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A nonconforming pressure-robust finite element method for the Stokes
equations on anisotropic meshes

Thomas Apel, Volker Kempf, Alexander Linke, Christian Merdon

ABSTRACT. Most classical finite element schemes for the (Navier–)Stokes equations are neither pressure-robust,
nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large
velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure
gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup
stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing
term, using H(div)-conforming velocity reconstruction operators. This approach has so far only been analyzed
on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the
Crouzeix–Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the
interpolation error on anisotropic elements for reconstruction operators of Raviart–Thomas and Brezzi–Douglas–
Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the
theoretical results in a 2D and a 3D test case.

1. INTRODUCTION

Classical finite element methods for the incompressible Navier–Stokes equations, e.g. the Taylor–Hood family
of finite elements, typically do not yield exactly divergence free solutions in the sense of H(div), but instead
relax the divergence constraint in order to achieve discrete inf-sup stability [24]. The resulting error estimates for
H1-conforming methods for the Stokes equations

−ν∆u +∇p = f ,

∇ · u = 0,

are of the form, see e.g. [20, 22],

(1) ‖u− uh‖1 ≤ 2(1 + CF ) inf
vh∈Xh

‖u− vh‖1 +
1

ν
inf

qh∈Qh
‖p− qh‖0,

i.e. the quality of the velocity estimate depends on the pressure and possibly deteriorates unboundedly for ν → 0
posing a classical locking phenomenon in the sense of Babuška and Suri [12]. We remark that the constant CF
in the estimate denotes the stability constant of the Fortin operator of the mixed method. On the other hand,
exactly divergence-free H1 or H(div) conforming methods of order k, see e.g. [15, 32–34, 37, 38], produce
error estimates of the type

(2) ‖u− uh‖1,h ≤ CF inf
vh∈Xh

‖u− vh‖1,h + Chk|u|k+1,

which provide a much better control on the velocity error, independent of the pressure approximability.

These methods have been known since the 1980s, see e.g. [32, 33, 38], and have significant advantages,
especially in settings where the viscosity parameter ν is small or where the pressure approximation in the discrete
pressure space is of low order. However they were not in the focus for practical applications where incompressible
flows needed to be computed on a large scale, which was mainly due to two reasons: their more complicated
implementation compared to the classical methods and their higher computational cost. Both issues are being
addressed in current research: highly automated finite element libraries like NGSolve [35] and FEniCS [31]
offer a large choice of available elements, and the computational cost can be decreased significantly, e.g. by
hybridization, see [37, Appendix].

Another way to get to a pressure-robust discretization has been introduced recently, see [28]. It uses a recon-
struction operator for the velocity test functions to reestablish L2 orthogonality between the test functions and the
irrotational part of the Helmholtz decomposition of the external force in the Stokes case, which results in regaining
pressure-robustness for standard methods. The approach was first used on the Crouzeix–Raviart element, but
has been applied to several other classical elements, see [25, 27, 29].

Unfortunately, all these results have in common that they assume a shape-regular triangulation of the domain.
This assumption is in general not valid in practical applications, as incompressible flows tend to form boundary
and interior layers, and in these regions adaptive mesh refinement strategies lead to highly stretched elements.
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However, there are a couple of established finite element methods, where a uniform stability of the Fortin
operator has been shown on anisotropic mesh families. By classical mixed theory, this leads to a uniform inf-sup
stability in the anisotropic case as well, which is needed for the discrete pressure error estimates. The most
remarkable example is the nonconforming Crouzeix–Raviart element [10, 11], where the stability constant of its
Fortin operator is CF = 1 on arbitrary simplex grids, including anisotropic elements, evidently. See Lemma 4
for the detailed result. Further elements, which have shown to be applicable on anisotropic grids comprise
the Bernardi–Raugel element in 2D and related elements [5] and nonconforming rectangular elements [9], all
combined with discontinuous pressure approximations. There are also results for the hp-version finite element
method [3, 4, 36] and recently, for certain anisotropic triangulations, the lowest order Taylor–Hood elements [13].
As mentioned before, these discretizations are not pressure-robust.

We address the question of uniformly stable, pressure-robust methods for anisotropic grids in the present
contribution, by combining the approach for pressure-robustness from [14, 28] and the error estimates for
Raviart–Thomas and Brezzi–Douglas–Marini interpolation from [1, 8]. In particular, we focus on two relaxations
of the usual minimum angle condition on the shape of the elements. We consider triangles and tetrahedra which
satisfy a maximum angle condition or additionally a regular vertex condition. The maximum angle condition was
first introduced in [39] for triangles and generalized for tetrahedra in [23], and is frequently used, see e.g. [1, 2, 7,
18]. It is satisfied if all angles inside an element are bounded away from π. The regular vertex condition on the
other hand is satisfied, when there is a vertex for which the outgoing unit vectors along the edges are uniformly
linearly independent. We give proper definitions in Section 2.

In two dimensions, the regular vertex property is trivially satisfied if the maximum angle condition is met, but the
conditions are not equivalent in three dimensions. This becomes relevant for anisotropic meshes that arise when
handling singularities near concave edges of the domain, see e.g. [10] and the arguments in Section 2.2.

For triangulations of both types, we prove optimal error estimates for convex domains and full elliptic regularity
and show numerical experiments which support the theoretical results. The main result of this article is the
generalization of the results from [14, 28] to a more general class of meshes, which requires only the maximum
angle condition, and some sharper estimates under the assumption of a regular vertex property, allowing the
method to be used on more application-oriented meshes.

In Section 2 we introduce the required notation, some aspects of anisotropic triangulations and the continuous
and discrete setting of the Stokes equations. In Section 3 we recall some properties of the Crouzeix–Raviart
element, which make it favorable to use for anisotropic settings. Section 4 contains the main results, the a-priori
error estimates for the Stokes problem without the constraint of shape-regular triangulations. The numerical
examples are presented in Section 5.

