model is derivative free in the phase-field variable. The new wavelet term is linear and
has a simple form in wavelet space similar to the diagonal representation of differen-
tial operators in Fourier space. As a consequence, the mathematical analysis as well
as numerical approaches for the new PDE’ models are expected to simplify.

The paper is structured as follows. We begin with a formulation of both models in
Section 2, where we also summarise the essential notions about wavelets and Besov-
type norms and also define the wavelet analogue Laplacian that we use. In section 3,
we prove well-posedness, in particular existence and uniqueness.

Results from numerical experiments that systematically explore the evolution of anisotropy
in these models and comparisons to the results of classical models are discussed in
section 4. Starting with limiting and simpler special case, the anisotropic Allen-Cahn
equation, we first investigate the different scaling behaviours of the evolution the orig-
inal anisotropic Allen-Cahn and its wavelet analogue. Then for the full recrystallisation
model the dendritic morphologies are dicussed. Finally, in section 5, we summarise
our conclusions and give an outlook on implications and further directions of research.
The generality of the new modelling paradigm will be discussed throughout this work.

2 Dendritic recrystallisation: A wavelet-based model

Kobayashi [17] introduced a model that couples an anisotropic phase-field with a heat
equation to describe recrystallisation from a melt and the evolution of dendritic pat-
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terns similar to those observed in experiments. We have two fields, the phase field
u(x, t) which is 0 and 1 in the pure liquid and solid phase, respectively, and the tem-
perature field T (x, t), where x = (x, y) ∈ Ω ≡ [0, 1]2 are the spatial variables and
t denotes time. For simplicity, we assume u and T to be 1-periodic in both x and y.
The evolution of the phase-field is given by a Ginzburg-Landau equation which follows
from the L2 gradient flow τut = −δE/δu of the free energy

E = E(u;A, ε,m) =
∫
ε

2
γ(θ)2|∇u|2 +

1

ε
W (u;m)dΩ , (1)

with the homogeneous free energy contribution

W (u;m) =
1

4
u2(u− 1)2 +m

Ç
1

3
u3 − 1

2
u2

å
. (2)

and the positive parameter ε � 1 that controls the width of the interface layer. The
variable θ = atan2(ux, yy) denotes the angle between the gradient of u and the x
axis, unless the gradient is zero, in which case we let θ = 0. For an isotropic system
γ is set to a constant, while in this paper, we typically consider a four-fold symmetry
by setting a specific choice for the interface energy

γ(θ) = 1 + δ cos(nθ) (3)

with n = 4, and where for weak to moderate accuracy δ > 0 is chosen so that
γ(θ) + γ′′(θ) (with ′ = d/dθ) is strictly positive for all θ. Thus, we have

τut = −ε ∂
∂x

(γγ′
∂

∂y
u) + ε

∂

∂y
(γγ′

∂

∂x
u) + ε∇(γ2∇u) +

1

ε
W ′(u;m) , (4)

where τ is a time scale (a small positive constant). This equation is coupled to the
heat equation for the temperature T

Tt = c∆T +Kut , (5)

by the dimensionless parameter K which determines the latent heat contribution from
the phase change at the interface, and by letting m depend on the temperature

m(T ) =
c1

π
arctan(c2(Te − T )) (6)

as in Kobayashi’s work. Notice that W and m have been carefully chosen so that
the W is always a double-well potential with minima occurring at u = 0 and u = 1
if c1 < 1, so that energy production or dissipation is negligible for pure phase and
therefore away from interfaces.

For the new wavelet-based model, we replace the gradient term with the nonlinear
factor by the Besov-type semi-norm,

E(u;B, ε,m) =
ε

2
|u|2B +

∫
1

ε
W (u;m)dΩ . (7)

so that the L2 gradient flow is now given by

τut = ε∆wu−
1

ε
Wu(u;m) , (8a)
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where ∆w is a wavelet analogue of the Laplacian, while the heat equation remains
unchanged,

Tt = c∆T +Kut . (8b)

The construction of | · |B and ∆w follows the work by Dobrosotskaya and Bertozzi and
for convenience to the reader it is summarised in the appendix A.

