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Human communication in social networks is dominated by emergent statistical laws such as non-trivial
correlations and temporal clustering. Recently, we found long-term correlations in the user’s activity in
social communities. Here, we extend this work to study the collective behavior of the whole community with
the goal of understanding the origin of clustering and long-term persistence. At the individual level, we find
that the correlations in activity are a byproduct of the clustering expressed in the power-law distribution of
inter-event times of single users, i.e. short periods of many events are separated by long periods of no events.
On the contrary, the activity of the whole community presents long-term correlations that are a true
emergent property of the system, i.e. they are not related to the distribution of inter-event times. This result
suggests the existence of collective behavior, possibly arising from nontrivial communication patterns
through the embedding social network.

V
arious constituents of social systems have been found to follow remarkable statistical regularities. Only the
recent availability of relevant data made it possible to unravel such features. Tracking bank notes or cell
phones it has been shown that humans follow simple and reproducible mobility patterns1,2. The com-

munication via e-mails occurs in bursts, exhibiting a broad distribution of times between successive messages of
individuals (inter-event times)3,4. Recently, we have found that the act of sending messages of individual users in
two online communities present long-term correlations5 characterized by power-law correlation functions
obtained via standard Detrended Fluctuation Analysis.

In the present work we examine the relation between the two empirical findings of broad inter-event time
distributions3,4 and the long-term persistence identified in the communication activity5. Therefore, we investigate
the communication activity of actants in a social online community with special consideration of the timing and
study long-term correlations in the communication as well as clustering of successive messages. Here, the term
clustering is used when the events tend to occur in burst, i.e. packages of many events are separated by long periods
without events. In the case of power-law inter-event times this takes place on all scales. In other words, in the case
of (temporal) clustering, the inter-event time distributions are more inhomogeneous than in the case of
Poissonian statistics.

Long-term correlations have been found in the dynamics of many physical, technological, and natural systems.
They are characterized by a divergent correlation time, i.e. a power-law decaying auto-correlation function (for a
review see6). Such correlations lead to a pronounced mountain-valley-structure on all time scales – comprising
indeterministic epochs of small and large values7. This type of persistence represents a surprising regularity since
it is present in many different data such as DNA-sequences, human heartbeat, climatological temperature, etc.8–10.
Long-term persistence in human related data has been reported for highway traffic11,12, Wikipedia access13,
Ethernet traffic14, finance and economy15–17, written language18,19, as well as physiological records9,20,21. Human
brain activity22–24 and human motor activity25 also comprise long-term correlations as well as city growth26–29,
biological networks30 and the spreading of disease31.

The distributions of inter-event times (times between successive messages) have been found to be rather broad,
described by power-laws3. If many short intervals are separated by few long ones, the activity as messages per unit
time comprises persistence, i.e. epochs of large and small activity. Since such distributions have been described
with power-laws, we wish to investigate the relation between the long-term correlations in activity5 and the broad
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(power-law) distribution of inter-event times3. We will test two pos-
sible scenarios: (i) In the first scenario, the long-term correlations
found in the communication activity5 result from Levy type distribu-
tions, i.e. correlations are only due to the power-law inter-event time
distribution (with exponents in the specific range)32. In the second
scenario, (ii) the activity comprises ‘real’ correlations, i.e. the inter-
event time distributions do not follow a power-law, but the com-
munication activity is temporally not independent, namely long-
term correlated.

We study the activity of sending messages based on detailed tem-
poral data from a social online community and obtain the long-term
correlation exponent H via DFA. The exponent H depends on the
overall activity of the members; the more active the members the
larger the fluctuation exponents. This exponents reaches a value H
< 0.90 for the most active users from an uncorrelated value H < 0.5
for the less active ones. Then, we compare the value of H with the
corresponding exponents of randomized data and a theoretical pre-
diction relating correlations with clustering in the inter-event times.
From the consistency of the comparison of this three measures, we
conclude that the long-term correlations found in the activity of
sending messages for single users is a direct consequence of the
power-law distributed inter-event time of the individuals. Thus, the
burstiness in the user activity explains the long-term correlations.

