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Abstract

(In,Ga)N/GaN light-emitting diodes have been commercialized more than one

decade ago. However, the knowledge about the influence of the localization on

the recombination dynamics and on the diffusivity in the (In,Ga)N/GaN quantum

wells (QWs) is still incomplete. In this thesis, we employ temperature-dependent

steady-state and time-resolved photoluminescence (PL) spectroscopy to investigate

the impact of localization on the recombination dynamics of a typical Ga-polar, pla-

nar (In,Ga)N/GaN QW structure. In addition, we extend our study to N-polar, axial

(In,Ga)N/GaN quantum disks, nonpolar core/shell GaN/(In,Ga)N µ-rods, and Ga-

polar, sub-monolayer InN/GaN superlattices. While we observe a single exponential

decay of the PL intensity in the nonpolar QWs, indicating the recombination of ex-

citons, the decay of the PL intensity in polar QWs asymptotically obeys a power

law. This power law reveals that recombination occurs between individually local-

ized, spatially separated electrons and holes. No unique PL lifetime can be defined

for such a decay, which impedes the estimation of the internal quantum efficiency

and the determination of a diffusion length. In order to extract useful recombina-

tion parameters and diffusivities for the polar QWs, we analyze the PL transients

with position-dependent diffusion-reaction equations, efficiently solved by a Monte

Carlo algorithm. From these simulations, we conclude that the power law asymptote

is preserved despite efficient nonradiative recombination in the nanowires. More-

over, we find that the InN/GaN superlattices behave electronically as conventional

(In,Ga)N/GaN QWs, but with a strong, thermally-activated nonradiative channel.

Furthermore, we demonstrate that the ratio of localization and exciton binding en-

ergy, both of which are influenced by the magnitude of the internal electric fields

in the QWs, determines the recombination mechanism to be either dominated by

tunneling of electrons and holes or by the decay of excitons.

Keywords: (In,Ga)N/GaN, heterostructures, time-resolved photoluminescence spec-

troscopy, localization, power law decay, individual charge carriers, polarity, diffusion,

internal quantum efficiency, Monte Carlo, short-period superlattices, nanowires
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Zusammenfassung

(In,Ga)N/GaN-Leuchtdioden wurden vor mehr als 10 Jahren kommerzialisiert,

dennoch ist das Verständnis über den Einfluss von Lokalisierung auf die Rekombi-

nationsdynamik in den (In,Ga)N/GaN Quantengräben (QG) unvollständig. In die-

ser Arbeit nutzen wir die temperaturabhängige stationäre und zeitaufgelöste Spek-

troskopie der Photolumineszenz (PL), um diesen Einfluss in einer typischen Ga-

polaren, planaren (In,Ga)N/GaN-QG-Struktur zu untersuchen. Zusätzlich dehnen

wir unsere Studie auf N-polare, axiale (In,Ga)N/GaN Quantumscheiben, nichtpolare

Kern/Mantel GaN/(In,Ga)N µ-Drähte und Ga-polare, submonolage InN/GaN Über-

gitter aus. Während wir einen einfach exponentiellen Abfall der PL-Intensität in den

nichtpolaren QG beobachten (Hinweise auf die Rekombination von Exzitonen), folgen

die PL-Transienten in polaren QG asymptotisch einem Potenzgesetz. Dieses Potenz-

gesetz weist auf eine Rekombination zwischen individuell lokalisierten, räumlich ge-

trennten Elektronen und Löchern hin. Für einen solchen Zerfall kann keine eindeutige

PL-Lebensdauer definiert werden, was die Schätzung der internen Quanteneffizienz

und die Bestimmung einer Diffusionslänge erschwert. Um nützliche Rekombinations-

parameter und Diffusivitäten für die polaren QG zu extrahieren, analysieren wir die

PL-Transienten mit positionsabhängigen Diffusionsreaktionsgleichungen, die durch

einen Monte-Carlo-Algorithmus effizient gelöst werden. Aus diesen Simulationen er-

gibt sich, dass das asymptotische Potenzgesetz auch bei effizienter nichtstrahlender

Rekombination (z. B. in den Nanodrähten) erhalten bleibt. Zudem stellen wir fest, dass

sich die InN/GaN Übergitter elektronisch wie konventionelle (In,Ga)N/GaN QG ver-

halten, aber mit starkem, thermisch aktiviertem nichtstrahlenden Kanal. Des Weiteren

zeigen wir, dass das Verhältnis von Lokalisierungs- und Exzitonenbindungsenergie

bestimmt, dass die Rekombination entweder durch das Tunneln von Elektronen und

Löchern oder durch den Zerfall von Exzitonen dominiert wird.

Stichwörter: (In,Ga)N/GaN, Heterostrukturen, zeitaufgelöste Photolumineszenz-

spektroskopie, Lokalisierung, Potenzgesetzzerfall, individuelle Ladungsträger, Pola-

rität, Diffusion, interne Quanteneffizienz, Monte Carlo, kurzperiodische Übergitter,

Nanodrähte
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Chapter 1
Introduction

GaN was synthesized for the first time by Johnson et al. [2]
in 1932 by passing ammonia

over hot Ga, resulting in GaN in the form of a dark gray powder. In subsequent work by

other researchers,
[3–6]

small GaN needles and platelets were obtained that could be used

to study some of the basic properties of the material. More than 35 years later, Maruska

and Tietjen
[7]

obtained single-crystal GaN thin-film
[8]

on Al2O3 by hydride vapor-phase

epitaxy. Metal-insulator-semiconductor light-emitting diodes (LEDs) fabricated from

these films by Maruska and Pankove exhibited extremely low external quantum efficien-

cies (EQEs) of about 0.001 %.
[9]

Pioneered by Manasevit et al., [10]
metalorganic chemical

vapor deposition (MOCVD) was used to grow GaN layers on foreign substrates in the

1970s. However, the EQEs of GaN LEDs remained low, and p-doping, i. e., a significant

hole concentration and mobility, of the intrinsic n-type GaN was believed to be impos-

sible.
[11,12]

For this reason, the industry shut down research and development on GaN

around the globe in the late 1970s.
[13]

Two breakthroughs of the group of Akasaki in

Nagoya University paved the way for blue LEDs in the late 1980s. First, they improved

the quality of GaN layers significantly by using low temperature buffers.
[14]

Second,

Amano et al. [15]
achieved p-type GaN:Mg by utilizing a postgrowth low-energy electron

beam irradiation treatment in 1989. A similar effect was obtained utilizing postgrowth

annealing.
[16]

Nakamura et al. [17]
ascribed the observed effect to a thermal activation of

hydrogen-passivated Mg in 1992. Later, this hypothesis was confirmed by first-principles

calculations.
[18]

The successful realization of p-GaN paved the way for the first demon-

stration of an (In,Ga)N/GaN LED by Nakamura et al. [19]
Since this first demonstration, the

EQE of the LED increased from 0.22 % to a record-high value of about 84 % in 2010.
[19,20]

For their pioneering achievements, Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura

received the Nobel Prize in Physics in 2014.
[21]

The total market volume of (In,Ga)N-

based solid-state lighting was estimated to amount to more than 5 billion dollars in 2014

and was forecasted to quadruple until 2019.
[22]

Moreover, the search for the keywords

(In,Ga)N and InGaN yielded more than 150,000 patents
[23]

and 9,500 research articles in

July 2017.
[24]

Despite the everyday presence of (In,Ga)N-based LEDs and the impressive research

1



1 Introduction

activities on future concepts of (In,Ga)N-based lighting, the present LEDs suffer from two

drawbacks: First, a reduction of the efficiency at high current densities and, second, a

decrease of the efficiency with increasing In content in particular in the green spectral

range. Both effects are discussed extensively in the literature, but no general agreement

as to their origin has been reached (see, e. g., Refs. 25–30). While the first observation may

be attributed to Auger recombination
[31]

or density-activated defect recombination,
[27]

potential reasons for the second observation may be a deterioration of the crystal quality

resulting in an increase of nonradiative processes,
[32–35]

a reduced radiative rate due

to an increasing magnitude of the polarization fields,
[36]

or an increase of the Auger

recombination coefficient.
[37,38]

Another important contribution to both effects may originate from carrier or exciton

localization.
[29,39]

Localization in (In,Ga)N/GaN quantum wells (QWs) manifests itself by

broad bands in photoluminescence (PL) spectra or by a plethora of narrow lines in PL spec-

tra of individual nanowires.
[40–43]

Additional indications for localization in (In,Ga)N/GaN

QWs are the high internal quantum efficiency (IQE) despite the high density of structural

defects,
[44,45]

the characteristic S-shape temperature dependence of the PL peak energy,
[46]

the rather large line width of the transition,
[47]

and the strongly retarded recombination

dynamics.
[48–51]

In the 2000s, it was generally accepted that excitons localize at In clusters

in the (In,Ga)N/GaN QWs.
[45,47,52–56]

However, recent microscopic investigations reveal

that the In atoms in standard (In,Ga)N/GaN QWs are indeed homogeneously distributed,

resulting in a random alloy.
[57–65]

The absence of significant compositional fluctuations

led to the assumption that localization may be negligible.
[66,67]

Recent theoretical calcu-

lations, though, demonstrated the significance of localization even in a perfect random

alloy and initiated a renaissance of the investigation of localization in (In,Ga)N.
[29,30,58,68]

Taking into account both, the strong internal electric fields and localization, Morel et al. [48]

phenomenologically explained the nonexponential PL transients of polar (In,Ga)N/GaN

QWs (that asymptotically obey a power law) by the donor-acceptor-pair-like recombina-

tion of individually localized electrons and holes. However, the general understanding of

the (radiative and nonradiative) recombination dynamics in (In,Ga)N/GaN heterostruc-

tures as well as the influence of localization, nonradiative recombination, and diffusion

on the same or on the IQE is still incomplete.

The main aim of this thesis is to investigate the presence and consequences of local-

ization in (In,Ga)N/GaN QWs. Moreover, the nature of the localized species, being

either excitons or individual electrons and holes, as well as its dependence of the crystal

polarity is examined. In order to understand the influence of localization on the re-

combination dynamics, on the diffusion, and on the IQE in a standard industry-grade,

planar (In,Ga)N/GaN multi-QW reference sample, we utilize temperature-dependent

time-resolved PL spectroscopy. In addition, we extend our study of the recombination

dynamics to three different categories of possible future (In,Ga)N-based light emitters

and compare the results to the reference sample. The three categories are: First, axial,

N-polar (In,Ga)N quantum disks (QDs) in self-assembled GaN nanowires,
[69]

which al-

low the compensation of lattice mismatch of the (In,Ga)N QDs with high In contents via

2



the relaxation of strain at the sidewalls of sufficiently thin nanowires.
[70–72]

Moreover, the

nanowires naturally exhibit a much higher extraction efficiency compared to planar sam-

ples (see Ref. 73 and references therein). Second, we examine nonpolar GaN/(In,Ga)N

QW core/shell µ-rods,
[74]

which are beneficial because of the absence of the internal

electric fields and their large effective area. The latter reduces the current density and

hence the decrease of the efficiency compared to planar samples.
[75]

As a third category,

we choose short-period superlattices (SPSLs) consisting of Ga-polar, sub-monolayer (ML)

InN quantum sheets (QSs) embedded between GaN quantum barriers (QBs) to eliminate

the influence of the alloy disorder of the random ternary alloy.
[76,77]

These heterostruc-

tures only contain the binary compounds InN and GaN, but exhibit the possibility to tune

the band gap similar to (In,Ga)N/GaN.
[78]

Furthermore, these so-called digital alloys

should not exhibit localization effects.

Subsequent to this introduction, the thesis is organized as follows: Chapter 2 provides a

brief introduction into the basic properties of group III–nitrides as well as of recombination

processes in semiconductors. We also present the current state of the literature about

localization and carrier diffusion in (In,Ga)N in this chapter. Furthermore, we discuss the

current understanding of the reduction of the efficiency of (In,Ga)N/GaN LEDs at high

current densities and the application of the so-called ABC model for the extraction of the

IQE.

In Chap. 3, we briefly categorize the samples investigated in this thesis and describe the

experimental setups for steady-state and time-resolved PL spectroscopy. We also specify

the parameters used for the Schrödinger-Poisson simulations. Subsequently, we present

a basic electro-optical characterization of representative samples to demonstrate that they

exhibit electro-optical properties as commonly reported in the literature.

In Chap. 4, we investigate the central question of this thesis: What is the influence

of localization on the recombination dynamics, the diffusivity, and the IQE of polar

(In,Ga)N/GaN QWs and QDs? In particular, we conduct a side-by-side comparison of the

steady-state PL spectra of the Ga-polar, planar reference QWs and the N-polar, axial QDs

in the nanowires. While the thermal quenching of the PL intensities is basically identical

for both samples, the absolute PL intensities differ by two orders of magnitude. In order to

understand this discrepancy, we analyze the initial part of the PL transients as well as their

power law asymptote. A model employing the tunneling recombination of individually

localized, spatially separated electrons and holes is utilized to explain the observed PL

decay in the polar (In,Ga)N/GaN heterostructures. The corresponding system of position-

dependent rate equations is solved efficiently by a Monte Carlo algorithm,
[79]

which is

also employed to theoretically investigate the peculiarities of the power law transients.

In view of our results of the simulation of the experimental temperature-dependent PL

transients, the chapter concludes with the finding that the nanowires exhibit negligible

diffusivities even at room temperature and suffer from high nonradiative recombination

rates, as well as that the radiative tunneling recombination is only enabled by the strong

localization.

We compare the findings obtained for the polar (In,Ga)N/GaN QWs to the ones for

3



1 Introduction

nonpolar QWs in Chap. 5. For this purpose, we investigate the temperature-dependent

steady-state and time-resolved PL intensities of GaN/(In,Ga)N core/shell µ-rods. In

contrast to the tunneling recombination of individual charge carriers, we observe the

recombination of localized excitons. We explain this result by a comparison of the local-

ization and the exciton binding energies, which are both influenced by the magnitude of

the internal electric fields.

To exclude that the distinct difference of the recombination mechanism originates from

various localization strengths in the different samples investigated in the previous chapter,

we study the impact of the internal electric field on the recombination mechanism in

one and the same sample in Chap. 6. To this end, we apply a reverse bias to the Ga-

polar LED and analyze the resulting PL transients. The experimentally observed change

from tunneling recombination of electrons and holes to the radiative decay of excitons

is supported by simulations of the band structure and the exclusion of classic escape

mechanisms of charge carriers from the QWs.

In Chap. 7, we study the PL properties of a digital alloy consisting of the binary com-

ponents InN and GaN in the form of Ga-polar, ML-thick InN QSs separated by thin GaN

QBs. In contrast to the expectation of sharp transitions and a fast exponential decay, the

PL spectra and transients are reminiscent of conventional Ga-polar (In,Ga)N/GaN QWs,

which additionally suffer from a severe quenching of the PL intensity once delocalization

sets in at elevated temperatures.

Finally, we summarize our conclusions in Chap. 8 and offer a general outlook for

further investigations of recombination dynamics in polar (In,Ga)N/GaN QWs as well as

the prospective of future concepts of (In,Ga)N-based emitters for solid-state lighting.

In Appendix A, we analyze the contrast pattern of µ-electroluminescence (EL) maps of

(In,Ga)N/GaN LEDs within the framework of a drift-diffusion model. In Appendix B, we

present investigations of the giant anti-Stokes PL intensity of (In,Ga)N/GaN heterostruc-

tures.
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Chapter 2
Fundamentals and background

In this chapter, we give a brief introduction into the crystal structure of wurtzite GaN as well as into
the concept of strain and polarization in group III–nitride heterostructures. Furthermore, we introduce
the fundamental recombination processes of charge carriers as well as the formation and annihilation of
excitons in direct semiconductors. In a second part, we review the present state of the literature of (In,Ga)N
concerning localization, diffusion, and the decrease of the quantum efficiency due to an increasing current
and In content. In addition, we discuss the modeling of the internal quantum efficiency by the so-called
ABC model. The basic physics presented in this chapter are adapted in parts from the books of Kittel, [80]

Ashcroft and Mermin, [81] and Hunklinger. [82] Parts directly related to GaN are based on the series authored
by Morkoç. [83–85]

2.1 Crystal structure of the direct semiconductor GaN

Single-crystal solids exhibit a highly ordered lattice of their atomic constituents. The

strict periodicity enables the description of the energy eigenstates of the overlapping

electron wave functions of the crystal by periodic Bloch waves within the first Brillouin

zone (primitive Wigner-Seitz cell in reciprocal space). The resulting energy bands are

separated by a band gap. For direct band gap semiconductors, the valence band (VB)

maximum and the conduction band (CB) minimum are located at the same position in

the reciprocal space (typically at the center of the Brillouin zone, the so-called Γ-point).

Semiconductors exhibit a negative temperature coefficient of the resistance, and their

conductivity can be controlled by the introduction of dopants (i. e., a shift of the Fermi

level due to donor or acceptor atoms).

Based on the concept of the ionicity of chemical bonds,
[86]

it was shown that tetrahe-

drally coordinated close-packed crystal structures of the binary compounds of A
N

B
8−N

-

type crystallize either in the cubic zincblende (ZB) or the hexagonal wurtzite (WZ) struc-

ture.
[87]

The equilibrium phase of GaN with its comparatively high ionicity is the WZ

structure, but a meta-stable ZB polytype also exists. While distance and angle of near-

est and next-nearest neighbor are identical for both configurations, the bond angle to

the third-nearest neighbor is different. The resulting simplified WZ and ZB stacking se-

5
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a

(a) (b)

A

Bc
Ga

N

u c

Figure 2.1: (a) Stick-and-ball model of the hexagonal crystal structure of wurtzite GaN along

the [0001] direction with the unit cell indicated by solid lines. The size of the balls represents

the covalent atomic radii. (b) The tetrahedral coordination geometry is highlighted by light

green surfaces. The stacking sequence AB as well as the lattice parameters a and c are

indicated. Orange and violet surfaces indicate exemplary nonpolar (1¯
100) and polar (000

¯
1)

crystal planes.

quences
∗

along the [0001] and [111] direction are denoted as ABAB. . . and ABCABC. . . ,

respectively.

In the following, we will focus on the stable WZ phase of GaN. A schematic stick-and-

ball model with the primitive unit cell (solid lines), containing four atoms, is shown in

Fig. 2.1(a). The tetrahedral coordination, exemplary polar and nonpolar lattice planes as

well as the WZ unit cell with the two basis vectors a and c are shown schematically in

Fig. 2.1(b). The ideal values for the ratio of c/a as well as the internal parameter u, which

can be calculated by u �
1

3
(a/c)2 +

1

4
,
[88]

are

√
8/3 and 3/8, respectively. Experimental

values for WZ GaN amount to a � 3.1884 Å, c � 5.1852 Å, and u � 0.376 and reveal

that the real crystal structure deviates from the ideal hexagonal close-packed model.
[89]

A compilation of material parameters for (In,Ga)N/GaN heterostructures is given in

Ref. 90.

2.2 Polarization fields and their influence on the band diagram

GaN in its WZ modification belongs to the space group P63mc and the point group 6mm

(Hermann-Mauguin notation). It exhibits a singular polar axis in the ⟨0001⟩ direction,

resulting in spontaneous polarization (Psp) along this polar axis even at equilibrium.
[91]

In

addition, any deviation from the ideal tetrahedral coordination, i. e., due to strain induced

by the lattice mismatch to the underlying layer, leads to piezoelectric polarization (Ppz)

due to the lack of inversion symmetry. For (In,Ga)N/GaN heterostructures, the total

macroscopic polarization is the sum of both, Ppz and Psp. The values of Ppz are typically

larger than that of Psp.
[90]

∗
Because a cation-anion-pair shares the same in-plane lattice position, AB instead of AaBb is used.
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2.2 Polarization fields and their influence on the band diagram

The spontaneous polarization can be described in a point-charge model as
[92]

Psp � − 4Q√
3a2

(u − 3

8

). (2.1)

However, the cation charge Q is not properly defined for structures with partially ionic

bonds.
[93]

Commonly, Psp is calculated ab initio by the density functional theory with

the Berry phase approach.
[94]

In a quantum mechanical picture, the point charges are

replaced by charge distributions, and the modern definition of polarization is based on

an adiabatic flow of current through the crystal.
[95]

Very recently, Dreyer et al. [96]
re-

ported a refined implementation of spontaneous and piezoelectric polarization constants

in wurtzite materials.

The vector of the piezoelectric polarization can be calculated by utilizing the piezoelec-

tric tensor for the space group P63mc as
[97]

Ppz �
©­­«

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

ª®®¬
©­­­­­­­­«

ϵxx

ϵy y

ϵzz

ϵyz

ϵxz

ϵx y

ª®®®®®®®®¬
(2.2)

with ei j , ϵii , and ϵi j being piezoelectric constants as well as uniaxial and shear strain

components, respectively. For the heteroepitaxy of planar (In,Ga)N/GaN on foreign

substrates along the polar or nonpolar direction, it is expected that shear strains are

absent. Thus,

Ppz � e31(ϵxx + ϵy y) + e33ϵzz . (2.3)

Strain (deformation of the crystal) and stress (pressure applied to the crystal) are linked

by the stress-strain tensor (pseudo-second rank in the Voigt scheme
[98]

) with the elastic

constants Ci j . Experimental and theoretical values for Ci j of InN and GaN are given in

Refs. 99–101. Because the layer is free of stress along the growth direction, we obtain

ϵy y �
−C12ϵxx − C13ϵzz

C11

and ϵzz � −2

C13

C33

ϵxx (2.4)

(Poisson effect) for the strain along the [1¯
100] and [0001] direction, respectively. Moreover,

for growth along the polar axis on substrates with a lattice constant as , the in-plane strain

in a sufficiently thin epitaxial layer with a lattice constant al is isotropic (ϵxx � ϵy y) and

does not relax (pseudomorphic growth). Hence,

ϵxx � ϵy y � (as − al)/al . (2.5)

While the direction of the polarization is normal to the growth axis for growth along the

[1¯
100] direction, it is parallel for the growth along the [0001] direction [cf. combination of
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Figure 2.2: Band diagram of an In0.2Ga0.8N/GaN heterostructure with three 3-nm-thick QWs

(highlighted by pink rectangles) for growth along the (a) [0001], (b) [000
¯
1], and (c) [1¯

100]
direction. The structure is n-type doped with a concentration of 5× 10

16
cm

−3
. The transition

energy of the electron (blue) and hole ground state (red) for the central QW is indicated by the

arrow. To visualize the different overlap of the electron and hole wave functions, the central

QW is enlarged in the top part of (b) and (c).

Eqs. (2.3)–(2.5)]. Thus, for layers grown on the C-plane, a discontinuity in the polarization

∆P (especially at interfaces) introduces a sheet charge density resulting in opposing

internal electrostatic fields in the different layers. In a heterostructure grown along the

polar direction, the internal electric fields Ei inside the QB or the QW with thicknesses

di , the permittivity of the vacuum ε0, and relative permittivities εi can be calculated

for an infinite superlattice by utilizing the dielectric displacement conservation of the

polarization Pi

∆P � (PQB − PQW) � (εQWEQW − εQBEQB)ε0 (2.6)

and the periodic boundary conditions (dQWEQW + dQBEQB � 0).
[102–105]

Consequently,

EQW �
dQB(PQB − PQW)

(εQWdQB − εQBdQW)ε0

. (2.7)

In order to accurately determine the electric fields, we utilize a self-consistent approach

and solve the Poisson and Schrödinger equations in the effective mass approximation and

take the polarization charges at the interfaces into account (see Sec. 3.3 for more details

and material parameters).

In Fig. 2.2, the resulting profiles of the VB and CB edge as well as electron and hole

wave functions are shown for three In0.2Ga0.8N QWs embedded between GaN QBs for

growth along the polar and nonpolar crystal directions. Note the significantly different

band profiles for the structures grown along the [0001] and [000
¯
1] direction. According

8



2.3 Recombination processes and lifetimes

growth direction transition energy overlap

[0001] 2.21 eV 0.11

[000
¯
1] 2.34 eV 0.17

[1¯
100] 2.70 eV 0.98

Table 2.1: Transition energy and overlap of electron and hole wave functions for

(In,Ga)N/GaN QWs grown along various crystal directions. The band gap of the 3-nm-

thick In0.2Ga0.8N/GaN QWs amounts to 2.59 eV.

to the termination of the surface with either Ga or N atoms, these directions are referred

to as Ga- and N-polar, respectively. A major difference for the growth along these polar

axes is the direction of the internal electric fields and the value at which the Fermi level

is pinned.
[106]

Along the polar axes, the strong internal electric fields, caused by the

polarization charges at the QW/QB interfaces, lead to the so-called quantum-confined

Stark effect. As a consequence, the transition energy is lower than the band gap [cf.

Tab. 2.1 and Figs. 2.2(a) and 2.2(b)]. Moreover, electron and hole wave functions are

pulled to the opposite sides of the QW, which reduces their overlap. This separation and

the reduction of the transition energy is the strongest for the [0001] direction. In contrast,

no electric fields are present along the nonpolar direction, leading to a transition energy

larger than the band gap and a large overlap of the wave functions [see Fig. 2.2(c)]. We

have summarized the quantitative results from the Schrödinger-Poisson calculations in

Tab. 2.1.

