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Additive splitting methods for parallel solution
of evolution problems

Shalva Amiranashvili, Mindaugas Radziunas, Uwe Bandelow,
Kurt Busch, Raimondas Čiegis

Abstract

We demonstrate how a multiplicative splitting method of order P can be used to construct an
additive splitting method of order P + 3. The weight coefficients of the additive method depend
only on P , which must be an odd number. Specifically we discuss a fourth-order additive method,
which is yielded by the Lie-Trotter splitting. We provide error estimates, stability analysis, and
numerical examples with the special discussion of the parallelization properties and applications
to nonlinear optics.

1 Introduction

Splitting methods (SMs) are widely used for the solution of various linear and nonlinear evolution
problems of mathematical physics in one or several spatial dimensions [26, 25, 22, 20]. Consider an
abstract initial value problem within a sufficiently short evolution step τ

d

dt
u(t) = Hu(t), u(0) = u0, t ∈ [0, τ ], H =

M∑
m=1

Hm, (1)

where u(t) belongs to a finite or infinite dimensional Banach space and a possibly unbounded evolu-
tion operator H generates a semigroup etH with u(t) = etHu0. The evolution operator is split in M
“reasonably simple” components Hm, such that the reduced equations du/dt = Hmu can easily be
addressed and generate individual semigroups.

An intermediate approximation w1(τ) of u(τ) is yielded by solution of the sub-problem

d

dt
w1(t) = H1w1(t), w1(0) = u0, t ∈ [0, τ ]. (2)

The next intermediate approximation w2(τ) is yielded by

d

dt
w2(t) = H2w2(t), w2(0) = w1(τ), t ∈ [0, τ ], (3)

and so on, till wM(τ) is calculated from wM(0) = wM−1(τ) by employing eτHM . The value wM(τ)
is then used as a final numerical approximation of the exact solution u(τ), such that

u0
eτH1−−−→ w1(τ)

eτH2−−−→ w2(τ)
eτH3−−−→ · · · eτHM−1

−−−−−→ wM−1(τ)
eτHM−−−→ wM(τ), (4)

u(τ) = eτHu0 ≈ eτHM · · · eτH2eτH1u0. (5)
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If an applied evolution problem is solved numerically, the interval [0, τ ] in Eq. (1) mimics one time
step. The sequence of the exponential operators eτHm , 1 ≤ m ≤M , at the right-hand-side of Eq. (5)
defines the SM.

Generally, the componentsHm do not commute, they can be applied in different order producing up to
M ! SMs for a given splitting of H . The local error of a given SM can be characterised by the operator

`(eτHM · · · eτH2eτH1) = eτHM · · · eτH2eτH1 − eτH = O(τ 2),

where the error estimate follows from the Taylor expansion. Any SM produces at least a first-order
integrator when the basic Eq. (1) is solved on a fixed time domain by applying small τ -steps. One can
do better than that and a SM is said to be of order p if its local error is O(τ p+1).

We denote SMs by capital calligraphic letters and indicate the time step by the index τ . The local error
of a SMMτ of order p is denoted by `(Mτ ) = O(τ p+1), in which case we write deg(Mτ ) = p. In
what follows, the operator H in Eq. (1) will be divided in just two parts, H = A + B, and yet many
different choices of the components Hm are possible. Some classical examples are as follows.

The simplest first-order Lie-Trotter SM, which is denoted by Lτ , reads [35]

Lτ = eτBeτA with `(Lτ ) = eτBeτA − eτ(A+B) = O(τ 2).

A second-order Strang SM, which is denoted by Sτ , reads [31]

Sτ = e
1
2
τAeτBe

1
2
τA with `(Sτ ) = O(τ 3).

Another classical example is a second-order SM with a free parameter σ ∈ R

SστS(1−2σ)τSστ = e
σ
2
τAeστBe

1−σ
2
τAe(1−2σ)τBe

1−σ
2
τAeστBe

σ
2
τA,

which is promoted to the fourth-order SM Yτ (Yoshida) by requiring that [19, 33, 38]

2σ3 + (1− 2σ)3 = 0 ⇒ σ = (2 + 2−1/3 + 21/3)/3 ≈ 1.35 ⇒ `(Yτ ) = O(τ 5). (6)

Note the appearance of negative time steps (via S(1−2σ)τ for the case at hand), which is an intrinsic
property of all higher-order SMs [29, 34, 10]. The evolution backward in time makes parabolic problems
ill-posed and imposes unnatural outflow boundary conditions upon hyperbolic problems. So much so,
that even SMs with the complex-valued time steps (here with σ ≈ 0.32 ± 0.13i) may be preferable
[34]. Modern computer-algebra yields effective methods to construct the higher-order SMs, see [12,
24, 11, 6, 4]. A comprehensive list of SMs, including those with complex time steps and SMs with
H = A+B + C , can be found in [7].

A principle advantage of SMs is that a separate treatment of properly chosen partial flows is more
efficient then the direct numerical approximation of the full problem. An example is given by the gener-
alized nonlinear Schrödinger equation (GNLSE, see [1]) for a complex-valued wave envelope u(t, x)

i
∂

∂t
u(t, x) = D

(
−i ∂
∂x

)
u(t, x)− g|u(t, x)|2u(t, x), (7)

where the polynomial D() relates the wave vector k and the frequency ω = D(k) of a linear modula-
tion wave with u ∝ ei(kx−ωt). The parameter g quantifies nonlinearity. A time-step for the GNLSE (7)
is naturally split into the linear and nonlinear sub-steps

∂

∂t
w1(t, x) = −iD

(
−i ∂
∂x

)
w1(t, x)

∂

∂t
w2(t, x) = ig|w2(t, x)|2w2(t, x),

(8)
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Additive splitting methods 3

cf., Eq. (2) and (3). The first sub-step can be addressed by the Fourier transform, the second equation
is solved analytically because one can show that |w2(t, x)| is time-independent. For the time step
selection strategy see [30].

Equation (7) will be used for numerical examples in what follows, whereas we note that SMs for GNLSE
may be subject to numerical instabilities [37, 27]. To find w2(t) for a more sophisticated nonlinearity
[1], one employs an ODE integrator, see [28, 17, 3]. Moreover, SMs based on Eq. (8) successfully
apply to systems of coupled GNLSE-type equations [8], to GNLSE in several spatial dimensions [36],
and to dissipative equations with complex-valued D(k), see [21].

