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Mathematical modeling of semiconductors:
From quantum mechanics to devices

Markus Kantner, Alexander Mielke, Markus Mittnenzweig, Nella Rotundo

Abstract

We discuss recent progress in themathematical modeling of semiconductor devices. The
central result of this paper is a combined quantum-classical model that self-consistently cou-
ples van Roosbroeck’s drift-diffusion system for classical charge transport with a Lindblad-
type quantum master equation. The coupling is shown to obey fundamental principles of
non-equilibrium thermodynamics. The appealing thermodynamic properties are shown to
arise from the underlying mathematical structure of a damped Hamitlonian system, which
is an isothermal version of so-called GENERIC systems. The evolution is governed by a
Hamiltonian part and a gradient part involving a Poisson operator and an Onsager operator
as geoemtric structures, respectively. Both parts are driven by the conjugate forces given in
terms of the derivatives of a suitable free energy.

1 Introduction

The development of semiconductor devices has been strongly supported by mathematical mod-
eling and numerical simulations over the last decades. Mathematical models provide insights
into the internal physical mechanisms in semiconductor devices, can help to optimize particular
designs and decrease the development costs by reducing the demand for the expensive processing
of a large number of prototypes. For instance, the progress in performance andminiaturization of
silicon transistors following Moore’s law over the last decades was inconceivable without mod-
ern TCAD (technology computer-aided design) simulation tools. The on-going reduction of the
characteristic length scales of semiconductor devices as well as the integration of semiconductor
nanostructures such as quantum dots [2], requires an extension of the classical semiconductor
device equations towards the inclusion of quantum mechanical models.

Many modern opto-electronic devices such as, e.g., quantum light sources and nanolasers [6],
employ semiconductor quantum dots as an optically active element embedded in photonic
micro-resonators. The transport of charge carriers in such devices can be described by semi-
classical drift-diffusion-reaction models, such as the van Roosbroeck system [38]. For example,
in [13] the current injection into an electrically driven single-photon emitting diode has been
investigated in order to understand the experimentally observed malfunction of the design, see
Fig. 1. The device features an oxide aperture that is intended to confine the injection current into
a narrow region above the aperture, where a single quantum dot shall be electrically excited.
The experimentally observed electroluminescence, however, indicates a counterintuitive rapid
lateral current spreading. On the basis of the van Roosbroeck system, the phenomenon was
reproduced in numerical simulations and eventually understood as an inherent feature of the
design under the typical operation conditions of the device. Finally, based on mathematical
modeling, a revised design with superior current confinement was suggested [13]. While this
example convincingly substantiates the importance of carrier transport modeling, many other
important properties of the single-photon source can not be described by the van Roosbroeck
system. In particular, the quantum optical features of the radiation generated by the quantum
dot, namely the correlation statistics of the emitted photons that allow to quantify non-classical
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Figure 1: Lateral current spreading in an oxide–confined single–photon source leading to un-
wanted optical activity of parasitic quantum dots in the outer parts of the structure [13].

phenomena like “photon anti-bunching” [37], are not accessible by the van Roosbroeck system.
This requires a microscopic modeling framework, that describes the evolution of open quantum
systems.

A broad class of problems in semiconductor quantum optics can be described by quantum
master equations [4]. These are evolution equations for the quantum mechanical density matrix
ρρρ ∈ Cn×n, that is an Hermitian operator which describes the state of a quantum system. Unlike
the Schrödinger equation, which models the Hamiltonian evolution of closed quantum systems,
quantum master equations allow for the consideration of dissipative dynamics that arise due to
the coupling of the quantum system with its macroscopic environment. The simplest class of
quantum master equation, which guarantees the preservation of trace tr ρρρ = 1, self-adjointness
ρρρ = ρρρ∗, and positivity ρρρ ≥ 0 of the density matrix, is the Lindblad master equation [18, 19], see
(29). While providing access to the microscopic dynamics and the quantum optical figures of
merit of open quantum systems, the Lindblad equation (1d) complements the classical modeling
approaches to semiconductor devices based on the van Roosbroeck system for the electrostatic
potential φ and the charge carrier densities n and p for electrons and holes, respectively.

Our interest lies in a mathematically systematic and thermodynamically correct derivation of
coupled systems of the form

0 = div (ε∇φ)+ e0
(
C+ p−n+ ρqd tr (Zρρρ)

)
, (1a)

Ûn = div
(
Mn(∇n−n∇φ)

)
−R(n, p)+Rquant-class

n (n, p, ρρρ), (1b)

Ûp = div
(
Mp(∇p+ p∇φ)

)
−R(n, p)+Rquant-class

p (n, p, ρρρ), (1c)
Ûρρρ = [ρρρ,H+ e0φZ]+D0ρρρ+D(n, p)ρρρ. (1d)

In [14], a hybrid quantum-classical modeling approach was introduced that self-consistently
combines these two approaches and allows for a comprehensive description of quantum dot-
based semiconductor devices for quantum optical applications. Here we want to show that this
model is a special case of a general class of models that have the form of damped Hamiltonian
system, in the sense explained now.

From a mathematical point of view the thermodynamic consistency of complex physical sys-
tems like (1) can be encoded in the GENERIC framework. GENERIC is an acronym forGeneral
Equations for Non-Equilibrium Reversible Irreversible Coupling and provides a thermodynam-
ically consistent way of coupling reversible Hamiltonian dynamics with irreversible dissipative
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Figure 2: The hybrid quantum-classical modeling approach for quantum light sources combines
semi-classical carrier transport theory with microscopic models for the quantum dot-photon
system [12].

dynamics, see [9, 35] and Section 3.1. In Section 3.2 we introduce the concept of damped
Hamiltonian systems as a simplified, isothermal version of GENERIC systems. They are defined
by a quadruple (QQQ,F , J,K) where QQQ is the state space and F (q) is the free energy functional
on it. Moreover, the state space carries two geometric structures, namely the Poisson structure
J that generates the Hamiltonian evolution and the Onsager operator K driving the dissipative
dynamics. The time evolution of the damped Hamiltonian system (QQQ,F , J,K) is given via

Ûq =
(
J(q)−K(q)

)
DF (q). (2)

The Poisson operator J(q) is skew-symmetric and satisfies the Jacobi identity, while the On-
sager operator K(q) is symmetric and positive semidefinite, which encodes the second law of
thermodynamics.

The aim of the paper is to realize (1) in the form (2) with the state variable by q = (n, p, ρρρ). For this,
we first introduce in details the van Roosbroeck system (1), but without (1d), in Section 2. Next,
we shortly summarize the abstract, thermodynamical modeling via the GENERIC framework in
Section 3.1 and via so-called damped Hamiltonian systems in Section 3.2. A special emphasis to
the additive structure of dissipative processes and to admissible couplings are given in Sections
3.3 and 3.4, respectively.

In Section 4 we then apply the abstract theory to (1), first to certain subparts and finally to
the full coupled system. Based on [1] it was shown in [23] that the van Roosbroeck system
for (φ,n, p) can be written as a gradient system (i.e. with J ≡ 0), see Section 4.2. Extensions to
more general reaction systems or to more general carrier statistics are discussed next. The most
recent building block of the theory was provided in [29], where it was shown that all Markovian
quantum master equation in Lindblad form that satisfy a suitable detailed-balance condition can
be written as a damped Hamiltonian, see Section 4.5. In Section 4.6, we present the analysis
from [14] which allows to show that the free energy is a Liapunov function, without referring
to Onsager operator. Finally, Section 4.7 contains the nontrivial coupling between quantum and
classical system via Onsager operators.