2.3 Recombination processes and lifetimes

2.3.1 Exciton binding energy

The lowest energy state in an ideal crystal is the free exciton-polariton. From a quantum

mechanical point of view, an exciton-polariton is a coherent elementary excitation over the

whole ideal crystal.
[107]

However, for real crystals, the classical description is often more

appropriate: Due to Coulomb interaction, electron and hole form a quasi-particle, the

so-called exciton. In inorganic semiconductors, the exciton binding energy is low (several

meV; Wannier-Mott exciton) while the binding energy is higher in organic semiconductors

(several hundred meV; Frenkel exciton).
[108,109]

Following the derivation in Ref. 110 and

treating the exciton as a hydrogen-like atom, the discrete exciton bound-state energies

En can be obtained from a hydrogenic Schrödinger equation in an D̂-dimensional space

in the framework of the fractional-dimensional model. Neglecting the vanishing kinetic

energy of the relaxed exciton, we obtain

En � Eg −
E0[

n +
D̂−3

2

]
2

(2.8)
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2 Fundamentals and background

with the energy of the band gap (Eg) and the effective Rydberg energy (E0) which can be

calculated by

E0 �
µ/m0

ε2

RH. (2.9)

Here µ � (1/me + 1/mh)−1
and RH � 13.6 eV denote the reduced effective exciton mass

and the Rydberg energy, respectively. Finally, the exciton binding energies EX with

EX �

(
2

D̂ − 1

)
2

E0 (2.10)

result in EX � E0 , 4E0 , or ∞ for the dimensions D̂ � 3, 2, or 1. We note that the lower EX

the larger the exciton Bohr radius (aX). Analogously to the derivation of Eq. (2.9), aX can

be defined as:

aX �
ε

µ/m0

aB. (2.11)

In comparison to GaAs, the comparatively low value of ε and the large effective masses

result in a large value of EX for GaN.
[111]

Using the relative permittivity ε � 9.5 [102]

and the effective electron (me � 0.2m0) and hole (mh � 1.6m0) masses
[112]

for wurtzite

GaN, we obtain a bulk exciton binding energy (D̂ � 3) of EX ≈ 27 meV and an exciton

Bohr radius of aX ≈ 3 nm. Due to the large value of EX, free excitons in GaN are stable

up to room temperature (≈ 25 meV). The calculated value of EX is in good agreement

with reported experimental values for bulk GaN.
[108,113–116]

In addition, EX(D̂ � 2) � 4E0

for QWs embedded between infinite barriers is on the same order of magnitude as the

experimental value, which was found to amount to about 60 meV.
[117]

Without additional

confinement, the wave functions of the excitons leak into the surrounding material for

finite barriers, reducing EX.
[107]

The same applies for EX(D̂ � 1) � ∞, which may be

obtained only theoretically for infinite barriers. Thus, the exciton experiences a binding

energy close to the one of the barrier material for extremely thin QWs. This fact is

considered by the approach of the fractional-dimension
[118,119]

or the exact theoretical

description by Andreani and Pasquarello.
[120]

However, this analytical solution is not

applicable for semiconductor heterostructures with strong internal electric fields such

as (In,Ga)N/GaN. Alternatively, the variational approach (following the seminal work of

Miller et al. [121]
) is used for calculating the exciton binding energy of QWs with infinite

[122]

and finite
[123]

barriers including excitonic effects.
[124,125]

In general, the determination of

the exciton binding energy becomes more complex in the presence of localization centers

such as alloy fluctuations or impurities, which bind the excitons.

2.3.2 Excitonic recombination

The recombination processes of excitons are schematically depicted in Fig. 2.3(a). After

the excitation of electron-hole pairs into the energy continuum |C⟩ of a semiconductor

10
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Figure 2.3: (a) Schematic representation of the energy levels for free and bound exciton states

in a semiconductor with the band gap Eg. After excitation of an electron-hole pair to the

energy continuum |C⟩, excitons form (populating the free-exciton state |FX⟩) and bind to

impurities or alloy fluctuations (bound states |BX⟩) (blue arrows). Transitions from either of

these levels to the ground state |0⟩ are indicated by green arrows with the respective photon

energies (in case of a radiative decay). Depending on the thermal energy, the exciton may

delocalize or dissociate (red arrows). (b) Exciton (X) indicated by the dashed ellipse bound

to a neutral donor (D
0
) forming a donor-bound exciton (D

0
X).

with the band gap Eg, free excitons form with a capture rate bX, gaining the exciton

binding energy EX (see Sec. 2.3.1). The resulting transition energy ℏωFX for the radiative

decay of the exciton from the free exciton state (|FX⟩) to the ground state (|0⟩) equals

Eg −EX. In the presence of alloy fluctuations or impurities, it is energetically favorable for

excitons to localize at these crystal imperfections. Schematically, an exciton bound to a

neutral donor D0 (such as Si or O in GaN
[126]

) is shown in Fig. 2.3(b). In GaN, the energy

gained by the binding of an exciton to a donor or an acceptor amounts to 7 and 12 meV,

respectively.
[127] ,†

Thus, bound excitons exhibit transition energies ℏωBX � Eg − EX − EBX,

but may be observed only at low temperatures, for which the kinetic energy of the excitons

(3kBT/2) is lower than the binding energy EBX.

In unintentionally doped semiconductors, the impurity concentration is typically on

the order of 1 × 10
14

cm
−3

for GaAs and 1 × 10
16

cm
−3

for GaN, i. e., in the ppb to ppm

range. Still, bound excitons dominate the emission spectra of bulk semiconductors. The

reason for this fact lies in the very inefficient decay of free excitons in bulk crystal. In

fact, free excitons form a coupled state with the photon, which, in principle, does not

decay in an ideal crystal because of momentum conservation, resulting in an exciton

lifetime determined by the scattering with phonons at low temperatures.
[128]

In addition,

bound excitons exhibit a very efficient radiative decay (giant oscillator strength; see, e. g.,

Ref. 129–132).

In almost dislocation-free and high-purity QWs, the free excitons exhibit large radiative

recombination rates
[133,134] ,‡

even at low temperatures, because the coupling between the

exciton and the photon is enhanced by the breakdown of the translational invariance in

†
For example, the donor binding energy can be approximated simply by using D̂ � 3 and µ � me in

Eq. (2.10).

‡
Originally, the concept of superradiance was introduced by Dicke.

[135]
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the growth direction.
[134]

This behavior can be explained in the picture of the coherence

area of the exciton introduced by Rashba and Gurgenishvili.
[129]

The larger the coherence

area, the larger the coherent extension of the exciton’s center-of-mass wave function and

thus the shorter the radiative lifetime.
[136]

However, even in these systems, localization of

excitons
[137,138]

for example at well-width fluctuations lead to a lower limit of the radiative

lifetime.
[134,139]

Note that this effect must not be confused with quantum confinement of

the exciton, because only its translational motion becomes localized.
[140]

Summarizing, the excitonic recombination processes under steady-state conditions re-

sult in the following rate equations for free (nF) and bound (nb) excitons for an n-type

semiconductor with the total donor concentration ND � N0

D
+ nb:

0 �
dnF

dt
� bXnp − γXnF − γcnFN0

D
+ γD,BXnb − γD,XnF (2.12)

0 �
dnb

dt
� γcnFN0

D
− γD,BXnb − γBXnb (2.13)

with the capture rate of free excitons (γc) by unoccupied donors (N0

D
) as well as the

dissociation rates (γD,BX) of exciton-donor complexes (nb) and free excitons (γD,X). The re-

combination rates of free (γX) and bound (γBX) excitons include radiative and nonradiative

recombination. In general, the recombination processes are not purely excitonic, but are,

depending on temperature, mixed with free-carrier recombination (see, e. g., Ref. 128).

2.3.3 Free-carrier recombination

In semiconductors, the excitation of an electron from the valence to the conduction band

leaves behind a hole in the valence band. The excited charge carrier recombine radia-

tively or nonradiatively as shown schematically in Fig. 2.4. Besides the transitions of free

carriers involving donor or acceptor levels or nonradiative three-particle processes (i. e.,

Auger recombination), which become important at high charge carrier densities, bimolec-

ular radiative band-to-band recombination and trap-assisted nonradiative recombination

occur. The latter two processes describe the simplest case for the simultaneous radiative

and nonradiative recombination. For these two processes, we obtain the following rate

equations for electrons (n) and holes (p), which are generated with a rate G:

dn
dt

� G − Bnp − bn nN× (2.14)

dp
dt

� G − Bnp − bp pN� (2.15)

with B and b being the radiative recombination and capture coefficients. The density

of nonradiative centers (N) equals the sum of empty (N�) and filled (N×) centers. The

experimental observable PL intensity is given by Bnp. Assuming steady-state conditions,
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Figure 2.4: Schematic of generation and recombination of free charge carriers in a semicon-

ductor. After excitation of electrons from the VB to the CB (orange), the excited electrons

and holes relax (violet) to the band edges. Radiative band-to-band (1), band-to-acceptor (2),

donor-acceptor (3), and donor-band (4) transitions (with photon energies ℏωi) are indicated in

green. Nonradiative SRH recombination (5), mediated by mid-gap states which act as nonra-

diative recombination centers (N), as well as nonradiative nnp- or npp-Auger recombination

(6) are indicated in red.

for which Eqs. (2.14) and (2.15) are identical, we obtain for the nonradiative recombination

rate

RSRH � bn nN× � bp pN� �
bn bp Nnp
bn n + bp p

, (2.16)

the classical Shockley-Read-Hall (SRH) expression.
[141]

For an n-type semiconductor, n � n0 + ∆n and p � ∆p with n0 being the concentration

of dark electrons (e. g. from donors). From the equations above the neutrality condition

in the presence of active nonradiative recombination centers reads

n0 + ∆n � ∆p + N+

D + N× (2.17)

with the concentration of ionized donors (N+

D), which equals n0. Consequently, the

equality of the excess carrier densities (∆n � ∆p) is justified only for purely radiative

recombination.
[142]

For the general case, an asymmetry in Eq. (2.16) causes a nonlinear

increase of the PL intensity with increasing values of G due to the saturation of recombi-

nation centers.

The situation is even more complex for transient conditions, because RSRH includes the

time-dependent concentration of empty centers.
[142]

Assuming that N and N� balance

each other (at a value N∗
) and that N∗

is small compared to n0 or ∆n, we can derive ap-

proximations for low and high excitation densities. In the case of low excitation densities
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(i. e., ∆n � ∆p ≪ n0), the radiative and nonradiative rates are described by

Bnp � Bn0∆p � τ−1

r
∆p and RSRH � bp N∗∆p � τ−1

nr
∆p, (2.18)

respectively. Because the coefficients are independent of n and p, the PL decay is expo-

nential, and a constant lifetime (τi) can be defined for both processes. For high excitations

(∆n � ∆p ≫ n0), the equation for the nonradiative recombination reads

RSRH �
bp bn

bp + bn
N∗∆p � τ−1

nr
∆p. (2.19)

For radiative recombination, we obtain

Bnp � B∆p2

(2.20)

which does not contain a unique lifetime. Hence, in the nondegenerate case (Boltzmann

statistics), the decay is hyperbolic for RSRH � 0 or hyperbolic with an exponential asymp-

tote for RSRH , 0.

2.3.4 Temperature dependence of the radiative lifetime

In this subsection, we will derive the temperature dependence of the radiative lifetime

of charge carriers experiencing confinement in various dimensions. Already in 1927,

Dirac
[143]

introduced a formula which is now known as Fermi’s Golden Rule. [144]
In our

picture, we modify Fermi’s Golden Rule with its Hamiltonian H to describe the total

emission rate Rtotal of photons with a wavelength λ and an energy ℏωλ.

Rtotal �
2π
ℏ

∑
λ

∑
CB,VB

|⟨VB|H |CB⟩|2δ(EVB − ECB + ℏωλ) (2.21)

for the respective energy levels E of electrons from the CB annihilating with holes from

the VB. Following the derivation given by Bebb and Williams,
[145]

we use Eq. (2.21) to

relate the spontaneous emission rate Rsp to the absorption α(ℏω). We sum over the total

number of CB and VB states as well as over the radiation modes λ between ω and ω+dω.

By introducing the optical density of states
§

and with the knowledge that in a dielectric

medium the energy velocity equals the group velocity,
[146]

we arrive at

Rsp � α(ℏω)
n̂2E2

g

π2c2ℏ3

fCB f ′
VB

[1 − f ′
VB

][1 − fCB] − fCB f ′
VB

(2.22)

for materials with a band gap of Eg and a refractive index n̂. For the Fermi-Dirac distri-

bution, the sum of the probabilities of filled ( f ) and empty ( f ′) states is unity. For optical

transitions, impurities due to donors or acceptors can introduce an additional degeneracy

because of their charge state.
[145]

As we are only interested in the dependence on temper-

§
Here, the wave vector is converted to the wave number and the group velocity is introduced.

[145]
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2.4 Localization in the random alloy (In,Ga)N

ature, we omit this degeneracy and stick to the case of the band-to-band recombination.

Assuming that the density of states is proportional to the distribution function for the

respective particle, which in turn follows a Boltzmann distribution for the nondegenerate

case, we obtain for the spontaneous emission rate

Rsp � α(ℏω)
n̂2E2

gap

π2c2ℏ3

[
e(ℏω−∆ f )/(kBT) − 1

]−1

(2.23)

which is known as Roosbroeck-Shockley relation
[147]

with ∆ f being the difference of the

quasi-Fermi levels. At thermal equilibrium,∆ f � 0, and, for optical transitions, ℏω/kBT ≫
1. With the intrinsic carrier concentrations n0 and p0, we can link the spontaneous

emission rate to the radiative recombination rate and hence to the inverse of the radiative

lifetime (τr).
[148]

In the case of an n-type semiconductor, we obtain

Rsp

n2

0

�
n̂2E2

gap

π2c2n2

i ℏ
3

∫ ∞

0

α(ℏω)e−ℏω/(kBT)
dℏω �

1

τr

. (2.24)

Because α(ℏω) depends on the density of unoccupied states
[82]

and thus on the dimen-

sionality of the system, we obtain

D̂ � 3 → α(ℏω) ∝
√
ℏω → τr ∝ T3/2 , (2.25)

D̂ � 2 → α(ℏω) ∝ const. → τr ∝ T2/2

� T, (2.26)

D̂ � 1 → α(ℏω) ∝ 1/
√
ℏω → τr ∝ T1/2

, and (2.27)

D̂ � 0 → α(ℏω) ∝ δ(E) → τr ∝ T0/2

� const. (2.28)

For excitons in QWs, the linear dependence of the radiative lifetime
[137,139,149–151]

has

also been derived from the polariton picture developed by Hopfield.
[152]

The theoretically

predicted decrease of the radiative lifetime in bulk crystals down to low temperatures is

usually not seen in the experiment. Instead, a constant radiative lifetime of localized

excitons is approached at low temperatures due to an inefficient decay of free excitons

(see Sec. 2.3.2).

2.4 Localization in the random alloy (In,Ga)N

Localization at In clusters
[153]

or In-N-In chains
[45,56,154]

has been suggested to explain

the high efficiency of (In,Ga)N/GaN despite the high density of structural defects. In

early studies of (In,Ga)N/GaN by transmission electron microscopy, nanoscopic clus-

ters with high In concentration have been observed.
[153]

This observation was supported

by theoretical calculations of the spinodal decomposition.
[155]

However, these calcula-

tions do not account for strain in the QW and between the In- and Ga-rich regions.
[156]

Moreover, it turned out that the clusters were in fact artificially produced by electron

beam irradiation
[57]

(see review about this topic in Ref. 157). Recent investigations by the
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Figure 2.5: (a) Slice of an In0.25Ga0.75N crystal along the [0001] direction with randomly

distributed In atoms. Groups of four metal atoms are framed by rectangles to visualize

regions with higher than average (pink) and lower than average (orange) In content. (b)

Schematic of a well-width fluctuation with a typical thickness of 1 ML and (c) in-plane band

profile indicating the in-plane separation of electrons (blue) and holes (red). (d) Schematic

of the radial Stark effect
[162]

in (In,Ga)N nanowires at room temperature as explained in the

text.

combination of aberration-corrected high-resolution transmission electron microscopy

and atom-probe tomography reveal that polar (In,Ga)N/GaN QWs constitute random

alloys.
[59–65]

We schematically present such a random distribution for In0.25Ga0.75N in

Fig. 2.5(a). Assuming that the local band profile depends directly on the number of In

atoms in every “unit” cell, we observe areas with higher and lower band gap. In the

free-carrier picture, predominantly holes localize at these atomistic potential fluctuations

because of their larger effective mass.
[68,158]

In addition, monolayer fluctuations of the

well-width
[159,160]

or the interface roughness,
[59,161]

occurring commonly at the upper

interface of the QWs [see schematic in the upper part of Fig. 2.5(b)], constitute an addi-

tional localization center for electrons in Ga-polar (In,Ga)N/GaN QWs.
[50,68]

Due to the

polarization charges (see Sec. 2.1), electrons are attracted to the upper interface in these

samples. Because of the resulting polarization fields causing the quantum-confined Stark

effect, the transition energy in the region of a well-width fluctuation is reduced, and the

electrons get trapped in these potential minima [see Fig. 2.5(c)]. Consequently, the dif-

ferent localization mechanisms of individual electrons and holes introduce a horizontal

separation of the charge carriers in addition to the vertical one.

For GaN and other III–V semiconductors, a band bending is induced by the pinning

of the Fermi level at the free surface.
[163,164]

In nanowires (with their large free surface),

this band bending leads to a radial separation of charge carriers. In analogy to the

quantum-confined Stark effect, it is called radial Stark effect.
[162]

This effect is detrimental

for (In,Ga)N/GaN nanowire heterostructures with large diameters or thin QDs.
[165,166]

However, this band bending is superimposed by the potential fluctuations of the random

alloy as schematically shown in Fig. 2.5(d). Consequently, localization prevents the com-

plete radial separation of charge carriers at room temperature, resulting in an increase of

the efficiency as well as a redshift of the PL energy and of the absorption edge in pure

(In,Ga)N nanowires compared to (In,Ga)N/GaN QDs.
[162,167]

This behavior is beneficial
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2.4 Localization in the random alloy (In,Ga)N

for the application of these nanowires as photoanodes for solar water splitting.
[168,169]

2.4.1 Localization energy

As the localization of charge carriers seems to be important in (In,Ga)N, it is crucial to esti-

mate the localization energy for different samples. A commonly employed method is the

analysis of the temperature-dependent peak PL energy EPL(T). With increasing tempera-

ture, the peak energy of the PL band of the QWs exhibits the frequently observed so-called

S-shape.
[46,53,170]

Often, the blue shift of the peak energy at intermediate temperatures

is explained by localization of charge carriers and a thermally-induced redistribution in

the occupation of states. More specifically, localized charge carriers are randomly dis-

tributed over the density of states at low temperatures. For slightly higher temperatures,

relaxation to lower energy states sets in (initial redshift). At even higher temperatures,

a redistribution of the charge carriers lead to a thermal population of higher states (blue

shift), until the shrinkage of the band gap dominates the peak energy (redshift).
[46,53,171]

By fitting the band gap with simple empirical models such as the Varshni-formula,
[172]

models which are based on lattice vibrations,
[173–175]

or sophisticated semi-empirical the-

ories as proposed by Pässler,
[176,177]

the difference between the fit and the dip of the

S-shape of EPL(T) is attributed to the localization energy. However, the internal electric

fields (see also Sec. 2.1) complicate this analysis. Moreover, Langer et al. [170]
proposed

another explanation for the S-shape of EPL(T) by attributing it to the competition between

the spectrally dependent radiative and nonradiative recombination. In view of these

results, the estimation of localization energies from the PL energy seems to be rather

questionable.
[170]

In addition, we note that the apparent absence of the S-shape of EPL(T)
does not automatically imply an absence of localization.

For a system of free and localized excitons, the measured (effective) radiative lifetime

(τr) depends on the lifetimes of localized and free excitons as well as on their concentra-

tions.
[137,178,179]

Hence, the analysis of the temperature-dependent value of τr can be used

to determine the influence of the localization energy Eloc. In the case of GaN or nonpolar

(In,Ga)N with low to moderate In content, we can neglect the dissociation of excitons up

to room temperature. Thus, the recombination can be described by using a system of

rate equations similar to Eqs. (2.12) and (2.13) for delocalized (nd) and localized excitons

(nℓ). Under the assumption that capture and emission processes are much faster than the

radiative transitions, the density of occupied localized states can be expressed in terms of

a thermal equilibrium cross section for the capture of excitons by localized states.
[180]

In

the limit of small-signal excitation, the temperature-dependent effective radiative lifetime

becomes
[180]

τr(T) �
1 +

nℓ
n

d

eE
loc

/(kBT)

1

τ
d
(T) +

1

τℓ
nℓ
n

d

eE
loc

/(kBT) . (2.29)

While τd(T) is the lifetime of the delocalized excitons in a quantum well (analogous to

Sec. 2.3.4, τd(T) ∝ T), τℓ is the temperature-independent lifetime of the localized exciton.
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Hence, by fitting the measured values of τr with Eq. (2.29), we have the possibility to

extract the localization energy Eloc.

2.5 Carrier and exciton diffusion in (In,Ga)N/GaN

The epitaxial growth of (In,Ga)N/GaN on foreign substrates (such as Si or Al2O3), which

are typically used in commercial LEDs,
[181]

triggers the creation of threading dislocations

to compensate for the lattice mismatch.
[182]

The lateral transport of charge carriers to the

cores of the dislocations may cause a vertical (shunt) current, which has been investigated

theoretically in Refs. 183–185. For the experimental investigation of the lateral/in-plane

transport of charge carriers in (In,Ga)N/GaN QWs, we have to take into account both

the drift and the diffusion of charge carriers. In general, diffusion is the omnidirectional

motion of particles to balance concentration gradients, and drift describes the motion

of charged particles due to electric fields. Furthermore, quasi-electric fields induced by

gradients of the band gap in semiconductors influence also neutral particles such as exci-

tons. The classical experiment to determine both, the carrier mobility and the diffusivity,

is the one designed by Haynes and Shockley.
[186]

However, this classical experiment is

difficult to perform in GaN which exhibits ns lifetimes and comparatively small diffusiv-

ities. In addition, polar (In,Ga)N/GaN QWs exhibit random microscopic compositional

fluctuations as well as macroscopic inhomogeneities in the In content and the well width

caused by the growth (see also Sec. 2.4). As shown in Sec. 2.1, the growth along a polar

direction induces polarization charges at the interfaces of the QWs and internal electric

fields. Screening of these internal polarization fields induced by high optical excitation

or band gap gradients caused by the strain field of the dislocations or fluctuations in In

content and well width will generate a significant drift of charge carriers. To distinguish

drift and diffusion in this situation is not straightforward. Hence, the measurement of

the diffusion length LD , which is linked to the diffusion coefficient D and lifetime of the

charge carriers τ via LD �
√

Dτ, is not straightforward.

There is a clear agreement in the literature that ambipolar diffusion is essentially absent

at low temperatures in (In,Ga)N due to carrier or exciton localization.
[187,188]

At higher

temperatures, carriers may delocalize, but the compositional fluctuations in the random

alloy (In,Ga)N manifest themselves by a strong alloy scattering that reduces carrier mo-

bility and hence diffusivity, if the validity of the Einstein relation is assumed. Note that

this relation is strictly valid only in equilibrium and needs also to be viewed with caution

in disordered materials such as (In,Ga)N.
[189,190]

From mobility measurements of transis-

tors containing an (In,Ga)N channel, we expect a clear decrease of the diffusivity for an

increasing In content because of the enhanced scattering.
[183,191,192]

To circumvent the limitation of the classical Haynes-Shockley experiment, many re-

searchers have employed contactless, purely optical approaches like near-field scanning

optical microscopy, cathodoluminescence spectroscopy, electron beam-induced current,

time-of-flight measurements, the four-wave mixing method, and the transient grating

method.
[193–198]

For the binary material GaN, it is possible to measure a unique lifetime
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due to the decay of excitons. For GaN grown on sapphire, values for the typical dif-

fusion lengths scatter in the range of 60–200 nm, depending on doping concentration

and dislocation density.
[195,199–207] ,¶

Thus, already for GaN, it is experimentally extremely

difficult to directly observe carrier or exciton diffusion by spatially resolved techniques.

Moreover, the strain fields of the threading dislocations
[209]

cause a long range potential

in the band gap and lead to a drift of charge carriers,
[210,211]

which further complicates

the analysis. The values for the diffusivity D of (In,Ga)N seem to scatter between 0–

3 cm
2
/s depending on the temperature, the excitation condition, and the measurement

technique.
[193,194,196–198,212–216] ,‖

In addition, the diffusion coefficient in (In,Ga)N seems to

depend on the excitation density as demonstrated in Refs. 198 and 218.

All the above mentioned methods have in common that they may give just an upper

limit of the diffusivity due to their limited possibility to spatially resolve and disentangle

drift and diffusion processes that presumably occur on a scale of a few of nanometers (cf.

calculations in Refs. 58 and 188). In addition, the evaluation of the experiments designed

to measure the diffusion length for polar (In,Ga)N/GaN QWs becomes more complex

due to the inevitable random compositional fluctuations and the internal piezoelectric

fields. The combination of both effects causes a nonexponential decay of individual

electrons and holes without a unique lifetime
[48,51]

and hence without a unique diffusion

length as a material parameter. Consequently, one may consult only experiments based

on the analysis of the impact of diffusion to obtain parameters for the diffusivity in polar

(In,Ga)N. Such an experiment, for which the spatial resolution is no limiting factor, will

be presented in Chap. 4.

2.6 Droop and green gap in (In,Ga)N/GaN light emitting diodes

Since the first demonstration of an electrically-driven blue (In,Ga)N/GaN LED with an

efficiency of about 0.2 % by Nakamura et al. [19]
in 1993, industry and research focus on

the ultimate goal of achieving extremely efficient devices for solid-state lighting. Mainly

due to advantages in growth, the peak external efficiency of blue (In,Ga)N/GaN LEDs

was increased up to record-high values of about 85 % already in 2010.
[20]

Since the early

days, however, LEDs exhibit a decrease of their efficiency for large current densities, the

so-called droop. The origin of this droop is an active topic in LED research.

(In,Ga)N-based LEDs face an additional drawback. Although LEDs containing the

ternary alloy (In,Ga)N as their active region are advertised to cover the full visible spec-

trum, which was also demonstrated experimentally (see, e. g., Ref. 180), the efficiency

decreases remarkably towards the green spectral range. This reduction of the efficiency

with increasing In content is often referred to as the green gap. In Fig. 2.6, the IQE is shown

as a function of the current density and the peak wavelength. In this figure, the droop and

green gap are highlighted by dashed-dotted and dotted lines, respectively. In contrast to

the droop, which seems to constitute a fundamental problem for (In,Ga)N/GaN QWs, the

¶
For high-quality bulk GaN values up to 2 µm have been reported.

[208]

‖
Actually, even a singular value of D � 3,000 cm

2
/s has been reported.