More interesting results are found when we consider the activity of
the whole community as a sum of the activity of its members. Again
we find non-trivial long-term correlations with exponents H in the
same range as the individual users. However, the origin of this cor-
relations is not related to the inter-event activity. This is probed by
shuffling the activity data but preserving the distribution of inter-
event times. In this case, this shuffling destroys the long-term corre-
lations, implying that the correlations are not a byproduct of the
broad distribution of inter-event times. We conclude that the whole
system acts as a true long-term correlated system where correlations
are not directly related to the Levy distributions of events.

We analyze the data of an online community (www.pussokram.
com, POK33–35,) covering the complete lifetime of the community
over 492 days from February 2001 until June 2002. We record the
activity among almost 30,000 members with more than 500,000
messages sent. This internet-site has been used for general social
interactions and dating. The data consist of the time when the mes-
sages are sent and anonymous identification numbers of the senders
and receivers. The data has been analyzed by us in5,36. In contrast to
similar network data sets consisting only of snapshots, i.e. temporally
aggregated social networks expressing who sent messages to whom,
the advantage of this data set is that it provides the exact time when
the messages were sent. For a discussion see37.

Before shutdown, the members could log in and meet virtually. In
such communities, there are different ways of interacting. Usually, it
is possible to choose favorites, i.e. certain members, that a person
somehow feels committed to. Such platforms also offer the possibility
to discuss in groups with other members about specific topics. We
focus on messages sent among the members – they are similar to
e-mails but have the advantage that they are sent within a closed
community where there are no messages coming from or going
outside. Figure 1 illustrates patterns of sending messages for typical
single users [a–d] and for the whole community [e]. The data
is publically available at http://lev.ccny.cuny.edu/,hmakse/soft_
data.html. We would like to note that we do not consider here the
QX dataset which we analyzed in5,36, since it covers only 2 months
and the scaling of the distribution of inter-event times is not reliable
and we could not measure the shape of this distribution consistently.

Results
Study of correlations in individual activity. Applying DFA21,38,39 we
have found in5,36 that the individual activity records, x(t), i.e.
messages per unit time (records of messages per day or per week),

exhibit long-term correlations. The fluctuation function provided by
DFA scales as

F Dtð Þ* Dtð ÞH , ð1Þ

where the exponent H is also known as the Hurst exponent. In the
case of long-term correlations – which are characterized by a power-
law decaying auto-correlation function:

C Dtð Þ~ 1
s2

x
x tð Þ{ x tð Þh i½ � x tzDtð Þ{ x tð Þh i½ �h i

* Dtð Þ{c
,

where Æ?æ denotes the average, sx is standard deviation of x(t), and c is
the correlation exponent (0 # c # 1) – one finds 1/2 # H # 1,
whereas larger exponents correspond to more pronounced long-
term correlations. For uncorrelated or short-term correlated
records (c $ 1, or in general c $ d, d is the substrate dimension)
the asymptotic fluctuation exponent is H 5 1/2. In the range 0 # c #

1 both exponents are related via

c~2{2H: ð2Þ

For an overview, we refer to6,39. DFAn removes polynomial trends of
the order n – 1 from the original record x(t), i.e. DFA2 copes with
linear trends.

It is important to note that the DFA fluctuation function Eq. (1) is
not applied to the activity x(t), but to the integrated signal y(t) 5

Stx(t9). Thus, x(t) would be the analogous to the steps in a random
walk and y(t) the displacement. DFA incorporates an additional
detrending of the data. The integration leads to the appearance of
long-term correlation when the interval between each step is power-
law distributed. We will come back to this result when explaining the
long-term correlations in terms of the burstiness.