2. PRELIMINARIES

2.1. Notation. Throughout the text we use bold symbols for vectors, vector-valued functions and their function
spaces. The symbol C denotes a generic constant which may change from line to line. When writing volume and
surface integrals, we usually omit the integration measure, where the meaning is clear.

By Th we denote a conforming simplicial triangulation of the considered domain Ω ⊂ Rd, where d ∈ {2, 3} is
the space dimension. The global mesh size parameter is defined by

h = max
T∈Th

hT ,

where hT is the diameter of the element T ∈ Th. By F(Th) we denote the set of all simplex facets of the
triangulation Th, i.e. depending on d the edges of triangles or faces of tetrahedra, and by F i(Th) the set of all
interior facets. For an element T ∈ Th, F(T ) ⊂ F(Th) is the set of all facets of T . For an element T ∈ Th and
a facet F ∈ F(Th) we denote by xT and xF their barycenters, respectively. For any facet F ∈ F(Th) let nF
denote its unit normal vector, which is oriented outward for boundary facets F ∈ Fb(Th) = F(Th) \ F i(Th)
and has an arbitrary but fixed orientation for interior facets. When considering a facet F ∈ F(T ) of an element
T ∈ Th, nFT denotes the outward facing normal vector with respect to the element. The aspect ratio σT of an
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FIGURE 1. Families F1 and F2 of tetrahedra satisfying the maximum angle condition (left and
right), and the regular vertex condition (left), Figure from [8]

element T ∈ Th is defined as

σT =
hT
ρT
,

where ρT is the supremum of the diameters of all spheres contained in T . We denote by σ the maximum of the
occurring aspect ratios in the triangulation.

2.2. Anisotropic meshes. When dealing with the relaxed notion of anisotropic triangulations, i.e. do not set an
upper bound for the triangulation’s aspect ratio, still some regularity is required of the elements. We define two
such conditions.

Definition 1. An element T satisfies the maximum angle condition with a constant φ̄ < π, written as MAC (φ̄),
if the maximum angle between facets and, for d = 3, the maximum angle inside the facets are less than or equal
to φ̄. A triangulation satisfies MAC (φ̄), if all elements do.

The maximum angle condition for triangles was first used in [39], and generalized to tetrahedra in [23]. It is very
common when dealing with anisotropic elements, see e.g. [1, 2, 7, 18]. The next property is equivalent to the
maximum angle condition for d = 2, see [2, Section 5, p. 29], while in three dimensions it describes a proper
subclass.

Definition 2. An element T satisfies the regular vertex property with a constant c̄, written as RVP(c̄), if there is

a vertex pT,k of T , so that for the matrix Nk, made up of the unit column vectors lkT,j =
pT,j−pT,k
‖pT,j−pT,k‖ outgoing

from vertex pT,k towards vertex pT,j , j ∈ {1, . . . , d+ 1} \ {k}, the inequality

|detNk| ≥ c̄ > 0

holds. The vertex pT,k is then called regular vertex of the element T . Without loss of generality for the rest of the
text we assume that the vertices are numbered so that pT,d+1 is the regular vertex, so that we can use the more

intuitive notation lT,i = ld+1
T,i and the element size parameters hT,i, i ∈ {1, . . . , d}, which are defined as the

lengths of the edges corresponding to the vectors lT,i.

As proved in [1, Theorem 2.2, Theorem 2.3], the families F1 and F2 of elements pictured in Figure 1, with
arbitrary size parameters hi, are sufficient to get any tetrahedron satisfying RVP(c̄) or MAC (φ̄), using F1 or
F1 ∪ F2 respectively, by a reasonable affine transformation F , i.e. F (x̃) = JT x̃ + x0, JT ∈ Rd×d, where
‖JT ‖∞,

∥∥J−1
T

∥∥
∞ ≤ C , with C only dependent on φ̄ resp. c̄.

As described in [6], depending on the type of anisotropy in the elements, it may not be possible to fill arbitrary
volumes with tetrahedra satisfying the regular vertex property, and the second type of reference family needs to
be considered. Observe for example the three tetrahedra resulting from the subdivision of a triangular prism,
as seen in Figure 2. Two of those, p1p2p3p6 and p1p4p5p6 in the figure, clearly satisfy the regular vertex
property, independent of the anisotropy of the prism. Now suppose the prism is stretched in x3 direction, i.e.
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FIGURE 2. Subdivision of triangular prism in three tetrahedra

h3 � h1, h2, as might be the case when grading the mesh towards a singular edge, see e.g. [10, 11], then the
remaining tetrahedron p1p2p5p6 does not satisfy the regular vertex property. If on the other hand we grade the
mesh towards a boundary layer, e.g. h1 ∼ h2 � h3, the third tetrahedron has a flat instead of a long shape,
and the property is satisfied.

For the rest of the text, except where explicitly stated, we assume that all triangulations at least satisfy a maximum
angle condition.

2.3. The continuous setting. We consider the steady state incompressible Stokes equations in a simply
connected, polyhedral domain Ω ⊂ Rd, d ∈ {2, 3}, with homogeneous Dirichlet boundary conditions and
external forcing f ∈ L2(Ω) in the form

−ν∆u +∇p = f on Ω,

∇ · u = 0 on Ω,

u = 0 on ∂Ω.

(3)

Employing the function spaces

X = H1
0(Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω},

Q = L2
0(Ω),

the weak formulation of the problem is given as, see [20, Section I.5.1]: find (u, p) ∈ X×Q, so that

a(u,v) + b(v, p) = l(v),

b(u, q) = 0,
(4)

holds for all (v, q) ∈ X×Q, where the bilinear and linear forms are defined by

a : X×X→ R, a(u,v) = ν

∫
Ω
∇u : ∇v,

b : X×Q→ R, b(v, q) = −
∫

Ω
q∇ · v,

l : X→ R, l(v) =

∫
Ω
f · v.