[217]
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Figure 2.6: Color-coded IQE of LEDs as a function of the peak wavelength and current

density. The peak IQE and the operating current are indicated by a dashed and a dotted line,

respectively. The dashed-dotted line (at the commonly-used peak wavelength of blue LEDs)

highlights the decrease of the IQE for current densities larger than about 2 A/cm
2
. The figure

was adapted from Ref. 26.

green gap originates at least partly from the fact that the current density at the peak IQE

(dashed line) deviates from the operating current for higher In contents (see Fig. 2.6). The

senior director of chip research as well as development at OSRAM Opto Semiconductors

GmbH, Hahn, attributed the majority of the difference in efficiency of blue and green

LED to the very limited industrial research and development efforts and reported recent

values of the EQE of about 50 % for green LEDs.
[219]

The progress in development may be

reflected by the fact that very similar nonradiative recombination coefficients have been

reported for blue- and green-emitting LEDs recently,
[220]

while earlier works observe an

increase of the nonradiative recombination coefficient for higher In contents.
[221]

However,

Pristovsek et al. [222]
have reported very recently and in contradiction to the observation

in Ref. 220 that the increasing nonradiative rate is an important factor for the green gap

even for samples with a low threading dislocation density, i. e., a high crystal perfection.

Note that not only (In,Ga)N/GaN QWs exhibit a droop, but also the phosphor material

for the photon conversion in white-light-emitting (In,Ga)N/GaN LEDs.
[223]

2.6.1 Internal quantum efficiency and ABC model

In order to be independent of the different electrical injection and light extraction effi-

ciencies for devices of different designs, the comparison of the IQEs (instead of EQEs)

has been established. However, the extraction of the IQE is experimentally challenging

and requests a sound understanding of the recombination processes. Apparently simple
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solutions such as the ratio of the integrated PL intensities at low and high temperatures

are frequently used in the community, but are to be viewed with caution.
[224–229]

In fact,

as demonstrated by the measurement of the absolute PL intensities at low temperatures

using an integrating sphere, the assumption of an IQE of unity at 10 K is not valid in

general.
[230]

Additionally, effects such as photon recycling impede the estimation of the

IQE.
[231]

More elaborated approaches utilize time-resolved PL spectroscopy,
[45,180]

differential

carrier lifetime measurements,
[232,233]

or bias-dependent PL spectroscopy
[234]

to deter-

mine the IQE at room temperature. Furthermore, the combination of PL spectroscopy

with bolometric or photo-acoustic measurements has been used to determine the IQE by

detecting radiative emission and generated heat simultaneously.
[235,236]

However, the IQE

is most commonly deduced from the current-dependent EQE by the so-called ABC model

introduced by Shen et al. [31]
for (In,Ga)N/GaN LEDs. A recent review of this model is

given in Ref. 237. Summarizing, the model assumes constant SRH (A), radiative (B), and

Auger (C) recombination coefficients to relate the IQE (η) with the charge carrier density

(n)

η �
Bn2

An + Bn2 + Cn3

. (2.30)

Note that it is all but trivial to convert the applied current density into a charge carrier den-

sity in the QWs because n depends on the carrier capture
[238–240]

as well as on the lifetime

of the charge carriers under steady-state conditions. Moreover, the distribution of the

carriers between different QWs in commonly fabricated multi-QW heterostructures is not

clear a priori, but requires sophisticated transport simulations and experiments.
[241–246]

In the frame of the ABC model [Eq. (2.30)], the droop in (In,Ga)N/GaN LEDs is solely

attributed to Auger recombination at high charge carrier densities. This interpretation

has been met with skepticism (see, e.g., Ref. 247). Compared to narrow band gap III–V

semiconductors, direct Auger recombination is insignificant in wide-gap materials such

as (In,Ga)N with In contents below 30 %.
[248]

However, C coefficients extracted from ex-

periments with the ABC model are actually by several orders of magnitude larger than

expected.
[25]

In 2009, Delaney et al. [37]
reported an enhancement of the direct Auger co-

efficient in the green spectral range, but corrected their result to an about three orders

of magnitude lower value seven years later.
[249]

In order to explain the rather large ex-

perimental values of C, indirect Auger processes, mediated by electron-phonon and alloy

scattering, were taken into account.
[38,250,251]

Recently, Iveland et al. [252]
reported the direct experimental observation of Auger recom-

bination by electron emission spectroscopy. They suggested that the L-valley population

originates from an nnp-Auger process.
[253]

Additionally, Binder et al. [254]
reported the

direct observation of hot carriers generated by Auger recombination via PL spectroscopy

on structures containing alternating green and ultraviolet emitting (In,Ga)N/GaN QWs.

However, both experiments have received some criticism. For example, Bertazzi et al. [255]

suggested to include (thermionic) leakage
[256]

as well as drift-induced leakage
[257]

of elec-
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trons, which overcome the electron blocking layer, to result in the emission of electrons.
∗∗

Moreover, free carrier absorption
[262]

should be considered too. In order to explain the

observations made by Binder et al., [254]
excitation-induced dephasing, for which the sub-

sequent polarization to population conversion results in a broad distribution of carrier

energies, was suggested.
[263]

However, the observation of hot carriers may be also ex-

plained by localization and a subsequent two-step two-photon absorption (TPA) process

(see Appendix B).

Temperature-dependent measurements of the droop (see, e. g., Refs. 264–266) indicate

a reduction of the Auger coefficient over several orders of magnitude with increasing

temperature.
[267]

This observation is in contrast to the assumed increase of Auger losses

with temperature. Therefore, Hader et al. [27]
propose density-activated defect recombi-

nation as the origin of the droop. Other possibilities are a phonon-assisted transport

of holes along threading dislocation.
[268]

Because of the relaxation of stress during the

heteroepitaxy, so-called V-pits may form at the end of dislocations (see Ref. 182 and refer-

ences therein). Hangleiter et al. [269]
have reported that the transport of charge carriers to

the dislocations (acting as nonradiative centers) is efficiently screened by semipolar QWs

with low In content at the sidewalls of these V-pits. By adjusting the parameters of the

In-containing SPSL in the buffer region, which is grown before the active region, V-pits

and the efficiency of the resulting LED can be optimized.
[270,271]

All things considered, the prevailing belief that the droop is exclusively caused by

Auger recombination seems to be questionable. Moreover, the standard ABC model

given in Eq. (2.30) is not valid over the complete range of current densities, for which

it is commonly used. For example, for low current densities, the background carrier

concentration n0 [resulting from unintentional doping; n-type for (In,Ga)N] has to be

considered (see also Sec. 2.3).
[272]

Note that n and p are not equal for low excess carrier

densities in the presence of SRH centers [cf. Eq. (2.17)]. Additionally, the background

carrier concentration influences both, nonradiative and radiative processes, at low carrier

densities. Hence, the standard term for purely bimolecular radiative recombination Bn2

is actually given by B(n + n0)p for an n-type material.
[272,273]

A similar transformation

applies to the nnp- and npp-Auger coefficients. Consequently, the total recombination

rate for low carrier densities should read

bn bp N(n0 + n)
bn(n0 + n) + bp p

p + B(n0 + n)p + Cnnp(n0 + n)2p + Cnpp(n0 + n)p2. (2.31)

Note that A has been replaced by the classical SRH expression given in Eq. (2.16). At

moderate to high current densities, B, Cnnp, and Cnnp are no constants either.
[274]

David

et al. [275]
have reported that the three “constants” increase quadratically with increasing

overlap of electron and hole wave functions and attributed this behavior to a screen-

ing of the internal electric fields, which typically occurs for carrier densities larger than

∗∗
Actually, the overflow of electrons despite an electron blocking layer has been confirmed experimentally

by conductive atomic force microscopy.
[258]

Moreover, trap-assisted tunneling escape may be important

too.
[259–261]
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1× 10
19

cm
−3

.
[276]

Note that typical charge carrier densities of high-power (In,Ga)N/GaN

LEDs amount to about 5 × 10
19

cm
−3

. The observed quadratic increase of A, B, and C
in Eq. (2.30) with charge carrier density is in agreement with recent theoretical calcu-

lations.
[277]

Moreover, at carrier densities larger than 1 × 10
18

cm
−3

, degeneracy in the

conduction band sets in,
[278]

and the Fermi-Dirac statistics cannot be approximated by a

Boltzmann-like behavior anymore. The so-called phase-space filling causes a decrease

of the radiative and the Auger recombination coefficient.
[221,233,251,279–281]

In general, the

assumption of constant coefficients, although in fact the coefficients are not constant at

all, may explain the large variation of the reported values.

In all previous considerations, the impact of the diffusion and the localization of charge

carriers in the random alloy on the IQE and on the green gap has not been considered, but

is in fact significant.
[29,30,51]

Recently, Auf der Maur et al. [29]
have calculated that random

alloy fluctuations account for a reduction of the IQE by about 0.1 in the green spectral

range. Moreover, they speculated that the effect of random alloy fluctuations in nonpolar

QWs is considerably reduced due to the absence of the quantum-confined Stark effect.

In addition, Shahmohammadi et al. [39]
suggested that localization and the large internal

fields in polar (In,Ga)N/GaN heterostructures enhance Auger recombination.

Summarizing, the standard ABC model is neither appropriate to determine the IQE nor

to analyze the recombination processes in (In,Ga)N/GaN QWs, because several effects

such as the background doping density, the internal electric fields, the band degeneracy,

and the localization are neglected altogether.
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Chapter 3
Samples, methods, and basic
electro-optical characterization

In this chapter, we introduce the employed methods and experimental setups. Additionally, we present a
basic characterization of a representative Ga-polar (In,Ga)N/GaN QW heterostructure and an exemplary
N-polar GaN nanowire ensemble containing (In,Ga)N QDs by temperature-dependent steady-state PL
spectroscopy. Moreover, we investigate the basic electro-optical characteristics of Ga-polar (In,Ga)N/GaN
LEDs. The properties of our samples are close to those reported for similar structures in the literature, and
we can thus be sure that they constitute representative examples for their classes.

3.1 Growth methods

According to the crystal structure of GaN, (In,Ga)N may principally be grown along polar,

semipolar or nonpolar crystal directions. Due to the different binding of the atoms for

the various crystallographic planes, the growth kinetics and modus, the incorporation

of impurities and defects as well as the homogeneity of the random alloy are different.

The main difference for the band profiles between the various crystal orientations is the

presence and magnitude of the internal electric fields (see Sec. 2.1), for which the semipolar

direction represent the intermediate case between the polar and nonpolar direction. In

order to focus our attention on the cases of maximum and minimum internal electric

fields, we investigate in this thesis (In,Ga)N/GaN heterostructures grown along the polar

and nonpolar direction. Along the polar direction, the different polarities, being either

Ga- or N-polar, have to be considered. In principle, the N-polar direction is favorable

because of the higher thermal stability of InN along this direction than along the Ga-

polar direction. Thus, the incorporation of a higher amount of In and the growth at

higher substrate temperatures are possible.
[282,283]

Both are beneficial to obtain efficient

emitters in the green spectral range. Additionally, the direction of the polarization fields

along the N-polar growth direction is reversed compared to the Ga-polar direction, which

in turn may lead to an improved efficiency of LEDs.
[284]
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3 Samples, methods, and basic electro-optical characterization

In general, crystalline (In,Ga)N/GaN is fabricated with MOCVD
[285]

or molecular beam

epitaxy (MBE).
[286]

Both methods have benefits and drawbacks.
[287]

Technical limitations

of the size and the fluence of effusion and plasma cells restrict the scalability of con-

ventional MBE reactors. Additionally, the low growth rates impede a comparable high

throughput as in MOCVD. Therefore, MBE growth of (In,Ga)N/GaN structures is mainly

used in research. However, in contrast to MOCVD, the employed ultra-high vacuum in

MBE (which is technically demanding too) enables the utilization of powerful in-situ char-

acterization tools such as reflection high-energy electron diffraction. Moreover, as MBE

does not use metalorganic compounds (i. e., precursors), the incorporation of impurities

such as C and especially H is much lower than in to MOCVD. Compared to MOCVD, the

growth temperatures for group-III-nitrides are about 300 K lower in MBE.
[288]

Nowadays,

the efficiency of Ga-polar, planar (In,Ga)N/GaN heterostructures grown by MOCVD

defines the state-of-the-art in industry and research.
[20]

3.2 Categorization of the samples

In this thesis, we investigate the PL properties of the active region of (In,Ga)N/GaN

heterostructures. For our main conclusions, we utilize an industry-grade planar, Ga-

polar (In,Ga)N/GaN multi-QW sample grown by MOCVD as the standard reference. In

addition, we compare the PL properties of possible future (In,Ga)N-based light emitters

to the results obtained from the reference. The different samples classes are:

1) planar, Ga-polar (In,Ga)N/GaN QWs grown by MOCVD as our standard reference

(similar to the ones investigated in Ref. 289),

2) axial (In,Ga)N QDs in N-polar GaN nanowires grown by MBE (similar to the ones

described in Refs. 69 and 290),

3) (In,Ga)N QWs around GaN µ-rods in a core/shell configuration grown by MOCVD

(similar to the ones investigated in Ref. 74), and

4) SPSLs with sub-ML InN QSs embedded between GaN barriers grown by MBE (and

characterized in Ref. 77).

The potential advantages and further details of these samples will be introduced in the

relevant chapters of this thesis. At this point, we only present the working principle of

(In,Ga)N/GaN-based solid-state LEDs. A schematic of such an LED is shown in Fig. 3.1.

The active region contains (In,Ga)N/GaN QWs, which are commonly 3 nm thick (similar

to the exciton Bohr radius in GaN as shown in Sec. 2.3.1) to avoid the separation of charge

n-GaN

p-GaN

(Al,Ga)N
EBL active region

(In,Ga)N QWs
GaN barriers

Figure 3.1: Schematic of a GaN-based

LED containing a heterostructure of

(In,Ga)N QWs and GaN barriers. The ac-

tive region is separated from the p-doped

region by an electron blocking layer (EBL)

consisting of (Al,Ga)N.
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3.3 Schrödinger-Poisson calculations

carriers along the polar crystal direction. In order to increase the active volume, multiple

QWs are separated by GaN barriers (with typical thicknesses in the range of 5–20 nm).

The complete active region is embedded between p- and n-doped GaN region. In general,

p- and n-type doping of group-III-nitrides are realized by the incorporation of Mg (several

10
19

cm
−3

) and Si (about 10
19

cm
−3

), respectively.
[291,292]

Recently, the superiority of Ge as

a dopant as compared to Si with regard to achievable free carrier concentrations has been

demonstrated by Fritze et al. [293]
Optionally, the Mg-doped cap

∗
may be separated by an

about 20-nm-thick, p-doped (Al,Ga)N electron blocking layer (Al content of about 20 %)

from the active region to prevent the overflow of electrons.
[298–300]

For PL spectroscopy,

however, the injection (here: excitation) of charge carriers into the active region occurs

not electrically but optically. Hence, for a first characterization of new device concepts,

doping and contacting are not necessary, which in turn reduces the complexity of the

structure under investigation.

3.3 Schrödinger-Poisson calculations

In order to obtain the band profiles of unbiased structures, we have used Snider’s
[301]

one-dimensional Schrödinger-Poisson solver taking polarization charges at the interfaces

into account.
[302,303]

However, this solver is not appropriate to simulate the band structure

of biased samples,
†

for which we have used the free one-dimensional device simulator

by Wu.
[305]

For unbiased structures, the results are identical to the ones obtained with

Snider’s program. For biased structures, we have obtained band profiles which are in

perfect agreement with the commercial device simulator Atlas from Silvaco.
[306]

To calculate the transition energies, the overlap of electron and hole wave functions as

well as the band structure of our (In,Ga)N/GaN heterostructures with In contents up to

25 %, we employ the following material parameters:

For the effective masses of electrons, heavy holes (hh), and light holes (lh) perpendicular

to the c-axis of wurtzite GaN, we utilize me � 0.2 m0, mhh � 1.6 m0 and mlh � 0.26 m0,

respectively.
[112,307]

We interpolate the effective electron mass of (In,Ga)N with Vergard’s

law
[308]

using me � 0.068 m0 for InN and obtain me � 0.168 m0 for In0.25Ga0.75N.
‡

Because

the data for the effective hole masses of GaN and InN do not differ significantly (see, e. g.,

Refs. 112, 307, and 309), we avoid the interpolation via Vergard’s law and use the value

mentioned above for GaN also for (In,Ga)N QWs. The value of the relative permittivity

perpendicular to the c-axis of wurtzite GaN is similar to the corresponding one in InN,

and we use a value of ε � 9.5 for our calculations.
[310,311]

Interpolating between the band

∗
High Mg concentrations are required to obtain a sufficient number density of holes in the p-doped region

because of the high thermal activation energy of Mg.
[294,295]

This fact, in combination with the lower

growth temperature, leads to a lower crystal perfection of Mg-doped GaN.
[296,297]

Consequently, the thin

p-doped region is grown as the final layer of the p-i-n structure.

†
Biased band diagrams may be calculated with the free device simulator SimWindows

[304]
from Winston.

However, the polarization charges have to be simulated by heavily doped ultrathin layers. Moreover, the

calculation of wave functions is not implemented.

‡
Note that the conduction band of InN is highly nonparabolic.

[307]
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3 Samples, methods, and basic electro-optical characterization

gap (Eg) of wurtzite GaN and the one of wurtzite InN (i.e., 0.68 eV
[310] ,§

) by using the

bowing parameter of Schley et al., [310]
we arrive at

Eg(x)[eV] � 3.45(1 − x) + 0.68x − 1.72x(1 − x). (3.1)

for the band gap of the wurtzite InxGa1−xN alloy. For the band offset ratio, we use a

value of 60:40 determined with x-ray photoelectron spectroscopy by Martin et al. [313]
for

the simulation of (In,Ga)N/GaN QWs with up to 25 % of In.
¶

Finally, we have to consider the spontaneous (Psp) and piezoelectric (Ppz) polarization

at the (In,Ga)N/GaN heterointerfaces grown along the polar crystal axis of wurtzite GaN.

The calculation of Ppz based on material parameters has been shown in Sec. 2.1. However,

in our simulations, we employ the commonly used fitted dependence of the polarization

on the In content with
[90]

Psp[C/m
2] � −0.042x − 0.034(1 − x) + 0.037x(1 − x). (3.2)

Originally the parameters were reported by Fiorentini et al. [317]
We note that improved

values for Psp of group-III nitrides have been reported by Belabbes et al. [93]
For the sake

of consistency we use the values for Ppz from Ref. 90:

Ppz[C/m
2] � 0.148x − 0.0424x(1 − x). (3.3)

To account for our experimental data, we multiplied Ppz by a factor of about 0.62. Such

a reduction of the theoretical values of Ppz is frequently used to describe experimental

results.
[318–322]

3.4 Signal acquisition and processing

The analysis of the recombination processes of charge carriers in semiconductors (i. e.,

the spectroscopy of the emitting radiation) is commonly based on the energy of the

respective transition. However, the optical grating inside the monochromator correlates

the measured PL intensity with the wavelength λ of the emitted photons. Thus, we have

to convert the photon wavelength into the photon energy E by utilizing a conversion factor

of

E[eV] � hc0

n̂airλ
�

1,239.489

λ[nm] (3.4)

with the refractive index of air (n̂air), Planck’s constant (h), and the vacuum speed of

light (c0) (see list of symbols for the respective constants). The value of n̂air amounts to

1.000285 close to the band edge emission of GaN.
[127,323]

Although n̂air actually depends

§
Note that a band gap as low as 0.65 eV has been reported.

[312]

¶
Note that more recent experimental measurements

[314]
and theoretical calculations

[315,316]
tend to a band

offset ratio of 80:20.
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3.4 Signal acquisition and processing

on λ, the introduced deviation of the conversion factor given in Eq. (3.4) is well below

our experimental resolution even for λ � 1,000 nm. Thus, we employ one and the same

conversion factor, namely 1,239.489, throughout the whole spectral range investigated in

this thesis.

3.4.1 Steady-state photo- and electroluminescence spectroscopy

For steady-state PL and EL spectroscopy, we have utilized the three different setups listed

below. Their general working principle is schematically depicted in Fig. 3.2(a).

i) We have used a Horiba Jobin Yvon Labram HR 800 UV setup for steady-state µ-

PL spectroscopy. For PL experiments with nonresonant excitation, the 325-nm line

(3.814 eV) of a Kimmon IK 3552R-G HeCd laser with a maximum power of 30 mW was

used. For excitation of the (In,Ga)N/GaN QWs, we have employed an Ondax LM-

402-PLR-180 multi-mode (In,Ga)N/GaN diode laser emitting at 402 nm (3.08 eV)

with a maximum power of 180 mW. The PL signal was dispersed by a monochro-

mator with a focal length of 80 cm, which is equipped with a 600-lines/mm grating.

The spectrally dispersed signal was recorded with a liquid-nitrogen-cooled ISA

SPECTRUM ONE charge-coupled device camera with 1024 × 256 pixels. The spec-

tral resolution amounts to at least 1 meV in the ultraviolet (UV) to visible range.

In order to obtain a spatial resolution in the range of at least one µm, the setup is

equipped with a 50× Mitutoyo Plan Apo NUV HR microscope objective with an

numerical aperture of 0.65.

ii) We have employed a Horiba Jobin Yvon Labram HR Evolution setup with a micro-

positioning system for µ-EL mappings. For current injection into the investigated

LEDs, a Manson HCS 3302 power supply was used. We have obtained a high spatial

resolution of 0.25 µm by utilizing a 100×Mitutoyo Plan Apo NIR HR objective with a

numerical aperture of 0.7. In order to record corresponding steady-state µ-PL maps,

we have excited the (In,Ga)N/GaN QWs with an Ondax LM-405-PLR-40 single-

mode (In,Ga)N/GaN diode laser emitting at 405 nm (3.06 eV) with a maximum

power of 40 mW. The detection system is similar to the one of the HR 800 setup (also

the same spectral resolution), except for the charge-coupled device camera, which

is a liquid-nitrogen-cooled Horiba Symphony II charge-coupled device camera with

1024 × 256 pixels.

iii) We have utilized a home-built steady-state PL setup to simultaneously excite the

samples under investigation with two lasers with different photon energies. There-

fore, we have employed a Coherent Innova 400-K3 Kr
+
-ion laser using the 413.1-nm

line (3.000 eV) with a maximum output power of 1.8 W as the main excitation source.

Additionally, we have coupled a DL640-070-S diode laser from CrystaLaser emitting

at 642 nm (1.93 eV) with a maximum power of 70 mW or a diode-pumped Nd:YAG

solid-state laser emitting at 1,064 nm (1.165 eV) with a maximum power of 40 mW

via a 10:90 beamsplitter into the optical path. Using one stage of the TriVista triple
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Figure 3.2: (a) Schematic (top view) of the confocal steady-state PL setup equipped with

a charge-coupled device (CCD) camera and a microscope objective (obj) to obtain a spatial

resolution at least one µm. (b) Working principle (side view) of a confocal microscope. The

detailed description of the figures is given in the text.

spectrometer from Princeton Instruments in conjunction with a Horiba Symphony

II charge-coupled device camera, the setup exhibits a spectral resolution on the or-

der of 1 meV for the used spectral range. Again, we have utilized the 50× Mitutoyo

Plan Apo NUV HR objective.

For the temperature-dependent PL measurements, the samples were mounted on a

copper cold finger of a He-flow cryostat from CryoVac. Using a resistive heater and a

temperature controller (CryoVac ITC 304), the temperature can be adjusted between 4

and 300 K. The cryostat is evacuated with a Balzers turbo molecular pump to a pressure

of approximately 3 × 10
−6

mbar.

In order to suppress plasma lines of the Kr
+
-ion laser or direct laser radiation of

the additional diode laser, a line pass or a band pass filter are used, respectively [see

Fig. 3.2(a)]. The excitation power density as well as the intensity of the detected signal

can by attenuated by standard neutral density filters.

All our detection systems are controlled by the LabSpec software, which automatically

performs a stitching process for spectra recorded over a large spectral range (e. g. from

3.54 eV to 1.90 eV), for which the grating of the monochromator has to rotate. To correct

the measured spectra for the spectral response of the system, we have calibrated the

system with a Bentham CL2 light source.

Confocal arrangement and spatial resolution

In order to obtain a confocal arrangement [schematically depicted in Fig. 3.2(b)], the light

of the main excitation laser is coupled into the optical path via an edge or notch filter

for the respective laser line [see Fig. 3.2(a)] or a beamsplitter. The spectral resolution

increases when reducing the aperture of the pinhole in front of the monochromator (ideal

case: point source). Moreover, the pinhole allows the transmission of the light originating
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3.4 Signal acquisition and processing

from a small volume (beam 1) only, while other parts (beams 2 and 3) are blocked [see

Fig. 3.2(b)]. Hence, the minimal lateral resolution as well as the axial resolution are

reduced by a factor of about 0.7 compared to a conventional microscope for a completely

closed pinhole.
[324]

In Fig. 3.3(a), we present the experimental results of determining the actual spatial

resolution of the Labram Evolution setup with the knife edge method. For this purpose,

we have scanned across the edge of a razor blade with the microscope objective with

an appropriate size of the pinhole, i. e., balanced between resolution and intensity of

the single, for different step sizes. The resulting intensity profile has been fitted with

a sigmoidal function as explained in Ref. 325. We have obtained a lateral resolution of

about 0.25 µm, which is close to the maximum expected resolution.

Automated map analysis

Acquiring µ-EL and µ-PL maps over an area of 20 × 20 µm
2

with a step size of 0.25 µm

produces more than 6,500 individual spectra per map. Thus, we have utilized an auto-

mated analysis procedure, exemplarily shown for two spectra in Fig. 3.3(b). During this

procedure, we have applied a fast Fourier transform low-pass filtering to the spectra to

remove interference fringes. The commonly observed asymmetry of the band impedes a

simply Gaussian fit. Hence, we have extracted the peak energy at the maximum inten-

sity of the band. To extract the full width at half maximum (FWHM) of the band, we

have divided the peak intensity by a factor of two and have extracted the corresponding

photon energies. The smaller absolute difference of these values to the peak energy was

multiplied by a factor two and was used as the FWHM.
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Figure 3.3: (a) Edge of a razor blade scanned with an objective with a magnification of 100×
and a numerical aperture of 0.7. The intensity of the reflected light (symbols) is normalized

for the two different step sizes. A fixed value of the confocal hole was used. The spatial

resolution was extracted by a fit of the data (solid line) with a sigmoid function as described

in the text. (b) Exemplary µ-EL spectra from a map of a blue- and green-emitting LED

(symbols) with automated fast Fourier transform filtering (dotted lines) and analysis of peak

energy and FWHM (dashed lines).
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Figure 3.4: Schematic (top view) of the time-resolved PL setup as described in the text

to acquire spectrally resolved PL transients either with the streak camera (SC) or with time-

correlated single photon counting (TCSPC). The setup is equipped with a microscope objective

(obj) to obtain a spatial resolution on the order of µm.