An important benefit of SMs is their ability to preserve certain intrinsic properties of the application-
specific problem (1). For instance, the relation

u1 =Mτu0 may imply u0 =M−τu1, (9)

in which case the SMMτ supports time reversibility which is suitable for Hamiltonian problems. As to
GNLSE, the SM for Eq. (8) preserves the L2 norm of the solution, which is an important property of
Eq. (7). The integral of motion is usually referred to as “energy” or “mass” or “particle number”.

Another principle advantage of SMs is that they can be adapted to parallel computing. In the first place,
one picksHm to enable parallel computation of the corresponding sub-step [26]. Aside from this, SMs
can be run in parallel on standard PCs with multi-core processors even when the sub-steps do not
enjoy such a property. Namely, the expression eτHM · · · eτH2eτH1u0 in Eq. (5) can simultaneously
be calculated by several computer cores starting from the same u0 but using a different order of the
sub-steps [14, 16]. A weighted sum of the results may provide a better approximation of u(τ) than the
individual SMs. The simplest example of such an additive scheme is given by the relation [32]

1

2

(
eτBeτA + eτAeτB

)
− eτ(A+B) = O(τ 3), (10)

where the first-order Lie-Trotter SM is promoted to a second-order additive SM (ASM). This is not a
great improvement over the standard Strang splitting, however, ASMs can do much better than that.

The main result of this work is a new fourth-order ASM. The ASM is a weighted sum of four SMs with
at most four exponential operators. Noteworthy, a generic SM with four exponents

Mτ = eb2τBea2τAeb1τBea1τA,

has at best deg(Mτ ) = 2, which is achieved for a special (by a single free parameter) selection
of the factors am and bm, m = 1, 2, see [5]. On the other hand, the cubic and quartic terms in the
Taylor expansion of eτ(A+B) contain 20 mixed products. To promote from the second- to the fourth-
order, we should take care of 20 coefficients and yet a proper combination of four SM provides O(τ 5)
approximation of eτ(A+B).

The paper is organized as follows. We start with a general discussion of the multiplicative SMs, give
special attention to their symmetries, and calculate the local error of a SM derived from the seed one by
a symmetry transformation. Then we turn to additive methods and study if and when an ASM performs
better than the involved SMs. This information is used to construct useful ASMs by composing SMs,
which are related to natural symmetries. We give a general rule and derive our ASM as a special case.
Thereafter we discuss ASM’s local error, stability, and give numerical examples.

DOI 10.20347/WIAS.PREPRINT.2767 Berlin 2020
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2 Multiplicative SMs

2.1 Definitions

Assume that the evolution Eq. (1) with H = A + B is solved by a SM, the sub-steps are performed
by alternating A and B, the first sub-step is performed with a multiple of A. A multiplicative SMMτ

with s-stages is defined by two ordered sets of real or complex coefficients a1≤m≤s and b1≤m≤s such
that

Mτ = ebsτBeasτA · · · eb2τBea2τAeb1τBea1τA,
s∑

m=1

am =
s∑

m=1

bm = 1, (11)

where by construction a1 6= 0. It is natural to require that each inner exponential operator is not equal
to the identity operator, still it may happen that bs = 0. To cover SMs that employ B for the first
sub-step, we also define a companion SMM◦

τ , where

M◦
τ = ebsτAeasτB · · · eb2τAea2τBeb1τAea1τB. (12)

The upper index ◦ denotes swapping of A and B.

The number of the sequentially applied exponential operators is referred to as SM complexity

ρ(Mτ ) = 2s for bs 6= 0. (13)

The SMs with bs = 0, while employing 2s− 1 exponential operators, enjoy the FSAL (First Same As
Last) property. We then use an effective complexity ρ(Mτ ) = 2s−2, presupposing that evaluation of
the intermediate solutions at every step can be spared. Complexity of an ASM is set to be the number
of the exponential operators in the longest involved SM, e.g.,

ρ(Lτ ) = ρ(Sτ ) = ρ

(
1

2
Lτ +

1

2
L◦τ
)

= 2 and ρ

(
1

2
Sτ +

1

2
S◦τ
)

= 3,

because ASMs are always assumed to be calculated in parallel.

Any multiplicative SMMτ generates another important companion method

M•
τ = (M−τ )

−1 = ea1τAeb1τBea2τAeb2τB · · · easτAebsτB, (14)

whereM•
τ results from reading ofMτ from right to the left. The indices may be combined, e.g.,M◦•

τ

stands for (M◦
τ )
•. Note, that

M◦◦
τ =Mτ , M••

τ =Mτ , M◦•
τ =M•◦

τ ,

(MτNτ )• = N •τM•
τ , but (MτNτ )◦ =M◦

τN ◦τ .

A SM Pτ is said to be palindromic, if

Pτ = P•τ ⇒ PτP−τ = P−τPτ = I,

where I denotes the identity operator. Palindromic SMs, such as Sτ and Yτ , support time reversibility
in the sense of Eq. (9). For a recent review on palindromic SMs see [15].

Actually one obtains up to (2s)!/(s!)2 splittings by rearrangement of the exponents in Eq. (11). The
transformations (12) and (14) are special because they provide new SMs without loss of accuracy: in
the next Section we will demonstrate that deg(M◦

τ ) = deg(M•
τ ) = deg(Mτ ). These SMs are then

natural building blocks for an ASM. To proceed with this idea, we need more information on the local
error structure.

DOI 10.20347/WIAS.PREPRINT.2767 Berlin 2020
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2.2 Local error and discrepancy

If τ is small enough, any multiplicative SMMτ (11) can be presented in the form of a single exponen-
tial operator

Mτ = ebsτBeasτA · · · eb2τBea2τAeb1τBea1τA = eτ(A+B)+∆(Mτ ), (15)

where ∆(Mτ ) will be referred to as discrepancy of the operatorMτ . More precisely: using the fact
thatMτ → I for τ → 0, one can define lnMτ by employing Taylor’s expansion of ln(1 + x) and
then define

∆(Mτ ) = lnMτ − (A+B)τ,

at least for bounded A and B, see [23]. To derive an explicit expression for ∆(Mτ ), we exploit the
Baker-Campbell-Hausdorff (BCH) formula [22]

eτXeτY = eτ(X+Y )+ τ2

2
[X,Y ]+ τ3

12
[X−Y,[X,Y ]]− τ

4

24
[X,[Y,[X,Y ]]]+···

with
[X1, X2] = X1X2 −X2X1.

The BCH formula is sequentially applied to the left-hand-side of Eq. (15) and implies the expression

∆(Mτ ) =
∞∑
q=2

[M]q
q!