The ideas in this paper provide a series of mathematical concepts that are useful in modeling
complex physical system, where different components interact in nontrivial ways. Here, we apply
these concepts to models for semiconductor physics, but we believe that they are also relevant
and helpful many other application areas.
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2 The van Roosbroeck system

The van Roosbroeck system is a system of drift-diffusion-reaction equations that describe the
transport of charge carriers in semiconductor devices in their self-consistently generated electro-
static field. The model equations are posed on a domain Ω ∈ Rd with d = 1,2 or 3, time t ∈ [0,T]
and read

0 = div (ε∇φ)+ e0
(
C+ p−n

)
, (3a)

Ûn = −div Jn−R(n, p), (3b)
Ûp = −div J p−R(n, p). (3c)

The continuity equations (3b)–(3c) model the transport and recombination dynamics of the
electron density n and hole density p, where Jn and J p are the respective carrier flux densities.
The reaction rate R describes the recombination and generation kinetics of electron-hole pairs,
which can be created or annihilated in several radiative and non-radiative processes [40, 20].
The electrostatic interaction between the negatively charged electrons and the positively charge
holes (which are missing electrons), is mediated by Poisson’s equation (3a) for the electrostatic
potential φ. Here, e0 is the elementary charge, ε is the dielectric permittivity of the semiconductor
material and C :Ω→ R is the built-in doping profile.

2.1 Carrier flux densities and chemical potentials

The van Roosbroeck system needs to be supplemented by state equations for the carrier densities
and the carrier flux densities. The drift-diffusion flux densities read

Jn =Mnn∇φ−Dn∇n, J p = −Mpp∇φ−Dp∇p, (4)

where the gradient of the electrostatic potential generates the drift transport of the charge carriers
within the electric field E = −∇φ. As the charges of electrons and holes have different signs, they
drift into opposite directions. The electric conductivity is determined by the carrier mobilities
Mn and Mp that are material-dependent parameters. A second process leading to the transport
of charge carriers is diffusion, which is driven by the gradients of the carrier densities. In the
simplest case the diffusion constant matrices Dn and Dp are linked to the mobility matrices via
the Einstein relation

Dn =
kBθ

e0
Mn, Dp =

kBθ

e0
Mp, (5)

which is a manifestation of the fluctuation-dissipation theorem. Here, kB is the Boltzmann
constant and θ is the temperature.

The carrier densities are linked to the electrostatic potential φ and the electro-chemical potentials
µn and µp, often denoted also as quasi-Fermi energies, by the state equations

n = NnF

(
µn−(En− e0φ)

kBθ

)
, p = NpF

(
µp−

(
Ep+ e0φ

)
kBθ

)
. (6)

The equations for the carrier densities (6) are based on the assumption of a quasi-equilibrium
distribution of the electrons and holes in the material. The function F contains information on
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the statistical distribution function underlying the nature of the particles (Fermi–Dirac statistics
for fermions, Bose–Einstein statistics for bosons or Maxwell–Boltzmann statistics for classical
particles), the energy band structure and the density of states provided by the material. The
effective density of states Nn, Np and the band-edge energy levels En, Ep are material specific
parameters. Throughout this work we focus on the most simple case of non-degenerate semicon-
ductors in which the Maxwell–Boltzmann statistics is considered, this means thatF (x) = exp (x)
is an exponential function. At high carrier densities or at cryogenic temperatures, degeneration
effects due to the Pauli exclusion principle come into play. In this case F is typically given by a
Fermi–Dirac integral in conventional semiconductor crystals [40], or the Gauss–Fermi integral
in disordered organic materials [21]. As a consequence, the Einstein relation (5) must be gen-
eralized in degenerate semiconductors to account for the density-dependent nonlinear diffusion
[15, 21].

Using the Einstein relation (5) and considering the Maxwell–Boltzmann statistics in the state
equations (6), the flux densities can be written as gradients of the chemical potentials

Jn = −
1
e0
Mnn∇µn, J p = −

1
e0
Mpp∇µp. (7)

This reflects a basic principle of linear irreversible thermodynamics, where the gradients of the
chemical potentials are the thermodynamic forces driving the carrier flux [31, 10].

In the thermodynamic equilibrium, the chemical potentials approach a common global constant
µ
eq
n ≡ µ

eq
p ≡ 0 such that the net current flow vanishes. Microscopically, this feature emerges from

the principle of detailed balance principle in the thermodynamic equilibrium. The corresponding
equilibrium carrier densities of the non-degenerate semiconductor read

neq = Nn exp
(
−

En− e0φeq

kBθ

)
, peq = Np exp

(
−

Ep+ e0φeq

kBθ

)
, (8)

where φeq solves (3a) with equilibrium boundary conditions (see Section 2.2). Finally, the
reaction rate R takes the form

R (n, p) = r(n, p)
(
np−neqpeq

)
, (9)

with r(n, p)=
∑m∗

m=1 rm (n, p) ≥ 0,wherem= 1, . . .,m∗ labels various recombination processes (e.g,
Shockley–Read–Hall recombination, direct band-to-band recombination, Auger recombination
etc., see [40, 36]). For the bi-polar van Roosbroeck system with non-degenerate carrier statistics
one often introduces the intrinsic carrier density nintr according to n2

intr = neqpeq.

2.2 Boundary conditions

The van Roosbroeck system (3) is supplemented with initial conditions at time t = 0

φ(x,0) = φI(x), µn(x,0) = µI
n(x), µp(x,0) = µI

p(x) for x ∈ Ω,

where φI, µI
n and µI

p are the initial distributions.

Regarding the boundary conditions modeling electrical contacts or semiconductor-insulator
interfaces, we assume a decomposition of the domain boundary as

∂Ω = ΓD∪ΓN,
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with Dirichlet boundary conditions imposed on ΓD and Neumann conditions on ΓN . Ideal Ohmic
contacts are modeled as Dirichlet boundary conditions. For a device featuring several Ohmic
contacts ΓD =

⋃
α ΓD,α, on imposes

φ (x, t) = φ0 (x)+Uα (t), µn (x, t) = −e0Uα (t), µp (x, t) = e0Uα (t) (10)

for all x ∈ ΓD,α. Here, Uα (t) is the (possibly time-dependent) voltage applied to the α-th contact
and φ0 (x) is the built-in electrostatic potential that enforces local charge neutrality on ΓD,α, i.e.,
it holds

0 = C+NpF

(
−Ep− e0φ0

kBθ

)
−NnF

(
−En+ e0φ0

kBθ

)
everywhere on ΓD. In the case of Maxwell–Boltzmann statistics, the built-in potential can be
explicitly obtained as

φ0 = −
Ep−En

2e0
+

kBθ

2e0
log

(
Np

Nn

)
+

kBθ

e0
arsinh

(
C

2nintr

)
.

For degenerate semiconductors φ0 must be obtained numerically. See [39, 36, 40] for other
boundary conditions modeling electrical contacts, e.g., Gate contacts or Schottky contacts. On
the boundary segments ΓN one typically imposes no-flux boundary conditions

ν · ∇φ = 0, ν · Jn = 0, ν · J p = 0, (11)

which are homogeneous Neumann boundary conditions that guarantee that the computational
domain is self contained.Here, ν is the outward-oriented normal vector on the boundary segment.
The boundary conditions (11) are no physical boundaries and must be chosen carefully in order
to restrict the computational domain to a reasonably small region [39].