We have measured the fluctuation exponents by applying least
squares fits to log F(Dt) vs. log Dt on the scales 10 , Dt , 70 weeks
conditional to the member’s activity level, e.g. their total number of
messages, M5. Figure 2 depicts the DFA results. We find that the
less active members, sending very few messages in the period of data
acquisition, exhibit uncorrelated behavior. The more messages
the members send, the more correlated is their activity. The fluc-
tuation exponent H increases with M and reaches values up to H 5

0.9160.04 (value obtained for sending messages, we disregard
the last points, M . 400, which have too large errors bars). The

Figure 1 | Examples of activity of sending messages and overall activity in
POK. The vertical lines in (a) and (c) represent the instants when the

messages have been sent by two arbitrary members. The panels (b) and (d)

show the records of number of messages per day, x(t), of the same two

members. The record of the total number of messages sent by all members

per day within POK is depicted in (e). (a) and (b): member326 (M 5

1023); (c) and (d): member9414 (M 5 100).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 560 | DOI: 10.1038/srep00560 2

www.pussokram.com
www.pussokram.com
http://lev.ccny.cuny.edu


uncorrelated behavior(H < 0.5) for small activity can be understood
since when M < 1–10 there is not enough time in the data acquisition
window to capture long-term correlations. Thus, the change from
H 5 0.5 to H 5 0.91 might be most probably due to a crossover
behavior due to finite acquisition time. In36 we propose a model
which reproduces the dependence of the fluctuation exponents on
the activity level of the members. For receiving messages we find
almost identical results36. We use weekly resolution in order to cope
with possible weekly oscillations4,40–42.

Similar long-term correlations have been found in43,44 in traded
values of stocks and e-mail communication. The fluctuation expo-
nent increases with the mean trading activity of the corresponding
stock or with the average number of e-mails similarly as in our
results.

Study of clustering in individual activity. The timing of human
communication activity has been found to comprise bursts where
many events occur in relatively short periods which are separated by
long periods with few or no events at all. Such patterns can be
characterized with the inter-event times, i.e. the times, dt, between
successive messages. For e-mail communication it has been argued
that their probability density follows a power-law,

P dtð Þ* dtð Þ{m
, ð3Þ

with exponent m < 13,45,46. As an origin for such heavy tails in human
dynamics a queuing model has been suggested3 according to which
each individual performs tasks from a priority list. It has been
confirmed that such a process can reproduce bursts of activity or
clustering, see e.g.47,48. In contrast, analyzing the same e-mail data, a
log-normal distribution has been found to be more appropriate to
describe the inter-event time distribution49,50. We would like to
remark that fitting fat tailed distributions is disputed51–54. There is
neither a consensus on a typical functional form nor on a proper
fitting technique. Recently, a cascading Poisson process based on

daily and weekly cycles has been proposed as origin of slower-
than-exponential decays of P(dt)4,42. We studied the cascading
Poisson process in36.

In55, memory in the sequences of dt has been studied for different
data sets, characterizing the inter-event times in terms of a burstiness
parameter, which is based on the distribution, and in terms of a
memory coefficient, which is the auto-correlation function at lag 1.
In addition, the authors locate the corresponding data sets in a phase
diagram defined by these two quantities. Nevertheless, we would like
to note that the quantification of long-term correlations in the dt can
be hindered by noise56,57.

Next, we study the POK data, i.e. the inter-event times dt between
successive messages of individual members, and relate their statistics
to the long-term correlations. The finding of long-term correlations
opens the question of the origin of such a persistence pattern in the
social communication. From a statistical physics point of view, we
consider two possible scenarios:

1. In the first scenario, the intervals between the messages follow a
power-law3,58. Accordingly, the activity pattern comprises many
short intervals and few long ones, implying persistent epochs
of small and large activity. This fractal-like clustering in the
activity can – depending on the exponent – lead to long-term
correlations with H . 1/2 (see the analogous problem of the
origin of long-term correlations in DNA sequences as discussed
in59). This scenario implies a direct link between the correlations
in the activity and the distribution of inter-event times which can
be obtained analytically60. We call this scenario ‘‘Levy correla-
tions’’ since the actual activity may not be correlated per-se, but
correlations arise as a byproduct of integrating a signal with a
power-law distribution of inter-events in the DFA formalism.