With the space V0 = {v ∈ X : ∇·v = 0} of functions satisfying the divergence constraint, we can reformulate
the problem in the elliptic form, see [20, Section I.5.1]: find u ∈ V0, so that

(5) a(u,v) = l(v)

holds for all v ∈ V0. For the Stokes problem the continuous inf-sup condition

∃β > 0 : inf
q∈Q

sup
v∈X

b(v, q)

‖v‖X‖q‖0
≥ β
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holds, see [20, Section I.5.1], where ‖·‖k denotes the norm of the Sobolev space Hk(Ω) for k ≥ 0.

2.4. The discrete setting and interpolation operators. For our method, we need some tools from the discon-
tinuous Galerkin framework. We denote by [[v]]F and {{v}}F the jump and average, respectively, of a piecewise
H1 function v over a facet F , which, see e.g. [17, Section 1.2.3], are defined for an interior facet F belonging to
two elements T1 and T2 by

[[v]]F (x) = v|T1(x)− v|T2(x),

{{v}}F (x) =
1

2
(v|T1(x) + v|T2(x)).

For boundary faces we use the convention [[v]]F = {{v}}F = v. For the velocity approximation we use the
non-conforming Crouzeix–Raviart element, that was introduced in [16], and is defined by

Xh = {vh ∈ L2(Ω) : vh|T ∈ P1 for all T ∈ Th, [[vh]]F (xF ) = 0 for all F ∈ F(Th)}.
The corresponding pressure approximation uses piecewise constants from the space

Qh = {qh ∈ Q : qh|T ∈ P0 for all T ∈ Th},
where Pk denotes the space of all polynomials with maximal degree k.

Using the space H(div,Ω) = {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)} we define the Brezzi–Douglas–Marini and
Raviart–Thomas functions of lowest order by

BDM(Th) = {vh ∈ H(div,Ω) : vh|T ∈ P1 ∀T ∈ Th, [[vh · nF ]]F = 0∀F ∈ F(Th)},
RT(Th) = {vh ∈ H(div,Ω) : vh|T = aT + bT (x− xT )∀T ∈ Th,aT ∈ Rd, bT ∈ R,

[[vh · nF ]] = 0∀F ∈ F(Th)}.
The Raviart–Thomas function space RT(Th) contains those Brezzi–Douglas–Marini functions from BDM(Th),
which have constant normal components on all faces. These normal components define the Raviart–Thomas
functions uniquely.

The Crouzeix–Raviart element is not H1(Ω) conforming, so the standard definitions of the gradient ∇ and
divergence ∇· operators do not make sense for functions in Xh. Instead we use the notions of the broken
gradient∇h : X⊕Xh → L2(Ω)d×d and broken divergence∇h · (·) : X⊕Xh → L2(Ω), which define the
derivatives elementwise for all T ∈ Th by

(∇hvh)|T = ∇(vh|T ), and (∇h · vh)|T = ∇ · (vh|T ),

and which are on X equivalent to the standard operators, see e.g. [17, Sections 1.2.5, 1.2.6]. The discrete
gradient norm for the space X⊕Xh is defined by

‖vh‖1,h =

(∫
Ω
∇hvh : ∇hvh

)1/2

= ‖∇hvh‖0.

We define the three interpolation operators ICR
h : X→ Xh, IRT

h : X⊕Xh → RT(Th) and IBDM
h : X⊕Xh →

BDM(Th) for the Crouzeix–Raviart, Raviart–Thomas and Brezzi–Douglas–Marini interpolation by

ICR
h v(xF ) =

1

|F |

∫
F
v, for all F ∈ F(Th),

nF · IRT
h v(xF ) =

1

|F |

∫
F
v · nF , for all F ∈ F(Th),∫

F
(IBDM
h v) · nF ph =

{∫
F {{v · nF }}ph, for all F ∈ F i(Th),∫
F (IRT

h v) · nF ph, for all F ∈ Fb(Th),
for all ph ∈ P1(F ).

This definition of IBDM
h on the boundary facets is necessary in order for IBDM

h vh · n to vanish along the boundary
for vh ∈ Xh, and thus to establish the L2 orthogonality with gradients. Note that due to continuity at the
facet barycenters xF and the use of the average, all interpolation operators are well-defined for all elements of
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X⊕Xh. Additionally let πh : Q→ Qh be the L2 projection onto the discrete pressure space, which is defined
for p ∈ Q by

(πhp, qh) = (p, qh), for all qh ∈ Qh.

The Raviart–Thomas interpolation and the L2 projection operators will be applied to matrices and vectors,
respectively, which we then denote by IRT

h and and Πh. The operators then have to be understood as acting row
by row.

Using the discrete bilinear and linear forms

ah : Xh ×Xh → R, ah(uh,vh) = ν

∫
Ω
∇huh : ∇hvh,

bh : Xh ×Qh → R, bh(vh, qh) = −
∫

Ω
qh∇h · vh,

lh : Xh → R, lh(vh) =

∫
Ω
f · IH(div)

h vh,

with I
H(div)
h ∈ {IRT

h , I
BDM
h }, see [14, 28], we get a discrete weak formulation of (3): find (uh, ph) ∈ Xh ×Qh

so that

ah(uh,vh) + bh(vh, ph) = lh(vh),

bh(uh, qh) = 0,
(6)

holds for all (vh, qh) ∈ Xh ×Qh. Like in the continuous case, now using the space of discretely divergence
constrained functions

V0
h = {vh ∈ Xh : b(vh, qh) = 0 for all qh ∈ Qh} ,

we can write this problem in the elliptic form [14, 20, 27]: find uh ∈ V0
h so that

(7) ah(uh,vh) = lh(vh), for all vh ∈ V0
h.