Remark Before we will show existence, uniqueness and well-posedness of the new
model (8) we like to point out some observations concerning thermodynamical consis-
tency of phase-field models. We begin with the introduction of the entropy functional
S based on its entropy density s

S =
∫
sdΩ =

∫
e− F
ϑ

dΩ . (9)

Here, ϑ is the absolute temperature, F is the free energy and e is the internal energy
density,

e = cpϑ+ L(1− u) , (10)

with the specific heat cp and enthalpy of fusion L, see for example [20]. For the free
energy we exploit the wavelet semi-norm, as F is given implicitly by the following
expression ∫

F (u)dΩ =
ε

2
|u|2B +

1

ε

∫
W (u;m)dΩ . (11)

For now we assume that W is defined as in (2), however, we set m = 6ϑ−ϑm
ϑm

and
ϑm is the melting temperature. The principle of entropy production then leads to the
coupled evolution equations

τut = − δ

δu

∫
FdΩ = ε∆wu−

1

ε
W ′(u;m) (12)

et = −∇M∇ δ

δe

∫
e

ϑ
dΩ = −∇M∇1

ϑ
= ∇M

ϑ2
∇ϑ . (13)

By setting M = cpϑ
2, T = ϑ/ϑm and insertion of (10) into the second equation one

deduces

τut = ε∆wu−
1

ε

Ç
−u3 +

3

2
u2 − 1

2
u) + 6(T − 1)(u− u2)

å
(14)

1

θ2
m

Tt = Kut +∇2T . (15)

We expressed the system in terms of the nondimensional temperature T and used
K = L/(cpϑ

2
m), τ̃ = 1/θ2

m. In the following simulations we will use a different form of
m as it has been proposed by Kobayashi [17]. He introduced the nonlinearity m(T ) =
α
π

arctan(β(T − Te)). Here, with the nondimensional critical temperature Te = 1 one
chooses β > 0 and α < 1 to guarantee that |m(T )| < 1/2 and hence that the
double-wells always have two pronounced minima. Such a form of the energy density
is valid near the Te. In fact, near this temperature we have m(1 + T ) = m(1) +
m′(1)T+higher order terms. Hence, m(T̃ + 1) = α

π
βT̃+higher order terms. Choosing

T = T̃ + 1 and α
π
β = 6, this is indeed as above, hence the nonlinear version is still a

thermodynamically valid choice in the linearised sense. However, to prove this for the
nonlinear model would not be straightforward, as has been discussed by Wang et al.
[23] for the original model by Kobayashi.
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3 Well-posedness of the wavelet based model

As an important prerequisite for sensible numerical simulations using the new wavelet-
based model, we first prove existence, uniqueness and continuous dependence on
initial data for weak solutions of the system (8), with initial conditions u(x, 0) = u0(x),
T (x, 0) = T0(x), where we allow for Ω = [0, 1]d to be either two or three dimen-
sional, with u and T being 1-periodic in all spatial directions. (In this section, we use
a simplified notation that does not distinguish between vectors and scalars.)

The results are formulated for the Sobolev space Hm
p (Ω), m ∈ N, which denotes all

f ∈ Hm
loc(Rn) that are 1-periodic in all spatial directions and which is equipped with

the usual inner product and norm, given by

(u, v)Hm =
∑
|κ|≤m

∫
Ω
Dκu(x)Dκv(x)dx, ‖u‖Hm =

»
(u, u)Hm ,

in multi-index notation. In the following, C is used for generic constants that do not
depend on the relevant quantities. In contrast to Kobayashi’s model, for which proving
well-posedness is quite intricate (see for example [3]), this is relatively straightforward
for the new model and essentially combines a Galerkin approach and with repeated
use of the equivalence of relevant semi-norms.

Theorem 1 (Existence of weak solutions). Let (u0, T0) ∈ H1
p ∩ L4

p × H1
p , then the

above problem defined via r-regular wavelets with r ≥ 2 has a weak solution with

u ∈ L∞(0, t̄;H1
p ∩ L4

p) ∩ L2(0, t̄;H2
p )

T ∈ L∞(0, t̄;H1
p ) ∩ L2(0, t̄;H2

p )

and

ut ∈ L2(0, t̄;L2
p), Tt ∈ L2(0, t̄;L2

p) .