3.4.2 Time-resolved photoluminescence spectroscopy

A schematic of the home-built time-resolved PL setup is shown in Fig. 3.4. The ultra-

short laser pulses (200 fs) are produced by a Coherent Mira 900 Ti:Sapphire femtosecond

oscillator (emission: 700–980 nm). This Kerr-lens passively mode-locked oscillator is

optically pumped by a Coherent Verdi V10 Nd:YAG diode-pumped solid-state laser

emitting at 532 nm with 10 W. To reduce the repetition rate of the fs-pulses of about

76 MHz (measured with a HAMEG HM8123 programmable counter), we have used a

Coherent 9200 pulse picker. The second harmonic of the laser radiation is generated by

a β-Bariumborat nonlinear crystal.

The ThorLabs 20× LMU-NUV microscope objective with a numerical aperture of 0.4

is mounted on a x-y-z translation stage Owis Limes. The laser spot can be scanned with

µm-precision over the sample and exhibits a diameter of about 5 µm. The sample itself

is mounted on the copper cold finger of a liquid-He flow cryostat from Oxford whose

temperature is controlled by an Oxford ITC 503s. The pressure of about 5 × 10
−7

mbar

inside the cryostat is obtained with an Oerlikon Leybold Vacuum PT70. PL transients can

be recorded in two different ways by utilizing a removable mirror (see Fig. 3.4):

1) The PL signal is dispersed by a Jobin Yvon Spex 1681 0.22 m spectrometer and

detected by a Hamamatsu C5680 streak camera equipped with a slow single sweep

unit (Hamamatsu M5677) and an ORCA-R
2

digital charge-coupled device camera

(C10600). We have used a Hamamatsu C4792 trigger unit to adjust the time delay.

2) The PL signal is dispersed by a Horiba iHR 320 monochromator. We have used a

PicoHarp 300 system in conjunction with a Hamamatsu photomultiplier tube for

time-correlated single photon counting. The trigger signal for the counting process

is obtained by a PicoHarp TDA 200 photodiode placed after the nonlinear crystal.
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3.5 Basic electro-optical characterization

More details about the technical aspects of a streak camera or time-correlated single

photon counting can be found in Refs. 326 and 327, respectively.

In order to obtain high signal-to-noise ratios and because the (In,Ga)N-related PL bands

are rather broad, we have used spectral resolutions of 5 and 20 meV for measurements

with the streak camera and time-correlated single photon counting, respectively. While

the temporal resolution of the slow sweep unit of the streak camera amounts to 150 ps, we

have obtained a temporal resolution of about 45 ps (500 ps) with time-correlated single

photon counting for transients recorded up to 1 µs (33 µs).

3.5 Basic electro-optical characterization

In this section, we present a basic temperature-dependent steady-state PL characterization

of (In,Ga)N/GaN QWs and QDs as well as a basic EL characterization of (In,Ga)N/GaN

LEDs with various emission colors.

3.5.1 Temperature-dependent photoluminescence spectroscopy

The investigated planar Ga-polar (In,Ga)N/GaN QW heterostructure (reference sample)

was grown by MOCVD on a Si(111) substrate. In contrast, the N-polar (In,Ga)N QDs

were embedded in GaN nanowires grown by MBE on a Si(111) substrate. Both, the

planar sample and the nanowires, contain active regions consisting of five and four about

3-nm-thick (In,Ga)N/GaN QWs and QDs, respectively. The undoped GaN barriers have

thicknesses larger than 7 nm, and the In content in the QWs amounts to approximately

15 %, while it is on the order of 25 % for the QDs. The nanowires exhibit a length of

about 1 µm, a mean diameter of 80 nm, and a surface coverage of about 50 %. Side-

and top-view scanning electron micrographs of the nanowire ensemble are shown in

Figs. 3.5(a) and 3.5(b), respectively. By performing x-ray diffraction and transmission

electron microscopy on these types of nanowire samples, it was demonstrated that the

(In,Ga)N/GaN interfaces are coherent and exhibit no misfit dislocations.
[69]

The density

of threading dislocations is in the 10
8

cm
−2

range for the planar sample (confirmed by

500 nm

(b)(a)

500 nm

Figure 3.5: (a) Side-view and (b) top-view scanning electron micrographs of unintentionally

doped GaN nanowires with (In,Ga)N QDs. The micrographs were recorded by A.-K. Bluhm.
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3 Samples, methods, and basic electro-optical characterization

atomic-force microscopy) and is basically zero within the top part (containing the QDs) of

the nanowire ensemble. Additionally, we observe that the nanowires exhibit a hexagonal

shape and are not significantly tilted, but partly coalesced.

In Figs. 3.6(a) and 3.6(b), we present temperature-dependent steady-state PL spectra of

the QWs and the nanowire LED, respectively. As the temperature increases from 10 to

300 K, the PL intensity quenches by about a factor of three for both samples, indicating

the presence of nonradiative recombination. We observe an intense emission from the

(In,Ga)N/GaN QWs centered at about 2.79 eV [see Fig. 3.6(a)]. At low temperatures, the

longitudinal optical phonon replica, separated by about 92 meV
[328,329]

from the main

band in GaN, can be identified, while the modulation due to interference effects impede

the analysis at elevated temperatures. By exciting the complete heterostructure of the

nanowire LED, we detect a broad (In,Ga)N-related PL band centered at about 2.35 eV [see

Fig. 3.6(b)]. The observed individual spikes at low temperatures and at low excitation

densities are related to individual localized states in the QDs.
[43]

2.5 2.6 2.7 2.8 2.9

Photon energy (eV)

(a)

P
L

 i
n

te
n

si
ty

 (
ar

b
. u

n
it

s)

F
W

H
M

 (
m

eV
)

300 K

10 K

LO

2.77

2.78

2.79

2.80
0 100 200 300

Temperature (K)

(c)

40

50

60

F
W

H
M

 (
m

eV
)

P
ea

k
 e

n
er

g
y

 (
eV

)

0 100 200 300

2.28

2.30

2.32

2.34

P
ea

k
 e

n
er

g
y

 (
eV

)

Temperature (K)

380

400

420

2.1 2.2 2.3 2.4 2.5

P
L

 i
n

te
n

si
ty

 (
ar

b
. u

n
it

s)

Photon energy (eV)

(b) (d)

Figure 3.6: Temperature-dependent steady-state PL spectra of (a) (In,Ga)N/GaN QWs and

(b) (In,Ga)N/GaN QDs excited with Elaser � 3.08 eV. The longitudinal optical phonon (LO)

in (a) is indicated by the arrow. The respective analysis of the temperature-dependent peak

energy and FWHM is shown in (c) and (d). The dotted and solid lines in (c) and (d) represent

fits of the peak energy and the FWHM as described in the text. The dashed line in (c) is a

guide to the eye and highlights the S-shape dependence of the peak energy.
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In the following, we analyze the shift of the peak energy and the evolution of the FWHM

of the (In,Ga)N-related PL band with increasing temperature. We extract both parameters

by a fit of the emission band of the QWs and QDs with a Gaussian function.

With increasing temperature, the peak energy of the PL band of the QWs, shown

in Fig. 3.6(c), exhibits the so-called S-shape, frequently observed for (In,Ga)N (see also

Sec. 2.4.1).
[46,53,170]

However, the S-shape of EPL(T) is absent for the QDs in the nanowires

[see Fig. 3.6(d)]. In order to reproduce the temperature dependence of the peak energy of

the PL band, we have employed the model of Korona et al. [175]
(solid line) and Pässler

[176]

(dotted line). In the case of the nanowires, both fits overlap perfectly and result in similar

phonon temperatures of about 100 K. In contrast, the temperature dependence of the peak

energy for the planar QWs is only partially reproduced by both models. As outlined in

Sec. 2.4.1, the modeling of the temperature-dependent peak energy of (In,Ga)N is, in fact,

even more complex than for GaN, and an extraction of the localization energy is rather

questionable.
[170]

Consequently, the temperature dependence of the peak energy is not a

reliable fingerprint for a comparison of different types of (In,Ga)N-containing samples.

We show the extracted FWHM of the (In,Ga)N-related PL band for (In,Ga)N QWs and

QDs in Figs. 3.6(c) and 3.6(d), respectively. The FWHM increases monotonically from

40 meV at 10 K to 60 meV at 300 K for the sample containing QWs. In contrast, the FWHM

of the QDs is much larger (about 400 meV at 10 K) and almost constant up to 300 K [see

Fig. 3.6(d)]. Taking into account the zero temperature broadening parameter, the coupling

strength of exciton-acoustic-phonon interaction, and the exciton-LO-phonon interaction,

the temperature dependence of the linewidth of semiconductors in general
[330,331]

and of

GaN
[175]

in particular can be reproduced. However, for a ternary alloy such as (In,Ga)N,

the total broadening is dominated by alloy disorder (see, e. g., Ref. 332) and in the case

of the nanowires by QD-to-QD as well as ensemble fluctuations.
[333]

Although the model

of Korona et al. [175]
reproduces the data well [see Figs. 3.6(c) and 3.6(d)], the parameters

may be misleading, because effects of alloy disorder and localization are not included.

As a rule of thumb, values for the FWHM of about 50 meV for conventional blue emit-

ting (In,Ga)N/GaN heterostructures at room temperature reflect a low compositional

fluctuations of the In content.

3.5.2 Current-dependent electroluminescence spectroscopy

For µ-EL measurements, custom-made research and development (In,Ga)N-based LEDs

emitting in the blue and green spectral range were fabricated at OSRAM Opto Semicon-

ductors GmbH using the UX:3 technique. More details about the growth by MOCVD and

the processing, utilizing a thin-film flip-chip technique,
[334]

can be found in Refs. 181, 335,

and 336. The usual processing steps generate a rough surface, which is beneficial for

light extraction. In the present thesis, the surface of the investigated LEDs was polished

to avoid scattering and to obtain a high spatial resolution in µ-EL experiments. We have

mounted the LEDs with a conductive epoxy (EPO-TEK
®

H20E) on a Cu-supported 8-pin

chip carrier (for thermal management) and contacted the individual LED chips with 12.5-

µm-thick Au wires as shown in the photograph in Fig. 3.7(a). According to OSRAM Opto
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Figure 3.7: (a) Photograph of electrically connected (In,Ga)N/GaN LED chips on a Cu-

supported chip mount. The scale bar is 5 mm. (b) Current-voltage diagram as well as current-

dependent (c) peak energy, (d) FWHM, (e) integrated EL intensity (IEL), and (f) efficiency of

(In,Ga)N/GaN LEDs, emitting in the blue (squares) and the green (circles) spectral range.

The solid line in the double-logarithmic representation in (e) exhibits a slope of one. All

measurements have been performed at room temperature.

Semiconductors, the current density under normal operation conditions for these LEDs

amounts to 45 A/cm
2
.

Figure 3.7(b) shows I-V curves of the LEDs, which indicate a turn-on at about 2.6 V for

the blue and 3.0 V for the green LED. The slightly larger threshold for the green LED

does not only arise from the larger number of QWs, but is also due to our suboptimal
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3.6 Summary

contacting process. The dark current is generally low and amounts to only 350 nA at

−20 V (not shown). We have summarized the EL properties of the blue and the green

emitting LED in Figs. 3.7(c)–3.7(f). The peak energy of the EL band blueshifts slightly

(10 meV) with increasing current density in the blue LED. In contrast, the peak energy first

decreases by 20 meV and then increases monotonically by 35 meV above a current density

of 0.125 A/cm
2

in the green LED [see Fig. 3.7(c)]. This behavior may be explained by the

competition between an increasing internal electric field with increasing forward bias in

Ga-polar LEDs and the screening of the electric fields induced by the charge carriers. In

agreement with this explanation, the effect is less pronounced in the blue LED due to the

lower In content, which in turn reduces the internal electric fields. Nonetheless, even for

the green LED, the spectral position is stable within 5 nm in the investigated current range.

Typical for (In,Ga)N-based light emitters, the FWHM is rather large [around 100 meV in

the blue and 150 meV in the green spectral range as shown in Fig. 3.7(d)] and increases

even further with increasing current density. We ascribe this increase mainly to band

filling caused by the increasing density of charge carriers.

We present the integrated EL intensity (IEL) as a function of the current density in a

double-logarithmic representation in Fig. 3.7(e). As indicated by the solid line, the values

of IEL increase superlinearly up to a current density of 2 A/cm
2

for both LEDs. For higher

current densities, the increase of IEL is almost linear in the blue LED, but slightly sublinear

in the green one. Dividing the measured values of IEL by the applied current density, we

obtain the (external) efficiency of the LED as a function of the current density as presented

in the semilogarithmic representation in Fig. 3.7(f). We attribute the initial steep rise of

the efficiency (corresponding to the superlinear increase of IEL at low current densities) to

the saturation of nonradiative SRH recombination (see, e. g., Ref. 142, 337 and Sec. 2.3.3).

At standard operating conditions, the efficiency is about 20 % and 35 % lower than the

maximum efficiency for the blue and the green LED, respectively. To date, this decrease

of the efficiency is inherent to (In,Ga)N/GaN LEDs and referred to as droop.
[289,338–340]

The impact of different effects, such as electron leakage,
[256]

Auger recombination
[31]

or

localization,
[29]

on this efficiency decrease is still under discussion (see also Sec. 2.6). Since

we have measured IEL in arbitrary units, the evaluation of the data presented in Fig. 3.7(f)

with the commonly used ABC model
[31]

does not result in meaningful parameters.

3.6 Summary

In this chapter, we have introduced the growth methods and samples, the parameters

for the Schrödinger-Poisson simulation as well as the employed setups for the analysis

of PL and EL spectra. In addition, we have categorized the different classes of samples

investigated in this thesis.

General statements about localization or the actual performance of (In,Ga)N/GaN

heterostructures, deduced from temperature-dependent steady-state PL spectroscopy,

have to be viewed with caution. Nonetheless, the presented temperature dependence of

the PL properties for planar and nanowire sample are representative for their respective
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3 Samples, methods, and basic electro-optical characterization

class (cf. Refs. 229 and 338). Moreover, the investigated custom-made (In,Ga)N/GaN LEDs

exhibit EL properties very similar to those found in commercial LEDs (cf. Ref. 181). Thus,

we believe that the conclusions drawn in the subsequent chapters are not only valid for

these samples, but reflect the general characteristics of (In,Ga)N/GaN heterostructures.
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Chapter 4
Tunneling recombination of charge
carriers in polar (In,Ga)N/GaN

We investigate the eligibility of N-polar (In,Ga)N/GaN nanowires for future light emitters by comparing
the radiative and nonradiative recombination processes to a Ga-polar planar (In,Ga)N/GaN heterostructure.
Utilizing steady-state PL spectroscopy, we observe the discrepancy between the apparently high IQE and
low EQE also reported in the literature. Time-resolved analysis of the PL decay reveals transients that
are nonexponential and independent of temperature. Moreover, the transients approach a power law,
reflecting the fact that recombination occurs between individual electrons and holes with different spatial
separation. To simulate and reproduce the transients, we set up a system of stochastic integro-differential
equations taking into account both radiative and nonradiative tunneling recombination of spatially separate
electrons and holes as well as their diffusion. Employing a Monte Carlo method, we solve these equations to
theoretically investigate the influence of the recombination parameters on the power law decay. Additionally,
the reproduction of the experimentally obtained transients allows us to draw the conclusions that the power
law is preserved even despite dominant nonradiative recombination, that the diffusivity is low in polar
(In,Ga)N/GaN QWs, and that the investigated nanowires suffer from a very high nonradiative recombination
rate instead of a high density of nonradiative centers. Parts of this chapter have been published in Ref. 51.

4.1 N-polar nanowires versus Ga-polar layers

The majority of today’s consumer products using high-brightness LEDs (e. g. automo-

tive headlights or smartphone flashlights) is based on (In,Ga)N/GaN heterostructures

grown along the polar direction because substrates facilitating the growth along the non-

polar directions are expensive and not suitable for mass production. Despite the fact

that (In,Ga)N/GaN LEDs have a high market penetration and the Nobel prize has been

awarded in 2014 to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura “for the inven-

tion of efficient blue light-emitting diodes which has enabled bright and energy-saving

white light sources”,
[21]

the recombination dynamics in (In,Ga)N/GaN are not entirely

understood to date. At low charge carrier densities (below the Mott-transition
[278]

), ex-

citons should form in (In,Ga)N/GaN because of the large exciton binding energy (see

39



4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

Sec. 2.3.1). In conjunction with the compositional fluctuations of the alloy, the localization

of excitons is believed to enable the high IQE in (In,Ga)N/GaN.
[45,47,52–56]

However, the

resulting nonexponential PL transients cannot be fitted by a stretched exponential (see,

e. g., Ref. 49 and references therein). Thus, the assumption of an excitonic PL decay is

questionable.

Starting from scratch with physically motivated rate-equations, we will investigate in

this chapter the recombination dynamics of charge carriers in (In,Ga)N/GaN heterostruc-

tures grown along the technologically important polar direction. Especially, we will focus

on heterostructures for devices for future white light emission.

The active region in devices for solid-state lighting,
[20,341]

display technologies,
[342]

and

diode lasers
[343]

is formed by QWs consisting of the ternary alloy (In,Ga)N embedded

in GaN and commonly grown along the polar crystal direction. A record-high EQE of

about 84 % for a blue (In,Ga)N-based LED has been achieved already in 2010.
[20]

How-

ever, the realization of phosphor-free white LEDs with both, a high luminous efficiency

and a high color rendering index, requires the use of efficient narrow-band emitters not

only in the blue, but also in the green and red spectral ranges.
[344,345]

For this reason, the

U.S. Department of Energy has released a research and development plan that, amongst

others, prioritizes the development of efficient green-emitter materials
[346]

to overcome

the so-called green gap, which denotes the drastic reduction of the luminous efficiency

of (In,Ga)N- as well as (Al,In,Ga)P-based LEDs in the green spectral range.
[347,348]

For

both materials, this phenomenon is caused by a steep decline of the IQE for wavelengths

approaching the green spectral range (see also Sec. 2.6). In (In,Ga)N-based LEDs, the

potential reasons for this decline with increasing In content are manifold and include a

possible deterioration of the crystal quality resulting in an increase of defect-assisted non-

radiative processes
[32–35]

as well as a reduced radiative rate due to an increasing magnitude

of the polarization fields,
[36]

an increase of the Auger recombination coefficient,
[37,38]

and

localization phenomena.
[29]

Since the two first issues are directly related to the increasing magnitude of strain

in the (In,Ga)N layer, axial (In,Ga)N/GaN(000
¯
1) nanowire heterostructures are consid-

ered as a promising alternative to planar structures for long-wavelength emission.
[227]

In MBE, N-polar GaN nanowires spontaneously form
[349]

on various technologically at-

tractive substrates such as Si, see Ref. 350 and references therein, or metal foils
[351,352]

while retaining their single-crystal nature. Using MBE, (In,Ga)N QD can subsequently

be synthesized on the GaN nanowires. The growth of such heterostructures has been

extensively studied and optimized in recent years (see Ref. 353 and references therein).

In sufficiently thin nanowires, the lattice mismatch between the (In,Ga)N QD and GaN

is partly accommodated elastically due to strain relaxation at the nanowire sidewalls, see

Refs. 70–72. This strain relief facilitates the incorporation of high In contents without the

formation of extended defects, reduces the driving force to generate point defects, and

decreases the magnitude of the polarization field in the (In,Ga)N QD embedded within

the nanowire. Moreover, nanowires naturally exhibit a much higher extraction efficiency

compared to planar samples, see Ref. 73 and references therein. Indeed, several groups
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4.2 Basic steady-state photoluminescence characterization

have reported nanowire LEDs on Si emitting in the green and even red spectral range

with IQEs of up to 50 %.
[225–229]

At the same time, the EQE of these devices has thus

far remained significantly lower than that of conventional planar LEDs at comparable

wavelengths. For example, yellow LEDs were reported in Ref. 354 with values for the

IQE and the EQE of 40 % and 0.014 %, respectively. It is crucial to elucidate the origin

of this blatant discrepancy for a realistic assessment of the potential of axial nanowire

heterostructures for efficient full-color emitters.

For comparison, we use the planar (In,Ga)N/GaN(0001) QW structure with an In

content of about 0.15 which was grown by MOCVD on a Si(111) substrate as a reference

sample and whose basic steady-state PL was characterized in Sec. 3.5.1. The sample was

fabricated in an LED production reactor and has an IQE close to the state of the art for

blue emitting LEDs in 2012.
[289]

The axial (In,Ga)N/GaN(000
¯
1) nanowire heterostructure

we have chosen for this study is representative for this type of samples and was grown by

MBE on a Si(111) substrate. The nanowires exhibit a length of about 500 nm and a mean

diameter of 50 nm [see Figs. 3.5(a) and 3.5(b)]. The In content in the QDs was determined

by x-ray diffraction
[355,356]

to amount to 0.26 ± 0.1. The sample was selected by virtue of

its comparatively high luminous efficiency and the fact that is has been very thoroughly

investigated by both structural and spectroscopic techniques.
[43]

Both samples contain similar active regions, consisting of five (six) 3-nm-thick (In,Ga)N

QWs (QDs) separated by undoped GaN barriers with thicknesses larger than 7 nm for the

planar (nanowire) structure. The nanowire ensemble has a surface coverage of around

50 %. Hence, the active volume of both samples differs by less than a factor of two.

In contrast to planar (In,Ga)N/GaN QWs that reach their maximum performance in

the blue spectral range,
[289]

axial insertions in nanowires show a higher luminous effi-

ciency in the green because of a complex interplay of surface potentials and polarization

fields.
[165]

We have selected the two samples used in this study accordingly: Both belong

to the brightest emitters for their class. The two samples were measured side by side, and

the PL signal was corrected for the spectral response of the detection system to obtain a

meaningful comparison. The measured PL intensity also depends on the absorbance of

the structure at the wavelength of the laser used for excitation as well as on the efficiency

with which the internally emitted radiation is extracted. Owing to light scattering and

diffraction, both of these quantities are enhanced for nanowires, particularly the extrac-

tion efficiency.
[73,357]

For simplicity, however, we assume henceforth that light absorption

and extraction are comparable for the two samples under investigation. Thus, when

comparing external luminous efficiencies, we are overestimating the IQE of the nanowire

sample.

4.2 Basic steady-state photoluminescence characterization

To compare the basic PL characteristics of the N-polar (In,Ga)N QDs in the nanowires

and of the Ga-polar planar reference sample, we have performed temperature-dependent

steady-state PL spectroscopy of the samples utilizing a diode laser (Elaser � 3.083 eV)
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

with excitation power densities ranging from W/cm
2

to MW/cm
2
. The samples were

measured side-by-side. We also conducted experiments with nonresonant excitation

(Elaser � 3.814 eV) and obtained essentially identical results (not shown). More details

about the excitation and collection of the PL signal and the experimental setups can be

found in Sec. 3.4.

Figure 4.1(a) shows exemplary steady-state PL spectra of the planar and the nanowire

sample on a semilogarithmic scale (see also Sec. 3.5.1). The most obvious and striking

difference between the two samples is the PL intensity, which is two orders of magnitude

higher for the planar sample at both low (10 K) and high (300 K) temperatures. The low-

temperature PL band of the QWs of the planar sample peaks at 2.795 eV with a FWHM

of 70 meV. Compared to the binary compound GaN, the PL band is broad reflecting the

inherent alloy disorder in the ternary compound (In,Ga)N.
[358]

The band redshifts with

increasing temperature by about 20 meV, which is about 45 meV less than compared to

the temperature-induced shift of the transition energy of the free exciton in GaN,
[359]

broadens to 130 meV, and decreases in intensity. The broad luminescence band at 2.2 eV

is caused by yellow luminescence in the GaN buffer layer, as is commonly observed in
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Figure 4.1: (a) steady-state PL spectra of the planar and the nanowire sample excited with an

intensity of approximately 50 W/cm
2

at a temperature of 10 and 300 K in a semilogarithmic

representation. (b) Semilogarithmic normalized Arrhenius representation of the integrated

PL intensity IPL (symbols) measured with an excitation power density of approximately

100 W/cm
2
. Solid lines show fits to the data as discussed in the text. The extracted activation

energies amount to 48 and 34 meV for the planar and the nanowire sample, respectively. (c)

IPL versus the excitation intensity Iexc acquired at 300 K in a double-logarithmic. The solid

lines indicate fits whose slopes correspond to the given exponents of Iexc.
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4.2 Basic steady-state photoluminescence characterization

MOCVD-grown GaN.
[127]

The dominant, broad PL band of the MBE-grown (In,Ga)N QDs

in the GaN nanowires peaks at 2.32 eV and exhibits a FWHM of 300 meV at 10 K. This

large linewidth is not only caused by alloy disorder, but also by variations in the In content

and the QD width between the individual nanowires.
[333]

Because of the small number

of nanowires probed in these steady-state PL experiments with a µm-sized excitation

spot, we observe individual spikes at low temperatures and low excitation densities due

to localized states, particularly on the high-energy side of the spectrum. For even lower

excitation densities, these spikes can dominate the spectrum entirely as was found in a

previous study of the same sample.
[43]

With increasing temperature, the band redshifts by

30 meV and decreases in intensity with a factor similar to the one of the planar reference

sample.