The reason for the particular choice of the linear form lh is described in detail for the Raviart–Thomas interpolation
in [28] and subsequently for various other cases in [22, 24, 25, 27, 29]. The fundamental idea is, that by using
an interpolation operator that maps discretely divergence free functions to exactly divergence free functions,
which are L2 orthogonal to irrotational functions, it is possible to achieve pressure-robustness for the discrete
formulation.

Concluding this section, we state a commutative property for the introduced interpolation operators.

Lemma 3. For all v ∈ X there holds

∇h · ICR
h v = πh(∇ · v),

∇ · IRT
h v = πh(∇ · v),

∇ · IBDM
h v = πh(∇ · v).

Proof. The properties follow by the divergence theorem and the definition of the interpolation operators. See also
[16, 32, 33]. �

In particular this means∇h · ICR
h v = ∇ · IRT

h v = ∇ · IBDM
h v = 0 for v ∈ V0.

3. SOME PROPERTIES OF THE CROUZEIX–RAVIART ELEMENT CONCERNING ANISOTROPIC TRIANGULATIONS

The Crouzeix–Raviart element has some properties, which make it very suitable for settings with anisotropic
triangulations. In this section we collect some, mostly known, results as an overview of the anisotropic properties
of the element.

By [20, Lemma II.1.1], a discrete Fortin operator IF
h : X→ Xh is defined by the properties

(8) (∇h · v, qh)L2(Ω) = (∇h · IF
hv, qh)L2(Ω) for all qh ∈ Qh,

DOI 10.20347/WIAS.PREPRINT.2702 Berlin 2020
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and
∃CF > 0 :

∥∥IF
hv
∥∥

1,h
≤ CF ‖v‖1,h,

with CF independent of h. The existence of such an operator is equivalent to the discrete inf-sup condition
holding with a constant β̃ > 0, independent of h.

Lemma 4. The Crouzeix–Raviart interpolator ICR
h is a Fortin operator on arbitrary meshes with Fortin constant

CCR
F = 1, i.e. the estimate

(9)
∥∥ICR
h v

∥∥
1,h
≤ ‖v‖1,h

holds.

Proof. For the proof see [11, Lemma 2] and the comment after [11, Corollary 1]. �

Using this result, we get the inf-sup condition of the Crouzeix–Raviart element for the Stokes problem on arbitrary
meshes with a constant independent of the mesh. Another proof for the inf-sup condition is given in [21, Theorem
3.151], and see also [2, Section 3, p. 23].

Lemma 5. Let h > 0 and vh ∈ Xh, then there is a constant β̃ > 0 independent of h, so that the estimate

inf
qh∈Qh

sup
vh∈Xh

bh(vh, qh)

‖vh‖1,h‖qh‖0
≥ β̃

holds for arbitrary meshes.

Proof. By (8) and (9), we have the estimate

sup
vh∈Xh

bh(vh, qh)

‖vh‖1,h
≥ sup

v∈X

bh(ICR
h v, qh)∥∥ICR
h v

∥∥
1,h

= sup
v∈X

b(v, qh)∥∥ICR
h v

∥∥
1,h

≥ sup
v∈X

b(v, qh)

‖v‖1,h
≥ β‖qh‖0,

for all qh ∈ Qh, where β is the continuous inf-sup constant. �

This lemma implies that the discrete inf-sup constant for the Crouzeix–Raviart element is bounded from below
by the continuous inf-sup constant for any triangulation, an we may choose β̃ = β, see [21, Theorem 3.151].
Additionally, it was shown in [19, Lemma 5], that the discrete inf-sup constant decreases monotonously when
refining a mesh.

The next lemma shows that Crouzeix–Raviart interpolation is as accurate as the standard nodal Lagrange
interpolation.

Lemma 6. Let v ∈ X ∩H2(Ω). Then the estimate∥∥v − ICR
h v

∥∥
1,h
≤ 2
∥∥v − IL

hv
∥∥

1,h

holds for arbitrary meshes, where IL
h is the nodal Lagrange interpolation operator.

Proof. The proof follows part of the proof of [21, Lemma 4.53], but note that no condition on the mesh is required
for this section of the proof. Using the triangle inequality, the property ICR

h IL
hv = IL

hv and Lemma 4, we get the
desired estimate ∥∥v − ICR

h v
∥∥

1,h
≤
∥∥v − IL

hv
∥∥

1,h
+
∥∥IL
hv − ICR

h v
∥∥

1,h

=
∥∥v − IL

hv
∥∥

1,h
+
∥∥ICR
h (IL

hv − v)
∥∥

1,h

≤ 2
∥∥v − IL

hv
∥∥

1,h
. �

In [11, Lemma 3] the following interpolation error estimate for the Crouzeix–Raviart interpolator for triangulations
satisfying a maximum angle condition was shown. We state the result without proof.

Lemma 7. Let v ∈ X ∩H2(Ω) and let the mesh satisfy MAC (φ̄). Then we have the estimate∥∥v − ICR
h v

∥∥
1,h
≤ Ch|v|2.

DOI 10.20347/WIAS.PREPRINT.2702 Berlin 2020
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The next lemma states, that the discretely divergence constrained Crouzeix–Raviart functions can be used to
approximate the continuously constrained H1

0(Ω) functions.

Lemma 8. Let w ∈ V0. Then the estimate

inf
wh∈V0

h

‖w −wh‖1,h ≤ 2 inf
vh∈Xh

‖w − vh‖1,h

holds for an arbitrary triangulation.