2. In the second scenario, the intervals between the messages may
or may not follow a power-law distribution, but the values of the
inter-event times are not independent of each other and com-
prise ‘real’ long-term persistence. For example, the distribution
of inter-event times could be stretched exponential (see recent
work on the study of extreme events of climatological records
exhibiting long-term correlations56,61) and then the only way to
explain long-term correlations in the activity are correlations in
the inter-event times. We call this scenario ‘‘true correlations’’
since the correlations are not related to the distribution of inter-
events but they reflect ‘real’ correlations in the dynamics of the
communication activity.

A possible way to discern between these two scenarios is to shuffle
the temporal activity, keeping the inter-event distribution intact.
While in the case of Levy type correlations shuffling the inter-event
times should not influence the long-term correlation properties of
x(t), in the case of ‘real’ long-term correlations shuffling the inter-
event times should destroy the (asymptotic) long-term correlations
since the memory is due to the arrangement of the inter-event times.
In what follows, we investigate the activity of individual members
and the activity of the whole POK community.

Study of inter-event distribution of individual members. Figure 2
exhibits the fluctuation exponents for individual members when we
shuffle the data but preserve the distribution of inter-event times. This
is done according to the following steps: (i) Extract the set of inter-
event times of each user. (ii) Shuffle the extracted data. (iii) Rebuild the
record of events. Since the sum of the inter-event times does not add
up to the entire period of data acquisition, the first event is chosen so
that the remaining time is split into two, one part in the beginning and
the other one at the end. (iv) Repeat the analysis.

The corresponding exponents also reach high values, almost as
high as for the original data, and do not drop for very active mem-
bers. This agreement is a first indication of Levy correlations in single
user activity.

Figure 2 | Fluctuation exponents of the communication activity sending
messages. The exponents are plotted as a function of the activity level M

(final number of messages) for the original data (green circles), shuffled

data preserving the individual inter-event times (blue squares), as well as

the exponents expected from Eq.(4) (brown triangles down) and from the

distribution of inter-event times as characterized by power-law fits to the

curves of Fig.4 providing the exponentm. The error bars were obtained

from from randomly separating the members into 10 groups and repeating

the analysis for each of them.
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Further evidence is found by studying the distribution of inter-
event times in the activity of each individual. Figure 3 shows the
probability density, P(dt), of times between messages of the same
users sent in the online community. A power-law regime of approxi-
mately two decades can be seen with an exponent m < 1.5, which
differs from the exponent reported for e-mail communication3,46, i.e.
m < 1. A reason for these different findings might be that in the case
of3 only one user is considered and that m depends on the activity
level of the users, as we show below. In addition, here we study all
messages from a closed community. The exponent we find is closer to
the one reported for reply times (waiting times), i.e. the time indivi-
duals spend between receiving and sending to the same commun-
ication partner. For reply times of e-mails and land mail mw < 1.5 has
been reported3,62.

Since we found a dependence of the fluctuation exponent H on the
activity level M, i.e. the total number of messages each member sends,
we suspect that also m might depend on M. Thus, in Fig. 4 we plot for
sending messages in POK (daily resolution) the P(dt) for groups of
different activities, i.e. different total number of messages M. We find
that for the most active members P(dt) decays rather steeply, while
for the least active members P(dt) decays much slower. Due to the
finite size of the data it is not quite clear which functional form the
curves follow. If one assumes a power-law decay then the exponents
are roughly in the range 1 # m # 3.