The temperature-induced decrease in intensity observed for both samples reflects the

presence of nonradiative recombination channels at elevated temperatures. In fact, ana-

lyzing the temperature-dependent PL intensity is a frequently employed method to study

the impact of nonradiative recombination in semiconductors. Nonradiative recombina-

tion is often assumed to be thermally activated and to be negligible at low temperatures.
[66]

The latter assumption is not based on any sound physical arguments, but if we accept it for

the moment, a quenching of the PL intensity at elevated temperatures is directly related

to the IQE of the investigated sample. In Fig. 4.1(b), we show the temperature-dependent

evolution of the normalized integrated PL intensity IPL of the planar and the nanowire

sample. For both samples, a moderate thermal quenching of the PL intensity is observed.

The activation energies, deduced from fits employing the common three-level model of a

thermally activated PL quenching,
[360]

are similar and amount to 48 and 34 meV for the

planar and the nanowire sample, respectively [see Fig. 4.1(b)].

If we proceed in the usual fashion and take the ratio of IPL(300 K)/IPL(10 K) as the IQE

η at room temperature (thus implicitly assuming an IQE of unity at 10 K or any other low

temperature),
[66,224,229,354,361–363]

we obtain η � 0.41 for the planar and η � 0.21 for the

nanowire sample directly from the normalized IPL shown in Fig. 4.1(b). Obviously, the

latter value for the nanowire sample is meaningless considering that the integrated PL

intensity of this sample is more than two orders of magnitude lower than that of the planar

sample [see Figs. 4.1(a) and 4.1(c)]. This result shows that the ratio IPL(300 K)/IPL(10 K)
cannot be taken as a sensible measure for the IQE of samples for which no independent

data support the assumption of an IQE of 1 at 10 K.

In Fig. 4.1(c), we show the excitation-dependent integrated PL intensity of the planar

and the nanowire sample recorded at 300 K. The spectrally integrated PL intensity IPL of

the nanowire sample amounts to 1.4 % of the value of the planar sample at low excitation

densities, and this ratio decreases to 0.3 % at high excitation densities. Nevertheless, the

increase of IPL with excitation intensity Iexc is close to linear for both samples over six

orders of magnitude (IPL ∝ I1.1
exc

for the planar and IPL ∝ I0.9
exc

for the nanowire sample).

We observe neither a superlinear increase of IPL due to a saturation of SRH centers
[142,364]

nor a noticeable sublinear increase at high excitation densities because of an increasing

contribution of carrier leakage
[365]

or the onset of Auger recombination.
[212]
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4.3 Initial part of the photoluminescence transients

The results discussed in Sec. 4.2 show that the temperature and excitation dependence

of the steady-state PL intensity are not necessarily sensitive to the actual IQE of a given

sample. For binary bulk semiconductors such as GaN, for which a unique radiative

lifetime exists,
[366]

a reliable measure of the IQE is the minority carrier lifetime deter-

mined by time-resolved PL experiments.
[367]

However, in (In,Ga)N/GaN{0001} QWs, the

radiative lifetime depends strongly on the well width and In content due to the presence

of large piezoelectric fields.
[68]

Additionally, the inevitable compositional fluctuations in

the random alloy (In,Ga)N lead to the localization of charge carriers,
[45,50,68,368]

making

the definition of a unique radiative lifetime all but impossible. Still, time-resolved PL

measurements in conjunction with a comparative measurement of the absolute emission

intensities enable one to disentangle radiative and nonradiative contributions to the PL

decay.

For the time-resolved PL spectroscopy, we have employed nonresonant excitation with

the frequency-doubled, femtosecond Ti:sapphire laser (Elaser � 3.55 eV). More details

about the time-resolved PL setup can be found in Sec. 3.4.2. The transients were recorded

with time-correlated single photon counting at the respective peak energies integrated

over a spectral range of about 20 meV.
∗

The energy fluence per pulse amounted to ap-

proximately 3 µJ cm
−2

, corresponding to a maximum charge carrier density of about

3× 10
11

cm
−2

. The excitation density was chosen such that no spectral diffusion of the PL

band was detected, i. e., a screening of the internal electric fields and hence a dynamically

changing overlap of the electron and hole wave functions was avoided. In addition, the

low repetition rate (9.3 kHz for recording the transients up to 33 µs in a temperature range

from 10 to 250 K) of the laser pulses prevented the accumulation of charge carriers cre-

ated by consecutive laser pulses. By employing time-correlated single photon counting in

conjunction with an appropriate binning in the time domain and a careful subtraction of

the background, we achieve a dynamic range in the detection of six orders of magnitude.

The temporal resolution amounted to 45 ps for the investigation of the initial decay.

We first focus on the initial part of the PL transients that accounts for a decay in the

PL intensity over two decades after pulsed excitation. This dynamic range is typical for

time-resolved PL experiments for which a streak camera is used for detection as reported,

for example, in Refs. 170, 197, 362, and 369–371. Figure 4.2(a) displays PL transients of

the planar and the nanowire sample recorded at 10 K in a semilogarithmic representation.

Evidently, this initial decay of the PL intensity is significantly faster for the nanowire as

compared to the planar sample: While it takes 80 ns for the PL intensity of the latter to

decrease by two orders of magnitude, it only requires 20 ns for that of the former. Note that

the decay cannot be described by a single exponential [see the dashed lines in Fig. 4.2(a)],

particularly so for the nanowire sample. We emphasize that this nonexponential decay

is not caused by a screening of the piezoelectric fields, since the transients were acquired

∗
Transients recorded at the low- or high-energy tails of the PL band (that do not substantially contribute

to the integrated PL intensity) will change the shape of the transient slightly, as we probe localization

centers with different confining potential.
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Figure 4.2: (a) Semilogarithmic representation of the normalized PL transients of the planar

and the nanowire sample recorded at 10 K. Note the different time scales for the planar and the

nanowire sample. The dashed lines are fits with single exponentials with different effective

lifetimes. Temperature-dependent effective (τeff), radiative (τr), and nonradiative (τnr) PL

lifetimes of (b) the planar and (c) the nanowire sample. The solid lines are guides to the eye.

The dashed lines illustrate the linear increase of τr with increasing temperature T. Note the

axis break in the axis of the effective PL lifetimes of the double-logarithmic representation.

with excitation densities well below the onset of this effect.

To derive a decay time despite the nonexponential nature of the transients, we define a

phenomenological effective PL lifetime τeff as the time at which IPL has decreased to 1/e
(≈ 37 %) of its initial value. In addition, we assume that

1

τeff

�
1

τr

+
1

τnr

(4.1)

with the radiative and nonradiative lifetimes being τr and τnr, respectively. Figures 4.2(b)

and 4.2(c) show the temperature dependence of τeff for the planar and the nanowire

sample, respectively. For the planar sample, the effective PL lifetime is constant up to

220 K with a value of about 14 ns and decreases subsequently to 6 ns at 300 K. A similar

temperature dependence is observed for the nanowire sample, for which τeff amounts to

about 0.37 ns between 10 K and 70 K and decreases to 0.16 ns at 300 K.

To distinguish the radiative and nonradiative contributions to τeff, we first determine

the temperature dependence of τr from the inverse peak PL intensity of the transient

just after the laser pulse.
[142]

To deduce absolute values for τr and τnr, some additional

information is required. Since τeff and τr are related by

η �
τeff

τr

, (4.2)

the required information is the IQE η at, for example, 10 K. This quantity is often indis-
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

criminately assumed to be unity regardless of the sample. In the present case, we use

the planar (In,Ga)N/GaN(0001) QWs as reference, whose IQE is known to be high even

at room temperature: LEDs with these QWs as active region exhibit an EQE between 0.1

and 0.7 at low injection levels.
[289]

For this sample, it thus seems justified to assign a value

of unity to its IQE at 10 K. To obtain a corresponding value for the (In,Ga)N/GaN(000
¯
1)

QD, we recall that the IQE is proportional to the time-integrated intensity of the tran-

sient. Since this intensity is 200 times lower for the nanowire sample than for the planar

reference, we thus obtain η ≈ 0.005 for the nanowire sample at 10 K.

Figures 4.2(b) and 4.2(c) show the temperature dependence of the radiative and nonra-

diative lifetimes determined as described above for the planar and the nanowire sample,

respectively. The PL lifetimes and the values of the IQEs at 10 K and 250 K are also

compiled in Tab. 4.1. Regardless of the absolute values, we obtain a qualitative under-

standing of the decay processes by examining the temperature dependence of τr. For

both samples, τr is constant up to a certain temperature and then smoothly approaches a

linear increase as indicated by the dashed lines. Hence, emission takes place from zero-

dimensional localized states at low temperatures and approaches the behavior expected

for a two-dimensional system (i. e., a QW) at higher temperatures
[372]

(see also Sec. 2.3.4

for derivation). The transition from a zero- to two-dimensional system occurs at a higher

temperature and is more gradual for the nanowire sample, indicating that carriers in the

QDs experience stronger localization than those in the planar QWs.

Regarding the absolute values of the lifetimes, we first see that the radiative lifetimes

measured for the nanowire sample are significantly longer than those of the planar sample.

This finding is consistent with the stronger polarization fields in the QDs expected from

the higher In content, but also with stronger localization. Second, we see that τnr becomes

shorter than τr at about 200 K for the planar sample, while τnr is always drastically

shorter than τr for the nanowire sample. Thus, the recombination in the latter sample is

dominated by nonradiative recombination over the entire temperature range.

sample T (K) τeff (ns) τr (ns) τnr (ns) η

planar 10 14 14 ∞ 1

planar 250 12 30 21 0.40

nanowire 10 0.37 75 0.37 0.005

nanowire 250 0.19 114 0.19 0.002

Table 4.1: Effective τeff, radiative τr and nonradiative τnr PL lifetimes extracted for different

temperatures T from the analysis of the initial decay of the PL intensity. The IQE η at 250 K

is estimated from the initial PL decay.

46



4.4 Photoluminescence transients over the full time range

4.4 Photoluminescence transients over the full time range

The analysis of the initial PL decay discussed in Sec. 4.3 has provided useful information,

but did not yield any insights into the nonexponential nature of the PL decay. In earlier

studies, this nonexponential decay invariably observed for (In,Ga)N/GaN(0001) QWs

was proposed to be represented by a stretched exponential.
[370]

This observation was

attributed to strong compositional fluctuations in the ternary alloy (In,Ga)N, creating

In-rich regions resembling “quantum dots” that confine excitons with different energies

and, consequently, different lifetimes.
[55]

Alternatively, Morel et al. [48]
attributed the nonexponential decay to the recombination

of individually localized electrons and holes that are separated spatially in the two-

dimensional QW plane. Their model was inspired by the seminal work of Thomas et
al., [373]

which describes the kinetics of radiative recombination of electrons and holes

bound to randomly distributed donor-acceptor pairs (DAPs) in a bulk crystal and is

therefore known as the two-dimensional-DAP model.

More recently, Brosseau et al. [49]
recorded PL transients of (In,Ga)N/GaN(0001) QWs

over six decades in intensity. These measurements demonstrated that only the initial decay

follows an exponential or stretched exponential dependence. For longer times, the decay

was observed to deviate from this dependence and to asymptotically become a power law.

The authors analyzed their data by a phenomenological model based on the coexistence of

a radiative state and a metastable charge-separated state.
[374]

This model also described the

experimentally observed asymptotic slowdown of the decay, which cannot be accounted

for by the model of Morel et al. [48]
Recently, Cardin et al. [375]

extended this study by

investigating the PL decay kinetics of (In,Ga)N/GaN(000
¯
1) nanowire heterostructures at

room temperature and observed a power law decay for these structures as well.

A power law decay of the PL intensity is by no means restricted to polar (In,Ga)N,

but is actually observed for the majority of solids.
[376]

The unifying characteristics of

these materials is topological disorder as observed, for example, in solids with randomly

situated traps such as found in various amorphous semiconductors. A wealth of studies is

available on this subject, and its understanding is in fact much more mature than in the case

of (In,Ga)N.
[377–384]

For example, the impact of carrier diffusion on the PL decay has been

studied in great detail already decades ago.
[379]

However, nonradiative processes have

not been taken into consideration in these previous studies, but are obviously essential

for a full understanding of the PL decay in polar (In,Ga)N.

Figures 4.3(a) and 4.3(b) show exemplary PL transients of our samples over the full time

range of 33 µs.
†

The double-logarithmic representation of the transients demonstrates

that the initial decay analyzed in Fig. 4.2 amounts only to a fraction of the entire decay.

Furthermore, this representation facilitates the direct identification of a power law decay

(straight line).

Several important observations can be made from the experimental PL transients shown

in Figs. 4.3(a) and 4.3(b). First, we observe a PL decay that obeys a power law asymp-

†
To investigate the PL transients over the technically maximum possible time range of 33 µs, the temporal

resolution was decreased to 400 ps.
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Figure 4.3: Double-logarithmic representation of exemplary experimental PL transients over

the full time range of 33 µs recorded at the PL peak energy of the (a) planar and (b) nanowire

sample at 10 and 250 K. The intensity has been scaled by the same factor to facilitate a direct

comparison with the simulated transients in Fig. 4.12. The transients were recorded by T.

Flissikowski.

totically for both samples and independently of temperature. At 10 K, the pronounced

slowdown of the decay of the planar sample after about 400 ns closely resembles the

asymptotic behavior reported by Brosseau et al. [49]
Second, we observe a reduction of

the time-integrated PL intensity (area under the PL transients) with increasing tempera-

ture for both samples, reflecting the presence of nonradiative recombination at elevated

temperatures. Despite this fact, the decay does not become exponential, but still obeys a

power law for both samples at elevated temperatures. For the planar sample, the decay

accelerates with temperature (the absolute value of the exponent of the tβ asymptote

increases from β � −1.1 at 10 K to β � −1.9 at 250 K), while the shape of the PL decay of

the nanowire sample hardly changes at all between 10 and 250 K.

4.5 Recombination model

For a quantitative understanding of these transients, we consider the processes schemati-

cally depicted in Fig. 4.4. First of all, we assume that the power law decay is fundamentally

related to the recombination of spatially separated electrons and holes. We also assume

that (In,Ga)N constitutes a perfect random alloy
[61,385]

whose inherent compositional fluc-

tuations, together with the associated inhomogeneous strain and fluctuations in the result-

ing piezoelectric fields, are sufficient to localize charge carriers individually.
[50,56,158,386]

This complex potential landscape is represented in the following by randomly situated

localization sites with a randomly varying energy depth, as visualized in Fig. 4.4 by circles

with different diameters. Due to the presence of nonradiative recombination, we include

SRH recombination centers with a density N that are also assumed to be randomly dis-

tributed. These centers are either in state N× (represented by squares) and interact with

electrons or in state N� � N − N× (represented by triangles) and interact with holes.

Initially, electrons (minus) and holes (plus) are distributed randomly at localization sites
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Figure 4.4: Schematic representation of the model for simulating the PL transients of

(In,Ga)N/GaN{0001} QWs. The potential landscape of the random alloy (In,Ga)N is as-

sumed to create localization sites (⃝) for electrons (⊖) and holes (⊕) with varying energy

depth (represented by the diameter). In addition, nonradiative recombination centers (□ and

△) exist. Initially, electrons and holes are randomly distributed. Radiative recombination

occurs via tunneling with a coefficient B. The recombination centers capture electrons and

holes by tunneling with coefficients bn and bp , respectively. Diffusion (curved arrows) of elec-

trons and holes allows them to migrate in the potential landscape with coefficients Dn and

Dp , respectively. All coefficients are random functions of location r and, for recombination

events, of spatial distance x.

(see Fig. 4.4). The charge carriers can recombine radiatively via tunneling over distances

|x| with a rate coefficient B(|x|, r) � B0 exp[−|x|/a(r)]. Likewise, electrons and holes can be

captured by recombination centers with rate coefficients bn(|x|, r) � bn0 exp[−|x|/a(r)] and

bp(|x|, r) � bp0 exp[−|x|/a(r)], respectively. The tunneling parameter a(r) depends on the

localization energy and is thus a function of the spatial location r.‡ Finally, electrons and

holes are given the possibility to diffuse within this potential landscape with diffusivities

Dn(r) and Dp(r), respectively. The diffusivity is influenced by the potential depth of the

localization site and thus explicitly depends on r.
The three processes considered above (radiative recombination, SRH recombination,

and carrier diffusion) are those considered in the classical diffusion-recombination equa-

tions of semiconductor physics.
[387]

Here, we generalize these equations by taking into

account the stochastic nature of the recombination coefficients (i. e., the random depen-

dence on position or distance of the respective process). We thus arrive at the following

coupled system of integro-differential equations (4.3)–(4.5) for electrons n, holes p, and

nonradiative centers N :

∂n(r, t)
∂t

� Dn(r)∆n(r, t) − n(r, t)
∫

B(|x|, r)p(r + x, t)dx

− n(r, t)
∫

bn(|x|, r)N×(r + x, t)dx
(4.3)

‡
In fact, a may be equivalent to the spread of the wave function of the respective particle in the confining

potential.
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∂p(r, t)
∂t

� Dp(r)∆p(r, t) − p(r, t)
∫

B(|x|, r)n(r + x, t)dx

− p(r, t)
∫

bp(|x|, r)[N(r + x) − N×(r + x, t)]dx
(4.4)

∂N×(r, t)
∂t

� − n(r, t)
∫

bn(|x|, r)N×(r + x, t)dx

+ p(r, t)
∫

bp(|x|, r)[N(r + x) − N×(r + x, t)]dx
(4.5)

The first term in Eqs. (4.3) and (4.4) represents the diffusion of electrons and holes,

respectively, while the second and third terms represent the radiative and the nonradiative

recombination of the respective type of charge carrier (either electrons or holes). The

temporal evolution of the recombination centers in state N× [Eq. (4.5)] is determined by

the capture of an electron (first term) and the capture of a hole (second term) resulting in

the nonradiative annihilation of both particles.

To solve these Smoluchowski-type equations
[388]

numerically, we employ the Monte

Carlo algorithm developed and described in detail in Ref. 79. Since the out-of-plane

separation of electrons and holes is limited by the width of the QWs, which is on the

order of the exciton Bohr radius, the distance between the recombination partners will

be governed by their lateral (in-plane) separation, particularly when the decay of the PL

approaches the power law asymptotically. We can thus simplify the problem considerably

by reducing it to two dimensions.

4.6 Monte Carlo simulation of the power law decay

Prior to attempting to fit the experimental data depicted in Fig. 4.3, we theoretically inves-

tigate the individual influence of the simulation parameters on the intensity transients,

highlight some peculiarities of the power law decay, and identify the set of parameters

reproducing the experimental transients best. Therefore, we have performed over 30,000

simulations covering a large parameter space. For this purpose, we have adapted the

Fortran 95 code from Ref. 79 to efficiently solve Eqs. (4.3)–(4.5) in two dimensions. The

execution of the code on a 4-way Intel
®

Xeon
®

E5-4627v2 with parallel, [389]
has allowed

us to track the radiative and nonradiative annihilation of 400 randomly situated electrons

and holes as well as their diffusion. For each parameter set, the computation was re-

peated at least 1,000 times with a random seed to obtain sufficient statistics and smooth

transients. The complete simulation of a transient typically required about 10 min on a

single core of our system. For the simulation of large diffusivities, the size of the box in

which the simulation takes place was enlarged to avoid an influence of the of periodic

boundaries.
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4.6 Monte Carlo simulation of the power law decay

4.6.1 Tunneling distance and recombination coefficients

In the simulations, the average density of localization sites is set to a value of 1 nm
−2

,

which translates into one localization site every three by three unit meshes in the wurtzite

lattice of (In,Ga)N. This density is roughly equivalent to the density of localized states

obtained by means of atomistic tight-binding calculations for In0.25Ga0.75N.
[158]

The initial

density of excess charge carriers amounts to ∆n � ∆p � 2.5 × 10
−3

nm
−2

and corresponds

to an excitation density typically employed for the time-resolved experiments. The charge

carriers are randomly distributed at localization sites at t � 0, and we do not allow one

site to be occupied by more than one particle.

Starting with the simulation of purely radiative (tunneling) recombination, hence N � 0

and Dn � Dp � 0, the tunneling parameter a(r) attributed to the localization sites and

the radiative recombination rate B0 are the remaining parameters that vary the simulated

transients. In a first step, we choose a(r) to be constant, but at the end of this subsection,

we will investigate values of a(r) being randomly distributed around an average value.

In Fig. 4.5(a), we show simulated transients with a constant a increasing from a � 2 nm

(blue) to a � 20 nm (red) with a fixed value of B0 � 0.04 ns
−1

. In contrast, we fix a at a value

of 4 nm and use values of B0 increasing from B0 � 1× 10
−3

ns
−1

(blue) to B0 � 1× 10
1

ns
−1

(red) in Fig. 4.5(b). Obviously, all transients enter a power law behavior asymptotically

that follows t−1
log(t)−2

[dashed lines in Figs. 4.5(a) and 4.5(b)] as analytically derived in

Ref. 79.

The initial photon flux increases, and the initial phase of the decay (i. e., the part of

the decay which can be approximated by an exponential function) becomes faster with

increasing a or B0. Both changes are expected since the recombination rate naturally in-

creases for larger tunneling distances, i. e., similar to a larger spread of the wave functions,

or for higher recombination rates. However, the shape of the initial phase of the decay

develops in different ways for increasing a or B0. For increasing a over a meaningful

range, the initial phase of the decay amounts to about 100 ns and shortens only slightly.

In contrast, when increasing B0 over a larger range, the initial phase of the decay reduces

from more than 1,000 ns to 1 ns and almost completely vanishes for large values of B0 [see

Fig. 4.5(b)]. Thus, B0 seems to influence the initial phase of the decay of the decay more

strongly than a. Moreover, large values of B0 cause a transient which can be approximated

by a single power law right after excitation. Finally, we observe a rather unique transient

for the largest values of a. This transient exhibits a slowdown of the power law asymptote

after approximately 100 ns as indicated by the dotted lines in Fig. 4.5(a). Thus, the slope

of the asymptote cannot be fitted by a single power law anymore.

In a next step, we use the same parameters for a and B0, but introduce nonradiative

recombination centers with a density N and enable nonradiative tunneling recombination.

For simplicity, we assume that bn0 � bp0 � b0 and that N � N× at t � 0. Additionally,

charge carriers, once captured by a nonradiative center, will not be released again. With

b0 � 0.02 ns
−1

and N � 1.25× 10
−3

nm
−2

, we obtain the transients presented in Figs. 4.5(c)

and 4.5(d) for increasing a and B0, respectively. In the presence of active nonradiative

recombination centers, the decay accelerates, but the transients conserve their power law
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Figure 4.5: Double-logarithmic representation of simulated intensity transients with variation

of one parameter per subfigure. The parameters increase in equidistant steps from low

values (blue) to high values (red) as indicated. The remaining parameters are fixed at values

described in the text. Purely radiative recombination with (a) increasing tunneling distance

a and (b) increasing radiative recombination coefficient B0. The photon flux with time t of

purely radiative decays follows t−1 × log t−2
asymptotically,

[79]
as indicated by the dashed

lines in (a) and (b). The dotted lines highlight the different slopes of the decay for large a.

(c)–(f) Variation of the parameters in the presence of nonradiative recombination centers with

density N and recombination coefficient b0.

asymptote. Compared to the case without nonradiative recombination, the transients

are hardly influenced by the presence of nonradiative centers for increasing values of

B0. In contrast, increasing values of a with nonradiative centers present lead to a drastic

increase of the absolute value of the slope of the power law asymptote from t−1.3
to

t−4
. The integrated photon flux (area under the transient) is reduced with increasing a

according to the larger overlap of the electron and hole wave functions with nonradiative

centers [see Fig. 4.5(c)]. Note that the slowdown of the power law asymptote for large

values of a as observed in Fig. 4.5(a) is not detectable when active nonradiative centers

are present.

In a last step, we have varied the density of nonradiative recombination centers N

52



4.6 Monte Carlo simulation of the power law decay

and the nonradiative recombination rate b0 in Figs. 4.5(e) and 4.5(f), respectively. As

above, we set to remaining parameters to a � 4 nm , B0 � 0.04 ns
−1

, b0 � 0.02 ns
−1

, and

N � 1.25 × 10
−3

nm
−2

. We observe that increasing N has a similar effect as increasing a
in the presence of nonradiative recombination centers, which is plausible as the overlap

between nonradiative center and particle increases accordingly. Increasing b0 causes

shapes of the transients similar to ones for increasing B0, as the slope of the power law

asymptote stays constant. However, the initial photon flux decreases only slightly for

increasing values of b0. For large values of b0, the initial phase vanishes, and the complete

transients can be approximated by a single power law. Thus, it is hardly possible to

distinguish large values of B0 from large values of b0 without additional knowledge about

the absolute photon flux of the investigated sample.

4.6.2 Influence of diffusion on the power law decay

Due to their thermal energy, particles are able to conduct an undirected motion (along a

gradient) called diffusion. In accordance with recent theoretical results for (In,Ga)N,
[50,68]

we assume that the holes are localized due to their large effective mass at all temperatures

(Dp � 0), but allow for a finite diffusivity of electrons (Dn � D) at elevated temperatures.

The diffusion of electrons is implemented in the Monte Carlo algorithm by a hopping

process
§

between the different localization sites as explained in Ref. 79. In case an elec-

tron hops into a localization sites filled with a hole, the pair instantaneously recombines

radiatively. For a localization site being a nonradiative center (filled with a hole), the mo-

bile electron becomes captured (and the electron-hole pair recombines nonradiatively).

In Figs. 4.6(a) and 4.6(b), we present the influence of the diffusivity D of electrons ranging

from 0–200 nm
2

ns
−1

on the power law decay without nonradiative recombination and in

the presence of nonradiative centers with a density of N � 1.25× 10
−3

nm
−2

, respectively.

For the remaining simulation parameters, we again use a � 4 nm, B0 � 0.04 ns
−1

and

b0 � 0.02 ns
−1

. Obviously, diffusion accelerates the decay (higher initial photon flux and

shorter initial phase), but the transients still obey a power law. In the case of purely

radiative recombination and the diffusion of both electrons and holes, it can be shown

analytically that the transients asymptotically follow t−3/2
.
[79]

Approximately, this pro-

portionality is valid also in the case of electron diffusion [see dotted line in Fig. 4.6(a)]. In

the presence of active nonradiative centers, an increasing diffusivity causes significantly

steeper slopes of the power law asymptote. Mobile electrons exhibit an effectively larger

interaction distance with nonradiative centers and holes. Thus, the recombination pro-

cesses involving electrons become more efficient. Although the integrated photon flux

seems to decrease with increasing values of D [see Fig. 4.6(b)], a quantitative analysis

reveals that it stays almost constant for this set of parameters, because the (immobile)

holes are not affected by increasing values of D and constitute the rate-limiting process.