Proof. Let vh ∈ Xh be arbitrary and set zh = ICR
h (w − vh) ∈ Xh. Then we have ‖zh‖1,h ≤ ‖w − vh‖1,h

and (∇h · zh, qh) = (∇h · (w − vh), qh) for all qh ∈ Qh. We also get wh = zh + vh ∈ V0
h, because

(∇h ·wh, qh) = (∇h · zh, qh) + (∇h · vh, qh) = (∇h · (w − vh), qh) + (∇h · vh, qh)

= (∇h ·w, qh) = 0.

Now using the triangle inequality we get the statement of the lemma

‖w −wh‖1,h ≤ ‖w − vh‖1,h + ‖zh‖1,h ≤ 2‖w − vh‖1,h. �

4. A-PRIORI ERROR ANALYSIS

As our method uses an interpolation operator on the velocity test functions in the linear form lh, we need to
estimate the additional consistency error of this approach. The proofs are mainly analogous to [28].

Before we get to the consistency error, we need error estimates of the Brezzi–Douglas–Marini and Raviart–
Thomas interpolation on anisotropic elements, which we get from [1, 8]. Keeping in mind that by assumption the
general triangulation Th satisfies a maximum angle condition MAC (φ̄), we have the following estimates, where

we take I
H(div)
h ∈ {IBDM

h , IRT
h }.

Lemma 9. Let v ∈ X⊕Xh, then ∥∥∥v − IH(div)
h v

∥∥∥
0
≤ Ch‖v‖1,h,

where the constant C depends only on φ̄.

If an element T ∈ Th additionally satisfies RVP(c̄), where pT,d+1 denotes the element’s regular vertex and
lT,i, hT,i, i ∈ {1, . . . , d}, the vectors and lengths from Definition 2. Then for v ∈ X⊕Xh there is a constant
C depending only on c̄, so that the estimate∥∥∥v − IH(div)

h v
∥∥∥

0,T
≤ C

(
hT ‖∇ · v‖0,T +

d∑
i=1

hT,i

∥∥∥∥ ∂v

∂lT,i

∥∥∥∥
0,T

)
holds.

Proof. The proof can be found for the Raviart–Thomas interpolation in [1] and for the Brezzi–Douglas–Marini
interpolation in [8]. For functions from X, the slightly different definitions of the operator IBDM

h and the interpolation
operator used in [8] are equivalent. For functions from Xh, the interpolation error estimates can be extended. A
proof for the isotropic case is given in [26, Lemma 3.3], which can be transfered to our setting. �

The following technical lemma prepares the estimate of the consistency error. The proof is analogous to [28,
Lemma 5], where we now use the interpolation error estimates from Lemma 9.

Lemma 10. Let v ∈ X ∩H2(Ω) and w ∈ X⊕Xh, then the estimate∣∣∣∣∫
Ω

[
∇hv : ∇hw + ∆v · IH(div)

h w
]∣∣∣∣ ≤ Ch|v|2‖w‖1,h
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holds. If additionally every element T ∈ Th satisfies RVP(c̄), then using the notation of Lemma 9 we get the
estimate∣∣∣∣∫

Ω

[
∇hv : ∇hw + ∆v · IH(div)

h w
]∣∣∣∣ ≤

C‖w‖1,h

h‖∆v‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇vi∂lT,j

∥∥∥∥
0,T

 .

Proof. Using the triangle inequality we get the estimate

(10)

∣∣∣∣∫
Ω

[
∇hv : ∇hw + ∆v · IH(div)

h w
]∣∣∣∣ ≤ ∣∣∣∣∫

Ω
[∇hv : ∇hw + ∆v ·w]

∣∣∣∣
+

∣∣∣∣∫
Ω

∆v ·
(
I
H(div)
h w −w

)∣∣∣∣.
The second term can be estimated using the Cauchy-Schwarz inequality and Lemma 9 and we get the result∣∣∣∣∫

Ω
∆v ·

(
I
H(div)
h w −w

)∣∣∣∣ ≤ ‖∆v‖0
∥∥∥IH(div)
h w −w

∥∥∥
0

≤ Ch‖∆v‖0‖w‖1,h ≤ Ch|v|2‖w‖1,h.

Using Green’s identity we get a new representation of the first term on the right hand side of (10):

(11)

∣∣∣∣∫
Ω

[∇hv : ∇hw + ∆v ·w]

∣∣∣∣ =

∣∣∣∣∣∣
∑
T∈Th

∫
∂T

(∇v · n) ·w

∣∣∣∣∣∣.
Recall that we use the symbols IRT

h and Πh to indicate the row-by-row application of the Raviart–Thomas
interpolation and the L2 projection into the discrete pressure space on matrices and vectors, respectively. As
described in the proof of [2, Lemma 3.1], we observe that (IRT

h ∇v) · n is constant on all faces and continuous
across the interelement boundaries, and v vanishes at the boundary, so that we get∑

T∈Th

∫
∂T

(IRT
h ∇v · n) ·w = 0.

for all w ∈ X⊕Xh. Thus we can subtract this term from the right hand side of (11), and using the divergence
theorem we get∣∣∣∣∣∣

∑
T∈Th

∫
∂T

(∇v · n) ·w

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
T∈Th

∫
∂T

((∇v − IRT
h ∇v) · n) ·w

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T∈Th

∫
T
∇ · ((∇v − IRT

h ∇v) ·w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T∈Th

∫
T

[
(∇ · (∇v − IRT

h ∇v)) ·w + (∇v − IRT
h ∇v) : ∇w

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
T∈Th

∫
T

(∇ · (∇v − IRT
h ∇v)) ·w

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
T∈Th

∫
T

(∇v − IRT
h ∇v) : ∇w

∣∣∣∣∣∣.(12)

For the first term on the right hand side, observe that due to Lemma 3 we have

∇ · IRT
h ∇v = Πh(∇ · ∇v) = Πh∆v,
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thus using L2 orthogonality we can estimate∣∣∣∣∣∣
∑
T∈Th

∫
T

(∇ · (∇v − IRT
h ∇v)) ·w

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
T∈Th

∫
T

(∆v −Πh∆v) ·w

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T∈Th

∫
T

∆v · (w −Πhw)

∣∣∣∣∣∣ ≤ Ch‖∆v‖0‖w‖1,h ≤ Ch|v|2‖w‖1,h.