Proof. To work with weak solutions, we introduce as in reference [10] the bilinear
operator B : H1

p ×H1
p → R with

B(u, v) = lim
n→∞

(∆wun, v) ,

where u, v ∈ H1
p and (un) is a set of H2

p functions converging to u in H1
p . With this

operator we write and use the following weak form

(ut, ϕ) = εB(u, ϕ)− 1

ε
(Wu(u;m), ϕ) (16)

(Tt, φ) = −c(∇T,∇φ) +K(ut, φ), ϕ, φ ∈ H1
p , (17)

with m(t) = c1
π

arctan(c2(Te − T (t))), c1 < 1 .

For the Galerkin approximation we insert un =
∑n
j=0 bjϕj(x), T n =

∑n
j=0 djϕj(x),

where the set {ϕj}j forms an orthonormal basis ofH1
p – say the smooth eigenfunction

of the Laplacian on the periodic Torus. Then we treat the weak form in terms of the
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basis functions

(unt , ϕk) = εB(un, ϕk)−
1

ε
(Wu(u

n;mn), ϕk) (18)

(T nt , ϕk) = −c(∇T n,∇ϕk) +K(unt , ϕk) (19)
(un, ϕk) = ξk (20)
(T n, ϕk) = ηk, k = 0, . . . , n . (21)

with mn(t) = c1
π

arctan(c2(Te − T n(t))), c1 < 1 . Here ξk = ξk(n) are such that

n∑
j=0

ξjϕj → u0, in H1
p ∩ L4

p ,

as n→∞, and for ηk(n)
n∑
j=0

ηjϕj → T0, in H1
p .

As ϕj are a basis of the above spaces and as u0 ∈ H1
p∩L4

p, T0 ∈ H1
p , such coefficients

do exist. Due to the orthogonality of the basis functions we obtain an ODE system for
the coefficients whose system function is locally Lipschitz due to the boundedness of
the B operator. This gives local existence.

We obtain bounds for the Galerkin approximation and then pass to the limit. Therefore
we drop the n notation and keep in mind to work with the finite dimensional approxi-
mation until the limiting process is mentioned. Asm stays bounded between−1/2 and
1/2, with a properly chosen small constant C > 0 next to the double-well W (u;m)
also the function W̃ (u;m) = Wu(u;m)u is bounded. In particular we will use that
W > −C > −0.2 and the same kind of bound for W̃ .

Testing equation (16) by u yields

1

2

d

dt
‖u‖2 + ε|u|2B = −1

ε
(Wu(u;m), u)

as we can use in the Galerkin approximation that B(u, u) = (∆wu, u) = −|u|2B (see
e.g. [10]).

The second term reads, noting that by the choice of c1 < 1 we can use m ∈ [−1
2

+
δ, 1

2
− δ] for some small number δ � 1.

−1

ε

∫
Wu(u;m)udx ≤ 1

ε

∫
−u4 + (2− δ)u2|u|+ (m− 1

2
)u2dx ≤ 1

2ε
(−‖u‖4 + 2‖u‖2) .

We used that (
∫
u2)2 ≤ ‖u2‖2‖1‖2 =

∫
u4dx. Hence if ‖u‖ >

√
2, d/dt‖u‖ is de-

creasing, independently of the value of m (with more care one could derive a smaller
bound). We established a uniform bound for the L2 norm

‖u‖ ≤ max{
√

2, ‖u0‖} .

Additionally as (−‖u‖4 + 2‖u‖2) ≤ 1 we get the t̄ dependent bound, after integrating
over [0, t̄],

1

2
‖u(t̄)‖2 +

∫ t̄

0
ε|u|2Bdt ≤

1

2
‖u0‖2 + t̄/(2ε) .
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As the B semi-norm is equivalent to the Besov B1
2,2 semi-norm for sufficiently regular

wavelets, it is equivalent to the H1 semi-norm, see the discussions and references in
the papers by Dobrosotskaya and Bertozzi [8, 10]. Due to this equivalence we obtain∫ t̄

0 ε|u|2H1
p
dt ≤ C + t̄/(2ε), and hence one has for any fixed t̄

u ∈ L∞(0, t̄;L2
p(Ω)), u ∈ L2(0, t̄;H1

p (Ω)) .

Testing equation (16) by ut gives

‖ut‖2 = −ε
2

d

dt
|u|2B −

1

ε
(Wu(u;m), ut) . (22)

Integrating over time [0, t̄] yields∫ t̄

0
‖ut‖2dt+

ε

2
|u(t̄)|2B = ε|u(0)|2B −

1

ε

∫ t̄

0
(Wu(u;m), ut)dt .