§
A phonon-induced hopping was proposed by Conwell

[390]
and Mott

[391]
already in 1956. The existence

of localized charge carriers that perform a hopping process is also well-known from polymer LEDs.
[392]
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Figure 4.6: Double-logarithmic representation of simulated PL transients including the dif-

fusion of electrons with diffusivity D for (a) purely radiative recombination and (b) in the

presence of nonradiative centers with a density N . In the case of purely radiative recombina-

tion and the diffusion of both electrons and holes, the transient asymptotically follows t−3/2

(dotted line).
[79]

4.6.3 Influence of the diffusivity on the hopping distance and the IQE

If particles are able to diffuse or hop with a given diffusivity or hopping frequency, it

is interesting to determine the diffusion length or hopping distance. As outlined in

Sec. 2.5, the PL decay of polar (In,Ga)N is nonexponential, and thus, a unique lifetime

cannot be defined. Hence, a diffusion length as a material parameter cannot be defined

either. However, within our simulations, we simulate transients with a given diffusivity

(material parameter). Moreover, we are able to track the hopping motion (number of

hops) of particles, i. e. electrons in our case, between the individual localization sites

and compare the resulting average hopping distance for standardized initial excitation

conditions for different samples.

We present the analysis of such a hopping motion in Fig. 4.7. The particle hops 10
5

steps

with a step size of 1 arb. unit for two different random seeds [see Figs. 4.7(a) and 4.7(b)].

During the random hopping process, the particle may hop into the same localization

site several times. The distance the particle covers may be characterized either by the

maximum radius from the starting point or the radial distance from the starting point

to the final position. As electrons exhibit quasi-infinite lifetimes,
[393]

electrons can be

trapped by nonradiative centers or annihilate with holes only. Thus, we define the

maximum radius as the hopping distance.

We show an exemplary distribution of the maximum radii for 10
6

steps for a pure

diffusion process in Fig. 4.7(c). The distribution follows a log-normal function and exhibits

an average value at 1,171. The median of the distribution amounts to 1,115 and is close

to the mean value as the standard deviation is comparatively small in our exemplary

distribution. Utilizing a large number of repetitions of the simulations (here 10
4
), the

average maximum radii depend on the square root of the steps/hops (solid lines) as

shown Fig. 4.7(d). To determine the exact mean maximum radii, the square root of
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Figure 4.7: (a) and (b) Simulations of a hopping process with 10
5

step with a step size of 1 arb.

unit and with different random seeds. The maximum hopping radius for the starting point

in the center is encircled by the dashed line. The stop point of the particle is marked by the

dotted circle. Positions can be occupied several times ranging from once (blue) to often (red).

(c) Distribution of the mean maximum radius of 10
4

simulations with 10
6

steps and a step size

of 1 arb. unit. Average and median of the maximum hopping radius are indicated by dotted

and dashed lines, respectively. The distribution of the maximum hopping radius follows

a log-normal distribution (solid line). (d) Semilogarithmic representation of the correlation

between the number of steps and the mean maximum radii for step sizes as indicated and 10
4

repetitions of the simulation. The mean distances are proportional to the square root of the

hops as visualized by the solid lines.

the steps has to be multiplied by the size of the steps (i. e., the diffusivity or hopping

frequency) and by a prefactor that amounts to
4

√
2. Thus, we have established a method

to determine the mean electron hopping distance for a specific power law directly from

our simulations.

In the following, we investigate the influence of the diffusivity and the density of

nonradiative centers on the electron hopping distance and the IQE in detail. Therefore, we

utilize arbitrary parameters listed as “star” in Tab. 4.2. From the simulated transients, we

observe again that, regardless of the magnitude of the D or N , the power law asymptotes

of the decay are conserved [see Figs. 4.8(a) and 4.8(b)]. However, for large densities

of nonradiative centers, the deviation from an exponential decay is not easy to detect as

highlighted by the dotted line in Fig. 4.8(b). While we obtain the electron hopping distance

as described above, we deduce the IQE directly by dividing the number of radiative events

by the total number of recombination events.

Both, the electron hopping distance and the IQE increase significantly with increasing

diffusivity as shown in Fig. 4.8(c). While the first observation is intuitive, the latter is

caused by an enhanced radiative recombination of neighboring electrons and holes in

the initial phase of the PL decay which dominates over the nonradiative processes at a

later stage. Due to the localization of the holes,
[50,68]

the capture of holes via tunneling

into nonradiative centers remains the reaction-limiting process. The maximum electron

hopping distance tends to saturate for large diffusivities [see Fig. 4.8(c)] as the decay
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

10-7

10-5

10-3

10-1 101 103 105

(a)

Time (ns)

D (nm2 ns-1)

0

2×100

2×101

2×102

2×103

0.0

0.2

0.4

0.6

0.8

100 101 102 103

0

20

40

60

80

(c)

Diffusivity (nm2 ns-1)

10-1 101 103 105
10-9

10-7

10-5 N (10-4 nm-2)

(b)

P
h

o
to

n
 f

lu
x

 (
n

m
-2

n
s-1

)

Time (ns)

0

3

13

50

10-4 10-3 10-2

10-2

10-1

1

10

recombination centers (nm-2)

(d)

E
le

ct
ro

n
 h

o
p

p
in

g
 d

is
ta

n
ce

 (
n

m
)

In
te

rn
al

 q
u

an
tu

m
 e

ff
ic

ie
n

cy

Density of nonradiative

Figure 4.8: Detailed simulations of the influence of diffusion and nonradiative recombination

processes on the transients as well as on the IQE and the hopping distance for arbitrary

parameters listed as “star” in Tab. 4.2. Double-logarithmic representation of the simulated

photon flux for (a) varying diffusivity D and (b) varying density of nonradiative centers N .

The dotted line in (b) represents a single exponential function. Corresponding dependence

of the IQEs (squares) and the electron hopping distances (circles) on (c) the diffusivity and (d)

the density of nonradiative centers. Solid lines in the (c) semi- and the (d) double-logarithmic

representation are guides to the eyes.

becomes faster and the times the electrons are able to diffuse are reduced. Accordingly,

the reduced electron recombination times explain the reduced hopping distances for an

increasing number of nonradiative centers as shown in Fig. 4.8(d). As intuitively expected,

the IQE decreases for increasing densities of nonradiative centers [see Fig. 4.8(d)].

4.6.4 Distribution of recombination events

From the preceding simulations, we conclude that even the presence of nonradiative

recombination centers or diffusion leads to power law asymptotes in our model. The

slopes of the asymptotes become steeper, but the decays may persist up to µs after the

initial excitation. However, considering the effect of nonradiative SRH recombination

in GaN (see Sec. 2.3), one might expect at a first glance that the decay has to become

exponential in (In,Ga)N as well. Starting with the rate equation for a purely radiative

56



4.6 Monte Carlo simulation of the power law decay

monomolecular recombination process of charge carriers with a density n(t) and adding

the prefactor ta−1
, we obtain

dn
dt

� −ta−1
n
τr

→ n(t) � n0e−
ta

aτr (4.6)

with the radiative lifetime τr and the initial charge carrier density n(t � 0) � n0. The

intensity (calculated by means of I � n(t)/τr) obeys a stretched-exponential, but ap-

proaches a power law for a → 0. Including a term for nonradiative SRH recombination

with a nonradiative lifetime τnr in a second step, the asymptote of the resulting transient

follows a single exponential function. Thus, the calculations predict an asymptote which

is dominated by the exponential nonradiative component. To resolve this contradiction

between these simple considerations and the observations from the simulations, we have

to investigate the difference between the recombination of excitons and the stochastic

tunneling recombination of our model (resulting in the power law asymptote). Therefore,

we directly compare the radiative and nonradiative recombination events in Fig. 4.9.
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Figure 4.9: Comparison of the intensity decay in the presence of nonradiative recombination

of (a) excitonic and (b) tunneling recombination in a semi- and double-logarithmic represen-

tation, respectively. The corresponding lifetimes of radiative (blue) and nonradiative (red)

events are shown in below the respective transient. Dashed lines indicate the average lifetime

of the respective recombination process. The parameters for the simulations as well as the

lifetimes of the single exponential fits (solid lines) are given in the text.
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

For the excitonic case, we select an arbitrary single exponential decay with an effective,

radiative, and nonradiative lifetime of τeff � 4 ns, τr � 12 ns, and τnr � 6 ns, respectively.

We show the resulting transient in a semilogarithmic representation in Fig. 4.9(a). In

Fig. 4.9(b), we use the arbitrary parameters “star” (cf. Tab. 4.2) for the simulation of an

representative power law decay. Only a minimal part (up to 2 ns) of the decay can be

approximated by an exponential decay with τeff � 4 ns. The effective lifetime determined

as time t for which IPL(t) � IPL(0)/e amounts to a value of τeff ≈ 6 ns.

In contrast to the experiment, we have here the direct possibility to separately analyze

radiative and nonradiative events, i. e., the annihilation of excitons or electrons and holes

in the simulations. In the excitonic picture, the particles are indistinguishable. Both the

radiative and nonradiative events are uncorrelated and distributed single exponentially.

Averaging the lifetimes of all events (dashed lines) or determining the decay coefficient

of the respective exponential functions (solid lines) results in τr � 12 ns and τnr � 6 ns

as shown in Fig. 4.9(c). By using Eq. (4.1), we obtain τeff � 4 ns as extracted from

the corresponding single exponential transient. Although τr and τnr are distributed

exponentially, we are able to determine useful average lifetimes.

The distribution of the radiative and nonradiative events of the power law decay is

reminiscent of a Gaussian distribution at first glance [see Fig. 4.9(d)]. However, the

actual distribution is much more complex because the effective lifetimes are displayed

on a logarithmic scale. Moreover, the radiative and the nonradiative events are correlated
and depend on the time-dependent charge carrier density as well as on the history of

the stochastic recombination process. Thus, for this decay type, effective radiative and

nonradiative lifetimes (i. e., recombination times) can be determined only. The numerical

evaluation of the average effective radiative and nonradiative lifetime results in values of

211 ns and 223 ns, respectively. The combined effective recombination time (numerically

deduced from the simulations) with a value of 221 ns is more than one order of magnitude

larger than the value estimated from the transient. The median recombination time

amounts to 22 ns and is therefore almost a factor of 4 larger than τeff ≈ 6 ns. Hence, the

correlation between the charge carriers impedes the characterization of a power law with

useful average lifetimes, and only the simulation parameters (a, B0, b0, N and D) allow a

feasible comparison of different samples.

4.6.5 Carrier density dependence

In Fig. 4.10(a), we increase ∆n � ∆p in our simulation over two orders of magnitude for

the arbitrary parameter set “star” (cf. Tab. 4.2). For increasing ∆n, the initial photon flux

increases, the length of the initial phase of the decay decreases, but the asymptotes stay

identical. Since the interaction distance of electrons and holes decrease with increasing

∆n, the results are similar to larger values of a, but without increasing the interaction

distance with the nonradiative centers.

In a next step, we utilize various combinations of parameters as listed in Tab. 4.2 to

theoretically investigate the dependence of the IQE on the charge carrier density. In

Fig. 4.10(b), we obtain an IQE of unity for purely radiative recombination (blue squares)
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4.6 Monte Carlo simulation of the power law decay

set a (nm) D (nm
2

ns
−1

) B0 (ns
−1

) b0 (ns
−1

) N (nm
−2)

star 8 2 0.001 1 3.125 × 10
−4

circle 6 0 0.04 0.08 5 × 10
−3

triangle 6 0 0.04 0.08 6.25 × 10
−4

diamond 25 10 0.02 0.01 6.25 × 10
−4

square 6 0 0.04 0 0

Table 4.2: Parameters for the simulation of the IQE presented in Fig. 4.10.

as expected. In the presence of nonradiative centers and regardless of the diffusivity, the

IQE monotonically increases with increasing initial charge carrier density. Thus, nonra-

diative processes become saturated. A decrease of the IQE for high initial charge carrier

densities, commonly observed in (In,Ga)N-based heterostructures (droop), is obviously

not inherent to our model. Additionally, a decrease of the IQE is also not observed in

the case of steady-state excitation.
[394]

Depending on the density of nonradiative centers,

the slope the increasing IQE differs for varying simulation parameters. Qualitatively,

the simulated slopes are in agreement with experimental data from LEDs with different

emission wavelengths.
[289]

However, our model is designed for low carrier densities, and

effects of high carrier density are not included. For example, at high carrier densities,

localization sites may be occupied by more than one charge carrier, causing the formation

of localized (charged) excitons with an intrinsic lifetime. At even higher concentrations

of charge carriers (i. e., above 1 × 10
12

cm
−2

in GaN
[278,280]

), degeneracy sets in and lim-

its the radiative lifetime.
[395–397]

In the case of a fast nonradiative channel, both effects

might cause a decrease of the IQE similar to the model of the “density-activated defect

recombination” proposed by Hader et al. [27]
For more information of higher-order effects
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Figure 4.10: (a) Double-logarithmic representation of the influence of the initial carrier density

∆n on the simulated transients with ∆n increasing from low (blue) to high (red) values. (b)

Simulation of the IQE for different parameters as listed in Tab. 4.2. The dotted line indicates

the charge carrier density typically used in the experiment.
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

such as Auger recombination that may be relevant for the decrease of the IQE, the reader

is referred to Sec. 2.6. In any case, the experimental investigation of transients recorded

with time-correlated single photon counting for high initial charge carrier densities is

hardly possible, as the screening of the internal electric fields significantly complicate the

acquisition and interpretation of the transients.

In the last paragraph of this subsection, we will discuss the influence of the correlation

between the radiative and nonradiative recombination time, observed and discussed in

Sec. 4.6.4, on excitation-dependent simulations of power law transients. We start with

an excitonic recombination process whose initial photon flux ϕ is proportional to the

initial exciton/charge carrier density ∆n. Dividing ∆n by a factor of β results in a single

exponential transient with an effective lifetime τeff, which we also obtain by starting the

simulation with a certain delay t0 after the excitation with n0. According to

ϕ

(
∆n
β
, t
)
� ∆n

exp(−t/τeff)
β

� n exp[−(t + t0)/τeff], (4.7)

we calculate t0 to be equal to τeffln(β) for all t. Thus, by shifting the time axis, it is possible

to produce transients with different initial exciton densities. This behavior is also valid for

a simplified pure free-carrier recombination characterized by a hyperbolic function
[398]

with a radiative recombination coefficient B:

B(∆n/β)2
(1 + B∆n/βt)2 �

B∆n2

(1 + B∆n(t + t0))2
with t0 �

β − 1

B∆n
(4.8)

However, this behavior is valid only for the recombination of uncorrelated particles. In

contrast, for the recombination of correlated particles characterized by a power law,

ϕ

(
∆n
β
, t
)
, ϕ(n , t + t0) ∀t . (4.9)

We illustrate the issue graphically for the exemplary transients in Fig. 4.11. Clearly,

the transient with the higher excitation density exhibits the larger initial photon flux.

Obviously, it is not possible to achieve a complete overlap of the two transients by shifting
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Figure 4.11: Semilogarithmic represen-

tation of exemplary simulated transients

using the parameters “star” in Tab. 4.2,

but with initial charge carrier densities

as indicated in the graph. The tran-

sient with the lower excitation density is

shifted by a delay time of t0 � 9 ns to

achieve overlapping transients for small

times after the excitation. However, at

long time delays, the transients diverge.
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4.7 Analysis of the full time range

the time axis by a certain delay (here t0 � 9 ns) as shown in the semilogarithmic represen-

tation in Fig. 4.11. Due to the correlation between the charge carriers, a certain shape of a

power law decay is not only related to (a, B0, b0, N and D), but also to the initial charge

carrier density ∆n, which in turn explains the variety of reported shapes, especially for

the initial PL decay.
[197,370,371]

4.6.6 Summary: power law simulations

By utilizing the Monte Carlo algorithm described in Ref. 79, we have solved the position-

dependent diffusion-reaction Eqs. (4.3)–(4.5), which provide the basis of our recombi-

nation model for (In,Ga)N/GaN QWs. By a comparison with an excitonic decay, we

highlighted the correlation between radiative and nonradiative recombination, which is

a peculiarity of our model. Moreover, we have established a method to determine the

hopping distance by tracking the diffusion of particles.

Finally, we summarize the influence of the individual recombination parameters (within

their typical range) on the simulated power law transients in Tab. 4.3.

parameter symbol typical range influence on the transient

tunneling distance a 0.1–20 nm initial photon flux; power law

asymptote in the presence of

nonradiative centers

radiative rate B0 10
−4

–10
1

ns
−1

length of the initial phase; ini-

tial photon flux

nonradiative centers N 0–10
−2

nm
−2

power law asymptote

nonradiative rate b0 0–10
2

ns
−1

length of the initial phase; ini-

tial photon flux

diffusivity D 0–10
2

nm
2

ns
−1

initial photon flux; power law

asymptote in the presence of

nonradiative centers

electron density ∆n 2.5 ×10
−3

nm
−2

effects similar to a

Table 4.3: Comparison and summary of the influence of the simulation parameters of the

Monte Carlo algorithm on the power law transients as discussed in detail in Sec. 4.6

4.7 Analysis of the full time range

After we have studied the influence of the simulation parameters on the power law

transients in detail in the previous section, we will focus on the reproduction of the
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

experimental transients in this section to understand and compare the recombination

dynamics in our polar (In,Ga)N/GaN samples.

To recall, the average density of localization sites is set to a value of 1 nm
−2

as discussed

in Sec 4.6.1. From the excitation density employed for the time-resolved experiments, we

estimate a charge carrier density of ∆n � ∆p � 2.5 × 10
−3

nm
−2

. The charge carriers are

randomly distributed at localization sites at t � 0, and we do not allow one site to be

occupied by more than one particle. Furthermore, as discussed in Sec. 4.6.2, the holes

are localized at all temperatures (Dp � 0), but we allow for a finite diffusivity of electrons

(Dn � D) at elevated temperatures. For simplicity, the nonradiative recombination coef-

ficients for electrons and holes are set to be equal (bn0 � bp0 � b0), and we assume that

N � N× at t � 0. Additionally, charge carriers, once captured by a nonradiative center,

will not be released again.

Figures 4.12(a) and 4.12(b) show simulated transients (lines) in comparison to the ex-

perimental ones (symbols) displayed in Figs. 4.3(a) and 4.3(b), respectively. The input

parameters used for these simulations are listed in Tab. 4.4. For a direct comparison

with the simulated photon flux ϕ, the experimentally measured, spectrally integrated PL

intensity IPL is scaled by the same factor for both samples.

Let us first discuss the results for each sample separately. For the planar sample at 10 K,

the experimental transient with its pronounced slowdown at 400 ns is only reproduced

adequately when setting both the diffusivity and the nonradiative rate to zero, i. e., the

simulated transient corresponds to the purely radiative recombination of localized elec-

trons and holes [cf. Tab. 4.4 and Fig. 4.12(a)]. Thus, the peculiar slowdown of the decay

is indeed a fingerprint for an IQE of unity, in agreement with our assumption in Secs. 4.2
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Figure 4.12: Double-logarithmic representation of simulated PL transient (lines) for the (a)

planar and (b) nanowire sample. The transients were computed by means of Eqs. (4.3)–(4.5).

The dotted line in (b) shows a transient for the nanowire sample at 10 K obtained with values

for b0 and N (namely, b′
0

and N′
) that keep the product constant (i. e., b′n N′ � bn N). For

comparison, a reduced number of experimental data points from the PL transients shown in

Fig. 4.3 is added for 10 K (squares) and 250 K (circles) for both samples.
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4.7 Analysis of the full time range

sample T (K) a (nm) D (nm
2

ns
−1

) B0 (ns
−1

) b0 (ns
−1

) N (nm
−2)

planar 10 20 0 2 × 10
−2

0 3.1 × 10
−4

planar 250 8 2.00 1 × 10
−3

1.0 × 10
0

3.1 × 10
−4

nanowire 10 5 ± 2 0 1 × 10
−2

2.8 × 10
2

9.4 × 10
−4

nanowire 250 5 ± 1 0.05 1 × 10
−2

4.0 × 10
2

9.4 × 10
−4

Table 4.4: Parameters used for the Monte Carlo simulation of the temperature-dependent

PL transients of the planar and the nanowire sample shown in Figs. 4.12(a) and 4.12(b),

respectively.

and 4.3.
¶

At 250 K, the simultaneous loss in intensity and the acceleration of the decay are

obtained by decreasing the radiative rate and enabling both electron diffusion and non-

radiative recombination (see Tab. 4.4). The temperature dependence for the radiative and

nonradiative processes are consistent with the respective lifetimes depicted in Fig. 4.2(b).

Note that, although the power law decay is preserved, the nonradiative process eliminates

the slowdown at 400 ns as also observed experimentally.

Regardless of temperature, the experimental transients of the nanowire sample are

characterized by a complete absence of an initial exponential phase [see Fig. 4.2(a)]. The

shape and intensity of these transients can only be reproduced by a dominant nonradiative

process. We obtain the transients by assuming capture coefficients that are more than

two orders of magnitude larger than those of the planar sample, while the density of

the nonradiative centers is similar (this finding will be discussed in more detail below).

The almost rigid downshift of the transient recorded at 250 K in Fig. 4.12(b) is obtained

by a further increase of the capture rate, while the radiative recombination rate does not

change at all. Note that the radiative rate is smaller than that observed for the planar

sample, in agreement with the results in Tab. 4.1. In contrast to the more homogeneous

planar sample, we include random variations of a (denoted by ±-sign in Tab. 4.4) to obtain

better fits of the power law asymptote and to represent the strong ensemble fluctuations of

the nanowires. Furthermore, diffusion is almost absent even at 250 K (see Tab. 4.4), which

directly reflects that carrier localization is significantly stronger in the (In,Ga)N/GaN QDs

than in the planar (In,Ga)N/GaN QWs. This result confirms the conclusions drawn from

the results presented in Figs. 4.1(a) and 4.2(c) and is also in agreement with the study of

Lähnemann et al. [43]
on the same nanowire sample.

Finally, we discuss four important issues in connection with these simulations: (i) the

physical origin of the slowdown in the experimental and simulated PL transients of the

planar sample shown in Figs. 4.3(a) and 4.12(a), (ii) the different role of b0 and N for

the total nonradiative rate, (iii) the definition of a minority carrier diffusion length for

(In,Ga)N, and (iv) the impact of carrier diffusion on the IQE.

(i) Figure 4.13 shows snapshots of the spatial distribution of electrons and holes during

their radiative recombination resulting in the simulated PL transient at 10 K as shown in

¶
As the In content is homogeneously distributed, large random fluctuations of a, resulting in a similar

slowdown, can be excluded.
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4 Tunneling recombination of charge carriers in polar (In,Ga)N/GaN

(a) (b) (c)

t = 1×10-2 ns t = 4×101 ns t = 4×102 ns

Figure 4.13: Snapshots of the distribution of electrons (green) and holes (blue) during the

simulated decay of the PL intensity of the planar sample at 10 K. The snapshots are 400 × 400

nm
2

in size and were taken (a) right after excitation, (b) at 40 ns, and (c) at 400 ns, after

which the decay slows down significantly. The emerging clusters of electrons and holes are

encircled in (c) by solid and dashed lines, respectively. For clarity, we do not display the

(inactive) nonradiative recombination centers, and we show electrons and holes as spheres of

uniform size.

Fig. 4.12(a). Immediately after their excitation, electrons and holes are distributed ran-

domly [see Fig. 4.13(a)]. Obviously, the electrons and holes most likely to recombine first

are those with the least spatial separation. Hence, electrons in close vicinity to holes will

disappear and vice versa. As a consequence, clusters of each individual species emerge

from the initial random distribution as indeed seen in the snapshot shown in Fig. 4.13(b).

These clusters become entirely spatially separated with subsequent recombination [see

Fig. 4.13(c)], and it is at this point where the recombination slows down. This segregation

phenomenon (resulting in the observed slowdown of the PL transient) only occurs in the

absence of nonradiative recombination, since nonradiative centers (randomly distributed)

couple the individual reservoirs, and of diffusion, which constantly redistributes the elec-

trons and constitutes the rate-limiting step determining the speed of recombination.

(ii) For classical Shockley-Read-Hall recombination (see Sec. 2.3), the steady-state re-

combination rate is proportional to the product bN , and one cannot distinguish an increase

in the density of nonradiative recombination centers from an increase of the capture co-

efficient.
[142]

In the present case, however, the impacts of b � bn � bp and N is different

and can be distinguished. This fact is illustrated by the simulated transient labeled b′
0
N′

in Fig. 4.12(b), for which we assumed the same value for the capture coefficient as for the

planar sample (b0 � 1× 10
0

ns
−1

), but increased N to the value required (2× 10
−2

nm
−2

) to

keep the product bN constant (taking into account that |x| equals asymptotically 1/2

√
N).

Evidently, the two transients computed with the same value of bN are drastically differ-

ent. The origin of this different impact of b and N lies in the fact that the capture rate b
depends exponentially on the density of the centers as well as of the carriers. A higher

prefactor for the nonradiative capture coefficient is thus not equivalent to a higher density

of nonradiative centers.