As discussed above, the power-law distribution of inter-event
times, Eq. (3), can lead to long-term correlations in activity, without
requiring temporal dependencies between the intervals themselves.
It can be shown that the long-term persistence properties of this
point process are characterized by the fluctuation exponent which
theoretically depends on m according to23,32,60,63:

Hm~

m=2 for 1vmv2

2{m=2 for 2vmv3

1=2 else

8><
>:

, ð4Þ

see Fig. 5. Apart from detrending, DFA provides an integration of the
original record. So if there are long periods of no activity due to
power-law inter-event times, then, this is reflected in long-term per-
sistence in the signal calculated by DFA. Thus, the existence of long-
term correlations is due to the long periods distributed via Levy
distributions as expressed by the direct relation between correlations
and Levy inter-event activity, Eq. (4).

Applying least squares fits (in the straight range) to the P(dt) for
sending in POK (Fig. 4) we obtain values for m as a function of the
activity level M and determine the corresponding fluctuation expo-
nents, Hm, as expected from Eq. (4). We would like to note that the
curves in Fig. 4 are not always straight lines leading to large uncer-
tainty regarding the estimated values of m.

Figure 2 depicts the fluctuation exponents Hm from Eq. (4) in
comparison with the values obtained from DFA. We find H < Hm

for a big part of the M range. The exponents Hm are also close to H of
the shuffled records where the inter-event times are preserved. The
fact that when we shuffle the signal, respecting the corresponding
distribution of inter-event, gives rise to the same correlation func-
tion, indicates that the origin of the long-term correlation obtained in
DFA are due to the Levy correlations. This is further corroborated by
the agreement between H from DFA and the prediction Hm. From
Fig. 2 we see that the three curves are in a reasonable agreement. This
supports that the correlations in single user activity can be due to the
power-law distribution of the inter-event times, which is in favor of
Levy type correlations.

Study of whole community activity. Next, we investigate the activity
of the community as a whole. While we have studied the activity of
single users, it is of interest to investigate the activity of the whole
community by considering the number of messages sent by all

Figure 3 | Probability density of inter-event times dt between successive
messages sent by a single member of POK, in daily resolution. The values

are extracted by considering every single individual sending messages in

the period of data acquisition and then joined from all members. The

dotted line in the top corresponds to the exponent m 5 1.5.

Figure 4 | Probability density of inter-event times dt between successive
messages sent by all individual members of POK in daily resolution. The

values are extracted for the individuals and unified among members

according to their activity level M. The curve for the most active members

is in the bottom, while the one for the least active is in the top. The dotted

lines correspond to the exponents 21 (top) and 23 (bottom).

Figure 5 | Levy correlations and persistence. Theoretical relation between

the inter-event time distribution exponent m and the fluctuation exponent

Hm according to Eq. (4).
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members in a specified period of time. Figure 1(e) shows such activity
temporally aggregated to one day. The interest arises since we would
like to test the existence of correlations emerging from collective
behavior in the communication patterns at the level of the whole
community.

For this study, we disregard who sends the messages to whom and
only consider the instants when any message was sent. In order to
have a sufficiently long record to apply DFA, we aggregate the data to
messages per hour (instead of daily or weekly resolution). As can be
seen in Fig. 1(e), the record contains oscillations4. Since such peri-
odicities lead to erratic fluctuation functions39, we subtract the hourly
averages over all days: xtot(t) R xtot(t) 2 Æxtotæt mod 24.