3 Mathematical modeling based on thermodynamical
principles

The classical approach to thermodynamical modeling starts from balance laws (e.g., for mass
of different species, linear momentum, charges, energy, etc.) and then adds suitable constitutive
relations to connect the state variables and the fluxes. In a second step, the constitutive laws are
restricted to satisfy the second law of thermodynamics, i.e., the entropy is non-decreasing in
non-isothermal systems. Correspondingly for systems at constant temperature the total energy
is not conserved, but a suitable free energy is decreasing.

Here we will use a different approach that starts from energy and entropy functionals and uses
their derivatives with respect to the state variables (also called thermodynamical conjugate
forces) as driving forces. We first discuss the more general modeling framework GENERIC and
then restrict to the isothermal version, which we refer to as damped Hamiltonian systems.

3.1 The GENERIC framework

The framework of GENERIC was introduced by Morrison [30] under the name metriplectic
systems, see [3, Sec. 15.4] for an outline of these early developments. In [9, 35] Öttinger and

DOI 10.20347/WIAS.PREPRINT.2575 Berlin 2019



Mathematical modeling of semiconductors: From quantum mechanics to devices 7

Grmela introduced the name GENERIC to emphasize the thermodynamical modeling aspects
that were relevant for their applications in fluid mechanics. More mathematical formulations are
given in [22, 25] with applications to thermoplasticity and optoelectronics, respectively.

A GENERIC system is a quintuple (QQQ,E,S, Ĵ, K̂), where the smooth functionals E and S on the
state space QQQ denote the total energy and the total entropy, respectively. Moreover, QQQ carries
two geometric structures, namely a Poisson structure Ĵ and a dissipative Onsager structure K̂,
i.e., for each q ∈ QQQ the operators Ĵ(q) and K̂(q) map the cotangent space T∗qQQQ into the tangent
space TqQQQ. The evolution of the system is given as the sum of the Hamiltonian part Ĵ(q)DE(q)
and the gradient-flow K̂(q)DS(q), namely

Ûq = Ĵ(q)DE(q)+ K̂(q)DS(q). (12)

The basic conditions on the geometric structures Ĵ and K̂ are the symmetries

Ĵ(q) = −̂J∗(q) and K̂(q) = K̂∗(q) (13)

and the structural properties

Ĵ satisfies Jacobi’s identity,
K̂(q) is positive semi-definite, i.e., 〈ξ, K̂(q)ξ〉 ≥ 0.

(14)

Here, Jacobi’s identity for Ĵ holds, if for all η j ∈ T∗qQQQ we have

〈η1, D̂J(q)[̂J(q)η2]η3〉+ 〈η2, D̂J(q)[̂J(q)η3]η1〉+ 〈η3, D̂J(q)[̂J(q)η1]η2〉 = 0. (15)

The central conditions connecting Ĵ, K̂, E, and S ask that the energy functional does not
contribute to dissipative mechanisms and that the entropy functional does not contribute to
reversible dynamics, which is encoded in the following non-interaction conditions:

(NIC) ∀q ∈ QQQ : Ĵ(q)DS(q) = 0 and K̂(q)DE(q) = 0. (16)

In summary, the quintuple (QQQ,E,S, Ĵ, K̂) is called a GENERIC system, if the conditions (13)–(16)
hold.

Of course, the structure ofGENERIC is geometric in the sense that it is invariant under coordinate
transformations, see [22]. The first observation is that (14) and (16) imply energy conservation
and entropy increase:

d
dt
E(q(t)) = 〈DE(q), Ûq〉 = 〈DE(q), Ĵ(q)DE(q)+ K̂(q)DS(q)〉 = 0+0 = 0, (17)

d
dt
S(q(t)) = 〈DS(q), Ûq〉 = 〈DS(q), Ĵ(q)DE(q)+ K̂(q)DS(q)〉 = 0+ 〈DS, K̂DS〉 ≥ 0. (18)

Of course, to guarantee energy conservation and positivity of the entropy production one needs
much less than the two conditions (14) and (16).

However, the maximum entropy principle really relies on (16). It states that a maximizer q∗ of
S subject to the constraint E(q) = E0 is an equilibrium of (12), the so-called thermodynamic
equilibrium for the given energy. Indeed, if q∗ maximizes S under the constraint E(q) = E0,
then we obtain a Lagrange multiplier λ∗ ∈ R such that DS(q∗) = λ∗DE(q∗). Since DS(q) , 0
for all q (e.g., by ∂θS > 0), we have λ∗ , 0 and conclude Ĵ(q∗)DE(q∗) = 1

λ∗
Ĵ(q∗)DS(q∗) = 0 and
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K̂(q∗)DS(q∗) = λ∗K̂(q∗)DE(q∗) = 0, where we have used the non-interaction condition (16).
Vice versa, every steady state q∗ of (12) satisfies

Ĵ(q∗)DE(q∗) = 0 and K̂(q∗)DS(q∗) = 0. (19)

Thus, in a steady state there cannot be any balancing between reversible and irreversible forces,
both have to vanish independently.

The Onsager operator K̂(q) defines the linear kinetic relation between the entropic driving
force η = DS(q) and the dissipative flux Ûqdiss = K̂(q)η. In many applications one needs to
consider nonlinear kinetic relations Ûqdiss↔ η. For thiswe use so-called dual dissipation potentials
R∗(q, ·) : T∗qQQQ→[0,∞[, which are lower semicontinuous, convex, and satisfy R∗(q,0) = 0. Then,
the kinetic relation is given in the form

Ûqdiss = DηR
∗(q, η),

see [9, 8, 22, 17]. The linear Onsager case is included via quadratic dual dissipation potentials
R∗(q, η) = 1

2 〈η, K̂(q)η〉. The generalized version of the second non-interaction condition in (16)
then reads R∗(q, λDE(q)) = 0 for all λ ∈ R.

In many situations the evolution equations satisfy additional conservation laws, such as mass or
charge balance. If C : QQQ→ R is a such a conserved quantity, then the GENERIC system should
also satisfy both 〈DC(q), Ĵ(q)DE(q)〉 = 0 and 〈DC(q), K̂(q)DS(q)〉 = 0 for all q ∈ QQQ.

3.2 Damped Hamiltonian systems

If temperature effects are negligible, GENERIC systems can be simplified by assuming constant
temperature θ and using the free energy F (q) := E(q)−θS(q). We call a quadruple (QQQ,F , J,K) a
damped Hamiltonian system, if F is a sufficiently smooth functional on QQQ and if J and K satisfy
(13) and (14), but no non-interaction condition is needed. If we have a linear Onsager operator
K or a more general dual dissipation potential R̂∗, the associated evolution equations read

Ûq =
(
J(q)−K(q)

)
DF (q) or Ûq = J(q)DF (q)+DηR

∗(q,−DF (q)), (20)

respectively. Of course, we still may have conserved quantities C : QQQ→ R; then we always ask
to have 〈DC(q), J(q)DF (q)〉 = 0 = 〈DC(q),K(q)DF (q)〉 for all q ∈ QQQ.