τ q, (16)

where [M]q denotes a certain linear combination of the basic commutators. The latter are listed in A
and denoted by ew, where w is a Lyndon word composed of A and B, see [9]. Each commutator
within [M]q is of length q and has a numerical factor that does not depend on τ , that is why index τ
is omitted. Examples of the expansion (16) up to q = 5 are given in Table 1.

The local error of the SMMτ can be written as

`(Mτ ) =Mτ − eτ(A+B) = eτ(A+B)+∆(Mτ ) − eτ(A+B). (17)

Assuming that the discrepancy ∆(Mτ ) is of order τ p+1 with p ≥ 1, i.e., that the coefficients [M]q in
Eq. (16) vanish for q ≤ p, we expand the right-hand-side of Eq. (17) with respect to τ and obtain

`(Mτ ) =
[M]p+1

(p+ 1)!
τ p+1 +

{
[M]p+2

(p+ 2)!
+

(A+B) ? [M]p+1

2(p+ 1)!

}
τ p+2

+

{
[M]p+3

(p+ 3)!
+

(A+B) ? [M]p+2

2(p+ 2)!
+

(A+B)2 ? [M]p+1

6(p+ 1)!
+
δp1
2

(
[M]p+1

(p+ 1)!

)2
}
τ p+3

+O(τ p+4). (18)

Here δpq denotes Kronecker delta and for the sake of brevity we use

Xn ? Y = XnY +Xn−1Y X + · · ·+ Y Xn,

for the sum of all possible products.

Equation (18) yields, that the orders of `(Mτ ) and ∆(Mτ ) coincide and are equal to p + 1, where
p = deg(Mτ ). Only the first term in Eq. (18) is of interest in the studies on multiplicative SMs. For
our purposes, the full Eq. (18) is necessary, as we will see in the next Section.

Equation (16) contains all we need to know to compute discrepancies of the companion SMs derived
fromMτ . We demonstrate this in three steps:

DOI 10.20347/WIAS.PREPRINT.2767 Berlin 2020
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M
[M

]2
[M

]3
[M

]4
[M

]5

L
−
e
A
B

12 e
A
A
B

+
12 e
A
B
B

−
e
A
A
B
B

−
16 e
A
A
A
A
B

+
23 e
A
A
A
B
B

+
13 e
A
A
B
A
B

+
23 e
A
A
B
B
B

+
e
A
B
A
B
B
−

16 e
A
B
B
B
B

L
◦

e
A
B

12 e
A
A
B

+
12 e
A
B
B

e
A
A
B
B

[L
◦]5

=
[L

]5

S
0

−
14 e
A
A
B

+
12 e
A
B
B

0
74
8 e
A
A
A
A
B
−

71
2 e
A
A
A
B
B

+
13 e
A
A
B
A
B

+
23 e
A
A
B
B
B

+
e
A
B
A
B
B
−

16 e
A
B
B
B
B

S
◦

0
12 e
A
A
B
−

14 e
A
B
B

0
−

16 e
A
A
A
A
B

+
23 e
A
A
A
B
B

+
13 e
A
A
B
A
B
−

71
2 e
A
A
B
B
B
−

14 e
A
B
A
B
B

+
74
8 e
A
B
B
B
B

Table
1:Initialterm

s
in

the
discrepancy

expansion
(16)forthe

classicalS
M

s.O
urnotations

forthe
basic

com
m

utators
are

explained
in

A
.N

ote,thatL
•τ

=
L
◦τ

and
S
•τ

=
S
τ .
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1 Swapping of A and B in Eq. (16) provides ∆(M◦
τ ), where [M◦]q = [M]◦q . It is then obvious

that deg(M◦
τ ) = deg(Mτ ).

2 To calculate ∆(M•
τ ), note that Eq. (14) yieldsM•

τM−τ = M−τM•
τ = I, such thatM•

τ

andM−τ commute. It follows that for any τ

M•
τM−τ = e(A+B)τ+∆(M•

τ )e−(A+B)τ+∆(M−τ ) = e∆(M•
τ )+∆(M−τ ) = I.

For a small enough τ we therefore obtain ∆(M•
τ ) = −∆(M−τ ) such that

[M•]q = (−1)q−1[M]q and deg(M•
τ ) = deg(Mτ ). (19)

Equation (19) has two further applications. First, we have the implication:

if M◦
τ =M•

τ then [M◦]q = (−1)q−1[M]q, (20)

which directly applies to the Lie-Trotter SM in the second row of Table 1. Second, the discrep-
ancy of a palindromic SM Pτ must be an odd function of τ and deg(Pτ ) must be an even
number, because [38]

Pτ = P•τ ⇒ ∆(Pτ ) = −∆(P−τ ) ⇒ [P ]2 = [P ]4 = [P ]6 = . . . = 0. (21)

3 Last but not least, assume that a SMMτ is applied in two half-steps, e.g., to utilize Runge’s
rule. The discrepancy of the splittingM/

τ =Mτ/2Mτ/2 can be computed using Eq. (15) and
taking into account that this time the exponents commute

eτ(A+B)+∆(M2
τ/2

) =Mτ/2Mτ/2

= e
1
2
τ(A+B)+∆(Mτ/2)e

1
2
τ(A+B)+∆(Mτ/2) = eτ(A+B)+2∆(Mτ/2),

therefore ∆(M2
τ/2) = 2∆(Mτ/2) such that

[M/]q =
1

2q−1
[M]q and deg(M/

τ ) = deg(Mτ ). (22)

Altogether, Eq. (16) yields the following companion expansions

∆(M◦
τ ) =

∞∑
q=2

[M]◦q
q!

τ q, ∆(M•
τ ) =

∞∑
q=2

(−1)q−1 [M]q
q!

τ q, ∆(M/
τ ) =

∞∑
q=2

[M]q
2q−1q!

τ q, (23)

where actually all summations start from q = deg(Mτ ) + 1.

3 Additive methods

Additive methods will be denoted by bold calligraphic letters. A generic ASM Mτ is composed from
J ≥ 2 multiplicative SMsMj, τ via [26]

Mτ =
J∑
j=1

cjMj, τ with
J∑
j=1

cj = 1. (24)

DOI 10.20347/WIAS.PREPRINT.2767 Berlin 2020
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J is referred to as the number of independent threads to stress that ASMs are tailored for parallel
computing [14]. Recall, that by definition ASM’s complexity is ρ(Mτ ) = maxj ρ(Mj, τ ). The local
error of a generic ASM is given by

`(Mτ ) = Mτ − eτ(A+B) =
J∑
j=1

cj(Mj, τ − eτ(A+B)) =
J∑
j=1

cj`(Mj, τ ), (25)

where as above, the notation deg(Mτ ) = p indicates that `(Mτ ) = O(τ p+1). The multiplicative
SMs in Eq. (24) may have different orders and we set

P = min
1≤j≤J

deg(Mj, τ ), P̄ = max
1≤j≤J

deg(Mj, τ ).