Using the Cauchy-Schwarz inequality, the interpolation estimates from Lemma 9 and some basic calculations,
the second term on the right hand side of (12) can be estimated by∣∣∣∣∣∣

∑
T∈Th

∫
T

(∇v − IRT
h ∇v) : ∇w

∣∣∣∣∣∣ ≤
∑
T∈Th

∥∥∇v − IRT
h ∇v

∥∥
0,T
‖∇hw‖0

≤
∑
T∈Th

[
d∑
i=1

∥∥∇vi − IRT
h ∇vi

∥∥2

0,T

]1/2

‖w‖1,h

≤ C
∑
T∈Th

 d∑
i=1

hT ‖∆vi‖0,T +
d∑
j=1

hT,j

∥∥∥∥∂∇vi∂lT,j

∥∥∥∥
0,T

21/2

‖w‖1,h

≤ C‖w‖1,h

h‖∆v‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇vi∂lT,j

∥∥∥∥
0,T

 ≤ Ch|v|2‖w‖1,h.
Combining the individual estimates we get the statement of the lemma. �

Lemma 11. Let (u, p) ∈ H2(Ω)×H1(Ω) hold for the solution (u, p) of (3). Then the estimate

1

ν
sup

w∈V0⊕V0
h

|ah(u,w)− lh(w)|
‖w‖1,h

≤ Ch|u|2

holds. If additionally every element T ∈ Th satisfies RVP(c̄), then using the notation of Lemma 9 we have the
estimate

1

ν
sup

w∈V0⊕V0
h

|ah(u,w)− lh(w)|
‖w‖1,h

≤ C

h‖∆u‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇ui∂lT,j

∥∥∥∥
0,T

 .

Proof. Let 0 6= w ∈ V0 ⊕V0
h. Using partial integration yields

(∇p, IH(div)
h w) = −(p,∇ · IH(div)

h w) + (p, I
H(div)
h w · n)∂Ω = 0,

due to the choice of w and the boundary conditions in the spaces BDM(Th) and RT(Th). With this equality we
get

1

ν
|ah(u,w)− lh(w)| = 1

ν

∣∣∣∣∫
Ω

[
ν∇hu : ∇hw − f · IH(div)

h w
]∣∣∣∣

=
1

ν

∣∣∣∣∫
Ω

[
ν∇hu : ∇hw + (ν∆u−∇p) · IH(div)

h w
]∣∣∣∣

=

∣∣∣∣∫
Ω

[
∇hu : ∇hw + ∆u · IH(div)

h w
]∣∣∣∣.

Now using the two results from Lemma 10 yields the statement of the lemma. �
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Theorem 12. Let (u, p) ∈ H2(Ω)×H1(Ω) hold for the solution (u, p) of (3), and let (uh, ph) be the discrete
solution of (6). Then the estimates

‖u− uh‖1,h ≤ 2 inf
vh∈V0

h

‖u− vh‖1,h + Ch|u|2,(13)

‖πhp− ph‖0 ≤
ν

β̃

(
2 inf
vh∈V0

h

‖u− vh‖1,h + Ch|u|2

)
,(14)

‖p− ph‖0 ≤ inf
qh∈Qh

‖p− qh‖0 +
ν

β̃

(
2 inf
vh∈V0

h

‖u− vh‖1,h + Ch|u|2

)
,(15)

hold. If additionally every element T ∈ Th satisfies RVP(c̄), then using the notation of Lemma 9 we get the
estimates

‖u− uh‖1,h ≤ 2 inf
vh∈V0

h

‖u− vh‖1,h

+ C

h‖∆u‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇ui∂lT,j

∥∥∥∥
0,T

 ,(16)

‖πhp− ph‖0 ≤
ν

β̃

[
2 inf
vh∈V0

h

‖u− vh‖1,h

+ C

h‖∆u‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇ui∂lT,j

∥∥∥∥
0,T

 ,(17)

‖p− ph‖0 ≤ inf
qh∈Qh

‖p− qh‖0 +
ν

β̃

[
2 inf
vh∈V0

h

‖u− vh‖1,h

+ C

h‖∆u‖0 +
∑
T∈Th

d∑
i=1

d∑
j=1

hT,j

∥∥∥∥∂∇ui∂lT,j

∥∥∥∥
0,T

 .(18)

Proof. Let wh = uh − vh ∈ V0
h for arbitrary vh ∈ V0

h, then using (7) we get

ν‖wh‖21,h = ah(wh,wh) = ah(uh − vh,wh)

= ah(u− vh,wh) + ah(uh,wh)− ah(u,wh)

= ah(u− vh,wh) + lh(wh)− ah(u,wh)

≤ ν‖u− vh‖1,h‖wh‖1,h + |ah(u,wh)− lh(wh)|.
Using the triangle inequality and the last inequality we get Strang’s second lemma in the form

‖u− uh‖1,h = ‖u− vh −wh‖1,h

≤ 2 inf
vh∈V0

h

‖u− vh‖1,h +
1

ν
sup

wh∈V0
h

|ah(u,wh)− lh(wh)|
‖wh‖1,h

.(19)

Applying the bounds for the consistency error from Lemma 11 we get (13) and (16).

Choosing qh = πhp− ph in the discrete inf-sup stability inequality from Lemma 5 we get the estimate

(20) ‖πhp− ph‖0 ≤
1

β̃
sup

vh∈Xh

bh(vh, πhp− ph)

‖vh‖1,h
.