Every damped Hamiltonian system can be augmented to become a GENERIC system with
constant temperature θ > 0 as follows. We introduce a scalar entropy variable s ∈ R and set

y = (q, s), YYY =QQQ×R, E(q, s) = F (q)+ θs, S(q, s) = s,

Ĵ(q, s) =
(
J(q) 0

0 0

)
, K̂(q, s) =

(
K(q) −K(q)DF (q)

−〈�,K(q)DF (q)〉 1
θ 〈DF (q),K(q)DF (q)〉

)
.

Then (YYY,E,S, Ĵ, K̂) is a GENERIC system generating the evolution (20) for q and the entropy
balance Ûs = 1

θ 〈DF (q), K̂(q)DF (q)〉, which immediately gives Ûs ≥ 0.

3.3 Additive structure of dissipative contributions

As observed in [24, Sec. 2.2] the representation of the dissipative parts of the dynamics in terms
of Onsager operators or dual dissipation potentials has the major advantage that there is often
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an additive structure. Indeed, given E the set of operators K satisfying (13), (14), and (16) is a
convex cone, i.e., if K1 and K2 satisfy the conditions, then α1K1+α2K2 does so as well for all
α1, α2 ≥ 0. A similar statement is not true for the Poisson structures J, because Jacobi’s identity
(15) is nonlinear.

The additive structure will be useful in modeling complex semiconductor devices, since we are
able to consider different dissipative processes as independent building blocks each giving rise
to one K j and then simply add these operators, or similarly for dual dissipation potentials. Thus,
we will use the form

K = Kdiffusion+Kreaction+Kquant-class+Kheat.cond.+Kbulk-interface.

In the present work we will ignore temperature effects and bulk-interface interactions and refer
to [22, 23, 24] for the modeling of heat transfer via Kheat.cond. and to [7, 17] for bulk-interface
interactions encoded in Kbulk-interface.

3.4 Dissipative coupling between different components

The construction of couplings between different components of a system, such as classical charge
carriers and the state of a quantum system, can be done efficiently in terms of Onsager operators,
thus building the Onsager symmetry into the system automatically. Assume thatQQQ is given in the
form q = (q1,q2) ∈QQQ1×QQQ2 =QQQ and denote by η1 ∈QQQ∗1 and η2 ∈QQQ∗2 the corresponding conjugate
thermodynamical driving forces.

As we want to couple η1 and η2 we introduce a third linear space XXX (which may also be QQQ∗1 or
QQQ∗2) and linear mappings A j(q) : QQQ∗j → XXX∗ and an Onsager operator KXXX(q) : XXX∗→ XXX to define
a dual dissipation potential

R∗coupl(q;η1, η2) :=
1
2
〈
A1(q)η1+A2(q)η2 , KXXX(q)(A1(q)η1+A2(q)η2)

〉
XXX .

For a GENERIC systemwe additionally ask for the non-interaction conditionR∗(q, λDE(q))= 0.

The dual dissipation potential R∗coupl defines the Onsager operator Kcoupl(q) : QQQ∗→ QQQ, which
takes the following block structure with respect to to the decomposition QQQ =QQQ1×QQQ2:

Kcoupl(q) =
(

A∗1(q)KXXX(q)A1(q) A∗1(q)KXXX(q)A2(q)
A∗2(q)KXXX(q)A1(q) A∗2(q)KXXX(q)A2(q)

)
.

In addition to quantum-classical coupling this method can also be used to couple the interaction
between bulk effects and interfacial effects, where A j may be a trace operator, see [7].

4 Semiconductor modeling via damped Hamiltonian systems

We now show how the above concepts of damped Hamiltonian systems can be used to construct
thermodynamically consistent models for semiconductor devices including arbitrarily many
charge carriers ccc = (c1, . . .,ci∗), where the number of species is denoted by i∗, as well as a
quantum system described by a finite-dimensional density matrix ρρρ.

First, we recover the van Roosbroeck system for the carrier densities ccc = (n, p) considered in
Section 2 to highlight the simplicity of the gradient structure constructed in [23]. Then, we show
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how this structure generalizes to arbitrarilymany species and to general statistics. Next, we review
recent results on the gradient structure for the dissipative part of open quantum systems described
by the Lindblad master equation [29]. Finally, we show how the coupling strategy developed in
Section 3.4 can be adapted to model the interaction of macroscopic thermodynamical systems
and open quantum systems.

4.1 The state variables and free energy

Throughout we consider a domain Ω ⊂ Rd in which all the charge carriers move and interact.
The carrier densities are denoted by ci(t, x) with t ∈ [0,T], x ∈ Ω and i ∈ {1, . . ., i∗}. Moreover,
we assume that there is a population of identical quantum dots each of which is described by a
density matrix

ρρρ ∈ Rn :=
{
ρ ∈ Cn×n

�� ρ = ρ∗, ρ ≥ 0, tr ρ = 1
}
.

We assume that the distance between the quantum dots is sufficiently big, such that they do not
interact directly. However, we assume that there are still enough quantum dots such that we can
model the states by a continuum description via a function ρρρ(t, x) ∈ Rn.

In total our state space QQQ for q = (ρρρ,ccc) will be given as

QQQ =QQQquant×QQQcarr with QQQquant := L1(Ω;Rn) and QQQcarr := L1(Ω; [0,∞[i∗).

Of course, from the modeling perspective there are many other options to “localize” the charge
carriers of the quantum system, e.g., by constructing models with several dimensions. In the
case of wetting layers, certain charge carrier species may live only on a submanifold, see e.g. [7].
A single quantum dot embedded into a bulk material can be considered be means of a weight
function as it was done in [14]. Such situations can also be modeled by the approach presented
here, but for notational simplicity we stick with the setup as given above.

On the state space QQQ =QQQquant×QQQcarr we consider the free energy functional

F (ρρρ,ccc) =
∫
Ω

(ε
2
|∇Φρρρ,ccc |

2+ ρqd tr
(
ρρρH+Eβρρρ log ρρρ

)
+Fcarr(ccc)

)
dx, (21)

where Eβ = kBθ = β
−1 is the inverse thermal energy, ρqd is the volume density of quantum dots,

H is the Hamiltonian of the quantum system and Fcarr(ccc) is the free energy density of the classical
carrier system. The electrostatic potentialΦρρρ,ccc = φρρρ,ccc−φeq is defined in terms of the the Poisson
problem

−div(ε∇φρρρ,ccc) = e0
(
C+ zzz · ccc+ ρqd tr(Zρρρ)

)
on Ω, ν · ∇φρρρ,ccc = 0 on ∂Ω. (22)

Here zzz = (z1, . . ., zi∗) ∈ Z
i∗ is the vector of charge numbers associated with ccc, while Z ∈ Cn×n

herm
is the charge number operator for the quantum system. The vector ccceq of equilibrium carrier
densities and the equilibrium density matrix ρρρeq define the equilibrium electrostatic potential
φeq := φρρρeq,ccceq , such that under equilibrium conditionswe haveΦρρρ,ccc ≡ 0. For the sake of simplicity,
we restrict ourselves to a closed system with homogeneous Neumann boundary conditions (11).

4.2 The van Roosbroeck system as gradient system

The free energy density associated with the van Roosbroeck system (3) for the density of
electrons and holes ccc = (n, p) consists of the sum of the relative entropies for the two species and
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the electrostatic energy

FvR(n, p) =
∫
Ω

(ε
2
|∇Φn,p |

2+EβλB(n/neq)neq+EβλB(p/peq)peq
)

dx

with λB(z) := z log z − z + 1. The electrostatic potential Φn,p solves the Poisson problem (22)
without the quantum mechanical part. Here we restrict our considerations to non-degenerate
carrier ensembles (Maxwell–Boltzmann statistics) with Fcarr (c) = FB (n, p). For the structure of
the free energy functional in the case of Fermi–Dirac statistics we refer to [1].