We have deg(Mτ ) = P in the worst case. A useful ASM should advance beyond the best of the
involved SMs. Therefore we would like to score deg(Mτ ) > P̄ by properly choosing cj .

Equation (10) provides an example of the swap symmetrization [32]

L̃τ =
1

2
Lτ +

1

2
L◦τ , P = P̄ = 1, (26)

where deg(L̃τ ) = 2. It is not a good idea to try

S̃τ =
1

2
Sτ +

1

2
S◦τ , P = P̄ = 2, (27)

because, as it happens, deg(S̃τ ) = 2. Thus, swap symmetrization does not improve Strang’s SM.

Burstein [14] suggested an ASM with four threads

Bτ =
4

3
S̃τ −

1

3
L̃τ , P = 1, P̄ = 2, (28)

where deg(Bτ ) = 3. In what follows we are going to present a similar ASM but of fourth-order. To
begin with we calculate the local error of a generic ASM.

3.1 Local error of additive methods

Equations (18) and (25) directly yield the expression for the local error of a generic ASM

`(Mτ ) =

∑
cj[Mj]P+1

(P + 1)!
τP+1 +

{∑
cj[Mj]P+2

(P + 2)!
+

(A+B) ?
∑
cj[Mj]P+1

2(P + 1)!

}
τP+2

+

{∑
cj[Mj]P+3

(P + 3)!
+

(A+B) ?
∑
cj[Mj]P+2

2(P + 2)!
+

(A+B)2 ?
∑
cj[Mj]P+1

6(P + 1)!

+
δP1

∑
cj([Mj]P+1)2

2(P + 1)!(P + 1)!

}
τP+3 +O(τP+4), (29)

where all summations are over 1 ≤ j ≤ J . Note, that even if a lucky choice of the weight coefficients
yields that

∑
cj[Mj]P+1 =

∑
cj[Mj]P+2 =

∑
cj[Mj]P+3 = 0, the local error may still be de-

termined by
∑
cj([Mj]P+1)2. This happens with the Burstein ASM (28), where Eq. (29) and Table 1

yield that

`(Bτ ) = −τ
4

24
[A,B]2 +O(τ 5). (30)

DOI 10.20347/WIAS.PREPRINT.2767 Berlin 2020
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Further products of commutators, which are hidden in the O(τP+4) term in Eq. (29), come into play if
one tries to increase deg(Mτ ) beyond P + 3.

Equation (29) implies to impose the restrictions

J∑
j=1

cj[Mj]P+1 = 0,

J∑
j=1

cj[Mj]P+2 = 0,

J∑
j=1

cj[Mj]P+3 = 0 && δP1

J∑
j=1

cj([Mj]P+1)2 = 0,

. . .

(31)

where the firstN conditions, if valid, promote deg(Mτ ) from the ab initio value P to P +N . We now
apply Eq. (31) to derive ASMs with P +N > P̄ .

3.2 Richardson extrapolation

Consider Richardson extrapolation Mτ of a generic SMMτ

Mτ = c1M/
τ + c2Mτ , P = P̄ = deg(Mτ ), c1 + c2 = 1.

To increase deg(Mτ ) from P to P + 1, we employ Eq. (22) and the first condition in (31)( c1

2P
+ c2

)
[M]P+1 = 0 ⇒ c1

2P
+ c2 = 0,

because deg(Mτ ) = P implies [M]P+1 6= 0. Solving the system of two linear equations for c1,2,
we get

c1 =
2P

2P − 1
, c2 = − 1

2P − 1
.

For instance, the simplest Lie-Trotter SM yields

Lτ = 2L/τ − Lτ with deg(Lτ ) = 2.

One may wish to get an ASM with positive weights like L̃τ . To this end, consider

M̂τ = c1M/
τ + c2M•

τ , P = P̄ = deg(Mτ ), c1 + c2 = 1,

where Eq. (19) and (22) together with the first condition in (31) yield

c1[M/]P+1 + c2[M•]P+1 =
( c1

2P
+ (−1)P c2

)
[M]P+1 = 0 ⇒ c1

2P
+ (−1)P c2 = 0,

such that

c1 =
2P

2P + (−1)P+1
, c2 =

(−1)P+1

2P + (−1)P+1
.

An odd deg(Mτ ) provides then an ASM with positive weights, e.g.,

L̂τ =
2

3
L/τ +

1

3
L•τ with deg(L̂τ ) = 2.
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3.3 Richardson extrapolation of a palindromic SM

Consider a generic palindromic SM Pτ . A classical result [38] is that if deg(Pτ ) increases by 1 by
playing with the parameters am and bm in Eq. (11), it actually increases by 2, because deg(Pτ ) is
an even number1. Now consider an ASM Pτ =

∑J
j=1 cjPj, τ , which is composed from palindromic

SMs. Pτ is not palindromic and still the classical result holds: if deg(Pτ ) increases by 1 by playing
with cj , it actually increases by 2.

Indeed, P = minj deg(Pj, τ ) must be an even number and therefore all [Pj]P+2 = 0 due to Eq. (21).
We see that Eq. (29) takes the form

`(Pτ ) =

∑
cj[Pj]P+1

(P + 1)!
τP+1 +

(A+B) ?
∑
cj[Pj]P+1

2(P + 1)!
τP+2

+

{∑
cj[Pj]P+3

(P + 3)!
+

(A+B)2 ?
∑
cj[Pj]P+1

6(P + 1)!

}
τP+3 + · · · ,

where all summations are over 1 ≤ j ≤ J . The first condition in Eq. (31) promotes then `(Pτ ) =
O(τP+1) directly to `(Pτ ) = O(τP+3).

Corollary 1 Richardson extrapolation of a palindromic method shall increase its order by 2.

For instance, we have deg(Sτ ) = 2 and therefore obtain

Sτ = Ŝτ =
4

3
S/τ −

1

3
Sτ with deg(Sτ ) = 4,

where the weights are calculated in the previous subsection. Note, that S/τ contains five exponents and
therefore ρ(Sτ ) = 5, which is not a great improvement over Yτ with deg(Yτ ) = 4 and an effective
ρ(Yτ ) = 6. In the next subsection we derive a new ASM N τ with deg(N τ ) = 4 and ρ(N τ ) = 4.