For the numerator we get

(21) bh(vh, πhp− ph) = bh(vh, πhp− p) + bh(vh, p− ph) = bh(vh, p− ph),

where the last equality is satisfied since by Lemma 3

(22) ∇h · vh = ∇h · ICR
h vh = πh(∇ · vh) ∈ Qh
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holds and πhp− p ∈ Q⊥h . Again using Lemma 3 and (22) we get∫
Ω

[
−p∇h · vh −∇p · IH(div)

h vh

]
=

∫
Ω

[
−p∇h · vh + p∇ · IH(div)

h vh

]
=

∫
Ω

[−p∇h · vh + pπh(∇ · vh)]

=

∫
Ω

[−p∇h · vh + p∇h · vh] = 0,

which we can use to simplify further and estimate

bh(vh, p− ph) = bh(vh, p) + ah(uh,vh)− lh(vh)

= ah(uh − u,vh) +

∫
Ω

[
ν∇hu : ∇hvh − p∇h · vh − f · IH(div)

h vh

]
≤ ν‖u− uh‖1,h‖vh‖1,h + ν

∫
Ω

[
∇hu : ∇hvh + ∆u · IH(div)

h vh

]
.(23)

Combining (20), (21), (23) we get

‖πhp− ph‖0 ≤
ν

β̃

‖u− uh‖1,h + sup
vh∈Xh

∫
Ω

[
∇hu : ∇hvh + ∆u · IH(div)

h vh

]
‖vh‖1,h

 .

Now using (13) or (16), and the corresponding estimate from Lemma 10, we get estimates (14) and (17),
respectively.

The remaining estimates (15) and (18) follow by the triangle inequality and the observation that the L2 projection
is the best approximation of p in Qh, i.e.

‖p− πhp‖0 = inf
qh∈Qh

‖p− qh‖0. �

For a convex domain and I
H(div)
h = IBDM

h we can easily get an optimal L2 error estimate by some standard
arguments, using another interpolation error estimate from [8], which we state without proof.

Lemma 13. Let v ∈ H2(Ω) ∩X and let Th satisfy a maximum angle condition, then the estimate∥∥v − IBDM
h v

∥∥
0
≤ Ch2|v|2,

holds.

Theorem 14. Let Ω be convex, Th satisfy a maximum angle condition, I
H(div)
h = IBDM

h , (u, p) ∈ H2(Ω)×
H1(Ω) the solution of (3) and (uh, ph) the solution of (6). Then the estimate

‖u− uh‖0 ≤ Ch2|u|2
holds.

Proof. The proof is entirely analogous to the proof in [14, Section 4], now using the above interpolation error
estimate. �

Remark 15. The proof of an estimate as in Theorem 14 for I
H(div)
h = IRT

h is not possible using this approach,
because of the weaker interpolation properties of the operator. Due to observations of the L2 error in the
numerical experiments in Section 5, we conjecture that such an estimate, which was proven in [27] for the shape
regular case, holds true also for the anisotropic case.

Remark 16. For structured meshes as the ones pictured in Figure 3, the estimates (16) – (18) simplify to a certain
degree, as lT,j = ±ej , where ej are the Cartesian unit vectors, and the norms of the directional derivatives can
be written as the regular partial derivatives,∥∥∥∥ ∂v

∂lT,i

∥∥∥∥
0,T

=

∥∥∥∥ ∂v∂xi
∥∥∥∥

0,T

.
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FIGURE 3. Exact velocity and example mesh for ε = 0.01, N = 23 used in the calculations

For a uniform structured mesh, the estimate further simplifies due to hT,j = hj for all T ∈ Th, so that we can
write e.g. for (16)

‖u− uh‖1,h ≤ 2 inf
vh∈V0

h

‖u− vh‖1,h + C

h‖∆u‖0 +
d∑
i=1

d∑
j=1

hj

∥∥∥∥∂∇ui∂xj

∥∥∥∥
0

 .

5. NUMERICAL RESULTS

We now numerically examine the convergence of the modified Crouzeix–Raviart method with special attention to
the behavior in anisotropic settings.

5.1. 2D example. We choose an exact solution (u, p) of the Stokes system on the unit square Ω = (0, 1)2,
which is given by

u(x) =

(
∂ξ

∂x2
,− ∂ξ

∂x1

)
, p(x) = exp

(
−x1

ε

)
− C(ε),

where the stream function is defined as ξ(x) = x2
1(1− x1)2x2

2(1− x2)2 exp
(
−x1

ε

)
, and C(ε) is a constant

necessary to get vanishing mean pressure. For these functions it holds (u, p) ∈ H2(Ω) × L2
0(Ω) and

∆u ∈ L2(Ω), as required for our theoretical results.

Figure 3 shows a plot of the magnitude of the exact velocity for the parameter value ε = 0.01, where the
exponential boundary layer near x1 = 0 is clearly visible. The layer has a width ofO(ε) and is also present in
the pressure solution. The used meshes are of Shishkin type, see the example in Figure 3. For a parameter
N ≥ 2 they are constructed by choosing a transition point parameter τ ∈ (0, 1) and generating a grid of points
(xi1, x

j
2),

xi1 =

{
i2τ
N , 0 ≤ i ≤ N

2 , i ∈ N,
τ +

(
i− N

2

) 2(1−τ)
N , N

2 < i ≤ N, i ∈ N,

xj2 =
j

N
, 0 ≤ j ≤ N, j ∈ N.

Connecting each point to the nearest other grid points by edges, we get a rectangular mesh, then subdividing
each rectangle into two triangles leaves us with the desired triangular mesh. By this scheme we get a triangulation

of Ω with n = 2N2 elements and an aspect ratio of σ =
√

1+4τ2

1+2τ−
√

1+4τ2
, see Figure 3. The transition point

parameter is chosen as τ = min{1
2 , 3ε|ln(ε)|}, which means that approximately three times the boundary

layer width are covered by the anisotropic elements.
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FIGURE 4. Convergence plots of the discrete velocity and pressure solutions for two values of
the parameter ε, the dashed lines are the same in all plots

We performed calculations with parameter values ν = 1, ε ∈ {10−2, 10−3}, both with graded and uniform
meshes and the standard Crouzeix–Raviart and the modified method from this paper. In the results shown in
Figure 4, two numerical effects are visible.