The DFA fluctuation functions are shown in Fig. 6. The hump on
scales around 20 hours in the results of DFA1 and DFA2 are residual
oscillations, i.e. they were not completely removed. On larger scales
this effect vanishes and we find a fluctuation exponent Htot < 0.9.
The straight line in the case of DFA0 is due to the fact that the
maximum exponent is 139. More importantly, when the record of
the whole community is shuffled but preserving the inter-event dis-
tribution, the asymptotic scaling is F , (Dt)1/2. That is, in contrast to
the result for individual activity, when we shuffle the signal of the
whole community, we obtain the uncorrelated exponent: H^0:5
(dashed lines in Fig. 6). The fact that the correlations vanish (H 5

0.9 R H 5 0.5) when the data is shuffled indicates that the long-term
correlations found in the activity of the community as a whole are not
due to Levy correlations. Instead, correlations in the whole commun-
ity are ‘‘true correlations’’ appearing as a manifestation of collective
behavior of the scale of the entire community.

Another surprise appears when we calculate the distribution of
inter-event times for the whole community. Here we define inter-
event the time between the sending of two consecutive messages
of any member in the community. This contrasts with the same
study done at the single user level (Fig. 4) when inter-event is
defined as the time between two events of the same user. In a
sense, P(dt) for the entire community captures the collective beha-
vior emerging from the entire community as information travels
through the network.

In Fig. 7 the resulting probability density is displayed. We find a
plateau up to 50 seconds followed by a power-law decay according to
Eq. (3) with m < 2.25. Thus, the distribution of inter-event activity of
the community as a whole is also a Levy type like the single user
activity, albeit with a larger exponent. Such a larger exponent reflects

the fact that P(dt) is narrower for the community than for the indi-
viduals, as expected.

When we convert the exponent m < 2.25 to the Hm through the
Levy distribution model, Eq. (4), we find Hm < 0.88. Thus surpris-
ingly, Eq. (4) may also explain the persistence as in the individual
activity. However, the main evidence of Fig. 6, that is, the fact that the
correlations vanish when we shuffle the data, probe that, even if Eq.
(4) provides a good estimation of H, the long-term correlations are
due to ‘real’ correlations and are not an artifact of the integration of a
Levy type activity with DFA.

The long-term correlations found in the behavior of the entire
community is more understandable than in the activity of single
members, since the activity of the community is based on the com-
munication patterns of the messages and information flowing
through the whole system. The existence of H < 0.9 at the whole
level and the indications that the correlations are real ones is an
interesting instance of the emergence of critical behavior in the col-
lective dynamics of the system as a whole.

We conclude that while at the individual level we find Levy corre-
lations, the activity of the whole community comprises ‘real’ correla-
tions, which is due to the (possibly correlated) superposition of the
individuals activity into a collective self-organized information flow
in the system. Such a behavior is reminiscent of critical systems in
phase transitions.

Discussion
We have studied the timing of communication in a social online
community and find long-term persistence in the activity of sending
messages at the single user level and the whole community level.
Furthermore, we have addressed the question of the origin of these
long-term correlations and whether these are Levy type or ‘real’
correlations. While in the case of Levy type correlations the inter-
event times need to be power-law distributed, ‘real’ long-term corre-
lations are independent of the distributions, since they are due to
interdependencies in the activities.

Our work, then, still leaves unanswered the question of the cause
of the long-term persistence in the communication patterns at
the whole community level. One possibility is that the temporal
correlations are related to correlations in the network structure64,65.
The persistence could also be due to social effects, i.e. the dynamics in
the social network66 induces persistent fluctuations, such as cascades.
An example could be that a group of friends tries to make an appoint-
ment and therefore sends many subsequent messages in a relatively

Figure 6 | Fluctuation function of the record of messages sent by any
member of POK. The record is the same as in Fig. 1(e) but in hourly

resolution. Prior to applying DFA, the record has been deseasoned

according to xtot(t) R xtot(t) 2 Æxtotæt%24. The different curves differ in the

DFA-order (DFA0-DFA2, from top to bottom), which determines the

capability of detrending. DFA2 eliminates linear trends in xtot(t)39. The

dotted line in the bottom corresponds to a power-law with exponent H 5

0.5 and serves as guide to the eye while the continuous line at the top

represents H 5 0.9.