The term to control on the right hand side is

−1

ε

∫ t̄

0
(Wu(u;m), ut)dt ≤ −

1

4ε

∫ t̄

0

d

dt
‖u‖4

4dt+
1

ε

∫ t̄

0
(2u2, |ut|) + (|u|, |ut|)dt

≤ − 1

4ε
(‖u(t̄)‖4

4 − ‖u(0)‖4
4) +

4

ε2

∫ t̄

0
‖u‖4

4dt

+
1

2

∫ t̄

0
‖ut‖2dt+

1

ε2

∫ t̄

0
‖u‖2dt .

Using the L2 bound on u, inserting into (22) and rearranging yields

1

2

∫ t̄

0
‖ut‖2dt+ ε|u(t̄)|2B +

1

4ε
‖u(t̄)‖4

4 ≤ C(t̄) +
4

ε2

∫ t̄

0
‖u‖4

4dt .

In particular we have derived, with F (t) = ‖u(t)‖4
4,

F (t̄) ≤ C(t̄, ε) +
16

ε

∫ t̄

0
F (t)dt .

Gronwall’s inequality states, as C is non-decreasing in t̄, that

F (t̄) ≤ C(t̄, ε)e
∫ t̄

0
4
ε
dt = C(t̄, ε)e

4t̄
ε = C̃(t̄, ε) .

This is a bound growing exponentially fast with t̄, but this is sufficient to overall con-
clude that

u ∈ L2(0, t̄;L4
p(Ω)), ut ∈ L2(0, t̄;L2

p(Ω)) (23)

and as due to the equivalence of the semi-norms we have a|u(t̄)|H1 ≤ |u(t̄)|B, we
conclude further with the bound

u ∈ L∞(0, t̄;H1
p (Ω)) .

Now we need to establish useful bounds for the temperature. Testing (17) by Tt leads
to

‖Tt‖2 +
c

2

d

dt
|T |2H1 = K(ut, Tt) ≤

K2

2
‖ut‖2 +

1

2
‖Tt‖2 . (24)
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Integrating over time yields, using (23),∫ t̄

0
‖Tt‖2dt+ c|T (t̄)|2H1 ≤ C(T (0), t̄, K) (25)

and

T ∈ L∞(0, t̄;H1
p (Ω)), Tt ∈ L2(0, t̄;L2

p(Ω)) .

To obtain a higher order bound we test with −∆u and we obtain

d

dt
|u|2H1 = ε(∆w∇u,∇u) +

1

ε

∫
Wu(u;m)∆udx

≤ −ε|∇u|2B + C(ε, ε̄)
∫
u6dx+

εε̄

2
|∇u|2H1

≤ −C̃|∇u|2H1 + C‖u‖6
H1 .

Here we used a small ε̄ to get rid of the second order term with the wrong sign. As
u ∈ L∞(0, t̄;H1

p ), we can estimate after integration

|u(t̄)|2H1 + C‖∆u‖2 ≤ Ct̄ ,

and we have the desired result u ∈ L2(0, t̄;H2
p ) .

Similarly we test the heat equation (8b) by −∆T

1

2

d

dt
|u|2H1 + c‖∆T‖2 = K(ut,∆T ) ≤ C(K, c)‖ut‖2 +

c

2
‖∆u‖2

Using the bound on ut, and integrating yields T ∈ L2(0, t̄;H2
p ) .

A usual limiting process (following e.g. [26], Chapter 3) yields global existence.

Theorem 2 (Uniqueness and continuous dependence on initial data). The solutions
from Theorem 1 are uniquely defined and depend continuously on the initial data,
assuming that the temperature stays below the critical temperature. In particular we
then have

‖u1 − u2‖2
H1 + ‖T1 − T2‖2

H1 ≤ C
î
‖u0

1 − u0
2‖2
H1 + ‖T 0

1 − T 0
2 ‖2

H1

ó
eCt (26)

Proof. This can be seen by defining two solutions (u1, T1), (u2, T2) and their difference
(w, v) = (u1 − u2, T1 − T2) that leads to the weak system