The first is due to the anisotropic mesh grading and occurs for both the standard and modified Crouzeix–Raviart
methods. Initially when using uniform meshes, the velocity error shows suboptimal convergence rates, until
the elements properly resolve the boundary layer, when we observe the theoretical rate of convergence. For
anisotropically graded meshes the optimal convergence rate manifests immediately. Once the optimal rate is
reached on both types of meshes, the graded mesh produces a lower absolute error.

The second effect is a result of the pressure-robustness of the modified methods, which in this example leads to
significantly reduced errors. We also see, that both modifications IRT

h and IBDM
h lead to similar results.

5.2. 3D example with a singular edge. We now get to a more relevant three dimensional example, where the
beneficial effect of anisotropic mesh grading becomes obvious. Consider the inhomogeneous Stokes problem, i.e.
the first two equations of problem (3), with the boundary condition u = g on ∂Ω, on the domain

Ω = {(r cos(φ), r sin(φ), z) ∈ R3 : 0 < r < 1, 0 < φ < ω, 0 < z < 1},

where ω = 3π
2 .
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FIGURE 5. Exact pressure p(x, y, 1) with singularity at z-axis, anisotropically graded mesh

For the convergence calculations we use, as before, the method of manufactured solutions, with exact velocity
and exact pressure defined by

u =

zrλ[−λ sin(φ) cos(λ(ω − φ) + φ) + λ sin(ω − φ) cos(λφ− φ) + sin(λ(ω − φ))]
zrλ[sin(λφ)− λ sin(φ) sin(λ(ω − φ) + φ)− λ sin(ω − φ) sin(λφ− φ)]

r2/3 sin
(

2
3φ
)

 ,

p = 2λzrλ−1[sin((λ− 1)φ+ ω) + sin((λ− 1)φ− λω)],

where the parameter λ is the smallest positive solution of sin(ωλ) = λ, i.e. λ ≈ 0.54448. The singular nature
of the exact pressure along the edge at r = 0 is illustrated in Figure 5. The data functions are obtained by
f = −ν∆u +∇p and g = u|∂Ω. Elementary calculations show that∇ · u = 0 and

∫
Ω p = 0.

This example was examined in [11, Section 4] for the standard Crouzeix–Raviart method, where it illustrated
the result that anisotropic mesh grading towards the singular edge leads to an optimal convergence rate, while
with uniform meshes the convergence rate in non-convex settings deteriorates because of the low regularity
of the solution. Due to this low regularity, (u, p) /∈ H2(Ω) × H1(Ω), ∆u ∈ Lq(Ω), 1 ≤ q < 2

2−λ , and
the assumed inhomogeneous boundary conditions, this example leaves the theoretical framework of our prior
analysis. Although this is the case and no thorough analysis has been done yet, the numerical results show that
the anisotropic grading works with the modified method, and the convergence rate is optimal, just as with the
standard method. This gives reason to investigate this situation in future research. Note for instance, that for
ν = 1 we have f = (0, 0, ∂zp)

T ∈ L2(Ω), thus we can deduce using [30, Lemma 3.1] that P(−∆u) ∈ L2(Ω)
even for ν 6= 1, in which case the first to components of f are not in L2(Ω) anymore. Here P(·) denotes the
Helmholtz-Hodge projector, see [30, Section 3]. The property P(−∆u) ∈ L2(Ω) is the required regularity of
the Laplacian of the velocity solution for the error analysis in [30], which proves pressure-robust quasi-optimal
estimates in low-regularity settings for the Stokes problem.

Figure 5 shows the type of graded mesh used for this example, which satisfies the maximum angle condition,
but not the regular vertex property. For a two dimensional domain B = {(r cos(φ), r sin(φ)) ∈ R2 : 0 < r <
1, 0 < φ < ω}, a quasi-uniform mesh is created and graded towards the origin. The grading is done so that for
a mesh size parameter h and every triangle T with diameter hT the relation

hT ∼
{
h1/µ, if rT = 0,

hr1−µ
T , else,

is satisfied, where rT = infx∈T {dist(x,0)} and µ ∈ (0, 1] is a grading parameter. The resulting, no longer
quasi-uniform but still isotropic, mesh is then extended into the third dimension with a uniform mesh size
h3 ∼ h. This pentahedral mesh is subsequently turned into a tetrahedral mesh by subdividing each prism into
three tetrahedra, as shown in Figure 2. The procedure yields a mesh where the number of elements satisfies
Nelem ∼ h−3 and is described in more detail in e.g. [7, 10, 11].

The calculations were done with parameter values ν ∈ {10−1, 1} and µ ∈ {0.4, 1}. The results, see Figure 6,
on the one hand corroborate the results from [10] and on the other hand show that the recovery of the optimal
convergence rates is also possible for the pressure-robust modified Crouzeix–Raviart method.
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FIGURE 6. Energy and L2 error of the discrete solution obtained with the standard Crouzeix–
Raviart and modified Crouzeix–Raviart method

From the results with the viscosity set to ν = 10−1, see Figure 6, it is clear that the modified method shows the
pressure-robustness property also in these low regularity settings with anisotropic mesh grading, as the errors of
the velocity are not influenced by the value of ν.

Remark 17. Due to a factor rλ−2 arising in the first two components of the data function f for parameters ν 6= 1,
the numerical quadrature of the right hand side of the variational formulation has to be very accurate in order to
achieve the presented numerical results.
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