(iii) The precise shape of the power law decay depends sensitively on the carrier diffusiv-
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4.7 Analysis of the full time range

Figure 4.14: Simulated electron hop-

ping distance corresponding to the pla-

nar sample measured at 250 K. Median

and average value of the hopping dis-

tance are indicated by dashed and dotted

lines, respectively. The solid line repre-

sents the probability density function of

a log-normal distribution.
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ity as was already discussed in Sec. 4.6.2 and shown in Fig. 4.8(a). Analyzing experimental

transients by our recombination-diffusion model allows us to assess diffusion processes

taking place on a nanometer scale without requiring any spatial resolution. In fact, even

diffusivities as small as 10
−5

cm
2

s
−1

can be detected, a value too small to be resolved by

most other techniques (see also Sec. 2.5). Note that this diffusivity cannot be translated

into a diffusion length in the conventional sense since the diffusing species (i. e., the elec-

trons) do not have a unique recombination time. Instead, both the recombination time of

the electrons and their hopping distance within this recombination time are instantaneous

quantities that vary over orders of magnitude with time. As shown in Sec. 4.6.2, we keep

track of each individual electron including all of their elementary hops and recombination

events in the frame of our Monte Carlo simulation. Averaging over all electrons in the

simulation for a time up to 100 µs, we obtain an average hopping distance of 13 nm for

the planar sample at 250 K. Note, however, that this hopping distance is not distributed

normally as demonstrated in Fig. 4.14. Some electrons migrate over distances larger the

50 nm, whereas a noticeable portion of electrons do not hop even once before they recom-

bine.
‖

In the nanowires, the average hopping distance (on the order of 1 nm) is negligible

due to the smaller value of D and the much faster (nonradiative) recombination process

limiting the recombination times of the electrons.

Utilizing the relationship of L �
√

Dτ with D � 2 nm
2

ns
−1

and the average (median)

effective lifetime of the electrons of τavg ≈ 221 ns (τmedian ≈ 22 ns) for the planar sample at

250 K [see Fig. 4.9(d)] results in the average (median) hopping distance of the electrons of

Lavg ≈ 21 nm (Lmedian ≈ 7 nm). Both values are close, but not identical to the ones extracted

from Fig. 4.14. Again, this indicates that average lifetimes are only crude approximations

to a power law decay.

(iv) Intuitively, one expects a monotonic increase of the IQE with increasing excitation

density [see Fig. 4.10(b)], decreasing density of recombination centers [see Fig. 4.8(c)], or

smaller (nonradiative) capture coefficients. Our model actually confirms this expectation.

However, the impact of diffusion on the IQE is not as straightforward. In general, diffusion

processes accelerate the decay of the PL intensity as shown in Fig. 4.6 in Sec. 4.6.2. For

‖
In contrast to the distribution of the hopping distance of particles without additional recombination

mechanisms [see Fig. 4.7(d)], the distribution of the electron hopping distance corresponding to power

law transients cannot be approximated by a log-normal distribution.
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the parameters used for simulating the transient for the planar sample at 250 K, the

diffusion of electrons is found to enhance the IQE since it favors radiative recombination of

neighboring electrons and holes in the initial phase of the PL decay over a capture by the

nonradiative centers at a later stage [see Figs. 4.8(a) and 4.8(c) in Sec. 4.6.2]. The opposite

situation occurs for a sufficiently high density of nonradiative recombination centers

and the simultaneous diffusion of electrons and holes, for which diffusion enhances

nonradiative over radiative recombination and thus results in a reduction of the IQE.

4.8 Summary, conclusions, and outlook

Our comparison of the recombination dynamics of Ga-polar planar (In,Ga)N/GaN QWs

and N-polar (In,Ga)N/GaN QDs in nanowires has resulted in several important insights.

First of all, we have shown that the recombination dynamics in the latter structures

is characterized by both strong carrier localization and a highly efficient nonradiative

decay channel. Using the ratio of the PL intensities at high and low temperatures as

a measure for the IQE may result in grossly overestimated values, and may thus be

entirely misleading. The actual IQE of the (In,Ga)N/GaN QDs is low (≈ 0.5 %) even at

10 K, but decreases only slightly to about 0.2 % at 250 K thanks to the fact that localization

prevails up to high temperatures. These values are consistent with the low EQEs reported

for (In,Ga)N/GaN(000
¯
1)-based nanowire LEDs.

[354,399,400]
They are also consistent with

the peak EQE of 0.055 % measured for LEDs that have been fabricated from nanowire

ensembles comparable to the one investigated in this thesis.
[401]

An alternative and more reliable method to quantitatively investigate the IQE as well

as carrier diffusion is the analysis of the PL transient recorded with time-correlated

single photon counting over a time interval sufficient to yield a high dynamic range in

intensity. For both (In,Ga)N/GaN(0001) QWs and (In,Ga)N/GaN(000
¯
1) QDs, a power

law decay is observed, reflecting that recombination occurs between individual electrons

and holes with different spatial separation. The PL transient of the QWs at 10 K exhibits

a characteristic slowdown after about 400 ns, which we have found to be a fingerprint

of purely radiative recombination. Nonradiative recombination and carrier diffusion set

in at 250 K and eliminate this slowdown, but the power law decay is preserved. Even

the much faster nonradiative recombination in the QDs does not result in a faster overall

decay. A slow decay is thus not a reliable indicator for a high IQE. However, the shape

of the transients observed for the QDs is quite different from that of the QWs and can

be reproduced in simulations only when assuming recombination centers with very high

capture coefficients. It seems likely that these centers are identical to those hypothesized

to be responsible for the complete lack of an (In,Ga)N(000
¯
1)-related band in the PL spectra

of planar (In,Ga)N/GaN(000
¯
1) QWs grown by MBE.

[402–404]
In both cases, these centers

are most probably related to native point defects or defect complexes, but their actual

nature still remains to be identified. In any case, the strong localization effects observed

for QDs in nanowires
[43]

may help a small fraction of the carrier population to evade

nonradiative annihilation and may thus prevent the total dominance of nonradiative
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processes observed for homogeneous (In,Ga)N/GaN(000
¯
1) QWs.

Our study in this chapter has, however, not only provided insights into the eligibil-

ity of N-polar (In,Ga)N/GaN nanowires for the use in future light emitters, but has

also contributed to the understanding of the recombination processes of materials used

presently for commercial devices. Just as in (In,Ga)N/GaN(000
¯
1) QDs, the dominat-

ing recombination in (In,Ga)N/GaN(0001) QWs occurs between individually localized,

spatially separated electrons and holes. The recombination rates, whether radiative or

nonradiative, thus depend strongly (in fact exponentially) on the carrier density. This

dependence manifests itself in the highly nonexponential nature of the PL decay with its

power law asymptote. Obviously, analyzing the luminous efficiency of a material with

these characteristics by means of a model with constant recombination coefficients (i. e.,

the popular ABC model
[31,405]

) will lead to misleading results, as was recently also pointed

out by Badcock et al. [272]
In addition, carrier diffusion has been found to occur at elevated

temperatures and to affect the IQE, but is neglected in the ABC model (see Sec. 2.6.1)

altogether. For understanding the origin of the droop of the EQE as well as the green

gap in actual LEDs, models are required that go beyond the crude approximation offered

by the ABC model and properly describe the carrier dynamics in the material under con-

sideration. The diffusion-reaction equations employed in this chapter constitute a clear

physical framework on which such a more general model could be based.
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Chapter 5
Comparison of localization
mechanism

Due to the absence of the internal electric field, (In,Ga)N/GaN heterostructures grown along the nonpolar
crystal direction of GaN have attracted considerable attention. However, nonpolar GaN substrates are
expensive and not suited for mass production. Recently, the growth of (In,Ga)N/GaN QWs on the nonpolar
side facets of GaN µ-rods has led to the fabrication of cost-effective and efficient LEDs. The PL transients
are single exponential in such core-shell heterostructures, indicating that the recombination is excitonic.
This finding is in striking contrast to the recombination of individual electrons and holes in polar QWs
characterized by a power law PL decay. We suggest that the reduced influence of well-width fluctuations on
the individual localization of charge carriers in nonpolar QWs prevents the dissociation of localized excitons.

5.1 Nonpolar (In,Ga)N/GaN heterostructures

5.1.1 Planar layers versus core-shell µ-rods

In the previous chapter, we have analyzed the effect of the localization of charge carriers in

polar (In,Ga)N/GaN heterostructures on the PL properties in detail. We have found that

recombination takes place via tunneling between spatially separated electrons and holes.

According to Schulz et al., [68]
we attribute the dissociation of excitons and the subsequent

individual, spatially separated localization of electrons and holes in polar (In,Ga)N/GaN

QWs to the enhanced influence of well-width fluctuations and the reduced exciton binding

energy. Both effects are a consequence of the large internal electric fields in the polar QWs.

However, internal electric fields are absent in QWs grown along the nonpolar crystal

direction, e. g., on M-plane GaN.
[406]

Without spontaneous and piezoelectric polarization

fields (see, e.g., Ref. 407 and references therein), also the quantum-confined Stark effect

does not exist in nonpolar QWs. Thus, the transition energy as well as the overlap of

the electron and hole wave functions and accordingly the recombination rates increase

significantly for a given In content.
[406] ,∗

Recently, exponential PL decays with lifetimes on

∗
See also the one-dimensional Schrödinger-Poisson calculations in Fig. 2.2 in Sec. 2.1.
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the order of 0.5 ns have been reported for nonpolar GaN and (In,Ga)N/GaN QWs.
[408–414]

Thus, (In,Ga)N/GaN QWs grown along the nonpolar direction are an interesting test bed

to study the recombination of charge carriers in the random alloy (In,Ga)N without the

complications due to the internal electric fields.

Nonpolar GaN buffer layers for the subsequent growth of (In,Ga)N/GaN QWs can be

grown on either γ-LiAlO2(100),
[406,407]

resulting in films with a high density of stack-

ing faults, or on expensive and small M-plane bulk GaN substrates diced from around

6 mm-thick GaN(0001) wafers. These free-standing GaN layers, grown by hydride va-

por phase epitaxy, exhibit a high crystal quality with dislocation densities on the order

of 10
5

cm
−2

,
[7,415,416]

enabling the growth of (In,Ga)N/GaN heterostructures with high

structural perfection. Although nonpolar LEDs and laser diodes based on (In,Ga)N/GaN

QWs have been demonstrated already in 2005
[417,418]

and 2007,
[419]

the lack of suitable

substrates has limited the application of nonpolar, planar LEDs to basic research up to

now.
[420–422]

It has been reported that, for a given substrate temperature, the incorporation of In is

lower along the nonpolar crystal direction than for the polar or the semipolar ones.
[423–426]

In contrast, the authors in Ref. 427–430 have shown that the incorporation of In during

growth is similar for the polar and nonpolar crystal directions. By comparing the ex-

perimentally measured transition energies with results obtained from k ·p-calculations,

Wernicke et al. [429]
concluded that the absence of the quantum-confined Stark effect and

the effect of anisotropic strain in the (In,Ga)N/GaN QWs cause the high transition ener-

gies in nonpolar QWs compared to their polar counterparts (i. e., 3.0 eV instead of 2.6 eV

for an In content of 18 %).

In order to fabricate coherently strained, nonpolar (In,Ga)N/GaN heterostructures in

the desired green spectral range, partially relaxed (Al,In)N interlayers have recently been

used to allow for an In incorporation of up to 40 %.
[422]

Thus, the fabrication of nonpolar,

planar LEDs emitting in the green spectral range is technologically even more difficult

than for polar LEDs. Recently, Davies et al. [431]
have reported that droop occurs in

optimized (In,Ga)N/GaN structures grown along the polar as well as along the nonpolar

crystal direction. The sum of these complications makes nonpolar, planar (In,Ga)N-based

LEDs unattractive for standard applications in solid-state lighting when compared to their

optimized polar counterparts grown on inexpensive six-inch sapphire substrates.
†

The situation is different for nonpolar GaN/(In,Ga)N core/shell heterostructures. Here,

(In,Ga)N QWs are grown around GaN µ-rods as shown schematically in Fig. 5.1. Com-

monly, Ga-polar GaN µ-rods are realized by selective-area growth using a patterned SiOx

mask on a GaN buffer on sapphire substrates.
[433,434] ,‡

Extended defects such as strain-

induced dislocations propagate to the sidewalls of the µ-rods during the initial phase of

the growth,
[438,439]

leading to a high structural perfection of the upper parts of the µ-rod.

†
Note that SORAA

®
produces and sells LEDs grown on polar bulk GaN for advanced illumination purposes.

Benefiting from the high quality of the substrate, these LEDs are characterized by extremely high EQEs

especially at high current densities.
[340,432]

‡
GaN µ-rods can be also produced by Au-assisted vapor-liquid-solid growth

[435]
or by wet chemical etching

of thick GaN buffers using a colloidal mask.
[436,437]
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GaN core

(In,Ga)N QW

GaN shell

SiOx mask

GaN buffer on Al2O3

GaN cap

Figure 5.1: Schematic

of an GaN/(In,Ga)N

core/shell heterostruc-

ture in the form of a µ-

rod grown by selective-

area epitaxy on a GaN

buffer on an Al2O3 sub-

strate.

After the growth of the core, QWs are deposited on the nonpolar sidewalls of the µ-rods

by MBE (see, e. g., Ref. 440) or MOCVD (see, e. g., Ref. 75). A review on LEDs based on

µ-rods can be found in Ref. 441.

In addition to the low cost of the substrates and the high structural perfection of the

µ-rods, these structures exhibit a large surface area since an aspect ratio of 40 can be

realized.
[75]

The larger surface area leads to a reduced carrier density inside the QWs and

hence a reduced droop per device area compared to planar structures. Moreover, the

µ-rod LEDs exhibit a superior light extraction efficiency of 30 % without any additional

structuring.
[439]

Another advantage of GaN/(In,Ga)N core/shell µ-rods is the realization

of full-color emission on a single substrate by adjusting the diameter of the µ-rods.
[442]

A

first commercialization of monolithic (red, green, and blue) RGB LED chips is expedited

by glō
®

.
[443]

White-light emission can be achieved by utilizing optimized micrograin

phosphors with blue emitting µ-rods as the pump source.
[439]

At present, however, the

EQE of the µ-rods with a 5-nm-thick nonpolar single (In,Ga)N QW is estimated to be about

10 %, which is partly attributed to high reabsorption.
[75]

Additionally, the small radiative

recombination coefficient and the short nonradiative lifetime cause an IQE below 40 %.
[444]

Recently, higher IQEs of about 70 % have been reported for µ-rods with a multi-QW core-

shell structure.
[445]

5.1.2 Photoluminescence spectroscopy of GaN/(In,Ga)N core/shell µ-rods

As outlined above, GaN/(In,Ga)N core/shell µ-rods are a promising alternative to planar

LEDs. However, the origin of the low IQE has to be identified and carefully investigated

to optimize these core-shell structures. Therefore, an understanding of the underlying

recombination processes and the localization mechanism is essential. We utilize steady-

state and pulsed excitation to explore the PL properties of GaN/(In,Ga)N core/shell

µ-rods containing a single QW and emitting in the blue spectral range. The sample was

grown by MOCVD in an industrial reactor at OSRAM Opto Semiconductors GmbH in

2015. More details about the growth and the sample as schematically depicted in Fig. 5.1

can be found in Refs. 74 and 433.

In the following, we present the results of steady-state µ-PL spectroscopy of single

GaN/(In,Ga)N core/shell µ-rods, dispersed on a Si substrate, using nonresonant excita-
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tion (Elaser � 3.814 eV) with a power density of Iexc ≈ 200 W/cm
2
. A color-coded, spatially

resolved map of the PL peak energy is presented in Fig. 5.2(a). The peak energy decreases

by about 100 meV from the bottom to the pencil-shaped tip of the Ga-polar µ-rod. De-

tailed investigations with various techniques (e. g. transmission electron microscopy or

nanofocus x-ray diffraction) on similar samples have correlated this effect with an increase

of In content and thickness of the QW along the µ-rod.
[74,444,446–450]

The reduced incorpo-

ration of In due to the reduced gas diffusion down to the base of the µ-rods, especially

at low growth temperatures, has been identified to be the main reason for the increasing

transition energy at the bottom of the µ-rod (see Ref. 448 and references therein).
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Figure 5.2: (a) Color-coded map of the spatially resolved peak energy measured with steady-

state PL at 10 K. The profile of the µ-rod is indicated by the dashed line. The redshift of the

PL band due to the quantum-confined Stark effect in the semipolar facets is visible at the

pencil-shaped top of the µ-rod. (b) Representative steady-state PL spectra of the center of a

µ-rod recorded at 10 and 300 K. The dotted arrows indicate the evolution of two dominant

PL bands with increasing temperature. (c) Temperature-dependent PL transients of a single

µ-rod on a semilogarithmic scale. The response of the system to the laser is given in black.

(d) Temperature-dependent effective (τeff), radiative (τr), and nonradiative (τnr) PL lifetimes.

The behavior of τr with temperature is fitted using Eq. (2.29) (solid line). Dashed and dotted

lines indicate the assumed temperature-dependent lifetimes for a homogenous QW with a

low In content as explained in the text.
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At low temperatures, we observe an asymmetric PL band with a rather large FWHM

of 80 meV [see Fig. 5.2(b)] which can be explained by the fact that we spatially average

the PL signal over an area in the center of the µ-rod of as large as 1 µm
2
. At 300 K, the

asymmetric PL band splits into two bands with a combined FWHM of about 160 meV.

Thus, the individual PL bands do not broaden significantly. The dashed lines in Fig. 5.2(b)

indicate a severe quenching of the low energy band compared to the peak at higher energy.

This finding may, analogously to polar QWs, be a direct consequence of a lower structural

quality of (In,Ga)N with higher In content.
[444]

By raising the temperature from 10 to

300 K, the spectrally integrated PL intensity is reduced by a factor of 2 only.

In Fig. 5.2(c), we show temperature-dependent PL transients of a single µ-rod dispersed

on Si utilizing a streak camera. For the time-resolved PL measurements presented in this

chapter, the samples have been excited nonresonantly with a photon energy of 3.55 eV and

an energy fluence per pulse of about 2 µJ/cm
2

by utilizing the setup described in detail in

Sec. 3.4.2. Due to the limited spatial resolution (6 × 4 µm
2
), the transient originates from

almost the entire µ-rod. However, by a careful positioning of the laser spot and simultane-

ously monitoring the PL spectrum, we avoid the excitation of the semipolar facets. The PL

transients reveal a single exponential decay,
§

indicating the recombination of excitons as

also observed by other groups.
[421,451]

Based on the atomistic theory for polarization fields

in the random alloy (In,Ga)N,
[386]

Schulz et al. [368]
have shown that localized excitons are

predominant in QWs grown along the nonpolar direction due to Coulomb interactions

and reduced localization mechanism for electrons.
[68,368]

The formation of excitons in the

random alloy (In,Ga)N is in sharp contrast to the recombination of individual electrons

and holes in polar (In,Ga)N/GaN QWs as shown in Sec. 4.1.

By fitting the PL transient with a single exponential function, we extract an effective PL

lifetime τeff of 0.5 ns at 10 K. The value of τeff decreases slightly to 0.4 ns with increasing

temperature up to 200 K [see Fig. 5.2(d)]. Above 200 K, τeff surprisingly increases which

we will discuss at the end of this section. Lifetimes of 1 ns, obtained with time-resolved

cathodoluminescence, have been reported for µ-rods similar in QW width and In con-

tent.
[410]

Assuming that IQE � 1 for these rods measured at 4 K, τr � 1 ns. Note that for an

excitonic recombination the assumption of a material-dependent value of τr is justified.

Utilizing the absolute value of τr � 1 ns, we obtain an IQE of η � 0.5 at 10 K by using

Eq. (4.2). We deduce the temperature dependence of τr from the inverse of the maximum

PL intensity
[180]

which results in an IQE of 0.25 at 300 K. Note that the extracted values for

the IQE are average values as the actual IQE depends on the In content and hence on the

position along the µ-rod.
[444,445]

We note that the nonradiative lifetime (τnr), calculated

by means of Eq. (4.1), becomes faster than τr above 100 K.

Independent of the absolute values, we observe in Fig. 5.2(d) that τr is independent

of temperature up to 150 K and increases linearly thereafter. According to the relation-

ship between the radiative lifetime and the dimensionality of the system as derived in

Sec. 2.3.4, excitons are localized in a zero-dimensional potential (at random compositional

§
In Sec. 5.2, we show transients recorded with time-correlated single photon counting with a high dynamic

range.
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fluctuations or In clusters
[65]

) below 150 K. Above this temperature the excitons are delo-

calized and experience the two-dimensional confinement of the QW. Additionally, our

findings of localized excitons up to 150 K are in agreement with atomistic simulations

indicating localization not only for the ground state, but also for excited states.
[452,453]

As we are dealing with excitons, we utilize Eq. (2.29) to deduce a localization energy of

Eloc � 30 meV from τr [solid line in Fig. 5.2(d)].

The picture of excitonic recombination influenced by random compositional fluctua-

tions is underlined by recent time-resolved cathodoluminescence data of core-shell µ-rods.

Utilizing a tunneling model for excitons,
[454,455]

Shahmohammadi et al. [410]
explain their

spectrally and spatially resolved cathodoluminescence transients by a thermalization of

excitons through a hopping/diffusion process between localization centers.
[410]

Further-

more, they exclude a significant drift of charge carrier to regions with higher In content.

However, the diffusion of electrons without significant drift is possible only, when exci-

tons exhibit a limited mobility in the form of a hopping process between potential minima

in a fluctuating potential landscape. Hence, localization does not influence the recombi-

nation mechanism which stays excitonic as in the case of GaN, but affects the diffusion of

excitons.

As mentioned above, our PL signal is spatially averaged. Thus, the effective PL lifetime

may be a superposition of different regions of the µ-rod which were found to exhibit

different IQEs.
[444]

When the excitons become mobile above 150 K, regions with higher

In content (lower IQE) should attract excitons, which recombine predominantly nonra-

diative. Accordingly, the decrease of τeff above 100 K is attributed to excitons causing

the low energy peak that dominates the PL spectrum up to 200 K. Above 200 K, however,

the slowly decaying excitons in regions of low In content (high IQE / high peak energy)

dominate τeff. This argument is in agreement with the minor decrease of the intensity

of the high-energy PL band compared to that of the low-energy PL band observed in

Fig. 5.2(b). Accordingly, τeff and τnr of the excitons recombining at the bottom part of the

µ-rod actually follow the dashed and dotted lines indicated in Fig. 5.2(d), respectively.

Hence, the dip of τeff originates from the spatial averaging over the inhomogeneous µ-rod

and the suppression of the diffusion due to the potential landscape.

5.2 Influence of electric fields and exciton binding energy

Both polar and nonpolar (In,Ga)N/GaN heterostructures are influenced by localization,

but the recombination mechanisms are fundamentally different. In the following, we will

show that it is energetically favorable for the excited electrons and holes to form excitons

in nonpolar (In,Ga)N/GaN QWs, while electrons and holes localize at individual and

spatially separated positions in polar (In,Ga)N/GaN QWs.

The relevant physical mechanism to form excitons is the gain of energy in the form of

exciton binding energy EX (see Sec. 2.3.1). Hence, excitons will dissociate if EX is lower

than the energy gained by the individual localization of electrons and holes into spatially
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Figure 5.3: Low-temperature (a) steady-state PL spectra and (b) PL transients of polar and

nonpolar (In,Ga)N/GaN QWs as well as Ga-polar bulk (In,Ga)N grown on GaN-buffered

Al2O3. The samples have been excited nonresonantly with moderate excitation densities to

avoid a screening of the internal electric fields. The dotted and solid arrows in (a) indicate

oscillations due to interference effects and a longitudinal optical phonon replica, respectively.

In (b), the dotted lines indicate the power law asymptote, while the dashed lines represent

single exponential fits to the data.

separated potential minima Eloc.
[48,456,457] ,¶

According to Schulz et al., [68]
electrons local-

ize predominately at monolayer fluctuations of the well-width in polar (In,Ga)N/GaN

QWs, while holes localize at In clusters of atomic size (caused by random compositional

fluctuations) due to their large effective mass.
[68,368]

Thus, we assume Eloc to be the sum

of the different contributions of electron (Ee,loc) and hole (Eh,loc) localization energy. If the

In content is distributed randomly in the QWs (i. e., no significant In clustering), the hole

localization energy should be the same for polar and nonpolar crystal orientation, as it

is not influenced by the internal electric fields.
[368]

However, the influence of well-width

fluctuations, causing the localization of electrons, is much stronger in Ga-polar QWs

compared to nonpolar ones (see Sec. 2.4). In the case of a (In,Ga)N bulk grown along

the polar direction, charge carriers experience the influences of internal electric fields and

thickness fluctuations only close to the interfaces, which represent only a minor fraction

of the active volume.

Therefore, we select three samples for our comparison: A Ga-polar (In,Ga)N/GaN

heterostructure with five QWs, the nonpolar GaN/(In,Ga)N core/shell µ-rod investigated

in the preceding section, and a 40-nm-thick Ga-polar (In,Ga)N bulk. The selected samples

are representative for their respective type and exhibit comparable concentrations of In.

Therefore, the PL bands peak in a similar spectral region, ranging from violet to blue.
‖

The

normalized low-temperature steady-state PL spectra of these three samples are shown in

¶
Note that the exciton may localize as entity at low temperatures, gaining exciton localization energy. In

the following, this fact is neglected for simplicity.

‖
Because of the absence of the quantum-confined Stark effect, the nonpolar QWs emits at higher energies

than the polar ones with a similar In content.
[429]
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Fig. 5.3(a). The FWHM of the polar QWs and the polar bulk sample are comparable. The

nonpolar QWs seem to exhibit larger compositional fluctuations as indicated by the rather

large FWHM. This observation is in agreement with recent findings by a transmission

electron microscope-cathodoluminescence study on similar samples.
[65,448]

However, a

significant contribution to the FWHM of the PL spectrum directly originates from the fact

that the In content exhibits a macroscopic gradient along the axis of the µ-rod as shown in

Sec. 5.1.2. Thus, we believe that the magnitude of the random compositional fluctuations

is similar in all samples.