(wt, ϕ) = ε(∆ww,ϕ)− 1

ε
(Wu(u1;m1)−Wu(u2;m2), ϕ) , (27)

(vt, ψ) = c(∆v, ψ) +K(wt, ψ) , (28)

Testing with (ϕ, ψ) = (w, v) yields

1

2

d

dt
‖w‖2 = −ε|w|2B −

1

ε
(Wu(u1;m1)−Wu(u2;m2), u1 − u2) , (29)

1

2

d

dt
‖v‖2 = −c|∇v|2 +K(wt, v) , (30)
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Assume for now that both solutions ui are in L∞(L∞), then for mi the polynomials
Wu(ui,mi) are Lipschitz and we can choose a jointly working constant for any T .
Hence we conclude with the estimate

1

2

d

dt

Ä
‖w‖2 + ‖v‖2

ä
+ ε|w|2B + c|v|2H1 ≤ C‖w‖2 +K

∫
wtvdx (31)

Testing the phase field equation with ϕ = wt and the temperature equation with −∆v
yields additionally

‖wt‖2 + ε
d

dt
|w|2B = −1

ε

∫
(Wu(u1;m1)−Wu(u2;m2))wt ≤ C‖w‖‖wt‖

C1
d

dt
‖∇v‖2 + C2‖∆v‖2 ≤ 1

4
‖wt‖2 .

Adding these up yields

1

4
‖wt‖2 +

d

dt

î
ε|w|2B + C1‖∇v‖2

ó
≤ C‖w‖2

Together with estimate (31) we conclude

1

2

d

dt

Ä
‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2

ä
+ ε|w|2B + c|v|2H1 ≤ C‖w‖2 +

K2

2
‖v‖2

This applies for Gronwall which now states

‖w‖2 + 2ε|w|2B + ‖v‖2 + 2C1‖∇v‖2 ≤ C
î
‖w0‖2 + |w0|2B + ‖v0‖2

H1

ó
eCt

In particular we can use the equivalence of the Besov semi-norm and constant es-
timation to conclude with assertion (26). However, it remains to be shown that ui ∈
L∞(0, t̄;L∞p ). Therefore we show that any solution is in L∞(0, t̄;H2

p ) which yields the
assertion as for dimension n ≤ 3 Sobolev’s embedding theorem gives the right em-
bedding.

Hence show that for any t̄ : ‖u(t̄)‖H2 ≤ C: Testing (on the Galerkin level) the phase
field equation by −∆ut yields

(ut,−∆ut) + εB(u,∆ut) =
1

ε
(Wu(u;m),∆ut)

⇒ ‖∇ut‖2 + ε
d

dt
|∇u|2B ≤ −C(∇Wu(u;m),∇ut)

= −C
∫
Wuu(u;m)∇u∇ut +Wum(u;m)∇m∇utdx

≤ C
∫
|∇u||∇ut|+ |∇m||∇ut|dx

≤ 1

2
‖∇ut‖2 + C(‖∇u‖2 + ‖∇m‖2) .

Furthermore we have under the temperature assumption

‖∇m‖2 =
∫
|∇m|2dx = C

∫ |∇T |2

(1 + c2(Te − T ))2
≤ C‖∇T‖2

so that we estimate overall, after integration and using the yet established bounds,

1

2

∫ t̄

0
‖∇ut‖2dt+ ε|∇u(t̄)|2B ≤ C

and hence due to the equivalence of the semi-norms u ∈ L∞(0, t̄;L∞p ).
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Remark In the proof we have used that the temperature stays below the critical
temperature (slightly above would be fine, too) and this assumption demands that the
initial temperature profile is also below this value.

4 Numerical methods and comparisons

The simulations are carried out with a pseudospectral method for both equations, the
classical model and its wavelet analogue. While definition of ∆w suggests a natural
discretisation in wavelet space, we use a Fourier spectral method for the heat equa-
tion, using Fourier modes for 1-periodic functions in both spatial directions. In terms
of these expansions, the system is written as the following system of ODEs

N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

(wj,k,ψ)tψj,k = ε
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

−22jwj,k,ψψj,k +
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

cj,k,ψψj,k

∑
j

(T̂j)t exp(ijx2π) =
∑
j

−j24π2T̂j exp(ijx2π) +K
∑
j

(ξ̂j)t exp(ijx2π) .