When taking the variational derivatives of FvR with respect to n and p we have to take into
account the linear dependence of Φn,p on n and p given in terms of (22). Then we find

µµµ =

(
µn

µp

)
= DFvR(n, p) =

(
Eβ log(n/neq)− e0Φn,p

Eβ log(p/peq)+ e0Φn,p

)
, (23)

where µn and µp are the electro-chemical potentials that are thermodynamically conjugate to n
and p, respectively (see Section 2.1). The different signs in front of e0Φn,p reflect the charges of
electrons and holes and arise because of the different signs in front of n and p in (22).

The gradient structure for the van Roosbroeck system developed in [23] is completed by the
Onsager operator

KvR(n, p)
(
µn

µp

)
= −

(div( 1
e0
Mnn∇µn)

div( 1
e0
Mpp∇µp)

)
+

r(n, p)
kBθ

Λ(np,neqpeq)
(

1 1
1 1

) (
µn

µp

)
, (24)

where Λ(a,b) =
∫ 1

0 asb1−s ds = (a− b)/log(a/b) is the logarithmic mean of a and b. Note that
KvR is the sum of a transport part, which gives rise to drift and diffusion, and a reaction part.

Using the identities c∇(logc) = ∇c and Λ(a,b)(loga− log b) = a− b, it is easy to see that the
equations of motion generated by (23) and (24) read(

Ûn
Ûp

)
= −KvR(n, p)DFvR(n, p) = −

(
div Jn+R (n, p)
div J p+R (n, p)

)
,

which are the continuity equations (3b)–(3c). Here we have used (7) and (9). Hence, the van
Roosbroeck system has indeed a gradient flow structure that is generated by a gradient system
(QQQvR,FvR,KvR)withQQQvR = { (n, p) ∈ L1(Ω)2 | p,n ≥ 0 a.e. }. The total chargeC(n, p)=

∫
Ω
(n−p)dx

is a conserved quantity.

In the following subsection we will show how this can be generalized to an arbitrary number of
charge carrier densities ci, i = 1, . . ., i∗. Based on the fundamental work [1] it is shown in [23,
Sec. 4.2] how temperature effects can be taken into account by using the physical entropy as a
driving functional.

4.3 Reactions between and transport of charge carriers

The charge carriers ccc = (n, p) can react in various ways, in particular they can by annihilated in
recombination processes. The generation of electron-hole pairs is written as ∅⇀ Xn+Xp and the
recombination of electron-hole pairs reads Xn + Xp ⇀ ∅. In the limit of small carrier densities,
the reaction rate equation is of so-called mass-action type and reads

Ûn|react = −
(
kfwnp− kbw

)
, Ûp|react = −

(
kfwnp− kbw

)
.
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The forward and backward coefficients kfw and kbw may depend on the variables of the sys-
tem giving r(n, p) = kfw and neqpeq = kbw/kfw in (9). Moreover, they involve several material-
dependent parameters. An important feature is the conservation of charge, namely

(
Ûp−Ûn

)
|react ≡ 0.

More general, we consider m∗ reactions of mass-action type for the charge carrier species
X1,X2, . . .,Xi∗ . They are defined in terms of the forward and backward stoichiometric coefficients
αm

i and βm
i , respectively, via

αm
1 X1+ · · ·+α

m
i∗ Xi∗ 
 βm

1 X1+ · · ·+ β
m
i∗ Xi∗ .

With cccγγγ :=
∏i∗

i=1cγii this leads to the reaction-rate equation

Ûccc |react = −RRR(ccc) := −
m∗∑

m=1

(
kfwm cccααα

m

− kbwm cccβββ
m ) (

αααm− βββm)
, (25)

where the stoichiometric vectors αααm and βββm lie in Ni∗
0 and satisfy the condition of electro-

neutrality (αααm−βββm) · zzz ≡ 0.

The condition of detailed balance means that there exists a positive density vector ccceq ∈ ]0,∞[i∗

such that all reactions are in equilibrium, i.e., km = kfwm cccααα
m

eq = kbwm cccβββ
m

eq . It was observed in
[45, 23] that (25) with its polynomial right-hand side is generated by the gradient system
(]0,∞[i∗,FB,Kreact) if the m∗ reactions satisfy this detailed balance condition: Setting Fcarr(ccc) =
FB(ccc) := kBθ

∑i∗
i=1 λB(ci/c

eq
i )c

eq
i with λB(z) = z log z− z+1, we obtain

Ûccc |react = −RRR(ccc) = −Kreact(ccc)DFB(ccc)

and Kreact(ccc) =
1

kBθ

m∗∑
m=1

kmΛ
(̂
cccααα

m

, ĉccβββ
m ) (

αααm−βββm)
⊗
(
αααm−βββm)

≥ 0.
(26)

Here ĉcc := (ci/c
eq
i )i=1,..,i∗ is the vector of relative densities, and Λ(a,b) is the logarithmic mean.

We emphasize that Kreact is a sum over the individual contribution of each of the m∗ reactions.
Of course, the coefficients km may depend on the whole state ccc without destroying the gradient
structure.

Because of charge neutrality it doesn’t matter whether we use the chemical potentials ηηη =DFB(ccc)
or the electro-chemical potentials µµµ =DF (ccc) = ηηη+ e0Φccczzz as driving forces. Moreover, the total
charge C(ccc) :=

∫
Ω

zzz·ccc(x)dx is a conserved quantity.

Remark 1 In [27] a gradient structure for reaction-rate equations was derived via a large-deviation
principle for the underlying chemical master equation. It leads to the same free energy FB but to
a non-quadratic dual dissipation potential, namely

R∗(ccc, µµµ) =
m∗∑

m=1

κm

kBθ

(̂
cccααα

m

ĉccβββ
m )1/2 C∗

(
(αααm−βββm)·µµµ

)
with C∗(ξ) = 4cosh

(
ξ

2

)
−4.

(27)

See also [8, Eqn. (69)] for the occurrence of the cosh potential in chemical reactions.

4.4 Gradient structure for general carrier statistics

We emphasize that the structure of (26) looks very special and is chosen in order to produce a
simple polynomial right-hand side RRR in the case of Maxwell–Boltzmann statistics. However, the
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gradient structure is still valid for more general statistics. Indeed we may consider a free energy
density Fcarr(ccc) for the charge carriers that involves more general statistical distribution functions
(e.g., Fermi–Dirac statistics) and then chooseKreact(ccc) =

∑m∗
m=1 κm(ccc)

(
αααm− βββm)

⊗
(
αααm− βββm)

with
suitable scalar coefficients κm(ccc). In this way one keeps the gradient structure and hence the
thermodynamic principles even without the mass-action type kinetics.