Figure 7 | Probability density of inter-event times dt between successive
messages sent by any member of POK in seconds. The dotted straight line

corresponds to a power-law with exponent m 5 22.25 and serves as guide

to the eye.
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short time67. After agreeing, the communication activity among the
group drops. The activity patterns of individuals could be understood
as a superposition of many such cascades. On the other hand, it could
be purely due to a state of mind23, solipsistic, emerging from moods.
More research is needed to thoroughly understand the interesting
properties of human activity and its motives.

In conclusion, we have determined 3 exponents to characterize
communication activity: (i) H, the fluctuation exponent of the ori-
ginal data, (ii) Hshuf, the fluctuation exponent when the data is
shuffled preserving the inter-event times, (iii) Hm, the fluctuation
exponent which is expected from power-law distributed inter-event
times. We find that H < Hshuf < Hm < 0.9 which supports the
hypothesis of Levy correlations in the single user activity, while we
find H < 0.9 ? Hshuf < 0.5 for the collective behavior of the whole
community revealing non-trivial long-term correlations and self-
organization at the level of the whole system.

We should mention a third scenario which we leave for future
work. It is possible that the correlations comprise more complex
features. It has been shown that nonlinear correlations in multifractal
data sets lead to power-law distributed inter-event times (of peaks
over threshold)68. In fact, the authors of68 find in their Fig. 1(c) a
similar dependence of m on the total number of events as we do for Hm

in our Fig. 2. Additional analysis is needed to fully characterize the
multifractal properties69–71 of communication activity via e-mails or
messages in online communities.
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Application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987).

33. Holme, P. Network dynamics of ongoing social relationships. EPL 64, 427–433
(2003).

34. Holme, P., Liljeros, F., Edling, C. R. & Kim, B. J. Network bipartivity. Phys. Rev. E
68, 056107 (2003).

35. Holme, P., Edling, C. R. & Liljeros, F. Structure and time evolution of an internet
dating community. Soc. Networks 26, 155–174 (2004).

36. Rybski, D., Buldyrev, S. V., Havlin, S., Liljeros, F. & Makse, H. A. Communication
activity in social networks: growth and correlations. Eur. Phys. J. B 84, 147–159
(2011).

37. Gallos, L. K., Rybski, D., Liljeros, F., Havlin, S. & Makse, H. A. How people interact
in evolving online affiliation networks. Phys. Rev. X2, in press (2012).

38. Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger,
A. L. Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994).

39. Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S. & Bunde, A.
Detecting long-range correlations with detrended fluctuation analysis. Physica A
295, 441–454 (2001).

40. Golder, S., Wilkinson, D. M. & Huberman, B. A. Rhythms of social interaction:
messaging within a massive online network. online-arXiv (arXiv:cs/0611137v1
[cs.CY], 2006).

41. Leskovec, J. & Horvitz, E. Planetary-scale views on an instant-messaging network.
online-arXiv (arXiv:0803.0939v1 [physics.soc-ph], 2008).

42. Malmgren, R. D., Stouffer, D. B., Campanharo, A. S. L. O. & Amaral, L. A .N. On
universality in human correspondence activity. Science 325, 1696–1700 (2009).

43. Eisler, Z. & Kertész, J. Scaling theory of temporal correlations and size-dependent
fluctuations in the traded value of stocks. Phys. Rev. E 73, 046109 (2006).

44. Eisler, Z., Bartos, I. & Kertész, J. Fluctuation scaling in complex systems: Taylor’s
law and beyond. Adv. Phys. 57, 89–142 (2008).

45. Johansen, A. Probing human response times. Physica A 338, 286–291 (2004).
46. Johansen, A. Comment on A.-L. Barabasi, Nature 435 207–211 (2005). online-

arXiv (arXiv:physics/0602029v1 [physics.soc-ph], 2006).
47. Vázquez, A. Exact results for the Barabasi model of human dynamics. Phys. Rev.

Lett. 95, 248701 (2005).
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