The coefficients cj,k,ψ are related to the third order polynomial W [u(1 − u)(u − 1
2

+

m)] by a stationary wavelet transform and the Fourier coefficients ξ̂j are determined
by transforming

∑N
j=0

∑
k,ψ∈Ψ(wj,k,ψ)tψj,k into discrete Fourier space. We discretise in

time by a semi-implicit Euler scheme that treats the linear parts implicitly,

w+
j,k,ψ − wj,k,ψ

dt
= −22jw+

j,k,ψ + cj,k,ψ (32a)

T̂+
j − T̂j
dt

= −j24π2T̂+
j +Kξ̂j , (32b)

where the + superscript indicates the new, updated coefficients. We employ convexity
splitting to gain stability which is reflected in the update, too (see below). We update
the wavelet coefficients first and then use the resulting approximation for ut to cal-
culate the coefficients ξ̂j . Also note that the cj,k,ψ in (32a) are evaluated using the
coefficients of the temperature approximations T̂j at the old time level.

The update for the temperature is rather standard for spectral methods. For the order
parameter, however, we want to go into more detail. The stationary wavelet transform
yields four fields for the scaling function coefficients A, and H,V,D for the horizon-
tal, vertical and diagonal wavelet coefficients, respectively. In MATLAB with the cor-
responding ordering, to calculate the wavelet Laplacian we multiply the jth scale by
22(N−j). For the jth coefficient level, let Rj ∈ {Aj, Hj, Vj, Dh} be one of the coeffi-
cient arrays, and R3,j the same kind of coefficients for the cubic expression, then we
update, with the convexity splitting parameter C,

Rj =
Rj + dt/τ(R3,j + dtCRj)

1 + dt(22(N−j)ε/τ + C)
.

4.1 Limiting case: Allen-Cahn model

Before we investigate numerically the evolution of the new model and compare it
with the classical recrystallisation model, it is instructive to first probe the models
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in a simpler setting, and consider a special case where the models introduced in
section 2 reduce to scalar Allen-Cahn type equations. Specifically, we set the latent
heat parameter K = 0 and let the initial temperature field to be uniform, T (x, 0) = Tc,
where Tc is a non-negative constant. For Kobayashi’s original model (2)-(6), we obtain
the anisotropic Allen-Cahn equation

ut = − δ

δu
E(u; ε, A) = ε∇ ·

Ä
γ(θ)γ′(θ)∇⊥u

ä
+ ε∇ ·

Ä
γ(θ)2∇u

ä
− 1

ε
W ′(u) , (33)

where ∇⊥u = (−uy, ux)T is the orthogonal gradient. The new model (8) with (2), (6)
reduces to the “wavelet Allen-Cahn equation”,

ut = ε∆wu−
1

ε
W ′(u). (34)

All of the above are L2 gradient flows of the corresponding free energies i.e. (1)-(3)
with δ = 0 for the isotropic Allen-Cahn model , δ > 0 for the anisotropic Allen-Cahn
model and (7) as appropriate.

Moreover, we set the temperature to be at equilibrium, Tc = Te, then m = 0 and the
homogeneous free energy contribution is symmetric,

W (u) =
1

4
u2(u− 1)2. (35)

In all numerical results in this section, the initial condition for u was a small random
perturbation of of u = 1.

In Figure 1 (a)-(c) we observe the well-known emergence of a coarsening pattern
for the Allen-Cahn equation, that coarsens independent of the direction of the wave
number as seen from the corresponding two-dimensional Fourier spectra (a’)-(c’), as
expected for an isotropic pattern.

Figure 2 (a)-(c) shows the evolution for the classical anisotropic Allen-Cahn equation
for the choice of n = 4 and δ = 0.065 so that the anisotropy is still in the weak
regime. The resulting patterns are similar as for the isotropic case in the early phase of
evolution, but at later stages as domains in the pattern have grown show a directional
dependence that is in accordance with a four-fold symmetry for γ, and shown in the
corresponding Fourier spectrum (a’)-(c’).