The transport of charge carriers occurs by diffusion as well as by drift in the electric field
E = −∇Φccc. The thermodynamical driving force is the electro-chemical potential

µµµ = DF (ccc) = ηηη+ e0Φccczzz with ηηη = DFcarr(ccc),

that can be split into the chemical potentials ηηη = DFcarr(ccc) and the electrostatic forces involving
the charge numbers zi of the respective carrier species. The associated fluxes J i ∈ R

d can be
combined into a matrix Jccc ∈ R

i∗×d . Within the framework of linear irreversible thermodynamics
[31], the classical ansatz is

Jccc = −M(ccc)∇µµµ = −M(ccc)
(
∇ηηη+ zzz ⊗∇Φccc

)
, (28)

where the conductivity tensor M is symmetric and positive semi-definite mapping Ri∗×d into
itself. In the isotropic case one may choose M(ccc) ∈ Ri∗×i∗ , e.g., M(ccc) = diag(mici)i=1,..,i∗ ..

The Onsager operator Ktransp for transport of charge carriers is now given in the form

Ktransp(ccc)µµµ = −div
(
M(ccc)∇µµµ

)
.

Thus, for general situations the reactions and transport for the carrier density vector ccc can be
written as a gradient system in the form

Ûccc = −
(
Ktransp(ccc)+Kreact(ccc)

)
DF (ccc)

= div
(
M(ccc)(∇DFcarr(ccc)+ zzz ⊗∇Φccc)

)
−Kreact(q)DFcarr(ccc),

where we used electro-neutrality of the reactions, i.e., Kreact(ccc)zzz ≡ 0. In the case of nontriv-
ial carrier statistics Fcarr , FB the Hessian of the carrier’s free energy density ∇DFcarr(ccc) =
D2Fcarr(ccc)∇ccc ∈ Ri∗×d gives rise to nonlinear diffusion [21, 15].

4.5 Dissipative quantum mechanics

Here we show how dissipative quantum systems subject to the Lindblad master equation can
be written as a damped Hamiltonian system with respect to the von Neumann entropy, if the
dissipative part satisfies a suitable detailed balance condition.

A Markovian quantum master equation (see, e.g., [19, 41, 43, 4]) in Lindblad form reads

Ûρρρ = [ρρρ,H]+Dρρρ, where Dρρρ =

k∗∑
k=1

αkGQρρρ (29)

with

GQ A :=
1
2
([Q, AQ∗]+ [QA,Q∗]) . (30)

The coupling operators Q ∈ Cn×n and the transition rates αk ∈ [0,∞[ are arbitrary andD is called
the dissipation superoperator. We use the notation  = i/h̄.
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With the derivative DFquant(ρρρ) = H+ Eβ log ρρρ (up to a constant) of the free energy functional
Fquant(ρρρ) = tr

(
Hρρρ+Eβρρρ log ρρρ

)
, the Hamiltonian part has the desired form

[ρρρ,H] = 
[
ρρρ,DFquant(ρρρ)

]
= Jquant(ρρρ)DFquant(ρρρ) with Jquant(ρρρ)A := [ρρρ, A].

The Jacobi identity (15) for Jquant follows from the elementary Jacobi identity for the commutator.

Thus it remains to write Dρρρ in the form −K(ρρρ)DFquant(ρρρ). This problem was first solved in
[5, 29], again relying on a suitable non-commutative version of a detailed balance condition. In
Section 4.7 we will show how the coefficients αk may be chosen to depend on ccc, if there are
corresponding back-coupling terms in the reaction equation. For this we exploit the coupling
technique introduced in Section 3.4.

The main structure is a non-commutative version of the chain-rule identities c∇ logc = ∇c for
diffusion (cf. Section 4.2) andΛ(cαi ,c

β
j )(α logci− β logc j) = cαi −cβj for reactions of mass-action

type (cf. Section 4.3). As highlighted in [33, 34], the proper generalization is obtained via the
Kubo–Mori multiplication operator

Cρρρ : A 7→
∫ 1

0
ρρρs Aρρρ1−s ds.

Kubo’s miracle identity (see [16, 44]) then states that

∀Q ∈ Cn×n ∀ ρρρ ∈ Rn : Cρρρ[Q, log ρρρ] = [Q, ρρρ].

The above formula is not sufficient to treat terms of the form [Q, log ρρρ+ βH]. However, when
restricting to a suitable subclass of operators Q, a generalized miracle identity can be obtained.
For this we choose eigenpairs (ω,Q) of the commutator operator A 7→ [A,H], viz.

[Q,H] = h̄ωQ. (31)

Using two eigenstates ψ1 and ψ2 with Hψ j = h jψ j with energy levels h j ∈ R, we see that
Q = ψ1⊗ψ2 satisfies (31) with h̄ω = h2− h1. The following generalization of the miracle identity
relies on doubling the dimension by considering

BQ :=
(

0 Q∗

Q 0

)
∈ C2n×2n

Herm and R(ρρρ, γ) :=
(

eγ/2ρρρ 0
0 e−γ/2ρρρ

)
∈ C2n×2n

Herm .

Using (ω,Q) satisfying (31) and the doubling operatorX : Cn×n→ C2n×2n; A 7→
(A 0
0 A

)
we obtain

the generalized miracle identity

CR(ρρρ,βh̄ω)
[
BQ,X(H+Eβ log ρρρ)

]
=

[
BQ,R(ρρρ, βh̄ω)

]
=

(
0 e−βh̄ω/2Q∗ρρρ− eβh̄ω/2ρρρQ∗

eβh̄ω/2Qρρρ− e−βh̄ω/2ρρρQ 0

)
,

(32)

where again the right-hand side is linear in ρρρ. As shown in [29], see also [5] for related results,
this identity follows simply from the miracle identity applied to R(ρρρ, γ) and BQ and the fact that
(31) implies the commutator result[
BQ, logR(ρρρ, βh̄ω)

]
=

[
BQ,

( 1
2 βh̄ωI+ log ρρρ 0

0 −1
2 βh̄ωI+ log ρρρ

) ]
= β

[
BQ,X(H+Eβ log ρρρ)

]
.
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This construction allows us to define dual dissipation potentials, where we can take a sum over
a set (ωk,Qk) of eigenpairs satisfying (31), namely

R∗quant(ρρρ,σσσ) = β

k∗∑
k=1

αk

2
tr

( ( [
BQk

,Xσσσ
] )∗
CR(ρρρ,βh̄ωk )

[
BQk

,Xσσσ
] )
,

where αk ≥ 0. Because the adjointX∗ satisfiesX∗
(A B
C D

)
= A+D we obtain the associated Onsager

operator, which depends highly nontrivial on ρρρ:

Kquant(ρρρ)σσσ = −β

k∗∑
k=1

αkX
∗
[
BQk

,CR(ρρρ,βh̄ωk )

[
BQk

,Xσσσ
] ]
. (33)

Exploiting the generalized miracle identity (32) we find the desired Lindblad form

Kquant(ρρρ) (H+Eβ log ρρρ) = −
k∗∑

k=1
αk

(
eβh̄ωk/2GQk

ρρρ+ e−βh̄ωk/2GQ∗
k
ρρρ
)
,

that features special choices for the weights of GQk
and GQ∗

k
to guarantee the detailed balance

condition.

4.6 The van Roosbroeck system coupled to a quantum system

Before we show how quantum mechanics can be coupled to the van Roosbroeck system via the
formalism of damped Hamiltonian systems, we follow the approach in [14] and show that for
simple couplings one can prove that the free energy F is indeed a Liapunov function. In Section
4.7 this will follow automatically, but from very elaborate construction, while the arguments in
this subsection are more intuitive and direct.