3.4 The new ASM

We are now in a position to formulate the main result.

Theorem 1 LetMτ be a SM for which deg(Mτ ) is an odd number. Consider an ASM

Mτ = c1Mτ + c2M•
τ + c3M/

τ + c4M/•
τ , P = P̄ = deg(Mτ ), (32)

c1 + c2 + c3 + c4 = 1. (33)

Then a proper choice of the weight coefficients cj provides deg(Mτ ) = P + 3.

To proof the statement we note that the discrepancy expansions of all involved SMs are related to
each other in accord with Eq. (23). To score deg(Mτ ) = P +3 we need all conditions from Eq. (31),

1This is what promotes deg(SστS(1−2σ)τSστ ) = 2 to deg(Yτ ) = 4 for σ from Eq. (6).
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which yields (
c1 + (−1)P c2 +

c3 + (−1)P c4

2P

)
[M]P+1 = 0,(

c1 + (−1)P c2 +
c3 + (−1)P c4

2P+2

)
[M]P+3 = 0,(

c1 + (−1)P+1c2 +
c3 + (−1)P+1c4

2P+1

)
[M]P+2 = 0,

δP1

(
c1 + c2 +

c3 + c4

22P

)
([M]P+1)2 = 0.

(34)

The last equation can be ignored. It is a trivial identity for P > 1 and it provides the same restriction
upon cj as the the equation above for P = 1. The first two eqiuations yield c1 + (−1)P c2 = 0 and
c3 + (−1)P c4 = 0 which, for an even P , violates Eq. (33). For an odd P , however, Eq. (33) and (34)
are fulfilled by

c1 = c2 = − 1

2(2P+1 − 1)
, c3 = c4 =

2P

2P+1 − 1
,

which guarantees that deg(Mτ ) = P + 3.

For instance, the first-order Lie-Trotter SM generates the following new ASM

N τ =
2

3

(
e

1
2
τBe

1
2
τAe

1
2
τBe

1
2
τA + e

1
2
τAe

1
2
τBe

1
2
τAe

1
2
τB
)
− 1

6

(
eτBeτA + eτAeτB

)
, (35)

which shall be of fourth order. A direct calculation yields that

N τ − eτ(A+B) =
τ 5

120

(
1

24
eAAAAB −

1

6
eAAABB −

1

12
eAABAB

−1

6
eAABBB −

1

4
eABABB +

1

24
eABBBB

)
+O(τ 6),

where notations are explained in A.

Corollary 2 LetMτ be a SM for which deg(Mτ ) = P is an even number. The construction from
Theorem 1 provides an ASM Mτ with deg(Mτ ) = P + 2.

To proof we “downgrade”Mτ by considering it as a SM of the odd order P −1. Thereafter Theorem 1
directly provides the desired ASM

Mτ =
2P−1

2P − 1
(M/

τ +M/•
τ )− 1

2(2P − 1)
(Mτ +M•

τ ).

The result for even P is of less interest, because the improvement from P to P + 2 is provided by,
e.g., a more simple Richardson extrapolation of a palindromic SM.

3.5 Summary on splitting methods

For readers convenience, we provide Table 2 with all SMs and ASMs discussed above. For each
method we give its order, an explicit definition, complexity ρ as in Eq. (13), number of threads J in
accord with Eq. (24), and its local error estimate κ. The latter equals to the L2 norm of the coefficients
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determining the linear combination of basic commutators within the leading term of the local error `.
For the SMs of order p, we consider the coefficients of [M]p+1 in the case of multiplicative schemes,
see Eq. (18), or

∑
cj[Mj]p+1 as in Eq. (29). The basis set of these combinations is given in A.

Note, that products of commutators, like in Eq. (30), may spoil the standard definition of κ for an ASM.
Last but not least, τ Imax and τ IImax are the largest possible time steps for a stable solution of two test
examples, as discussed in the next Section.

4 Stability

4.1 A test problem

To get started we consider Eq. (1) with

u(t) =

[
x(t)
y(t)

]
, H = A+B, A =

[
0 1
0 0

]
, B =

[
0 0
−1 0

]
,

eτH =

[
cos τ sin τ
− sin τ cos τ

]
,

which corresponds to a harmonic oscillator addressed by the leapfrog method in [22]. The matrices of
all SMs and ASMs from Table 2 can now be calculated explicitly. For example, we have

Lτ = eτBeτA =

[
1 0
−τ 1

]
·
[
1 τ
0 1

]
=

[
1 τ
−τ 1− τ 2

]
, L̃τ =

[
1− 1

2
τ 2 τ

−τ 1− 1
2
τ 2

]
,

for the Lie-Trotter SM and its swap symmetrization respectively.

The simplest approach to the stability problem of the iteration procedure un+1 =Mτun is to require
that all eigenvalues λτ ofMτ belong to the unit circle |λτ | ≤ 1 in the complex plane. This typically
leaves us with a stability interval τ ∈ [0, τmax]. For instance, one derives τmax = 2 for the Lie-Trotter

SM, which is then conditionally stable. Furthermore, we have det(L̃τ ) = 1 + 1
4
τ 4, such that the

simplest ASM is unstable, no matter how small τ is.

A more comprehensive approach is to introduce a spectral norm ‖Mτ‖ and to require that ‖Mτ‖ ≤
1 which implies ‖un+1‖ ≤ ‖un‖. To determine this norm, we are looking for the maximal (by modulus)
eigenvalue of the symmetrized operator (Mτ )

†Mτ . Here, (Mτ )
† denotes the adjoint operator. For

instance, for the Lie-Trotter SM we have

(Lτ )†Lτ =

[
1 + τ 2 τ 3

τ 3 1− τ 2 + τ 4

]
⇒ ‖Lτ‖ = 1 +

1

2
τ 2 +O(τ 4).

The condition ‖Lτ‖ ≤ 1 cannot be satisfied for τ 6= 0. Of course, unstable methods may still be
useful on a finite time interval, which is referred to as ρ-stability when |λτ | ≤ 1 + cτ .

We now consider the new ASM (35), where a direct calculation yields

N τ =

[
1− 1

2
τ 2 + 1

24
τ 4 τ − 1

6
τ 3

−τ + 1
6
τ 3 1− 1

2
τ 2 + 1

24
τ 4

]
(N τ )

†N τ =
(
1− 1

72
τ 6 + 1

576
τ 8
) [1 0

0 1

]
.

One can demonstrate that both approaches leave us with the same stability interval τ ∈ [0, 2
√

2].