We now carry out a numerical study to investigate the emergence of anisotropy and
its long-time evolution in the Wavelet-Allen-Cahn equation. As has been shown in
[9], volume constrained minimisers of the free energy using the Besov semi-norm
lead to Wulff shapes with a clear four-fold symmetry for the new Wavelet-Allen-Cahn
equation. Using the stationary wavelet transform has a similar effect as differencing
in Fourier space: periodic boundary conditions are fulfilled intrinsically. Figure 3 (a)
- (c) depicts a typical evolution that compares well to the numerical results for the
anisotropic Allen-Cahn equation (33). The white and black regions correspond to the
order parameter being approximately 0 or 1. Coarsening takes place in a similar fash-
ion as for the classical anisotropic Allen-Cahn model. The Figures (a’)-(c’) show the
absolute values of the Fourier transforms corresponding to the patterns in (a)-(c). One
clearly sees the emergence of the anisotropic four-fold symmetry in the pattern.

In Figure 4 we show for all three cases a coarsening diagram for the runs with the
same parameters as above, shown in a doubly logarithmic plot. We calculated the
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Figure 1: Numerical results for the isotropic Allen-Cahn model (δ = 0) for ε = 0.001
on a 1024×1024 grid at three different times, t = 0.01, t = 0.1, t = 1; (a’), (b’)
and (c’) show the absolute values of the two-dimensional discrete Fourier transform,
corresponding to (a), (b) and (c), respectively.

Figure 2: Numerical results for the anisotropic Allen-Cahn model for ε = 0.001 on
a 1024×1024 grid with anisotropy δ = 0.065 at three different times, t = 0.01, t =
0.1, t = 1; (a’), (b’) and (c’) show the absolute values of the two-dimensional discrete
Fourier transform, corresponding to(a), (b)and (c), respectively, showing the evolution
towards anisotropic pattern.

Figure 3: Numerical results for the Wavelet-Allen-Cahn model for ε = 0.005 (why
not ε = 0.001 ?) on a 1024×1024 grid for a unitary domain at three different times
t =???. (a’), (b’) and (c’) are the absolute values of the two-dimensional discrete
Fourier transform, corresponding to (a), (b) and (c), respectively.
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Figure 4: Coarsening diagram for the isotropic Allen-Cahn, anisotropic Allen-Cahn
and the Wavelet-Allen-Cahn for ε = 0.005 on a 1024×1024 grid. Time vs < L >=∑ny

i=1Ni/ny, where ny is the number of grid points in vertical direction and Ni is the
number of phases in the corresponding one-dimensional (parallel to the x-axis) sheet.
Dashed curve: ∼ t−2/5 the Wavelet-Allen-Cahn equation.

number of domains for each cross-section parallel to the x-axis and divided by the
number of these layers - the number of grid points in the y-direction, which yields a
measure for the typical length scale

〈L〉 =
ny∑
i=1

Ni(t)/ny.

The numerical results show that the approach is according to a power law behaviour
〈L〉 ∼ t−2/5, for the isotropic Allen-Cahn, and eventually 〈L〉 ∼ t−2/5 for the anisotropic
Allen-Cahn as t→∞. From the simulations one can conclude from the comparisons
of the classical anisotropic Allen-Cahn equation and the Wavelet-Allen-Cahn equa-
tion, that while the approach to the Wulff-shape occurs on different time scales that
arises from the different scalings of both models, the coarsening rate remains the
same.

4.2 Recrystallisation with thermal coupling

Figure 5: Numerical results for Kobayashi’s model, (4) and (5), using γ as in (36) with
δ = 0.15.

While for the Wavelet-Allen-Cahn case we have used small scaled random noise as
initial conditions, here we instead insert a very narrow Gaussian into the domain as
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Figure 6: Dendritic growth based on the intrinsic anisotropy of the Wavelet-Laplacian.

a nucleation site to start the recrystallisation process, in fact similar to what happens
in physical experiments. For comparison we note first a recent study [1] on numerical
methods and conditions regarding the accurate numerical description of dendritic pat-
terns. For our numerical implementation of the original model by Kobayashi, we show
for the system (5) and (4) with

γ(θ) = 1 + δ cos(4(θ + π/6)) (36)

As expected, the Figures 5-6 show that the growing nucleus develops a branching
structure that becomes more pointed as δ is increased. In addition, the branches
align more closely with the horizontal and vertical directions, reflecting the increas-
ingly stronger degree to which the four-fold symmetry is imposed by γ and give good
comparisons to the results in the literature as discussed in [1].