For quantum master equations of type (29) without the detailed balance condition it is much
more difficult to show that the relative entropy is a Liapunov function, see [18]. In [41, 42]
explicit expressions for the dissipation were derived for systems satisfying a detailed balance
conditions. Exactly these formulas stimulated the gradient structure developed in the previous
subsection.

To highlight the idea of consistent coupling of the van Roosbroeck system and a quantum system
developed in [14], we now look at one coupling mechanism, namely the capture and escape of
a free electron into a quantum dot, which can be written as a forward-backward reaction

Xn+ψ1 
 ψ2,

where ψ j ∈ C
n denote normalized eigenstates with Hψ j = h jψ j of the Hamiltonian H. Here ψ1

might denote a ground state (empty quantum dot) while ψ2 denotes an excited state (electron
captured by the quantum dot), see [14] for details. The eigenstates ψ j should also satisfy
Zψ j = (1− j)ψ j for j = 1 and 2. Hence, H and Z share the same eigenbasis such that

[H,Z] = 0. (34)

Physically, the condition (34) implies that the Hamiltonian evolution leaves the charge of the
quantum system invariant. Therefore, the exchange of charges is necessarily a dissipative process
that couples the open quantum system to the macroscopic system in its environment.
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Using the transfer operatorQ =ψ1⊗ψ2 ∈C
n×n and setting h̄ω = h2−h1 weobtain the commutator

relations

[Q,H] = h̄ωQ, [Q∗,H] = −h̄ωQ∗, [Q,Z] = −Q, [Q∗,Z] = +Q∗.

The electron-exchange flux between the macroscopic system and the quantum dots is modeled
by an additional reaction term on the right hand side of (3b)

Rquant-class
n (ρρρ,n) = −ρqd tr

(
ZDcp(n)ρρρ

)
(35)

where the coupling operator Dcp is given via

Dcp(n)ρρρ = κ(n)
(
e(βh̄ω+log(n/neq))/2GQρρρ+ e−(βh̄ω+log(n/neq))/2GQ∗ρρρ

)
(36)

with κ ≥ 0 non-negative. The “total” dissipation superoperator in (30) is the sum D(n)ρρρ =
D0ρρρ+Dcp(n)ρρρ. The processes described by D0 do not couple the open quantum system and the
macroscopic system as they are assumed to not exchange carriers between both subsystems, i.e.,
it holds

tr (ZD0ρρρ) ≡ 0. (37)
With this construction, the coupled system reads

0 = div (ε∇φρρρ,n,p)+ e0
(
C+ p−n+ ρqd tr (Zρρρ)

)
, (38a)

Ûn = −div Jn−R(n, p)+ ρqd tr
(
ZDcp(n)ρρρ

)
, (38b)

Ûp = −div J p−R(n, p), (38c)
Ûρρρ = [ρρρ,H+ e0Φρρρ,n,pZ]+D0ρρρ+Dcp(n)ρρρ. (38d)

As before, the electrostatic potential Φρρρ,n,p = φρρρ,n,p − φeq is defined via (22). The system (38)
conserves the total charge, as it implies continuity equation

Û%+div J % = 0 (39)

for the total charge density %= e0
(
C+p−n+ρqd tr (Zρρρ)

)
, where J % = e0

(
J p− Jn

)
is the electrical

charge current density. For this (34), (35), (37) and cyclic permutations under the trace have
been used. We conclude that the total charge C(ρρρ,n, p) =

∫
Ω
% dx is a conserved quantity.

The system (38) has a steady state solution (ρρρ,n, p) = (ρρρeq,neq, peq) where
[
ρρρeq,H

]
≡ 0 and

Dcp
(
neq

)
ρρρeq ≡ 0. Moreover, the steady state solution is assumed to satisfy

Qρρρeq = e−βh̄ωρρρeqQ.

Then, the charge exchange (35) between the classical and the quantum system vanishes in
equilibrium, i.e.,

Rquant-class
n

(
ρρρeq,neq

)
= −ρqdκ

(
neq

) (
eβh̄ω/2 tr(QρρρeqQ∗)− e−βh̄ω/2 tr(Q∗ρρρeqQ)

)
= 0,

which is a manifestation of the detailed balance condition.

We consider the free energy functional F (ρρρ,n, p) as given in (21) with the free energy density
Fcarr(ccc) = FB(n, p) for the macroscopic carriers. The thermodynamic driving forces are obtained
by the Gâteaux derivatives, namely

©­«
σσσ

µn

µp

ª®¬ = ©­«
DρρρF

DnF

DpF

ª®¬ = ©­«
Eβ log ρρρ+H+ e0Φρρρ,n,pZ
Eβ log(n/neq)− e0Φρρρ,n,p

Eβ log(p/peq)+ e0Φρρρ,n,p

ª®¬ .
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Following [14] we consider solutions t 7→ (ρρρ(t, ·),n(t, ·), p(t, ·)) of (38) and discuss the energy-
dissipation relation. A direct computation gives

d
dt
F (ρρρ,n, p) = 〈DF (ρρρ,n, p), ( Ûρρρ, Ûn, Ûp)>〉

= −Dtransp(ρρρ,n, p)−Dreact(ρρρ,n, p)−Dquant-class(ρρρ,n, p)−Dquant(ρρρ,n, p),

where we exploit the additive structure of the different dissipative mechanisms. Using (4), (5),
(9), (34) and (37), the individual terms are given as follows:

Dtransp =

∫
Ω

(
1
e0
Mnn

��∇ (
Eβ log

(
n/neq

)
− e0Φρρρ,n,p

) ��2
+

1
e0
Mpp

��∇ (
Eβ log

(
p/peq

)
+ e0Φρρρ,n,p

) ��2) dx,

Dreact = Eβ

∫
Ω

r(n, p)

(
np−neqpeq

)2

Λ
(
np,neqpeq

) dx,

Dquant =

∫
Ω

ρqd tr
( [
−H−Eβ log ρρρ

]
D0ρρρ

)
dx,

Dquant-class =

∫
Ω

ρqd tr
( [
−

(
H+Eβ log

(
n/neq

)
Z
)
− log ρρρ

]
Dcp(q)ρρρ

)
dx.

Here, Dtransp and Dreact, which describe the dissipation due to transport via drift and diffusion
and due to reactions (recombination) in the van Roosbroeck system, are trivially non-negative.
The non-negativity of Dquant follows from

tr
( (

log ρρρ0− log ρρρ
)
D0ρρρ

)
≥ 0 for all ρρρ ∈ Rn, (40)

wheneverD0ρρρ0 ≡ 0, see [41, Thm. 3]. For the charge conserving processes this is easily achieved
for log ρρρ0 = −βH. The non-negativity of Dquant-class follows analogously by a generalization of
(40) to

tr
( (

log ρ̂ρρn− log ρρρ
)
Dcp(n)ρρρ

)
≥ 0 for all ρρρ ∈ Rn,

if Dcp(n)ρ̂ρρn ≡ 0. Indeed, by (36) this is satisfied for log ρ̂ρρn = −βH− log
(
n/neq

)
Z. The proof is

based on the relation Q ρ̂ρρn = e−(βh̄ω+log(n/neq)) ρ̂ρρnQ. In conclusion, we recover the result of [14]
and state consistency of the model system (38) with the second law of thermodynamics, as the
free energy F is a Liapunov function, namely d

dtF (ρρρ,n, p) ≤ 0.