Stability intervals of all SMs discussed in the manuscript are listed in the last two columns of Table 2
(see also Ref. [15]). One should stress that these results cover just one particular splitting of a simple
test problem. With that in mind, both Bτ and N τ have a clear advantage over the standard SMs.
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4.2 General case

In the case of an arbitrary evolution operatorH and its componentsHm, we assume that the evolution
problem (1) is solved on a finite time interval by applying small τ -steps and that all operators in the
sequence (4) have exponential estimates

‖eτHm‖ ≤ eχmτ for τ ≥ 0 and some set χm ∈ R, 1 ≤ m ≤M. (36)

We then have an iteration procedure

un+1 = eτHM · · · eτH2eτH1un with ‖un+1‖ ≤ eχτ‖un‖, χ =
M∑
m=1

χm. (37)

It is important to note that the estimate in Eq. (37) is valid for any rearrangement of the sub-steps eτHj ,
j = 1, . . . ,M . Moreover, the estimate remains valid for any ASM composed of such rearrangements
with positive weights.

If χ ≥ 0, one expects ρ-stability of the SM (5), the latter applies on a finite time interval where the
discrete solution converges to the exact one for τ → 0. If χ < 0, the SM (5) is A-stable and is then
formally safe to use for any τ > 0. One may still face the problem of the numerical calculation of
some operators eτHm with χm > 0. In practice, it might be desirable that each particular sub-step is
A-stable such that all χm < 0, the more so for nonlinear problems.

Whereas for a generic multiplicative SMMτ with deg(Mτ ) > 2 some of the coefficients a1≤m≤s
and b1≤m≤s in Eq. (11) are negative [29, 34, 10], the most popular SMs with deg(Mτ ) ≤ 2, which
are also used for construction of the additive SMs in Table 2, use only positive factors am and bm. Just
two estimates of the form

‖eτA‖ ≤ eατ , ‖eτB‖ ≤ eβτ , α, β ∈ R,

are then sufficient for achieving the estimate

‖Mτ‖ = ‖ebsτBeasτA · · · eb1τBea1τA‖ ≤ e(a1+···+as)ατ+(b1+···+bs)βτ = e(α+β)τ ,

and the same estimates for the SMsM◦
τ ,M•

τ , andM/
τ . Therefore the condition α + β < 0 implies

A-stability of the basic SM Mτ and of all its companion SMs. Moreover, A-stability automatically
applies to all ASMs composed of such SMs with only positive weights, e.g., to L̃τ , L̂τ , and S̃τ . The
other ASMs from Table 2 require a separate consideration. For instance, we have

‖Lτ‖ = ‖2L/τ − Lτ‖ ≤ ‖L/τ‖+ ‖L/τ − Lτ‖ = ‖L/τ‖+ ‖`(L/τ )− `(Lτ )‖ ≤ e(α+β)τ +O(τ 2).

and even for α + β < 0 the condition ‖Lτ‖ ≤ 1 is only expected on some interval τ ∈ [0, τmax].

5 Numerical examples

5.1 Problem formulation

In the rest of the manuscript we test performance of N τ against the standard SMs from Table 2
in the framework of the GNLSE (7). Specifically, we consider several initial value problems for the
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complex wave envelope u(t, x) yielded by Eq. (7) with 0 ≤ t ≤ T and a proper initial condition
u(t, x)|t=0 = U(x). We assume that u(t, x) is exponentially small outside a sufficiently large space
interval x ∈ [−X

2
, X

2
] to profit from an artificial periodic boundary condition at x = ±X

2
and the

discrete fast Fourier transform (DFFT) algorithms. The space interval is divided intoNx equal parts by
introducing

ωh =

{
xq = hq, h =

X

Nx

, −1
2
Nx ≤ q < 1

2
Nx

}
, uq(t) = u(t, xq), uq(0) = U(xq), (38)

with the corresponding discretization in the Fourier space{
kp = κp, κ =

2π

X
, −1

2
Nx ≤ p < 1

2
Nx

}
, uFp (t) =

1

Nx

Nx/2−1∑
q=−Nx/2

uq(t)e
−ikpxq ,

where

uq(t) =

Nx/2−1∑
p=−Nx/2

uFp (t)eikpxq and D

(
−i ∂
∂x

)
u(t, x)

∣∣∣∣
x=xq

≈
Nx/2−1∑
p=−Nx/2

D(kp)u
F
p (t)eikpxq .

We are left with the semi-discrete version of the GNLSE (7) for 0 ≤ t ≤ T

i
d

dt
uq(t) =

Nx/2−1∑
p=−Nx/2

D(kp)u
F
p (t)eikpxq − g|uq(t)|2uq(t), −

Nx

2
≤ q <

Nx

2
− 1. (39)

The number Nx is taken large enough to neglect the spatial errors. The semi-discrete GNLSE is ad-
dressed using the splitting (8), where both sub-steps can be evaluated exactly (that is, up to rounding
errors) and preserve L2 norm of the solution. We use the same values of Nx and T for all methods
from Table 2. The goal is to reveal how the solution depends on the time-step τ .

In general, we have no direct access to the exact solution of Eq.(39). Let’s define the numerical error
estimate ε as L∞ norm of the difference of two numerical solutions at t = T

ε(Mτ , U, ωh, Nt) =
∥∥(Mτ )

NtU(ωh)− (Mτ/10)10NtU(ωh)
∥∥ ,

where Nt = T/τ is the number of the evolution steps and the vector U(ωh) represents the initial
condition. The solution with the reduced time-step τ/10 is considered as the exact one. We investigate
how ε decreases with τ and say that the SM shows the convergence rate r, if error’s decay follows
2−r rule when τ is reduced by half. Specifically, r is determined by applying the method of least-
squares on (lnNt, ln ε) plane. The relation r ≈ deg(Mτ ) indicates that there are no unexpected
error sources.

5.2 First-order soliton

We begin with the simulation of the first order soliton solution to Eq. (7) with D(k) = 1
2
k2 and g = 1

and the initial condition U(x) = cosh−1(x), see [2]. Values of the error estimate ε at T = 10 are
given in Table 3 for different SMs and increasing Nt. The convergence rates, indicated in the bottom
row of Table 3, agree with the theoretical SM orders from Table 2. We employ DFFT routines with a
single-precision complex arithmetic, such that error scaling is not studied for the fourth order methods
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ε(Lτ ) ε(Sτ ) ε(Sτ ) ε(Yτ ) ε(N τ )

Nt = 40 1.81664e-3 7.26833e-3 8.24797e-4

80 1.16498e-4 4.87016e-4 5.45073e-5

160 7.01606e-3 1.38238e-2 6.83105e-6 3.10562e-5 3.64076e-6

320 4.13420e-3 3.48481e-3 4.04148e-7 1.95132e-6 2.36680e-7

640 2.22680e-3 8.73054e-4 2.44113e-8 1.22152e-7 1.51068e-8

1280 1.15338e-3 2.18380e-4

2560 5.87024e-4 5.46022e-5

r 0.900 2.00 4.05 3.97 3.93

Table 3: Simulation errors for the first-order soliton solution of Eq. (7) with D(k) = 1
2
k2 and g = 1.