For the new model using the wavelet Laplacian we show in Figure 6 numerical results
for one nucleus, a Gaussian, put into a square domain. Again, we see that the nucleus
grows and exhibits faster growth in four preferred directions aligned with the axes. In
fact, comparing the results from the wavelet based model with the classical model
by Kobayashi for δ = 0.15, we see that the preferential directions for the dendritic are
well defined in both cases, suggesting that the anisotropy arises from the two different
mechanisms are of similar strength with this choice of δ.

Hence we are indeed able to describe dendritic growth with the new derivative-free ap-
proach and its intrinsic anisotropic properties. However, the dendrites for the wavelet-
based approach appear to have more rounded features.

5 Conclusions and outlook

This work explores the possibility of using the anisotropic nature of wavelet analogue
of differential operators for mathematical models in anisotropic pattern formation in
material science. For a standard model for dendritic crystal growth we have shown
that a straightforward modification of the underlying free energy with a wavelet-based
Besov instead of the H1 semi-norm representation for the interface contribution, and
hence replacing the Laplacian in the Ginzburg-Landau formulation of the phase-field
evolution, produces a four-fold symmetry of the preferred growth directions.

In contrast, Kobayashi’s original model required an explicit dependence of the sur-
face tension coefficient on the solution gradient to obtain anisotropy, thus leading to a
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quasi-linear PDE for the phase-field whereas the wavelet-based model has a linear,
derivative free operator with an intrinsic anisotropy.

All our results thus confirm that the behaviour reflects the symmetry suggested in [9],
and compare well to the evolution as well as the long-time rates of change of the
patterns known from the classical models.

Moreover, we found that the new formulation lends itself naturally to numerical so-
lutions via wavelet or hybrid e.g. wavelet-spectral methods and complexity splitting
where the implicit terms are linear. The resulting scheme is easily implemented in
MATLAB with the help of the available wavelet tools.

We also note, that the model is easily generalised to 3D and in fact our well-posedness
result applies also to this case, and it would be interesting to see if an efficient imple-
mentation is possible that would be competitive with existing simulations.

There are, of course, a number of open problems and directions for future research.
In particular to extend our investigations to surface energies to other four- or eight-fold
symmetries. This may require generalisations to other wavelets or other generalisa-
tions such as for example shearlets.
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A Wavelet construction

A general introduction to wavelets in different settings can be found in many refer-
ences, e.g. [6, 7, 18]. We denote the mother wavelet by ψ and the scaling function by
φ. The tensor product ansatz leads to the basis functions

ψd(x, y) = ψ(x)ψ(y), ψv(x, y) = ψ(x)φ(y),

ψh(x, y) = φ(x)ψ(y), φ(x, y) = φ(x)φ(y).

By Ψ̃ = {ψd, ψv, ψh} we denote the set of diagonal, vertical and horizontal compo-
nents. For j ∈ Z, k ∈ Z2, ψ ∈ Ψ̃ we define the wavelet mode

ψj,k = 2jψ(2jx− k),

and similarly

φj,k = 2jφ(2jx− k).

Every f can be written as
f =

∑
j,k,ψ∈Ψ̃

wj,k,ψψj,k
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with
wj,k,ψ =

∫
f(x)ψj,kdx . (37)

Given such an expression of f the wavelet Laplace operator is defined as [8–10]

∆wf =
∑
j,ψ

−22j
∫

(f, ψj,k)ψj,kdk . (38)

On a finite domain [0, 1]2 one uses j ∈ N≥0 and kl = 0, 1, . . . , 2j, l = 1, 2, as the
spatial shifts make only sense as long as the support of the wavelets is still inside the
domain. The resulting set of k is denoted by Z2

j . Notice also that numerical applica-
tions require finite sums and therefore we incorporate the scaling function to represent
non-zero contributions to the average of f , which play a similar role as the constant
mode in a Fourier expansion. Thus, we extend the set Ψ = Ψ̃ ∪ {φ} and write f as

f =
N∑
j=0

∑
k∈Z2

j

∑
ψ∈Ψ

wj,k,ψψj,k .

Then, approximations to the coefficients in (37) as well as the Besov semi-norm (??)
and the wavelet Laplacian (38) are given through finite sums instead of integrals.
Coefficients for φ

j,k are defined in the same fashion as for the ψ
j,k.
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