4.7 Quantum-classical coupling via Onsager operators

We can combine the ideas developed in Section 4.3 and Section 4.6 by looking at chemical
reactions involving quantum states as well. For a single reaction we have

α̃1X1+ · · ·+ α̃i∗Xi∗ +ψ j 
 β̃1X1+ · · ·+ β̃i∗Xi∗ +ψk (41)

whereHψ j = h jψ j , Zψ j = ζ jψ j and [H,Z]= 0. As before, the theory is based on coupling operators
Q j,k = ψ j⊗ψk between the system’s eigenstates that satisfy

[Q j,k,H] = h̄ω j,kQ j,k and [Q j,k,Z] = ` j,kQ j,k, (42)
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with h̄ω j,k = hk − h j , 0 and ` j,k = ζk − ζ j ∈ Z. We focus on a single reaction in (41) with ( j, k)
such that ω j,k ≡ ω0 and ` j,k ≡ `0 such that charge conservation means

zzz ···
(
β̃ββ− α̃αα

)
+ `0 = 0. (43)

For example, the capture of an electron from the macroscopic system with ccc = (n, p) to the
quantum system considered in Section 4.6 is described by n+ψ1 
 ψ2, where, as in Section
4.6, ψ1 models the empty quantum dot and ψ2 is a state occupied by a single electron. The charge
neutrality condition (43) is satisfied since zzz = (−1,+1)>, α̃αα = (1,0)>, β̃ββ = (0,0)> and `0 = −1.

Following the general coupling strategy outlined in Section 3.4, we construct the coupling
via a dual dissipation potential by using a suitable linear combination of the electro-chemical
potential µµµ =DFcarr(ccc)+ e0Φρρρ,ccczzz and the driving force σσσ = Eβ log ρρρ+H+ e0Φρρρ,cccZ. In particular,
µµµ is mapped into a multiple of the Hamiltonian H or the charge operator Z, such that it is possible
to exploit the commutator relations (42) with the transition operator Q0 = Q j,k = ψ j⊗ψk . The
dual dissipation potential reads

R∗quant-class(ρρρ,ccc;σσσ, µµµ) := β
κ(ccc)

2
tr

( ( [
BQ0,X(σσσ+Aµµµ)

] )∗
CR(ρρρ,γ(ccc))

[
BQ0,X(σσσ+Aµµµ)

] )
,

with A(ccc)µµµ := (β̃ββ−α̃αα) ··· µµµ
(
a(ccc)H+ b(ccc)Z

)
∈ Cn×n

Herm,

where the coupling strength κ(ccc) ≥ 0 will remain free, while the scalars a(ccc), b(ccc), and γ(ccc) need
to be chosen suitably as functions of ccc to be able to exploit electro-neutrality and the generalized
miracle identity (32) for all ccc. For this, we simply observe that replacing H by b(ccc)H does not
change Q0, but replaces ω0 by b(ccc)ω0. Thus, with (σσσ, µµµ) = (Eβ log ρρρ+H+ e0Φρρρ,cccZ,DFcarr(ccc)+
e0Φρρρ,ccczzz) we obtain the commutator relation[

Q0,σσσ+A(ccc)µµµ] = Eβ[Q0, log ρρρ]+Eβγ(ccc,Φρρρ,ccc)Q0 with

γ(ccc,Φρρρ,ccc) = β
(
h̄ω0+ (β̃ββ−α̃αα)···(DFcarr(ccc)

(
h̄ω0a(ccc)+ `0b(ccc)

)
+ e0Φρρρ,ccc

(
`0+ (β̃ββ−α̃αα)···zzz

(
h̄ω0a(ccc)+ `0b(ccc)

) )
.

Thus, to have electro-neutrality (43) the factor multiplying e0Φρρρ,ccc has to vanish, which by (43)
imposes the condition h̄ω0a(ccc)+`0b(ccc) ≡ 1. (For the case treated in Section 4.6 a natural choice
is a(n, p) ≡ 0 and b(n, p) = 1/`0 = −1.) Moreover, we find that γ does not depend on Φρρρ,ccc and
takes the simple form

γ(ccc) = βh̄ω0+ β (β̃ββ−α̃αα)···DFcarr(ccc). (44)

The associated Onsager operator now has a block structure

Kquant-class(ρρρ,ccc) = κ(ccc)
(
K

cq
quant(ρρρ,ccc) K

cq
quant(ρρρ,ccc)A(ccc)

A∗(ccc)Kcq
quant(ρρρ,ccc) A∗(ccc)Kcq

quant(ρρρ,ccc)A(ccc)

)
that clearly shows the symmetric coupling. Here Kcq

quant is constructed as in (33), namely

Kquant(ρρρ,ccc)σσσ = −β κ(ccc)X∗
[
BQ0,CR(ρρρ,γ(ccc))

[
BQ0,Xσσσ

] ]
, (45)

where now an explicit dependence on the macroscopic densities ci occurs.
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It is interesting to note that this construction yields a simple final result for the coupling terms
in the equations if we use Maxwell–Boltzmann statistics for ccc, because the arising terms for the
macroscopic system are very similar to the expressions for the quantum system that are based
on the von Neumann entropy.

Using coupling strength function κ(ccc) = κ0
(̂
cccα̃αα ĉcc β̃ββ

)1/2 (which also occurs in [27], see (27)), we
obtain (

Dquant-class(ccc)ρρρ
−RRRquant-class(ρρρ,ccc)

)
= −Kqu-cl(ρρρ,ccc)

(
Eβ log ρρρ+H+ e0Φρρρ,cccZ

DFB(ccc)+ e0Φρρρ,ccczzz

)
= κ0

( eβh̄ω0/2ĉccα̃ααGQ0ρρρ+ e−βh̄ω0/2ĉcc β̃ββGQ∗0ρρρ(
eβh̄ω0/2ĉccα̃αα tr(Q0ρρρQ∗0)−e−βh̄ω0/2ĉcc β̃ββ tr(Q∗0ρρρQ0)

) (
α̃αα−β̃ββ

) ), (46)

where ĉcc = (ci/c
eq
i )i=1,...,i∗ is the vector of relative densities. It is surprising that all the terms are

polynomial in ccc and linear in ρρρ. We refer to (35) and (38) in Section 4.6 for the special case with
α̃αα = (1,0)> and β̃ββ = (0,0)>.

The surprising fact is that by the generalizedmiracle identity (32) all the complicated nonlinearity
cancels each other, and at the end polynomial vector fields remain. In particular the equation for
ρρρ is in Lindblad form, where only the prefactors of the generators GQ0 and GQ∗0 depend on the
macroscopic charge carrier densities. Similarly, the reactions of the charge carrier densities ci
obey the mass-action law, see (26). We refer to [26, 12] for more details concerning the coupling
of charge carriers and quantum systems.

4.8 Further dissipative coupling strategies

Further dissipative processes can bemodeled by similar approaches. For instance, in [29, Sec. 5.5]
a dissipative Maxwell–Bloch system is considered, where a dissipative coupling between the
electromagnetic radiation field and a quantum mechanical multi-level system is considered.
A much simpler and more direct coupling of recombination and light generation is discussed
in [28]. In [11] a different model for dissipative Maxwell equations is formulated within the
framework of GENERIC.

Many applications involve the interaction of bulk and interface effects. We refer to [32, 7, 24].
In particular, the capture and escape of species from the bulk to the interface and back can be
understood as a reaction in the sense of Section 4.3.
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