The bottom row provides the observed convergence rate. In all simulations we setX = 40,Nx = 29,
and T = 10.

Nt = 200 400 800 1600 3200 r

ε(Yτ ) 1.24473e-2 7.87660e-4 5.00139e-5 3.13807e-6 1.96365e-7 3.99

ε(N τ ) 1.42109e-4 5.15330e-5 4.75794e-6 3.46583e-7 2.34059e-8 3.24

Table 4: Simulation errors of the problem from Table 3 are calculated for T = 40.

and Nt > 640. The error estimates ε(N τ ) and ε(Sτ ) are 5 ÷ 10 times smaller than ε(Yτ ). This
agrees with the local error estimates κ(N τ ) ≈ κ(Sτ ) ≈ 0.1κ(Yτ ), see Table 2.

In addition, Table 4 compares ε(Yτ ) to ε(N τ ) for the same single-soliton solution but a larger T =
40. Both the scaling properties and the tenfold improvement of the SM error are preserved for Nt >
800. Such behaviour is less pronounced for Nt < 800, where the experimental convergence rate of
the ASM N τ was smaller than the theoretical value deg(N τ ) = 4. The reason is that the asymptotic
convergence rates of the first-order SMs, which are composed together in Eq. (35), are not sufficiently
resolved.

ε(Lτ ) ε(Sτ ) ε(Sτ ) ε(Yτ ) ε(N τ )

Nt = 100 3.69985e-2 4.47009e-2 7.15574e-3

200 1.08613e-1 1.83543e-1 2.24251e-3 3.45886e-3 3.94839e-4

400 4.25921e-2 4.71194e-2 1.09022e-4 2.28697e-4 2.29040e-5

800 1.83152e-3 1.18981e-2 5.54555e-6 1.44111e-5 1.60649e-6

1600 8.40914e-3 2.98237e-3 3.10452e-7 9.01738e-7 1.06730e-7

3200 4.01727e-3 7.46086e-4 1.85454e-8 5.64342e-8 6.91436e-9

r 1.19 1.99 4.21 3.93 3.98

Table 5: Simulation errors for the third-order soliton solution of Eq. (7) with D(k) = 1
2
k2 and g = 0.1.

In all simulations we set X = 200, Nx = 210, and T = 20.
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ε(Sτ ) ε(Sτ ) ε(Yτ ) ε(N τ )

T = 40

Nt = 200 8.74539e-1 1.98626e-1 9.24272e-2 4.17667e-2

400 2.22850e-1 9.82089e-3 4.77576e-3 1.95076e-3

800 5.94293e-2 3.82992e-4 3.05633e-4 5.27988e-5

1600 1.52495e-2 1.50454e-5 1.92474e-5 9.49288e-7

3200 3.83895e-3 6.59972e-7 1.20438e-6 7.38628e-8

r 1.95 4.57 4.04 4.92

T = 60

300 1.91689 2.0709e-1 1.37027e-1 4.71068e-2

600 5.21201e-1 9.86629e-3 9.62559e-3 1.89146e-3

1200 1.31805e-1 4.17595e-4 7.13351e-4 8.17543e-5

2400 3.30454e-2 1.82028e-5 3.86736e-5 3.62335e-6

4800 8.26508e-3 9.11710e-7 2.42040e-6 2.64053e-7

r 1.97 4.47 3.95 4.39

T = 80

400 2.27782 9.93940e-1 2.96649e-1 2.06900e-1

800 4.47634e-1 3.86794e-2 1.43107e-2 9.50913e-3

1600 1.18411e-1 1.40593e-3 6.18969e-4 2.98742e-4

3200 3.06705e-2 5.01656e-5 3.86492e-5 7.04679e-6

6400 7.74153e-3 1.94427e-6 2.41869e-6 9.81209e-8

r 2.03 4.75 4.23 5.24

Table 6: Simulation errors of the problem from Table 5 for T = 40, 60, and 80.
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5.3 Third-order soliton

Next, we have tested performance of the SMs by simulation of the evolution of a third-order soliton
governed by the GNLSE (7) with D(k) = 1

2
k2 and g = 0.1, see [2]. The initial condition is U(x) =

1.89737 cosh−1(x/5). To reduce the effect of the boundary conditions on a higher-order soliton,
which tends to break up into fundamental solitons, we use a larger space domain, X = 200, and a
larger number of the mesh points, Nx = 210. The errors are presented in Table 5. In all cases the
convergence rate is similar to the order of the method, whereas the absolute error of N τ is better
than those of the other fourth-order methods.

As it was shown in, e.g., Ref. [2], the third-order soliton evolves periodically, with the period ≈ 40 for
the case at hand. We therefore inspect the error estimate ε = ε(t) for T = 20, 40, 60, 80 (Table 5
and three blocks of Table 6). The convergence rates of Sτ and Yτ are in a good agreement with the
the theoretical orders of the SMs. Moreover, both the convergence rate and the absolute error of the
ASMs Sτ and N τ , are better than expected, reaching r > 5 in the case of N τ and T = 80. This
welcome behaviour can be attributed to an unexpected cancellation of the local errors generated by
the involved SMs. This cancellation requires further investigation.

5.4 Parallelization

To check applicability of the above SMs and ASMs to parallel computations, we provide several nu-
merical tests for the problem of the third-order soliton from the previous section (Tables 5 and 6). We
employ a fixed mesh with X = 240, Nx = 212, T = 100, and Nt = 20000. All simulations use
a standard Intel® Core™ i7-6700 CPU processor with 4 cores, we employ an OpenMP library, which
supports multi-platform shared memory multiprocessing programming.

We have used two parallelization strategies. The first strategy (S1) is tailored to a generic ASM (24).
The involved SMs are calculated on J separate cores without an attempt to accelerate evaluation of
the individual exponential operators. We consider two fourth-order ASMs, Sτ with J = 2 and N τ

with J = 4. In the latter case we combine two smaller sub-problems into one job, to get a balanced
distribution of tasks among 3 cores. No additional cost arise when implementing data communication
because of the shared memory architecture.

The second strategy (S2) is tailored to a multiplicative SM, but can also be used for any ASM. All
exponential operators are evaluated sequentially, we get use of the available computer cores when
resolving “for” loops and executing DFFT algorithms. Note, that parallelization of the “for” loops, which
are heavily exploited when resolving local nonlinear operators, is highly efficient, whereas paralleliza-
tion of the DFFT involved in linear sub-problems is far from trivial. Still there are quite efficient parallel
versions of DFFT algorithm for shared memory processors. We apply S2 to Sτ and Yτ . Of course,
mixed strategies are also possible, as discussed below.

Table 7 provides calculation times for Sτ (S1, S2), N τ (S1) and Yτ (S2). There is no difference be-
tween S1 and S2 for a single core execution. The calculation time is mainly determined by the total
number of the exponential operators. The new ASM N τ with 12 such operators is then computation-
ally most demanding, the ASM Sτ with 8 operators is ≈ 35% faster. The classical SM Yτ , which
involves 7 operators and enjoys FSAL property, performs even better. Two cores provide ≈ 35% im-
provement for Sτ . Note that the involved sub-methods (Table 2) contain 5 and 3 exponential operators.
i.e., the computational load is therefore differently distributed between the cores. The new ASM N τ

first comes into play for three cores and provides a similar load per core, because two less demanding
sub-methods were executed on a single core. The parallel calculation is almost three times faster,
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Sτ (S1) N τ (S1) Sτ (S2) Yτ (S2)

#cores = 1 27.98 44.2 28.88 26.41

2 18.00 15.32 14.33

3 15.7 12.53 11.75

4 8.904 8.50

Table 7: Calculation times (in seconds) for parallel simulations of the third-order soliton problem on a
fixed mesh Nt ×Nx = 20000× 212 with T = 100 employing S1 and S2 approaches.

Nt = 50 100 200 400 r

Sτ 4.27453e-2 1.07951e-2 2.69881e-3 6.74393e-4 2.00

Yτ 1.5508e-4 9.81039e-6 6.15523e-7 3.85115e-8 3.99

N τ 1.79263e-4 9.57609e-6 6.00006e-7 3.70988e-8 4.07

Table 8: Simulation errors for the Cherenkov radiation problem in the GNLSE with D(k) = 1
2
k2− 1

6
k3

and g = 1. In all simulations we set X = 400, Nx = 212, and T = 20.

comparing to a single-core case.

The last two columns of Table 7 demonstrate that S2 provides a more significant acceleration of the
calculations. Note, that the DFFT algorithm is very efficient when 2 or 4 (or 2c) cores are used on a
shared memory system, whereas the non-linear step welcomes any number of cores. We conclude
that a generic ASM (24) favors use of J · 2c cores and a mixed strategy. Namely, S2 applies to the
sub-problems, which are assumed to have a good scaling up to 2c cores. Thereafter S1 is used to
combine the results. In the case of N τ , the use of 3 · 2c cores combines advantages of the relatively
small local error estimate κ(N τ ) (Table 2) and fast calculation of the linear and nonlinear steps in the
sub-problems. Note that like Sτ , our ASM N τ can also use advantages of both strategies, S1 and S2,
when 2 ·2c cores are available. In this case, to enjoy the balance of the computational load, we should
use strategy S2 calculating each pair of longer (ρ = 4) and shorter (ρ = 2) sub-methods on 2c cores.
The challenge remains to develop efficient parallel SM schemes for global memory supercomputers
and clusters of processors.

5.5 Simulation of more general GNLS problem

In the above examples we have studied solitons of Eq. (7) with D(k) = 1
2
k2, which is integrable,

that is why analytical solutions for the fundamental and higher-order solitons are available [2]. Here
we consider a non-integrable GNLSE with D(k) = 1

2
k2 − 1

6
k3 and g = 1, the initial condition reads

U(x) = 1.58114 cosh−1(x/2). The corresponding semi-discrete system (39) is solved forX = 400,
Nx = 212, and T = 40 by splitting into linear and non-linear sub-problems as in Eq. (8). The initial
pulse evolves producing the so called Cherenkow radiation [18]. We calculate pulse evolution and
compare performance of the new SM N τ with that one of widely used Strang’s and Yoshida’s methods
Sτ and Yτ , see [3] for application of other SMs. The numerical test results collected in Table 8 show,
that the application of N τ preserves the fourth-order convergence rate and provides the errors which
are very similar to those obtained by Yoshida’s method.
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6 Conclusions

Our result is that a generic splitting method of order P can be used to generate three companion
splitting methods of the same order and finally to construct an additive splitting method of order P +3.
The weight coefficients depend only on P , which must be an odd number. If the seed method contains
S exponential operators, the additive method contains 2S + 2S + S + S = 6S operators, which
can be calculated in parallel. Namely, 2S operators correspond to the first independent thread, 2S
to the second, and two methods with S operators can be combined into the third thread. An natural
application of our approach is when parallel evaluation of the seed splitting method shows good scaling
for up to C cores. One can then employ 3C cores with our additive method to improve the seed
method’s order by 3. Additional costs are negligible on a system with the shared memory.

A Basis commutators

For the first- and second-order methods we use the following basic commutators

eAB = [A,B], eAAB = [A, [A,B]], eABB = [[A,B], B].

More specifically, one profits from a one-to-one correspondence w 7→ ew between the Lyndon words
w (composed of “letters” A and B in accord with the special rules) and linearly independent basic
commutators ew, see [9]. For instance, the local error for all methods with p = 3 is spanned by the set

eAAAB = [A, [A, [A,B]]], eAABB = [A, [[A,B], B]], eABBB = [[[A,B], B], B],

where relations like [A, [[A,B], B]] = [[A, [A,B]], B] reduce the total number of independent basic
commutators, which reflects the existence of the so-called generalized Jacobi identities [13]. For p = 4
the basis consists of six commutators

eAAAAB = [A, [A, [A, [A,B]]]], eAAABB = [A, [A, [[A,B], B]]],

eAABAB = [[A, [A,B]], [A,B]], eAABBB = [A, [[[A,B], B], B]],

eABABB = [[A,B], [[A,B], B]], eABBBB = [[[[A,B], B], B], B],

where a lexicographical order of the corresponding Lyndon words is used.

Note, that swapping of A and B is applied to the basic commutators when ∆(M◦
τ ) is calculated from

Eq. (23) in which case we have

e◦AB = −eAB, e◦AAB = eABB, e◦AAAB = eABBB, e◦AABB = −eAABB, etc.
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