Figure 5.3(b) shows PL transients of the three samples recorded with time-correlated

single photon counting at 10 K. The transients were recorded at the respective peak ener-

gies integrated over a spectral range of about 20 meV. While the transients of the nonpolar

QWs clearly follow a single exponential function (dashed line) over at least three orders of

magnitude, the transients of the polar QWs obey a power law (dotted line) after an initial

exponential phase. As mentioned in Secs. 4.7 and 5.1.2, the decay is dominated by tun-

neling recombination of spatially separated electrons and holes for polar (In,Ga)N/GaN

QWs, but by exciton recombination for nonpolar ones. As expected from the discussion

in this subsection, the thick, but fully strained,
[458,459]

polar (In,Ga)N bulk reflects an

intermediate case. The transient is single exponential over 1–2 orders of magnitude and

subsequently obeys a steep power law decay. The recombination may be caused predom-

inantly by (localized) excitons (far from the interfaces) recombining in the first 3–4 ns of

the decay. As the decay proceeds, spatially separated electrons and holes close to the

interface cause the power law asymptote. A slower power law decay may be excluded,

because threading dislocation in the (In,Ga)N bulk sample are not entirely screened by

V-shaped pits as in the case of optimized QWs
[269,458]

and therefore act as nonradiative

centers. Our experimental observations of the decay shape are summarized in Tab. 5.1.
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Figure 5.4: Dependence of the exciton binding energy on (a) quantum well width d and (b)

internal electric field F for an (In,Ga)N/GaN QW with an In content of 23 %. The exciton

binding energy has been calculated by the variational method.
[125]

The calculations were

performed by P. Corfdir. The typically used thickness for a polar QW (d � 3 nm) is indicated

by a vertical line in (a). The exciton binding energy of bulk GaN
[108,113–116]

is highlighted by

horizontal lines in both graphs.
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5.2 Influence of electric fields and exciton binding energy

To estimate EX in our samples, we have performed variational calculations following

the approach presented in Ref. 125 for QWs with an In content of 23 %. We note that the

trends for the performed calculations are similar for lower In contents. Moreover, even

absolute values of EX are similar (deviation below 5 meV) for QWs with In contents in the

range of 10–30 % as shown in Ref. 460. Thus, we estimate the exciton binding energy for

all samples from the calculations presented in Fig. 5.4. In Fig. 5.4(a) we show EX versus

the thickness (d) of a QW for two values of the internal electric field F. For nonpolar QWs

with d of about 3 nm, EX can be as high as 50 meV. In contrast, for typical values of F on

the order of 2 MV/cm, EX monotonically decreases for d larger than 1 nm and amounts to

EX � 32 meV for conventional 3-nm-thick QWs. In the case of a field-free bulk (In,Ga)N,

i. e., F � 0 and d ≫ 10 nm, EX approaches the values of bulk GaN (i. e., 26 meV
[108,113–116]

)

as the absence of the confinement lowers EX. Figure 5.4(b), in which we present EX over

F for two values of d, demonstrates that the internal electric field significantly reduces EX

(factor of 1.6 or 2.1 for a 3- or 5-nm-thick QW).

Qualitatively, we estimate the ratio between the exciton binding energy EX and the

localization energy Eloc from the shape of the transients presented in Fig. 5.3(b) as sum-

marized in Tab. 5.1. We assume that EX < Eloc for nonpolar QWs, while the opposite is

the case for polar QWs. EX has to be similar to Eloc in the polar bulk (In,Ga)N to explain

the significant initial exponential part as well as the power law asymptote of the PL decay.

As already mentioned at the beginning of this section, we presume Eloc � Ee,loc + Eh,loc.

sample observation and energy

relation

estimated

EX (meV)

influence of well-width

fluctuations

nonpolar

QW

single exponential decay

over several orders of

magnitude: → EX > Eloc

42 well-width fluctuations without

internal fields: Ee,loc < 5 meV for

a 5-nm-thick QW with 15 % In

�⇒ Eloc ≈ Eh,loc

polar

QW

almost no single expo-

nential part; dominant

power law decay:

EX < Eloc

32 well-width fluctuations with

internal fields: Ee,loc ≈ 40 meV

for a 3-nm-QW with 15 % In

�⇒ Eloc � Eh,loc + Ee,loc

polar

bulk

single exponential de-

cay over 1–2 orders of

magnitude; subsequent

steep power law decay:

EX ≈ Eloc

26 no well-width fluctuations:

�⇒ Eloc � Eh,loc

Table 5.1: Comparison of the influence of the exciton binding energy EX and the localization

energy Eloc for polar and nonpolar (In,Ga)N/GaN QWs as well as polar bulk (In,Ga)N.

The values for EX have been obtained as described in the text. The estimation of well-

width fluctuations on Eloc is based on one-dimensional Schrödinger-Poisson calculations (see

Sec. 3.3) as described in Sec. 2.4.1.
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5 Comparison of localization mechanism

Starting with the assumption that the influence of localized electrons at well-width fluc-

tuation is negligible in polar bulk (In,Ga)N (i. e., Ee,loc � 0) and that EX exhibits the same

value as bulk GaN, we can approximate the contribution of the holes to the localization

energy with Eloc � Eh,loc ≈ EX � 26 meV. Because the structural quality of the investigated

samples is similar as discussed above, we assume Eh,loc to be similar for all samples.

In contrast to bulk (In,Ga)N, we have to consider the impact of well-width fluctuations

for the samples containing QWs. We use a Schrödinger-Poisson solver
[305]

to estimate

the additional potential for charge carriers created by the well-width fluctuations (see

also Secs. 2.4 and 3.3). For a 5-nm-thick nonpolar QW with an In content of 10 %,

the additional potential amounts to less than 5 meV, while the additional potential is

approximately 40 meV in the sample containing Ga-polar QWs with a similar In content.

Consequently, in the case of a nonpolar QWs Eloc ≈ Eh,loc ≈ 26 meV. This value is in fair

agreement with Eloc � 30 meV determined from the temperature-dependent radiative

lifetime of the nonpolar µ-rods in Sec. 5.1. Moreover, EX > Eloc in the nonpolar QW so

that excitons form. However, in the Ga-polar QWs, Eloc is dominated by the contribution

of the electrons, and, because of Eloc > EX, the recombination occurs between individual,

spatially separated electrons and holes.

5.3 Summary and conclusions

Core/shell GaN/(In,Ga)N µ-rods are a promising alternative to replace planar GaN-

based LEDs due to the enhanced active volume per surface area. However, steady-state

PL experiments reveal a macroscopic gradient of the In content along the µ-rod causing

a rather broad luminescence band and position-dependent PL intensities. Nonetheless,

we observe a single exponential decay over several orders of magnitude utilizing time-

resolved PL. The temperature dependence of the radiative lifetime, extracted from the

PL transients, shows that excitons are localized at low temperatures and delocalized at

elevated temperatures (T > 150 K).

From a comparison of nonpolar and Ga-polar QWs with a Ga-polar bulk (In,Ga)N,

we estimate the influence of the exciton binding energy and localization energy on the

different shapes of the decay. The combination of a low exciton binding energy and a

large localization energy of electrons in the polar QWs, both caused by the presence of

large internal electric fields, leads to the recombination of spatially separated electrons and

holes. In contrast, the formation of excitons with short radiative lifetimes is a consequence

of the large exciton binding energy in the field-free nonpolar (In,Ga)N/GaN QWs in the

µ-rods. However, the low IQE of the µ-rods, compared to polar reference samples, may

be linked to the fact that not only the radiative recombination rate increases, but also the

nonradiative rate. Point defects in potential minima (higher In content) may trap charge

carriers more efficiently in nonpolar QWs, because electrons and holes are present as an

entity (exciton), which is not the case for polar QWs. Thus, a low density of nonradiative

defects seems to be more important for QWs grown along the nonpolar crystal direction.
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Chapter 6
Impact of an external reverse bias on
the recombination mechanism

Applying a reverse bias to a Ga-polar (In,Ga)N/GaN LED, enables us to systematically tune the band profile
and reduce the internal electric field in the QWs. We observe a blueshift of the PL band accompanied by
a decrease of the integrated PL intensity. Taking thermionic emission and tunneling escape into account,
we explain the resulting excitation-energy-dependent photocurrent by an extraction of the charge carriers
from the active region before they relax to the ground state. Utilizing time-resolved PL spectroscopy, the
decrease of the internal electric fields in the QWs manifests itself by a marked decrease of the radiative PL
lifetime (larger overlap of electron and hole wave functions) and a gradual transition from PL transients that
asymptotically obey a power law to an exponential decay. Thus, the decay mechanism changes from tunneling
recombination of individual, spatially separated electrons and holes to an excitonic recombination. However,
not only the radiative rate increases, but also the nonradiative rate, which we attribute to the simultaneous
spatial presence of electron-hole pairs.

6.1 General concept and band profile simulation

In the preceding chapter, we have suggested that the internal electric field, influencing

the exciton binding energy, is one of the main factors for determining the recombination

mechanism. In fact, we observe tunneling recombination of spatially separated electrons

and hole in polar and excitonic recombination for nonpolar (In,Ga)N/GaN QWs (see

Sec. 5.2). However, this distinct difference may also originate from a different localization

strength in these samples (because the crystallographic planes are not equivalent, which

may influence the incorporation of In), and it would thus be desirable to study the impact

of the internal field on the recombination mechanism in one and the same sample. For

this purpose, we apply a reverse bias to the Ga-polar LED emitting in the green spectral

range, introduced in Sec. 3.5.2.

Applying a reverse bias to similar samples, results in a blueshift of the PL band and a

higher overlap of the electron and hole wave functions that have been attributed to a re-

duction of the internal piezoelectric fields and hence a reduction of the quantum-confined
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6 Impact of an external reverse bias on the recombination mechanism
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Figure 6.1: Band edge profile of an LED containing seven In0.24Ga0.76N QWs (orange) embed-

ded between GaN barriers (green) simulated with an applied voltage of (a) 0 V and (b) −20 V.

The simulated layer sequence with the electron blocking layer (EBL) is explained in the text

and schematically depicted between the corresponding graphs. The dashed line marks the

QW which is magnified in (c) and (d) for the indicated voltages. The electron (blue) and hole

(red) wave functions of the ground state, the overlap of the wave functions, and the transition

energy E are shown for the selected QW. Additionally, the reduced effective potential barrier

(pink area) for electrons and holes at a bias of −20 V is indicated in (d).

Stark effect.
[408,461–465]

To theoretically explore the required voltage range to achieve a neg-

ligible field in the QW, we have simulated the band profile of the LED as shown in Fig. 6.1.

The LED structure consists of the following layer sequence: The p-doped GaN cap has a

thickness of 150 nm and a Mg-concentration of 5×10
19

cm
−3

. A 20-nm-thick Al0.15Ga0.85N

electron blocking layer with similar doping is embedded between the cap and the active

region to prevent the overflow of electrons as suggested in Refs. 298–300. The active region

consists of an In0.24Ga0.76N/GaN multi-QW heterostructure. The nominal QW (barrier)

thickness of this custom-made research and development LED sample amounts to 2–4 nm

(about 10 nm) with doping concentrations of about 5 × 10
16

cm
−3

. The Si concentration

in the n-doped GaN buffer is set to a value of 1 × 10
19

cm
−3

. We consider activation

energies of 180 meV
[295]

and 25 meV
[466]

for the thermal activation of Mg and Si dopants,

respectively.
[467]

For simplicity, we neglect the complex GaN buffers with short-period

superlattices (similar to Ref. 468), which do not influence the band profile of the active

region significantly. More details about the simulation software and the parameters can
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6.2 Steady-state photoluminescence spectroscopy under reverse bias

be found in Sec. 3.3.

In Figs. 6.1(a) and 6.1(b), we show results of one-dimensional Schrödinger-Poisson cal-

culations of the conduction and valence band of the green LED at 0 and−20 V, respectively.

We obtain a set of transition energies (2.35 eV at 3.6 V, 2.42 eV at 0 V and 2.59 eV at −20 V),

which is consistent with experimental PL and EL data, by adjusting the magnitude of the

piezoelectric polarization and the In content. With increasing reverse bias, we observe

an increasing potential drop across the active region which in turn increases the electric

field F in the barriers [F(0 V) � 0.9 MV/cm to F(−20V) � 2.8 MV/cm], but reduces the

fields in the QWs.

In Figs. 6.1(c) and 6.1(d), we present a magnified view of the QW marked by the dashed

lines in Figs. 6.1(a) and 6.1(b), respectively. Obviously, the internal electric field in the

QW is significantly reduced from 1.8 to 0.2 MV/cm by tuning the applied voltage from 0

to −20 V. According to the diminution of the field in the QW, the overlap of the electron

and hole wave functions increases by about a factor of 2 from 0.39 to 0.93. Hence, we

not only expect a blueshift, but also a faster (radiative) recombination with increasing

reverse bias. Moreover, as the internal fields are lower, the localization energy should

not be dominated by the localization of electrons at well-width fluctuations anymore (see

Sec. 5.2), and excitons should form due to the increase of the exciton binding energy.

Thus, we expect a transition from a PL transient asymptotically obeying a power law to

an exponential transient.

6.2 Steady-state photoluminescence spectroscopy under reverse
bias

Figures 6.2(a) and 6.2(b) show bias-dependent steady-state µ-PL spectra of the green LED

excited with a diode laser (Elaser � 3.08 eV) and recorded at room temperature at low

(Iexc � 70 W/cm
2
) and high excitation intensities (Iexc � 700 kW/cm

2
), respectively. The

PL band with a FWHM of about 100 meV is centered at 2.42 eV at 1 V and 70 W/cm
2
.

The corresponding PL band at 700 kW/cm
2

exhibits a blueshift of 100 meV [arrow in

Fig. 6.2(b)]. Obviously, the large number of charge carriers causes band filling (increase of

the PL intensity at the high energy side accompanied by a larger FWHM) and a screening

of the polarization charges at 1 V, which reduces the quantum-confined Stark effect. With

increasing reverse bias, the band blueshifts to 2.57 eV at −20 V for low and high excitation

densities. This result implies that the residual internal field at −20 V is close to zero.

In contrast to Iexc � 70 W/cm
2
, for which the PL intensity reduces by more than four

orders of magnitude, it reduces only by a factor of four for 700 kW/cm
2

with increasing

reverse bias. Hence, a significant amount of charge carriers recombines in the QW even

at −20 V. For comparison, we show the µ-EL spectrum of the LED with close to normal

operating conditions (3.65 V and 200 mA) in Fig. 6.2(b). The EL band is centered at

2.37 eV. Interestingly, the PL intensity obtained with µ-PL at high Iexc is a factor of ten

higher than that obtained by µ-EL. Consequently, we achieve comparatively large charge

carrier densities in the active region with our excitation of the QWs. For more details
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6 Impact of an external reverse bias on the recombination mechanism
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Figure 6.2: Room temperature steady-state PL spectra of the biased LED excited with (a) low

and (b) high power density as indicated in the graphs. The PL band blueshifts as indicated by

the dotted line. The broad band in (a) centered at 2.2 eV is caused by the yellow luminescence

(YL) in GaN.
[127]

An EL spectrum recorded with settings close to normal operating conditions

is shown in (b). The spectra are modulated by thickness interference fringes of the GaN buffer.

about the µ-EL and µ-PL of these type of LED, see Secs. 3.5.2 and A.1.

While the blueshift of the PL is expected for a decreasing quantum-confined Stark

effect,
[469]

the reduction of the PL intensity is counterintuitive, because we expect a higher

overlap of electron and hole wave functions from our simulation (see Fig. 6.1) and thus

a higher PL intensity. Nonetheless, a reduction of the PL intensity has been observed

by other groups too.
[234,365,461–465]

In conjunction with the reduction of the PL intensity, a

photocurrent has been observed—indicating the escape of charge carriers from the active

region. More specifically, the reduced effective barrier height for the charge carriers in

the QWs at large reverse biases is believed to enhance the probability of tunneling or

thermionic processes [see pink area marked in Fig. 6.1(d)].
[234,365,463,464]

6.3 Photocurrent measurements and time-resolved
photoluminescence spectroscopy

In order to investigate the decrease of the steady-state PL intensity at large reverse biases

and to obtain information for the subsequent analysis of the time-resolved PL data, we

have recorded the average photocurrent
∗

after pulsed excitation with different energy

fluences and excitation energies as shown in Figs. 6.3(a) and 6.3(b), respectively.
†

The

photocurrent saturates at large reverse biases for low and medium excitation densities and

at laser energies (Elaser) of 3.10 eV. Hence, below −15 V, a further decrease of the voltage

∗
The photocurrent has been recorded by a lock-in technique. Identical results have been obtained by

conventional current measurements with subtracted dark current.

†
Results obtained with steady-state excitation are similar.
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6.3 Photocurrent measurements and time-resolved photoluminescence spectroscopy
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Figure 6.3: Dependence of the photocurrent on the reverse bias for (a) for different energy

fluences at a laser energy of Elaser � 3.10 eV and (b) various excitation energies at 85 µJ/cm
2
.

The photocurrent in (a) is normalized to the value at −1 V to account for the excitation-

dependent carrier densities. Solid lines are a guide to the eye in both graphs.

does not result in the extraction of a larger amount of charge carriers from the active

region. However, for high energy fluences, the photocurrent increases monotonically [see

Fig. 6.3(a)]. This observation may be explained by band filling, as charge carriers far above

the ground state of the QW are extracted more efficiently from the active region (due to

the strong fields in the barriers). Note that the photocurrent only sublinearly becomes

larger with increasing fluences, which may be explained by a faster relaxation process of

charge carriers to the QW ground state (→ reduced photocurrent) as suggested in Ref. 238.

Additionally the photocurrent reduces by a factor of 2, when the excitation energy (excess

energy of the photons created by the laser) is decreased from 3.10 to 2.79 eV as shown

in Fig. 6.3(b). Based on the results reported by Miller et al., [470]
we assume an energy-

independent absorption of the excited QWs. In Fig. 6.4, the escape of charge carriers from

the excited state (1) or the ground state (0) of a QW at a large reverse bias is schematically

depicted. The thermionic emission or the tunneling escape time of the excited charge

carriers (red) is much shorter (due to the smaller effective potential barrier) than that

of the relaxed ones (blue). The charge carriers are partly able to relax, if the relaxation

process (curved arrow) is at least as fast as the escape from the excited state. Thus, we

attribute the observed increase of the photocurrent with increasing excitation energy [see

Fig. 6.3(b)] to the extraction of excited charge carriers before they relax to the ground state

-

-

1

0

Figure 6.4: Schematic of the tunnel-

ing (solid arrows) and the thermionic

(dashed arrows) escape of charge car-

riers either from the excited state (1) or

the ground state (0) of a Ga-polar QW

at a large reverse bias as in Fig. 6.1(d).
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6 Impact of an external reverse bias on the recombination mechanism

of the QW. Hence, it is beneficial to employ a low excitation energy in the experiment to

excite the charge carriers as close as possible to the ground state of the QW. Note that

the escape of charge carriers from both levels increases the photocurrent and reduces the

integrated PL intensity. For time-resolved PL spectroscopy, however, the loss of charge

carriers from the excited states simply reduces the charge carrier density at the QW ground

state. This does not influence the shape of the (exponential) transient. In contrast, the

escape from the ground state constitutes a nonradiative loss channel competing with the

observed radiative recombination. This nonradiative channel decreases the effective PL

lifetime and results in an exponential decay. Consequently, the transition from a power

law to an exponential decay may either originate from a modification of the recombination

mechanism due to the reduced internal field inside the QWs or from the escape of charge

carriers relaxed to the ground state.

In a first step, we test our hypothesis of the transition of the recombination mechanism

from individual electron and hole to excitonic recombination. For this purpose, we have

recorded PL transients with time-correlated single photon counting at room temperature

for various reverse biases as shown in the double- and semilogarithmic representation

in Figs. 6.5(a) and 6.5(b), respectively. The QWs of the green emitting LED have been

excited with 2.79 eV and an energy fluence per pulse of about 85 µJ/cm
2

with the setup

described in detail in Sec. 3.4.2. The transients were recorded at the respective peak

energies integrated over a spectral range of about 20 meV. As indicated by the dotted line

in Fig. 6.5(a), the asymptote of the decay obeys a power law as expected for polar QWs (see

also Chap. 4). However, already at−1 V the decay is faster, when compared to open-circuit

conditions [pentagons in Fig. 6.5(a)]. Under open-circuit conditions, the time-integrated
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Figure 6.5: (a) Double- and (b) semilogarithmic representation of PL transients of a reverse

biased LED emitting in the green spectral range. The response of the system to the laser with

an excitation energy of 2.79 eV is shown as a dashed line. While the power law asymptote at

small reverse biases (dotted line) can be identified in (a), the asymptote of the decay obeys a

single exponential function (solid lines) at −15 and −20 V as indicated in (b).
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6.3 Photocurrent measurements and time-resolved photoluminescence spectroscopy

voltage asymptote FQW Eh,loc + Ee,loc � Eloc (meV) EX

0 V power law 1.8 MV/cm 25 + 55 � 80 33 meV

−15 V almost exponential 0.3 MV/cm 25 + 25 � 50 47 meV

−20 V exponential −0.2 MV/cm 25 + 20 � 45 48 meV

Table 6.1: Voltage dependence of the electric field inside the QW (FQW) as well as the

localization (Eloc) and the exciton binding energy (EX) for characteristic asymptotes of the PL

transients. According to the uncertainties of the parameters for the simulation, the error for

all estimated energies amounts to at least ±5 meV

PL intensity
‡

and the effective PL lifetime increase compared to biased conditions, because

of the accumulation of charge carriers at the contacts. Due to the formation of a depletion

region, a forward voltage is induced
[365]

which influences the internal electric fields,

leading to longer PL lifetimes. Moreover, the integrated PL intensity is higher because no

photocurrent flows.

The rise time of the PL transients is basically identical at −1 and −20 V and amounts

to 65 ± 5 ps, which is not limited by the temporal resolution of the system of 47 ± 1 ps

(FWHM) as shown in Fig. 6.5(b). For increasing reverse biases, the absolute value of the

exponent of the power law becomes larger, until the asymptote of the decay is exponential

at about−15 V [see Fig. 6.5(b)], indicating that recombination is excitonic at this and larger

reverse biases. The measured excitonic lifetime of 400 ps is in good agreement with the

values reported for the lifetimes of excitons in nonpolar (In,Ga)N/GaN or GaN.
[408–414]

Additionally, we observe that the peak PL intensity increases for larger reverse biases,

which excludes the escape of charge carriers from the ground state of the QW and reflects

the increase of the radiative recombination rate. This behavior has not been observed in

Refs. 463 and 472, but is consistent with the simulations, predicting a larger overlap of the

electron and hole wave functions. Thus, we observe clear indications for the bias-induced

transition from tunneling recombination of individually, spatially separated electrons and

holes to the recombination of excitons in our Ga-polar (In,Ga)N/GaN QWs.

Our interpretation is furthermore supported by the comparison of the localization

energy Eloc and the exciton binding energy EX. The results from the preceding chapter

suggest that the hole localization energy (Eh,loc) is in the range of 25±5 meV for a thick Ga-

polar (In,Ga)N layer with an In content of about 15 %. Although the In content in the LED

is higher, the compositional fluctuations in QWs, representing a random alloy, should

result in a similar value of Eh,loc. Utilizing a Schrödinger-Poisson solver, we determine the

localization energy of electrons (Ee,loc) and the electric field in the QWs as summarized

in Tab. 6.1 for various biases. We extract the values of EX given in the same table from

the variational calculations presented in Fig. 5.4(b). A comparison of Eloc and EX reveals

that the transients become indeed exponential when EX > Eloc. Note that these results

are only an approximation, as the macroscopic electric fields are not necessarily equal to

the local fields in the random ternary alloy.
[386]

‡
A similar trend has been observed for the steady-state PL intensity in Ref. 471.
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6 Impact of an external reverse bias on the recombination mechanism

6.3.1 Simulation of escape mechanisms

From Fig. 6.5(a), we have deduced that the integrated PL intensity (area under the tran-

sient) decreases for increasing reverse biases. To ascribe the change of the transient only

to the bias-induced transition of the recombination mechanism, we have to rule out the es-

cape of charge carriers from the QW ground state (see. Fig. 6.4), which would also result in

an excitonic decay. For this purpose, we theoretically investigate two well-known escape

mechanisms, namely thermionic emission and direct tunneling escape in this subsection.
§

In unbiased structures, the GaN barriers prevent leakage of charge carriers from the

QWs. However, with increasing reverse bias, the electric field inside the barriers increases,

leading to a reduction of the effective barrier thickness from about 10 nm to 1–2 nm [see

Figs. 6.1(c) and 6.1(d)]. Moreover, the polarity of the reverse bias efficiently extracts the

charge carriers from the active region once they leave a QW. Thus, at large reverse biases,

electrons and holes may escape the QWs much easier by tunneling or thermionic emission,

both constituting additional loss channels resulting in exponential PL transients.

As we excite the charge carriers slightly above the ground state of the QW, they possess

kinetic energy and thermalize/relax to the ground state, before recombination at the Γ-

point occurs. For investigating the excitation process in our LED, we utilize an eight-band

k·p model and calculate the band structure for electrons and holes as shown in Fig. 6.6(a).

Employing a laser energy of 2.79 eV and following the selection rules,
[477]

the excitation

occurs dominantly from the first valence to the first conduction band near the Γ-point in

the K-direction. Due to the small effective mass of the electrons, their excess energy is

much larger (150 meV above the band gap and 250 meV above the ground state) than that

of the holes (30 meV and 50 meV, respectively). For simplicity, we assume the ratio of the

excess energies to be equal at 0 and −20 V.

Combining our results deduced from Figs. 6.1(c), 6.1(d) and 6.6(a), we are able to analyze

the thermionic emission and tunneling times for relaxed and excited charge carriers in

our QWs. Starting with the thermionic emission time τTE,i , the values for electrons (i � e)

and holes (i � h) with the respective effective masses mi are given according to Schneider

and v. Klitzing
[478]

by

τTE,i � d

√
2πmi

kBT
exp

(
Ebarrier

kBT

)
(6.1)

with the Boltzmann constant kB.

In Fig. 6.6(b), we present τTE over the effective barrier height Ebarrier for a QW with a

thickness of d � 3 nm at a temperature of T � 300 K. Ebarrier is smaller for the ground state

of the holes at 0 and −20 V due to the band offset ratio of 60 : 40. Hence, the thermionic

emission of holes τ
TE,h is the limiting process if both types of charge carriers have relaxed

to the ground state. For excited states, τTE is determined by the thermal emission of

§
Note that for modeling the reverse leakage current of (In,Ga)N QDs embedded in GaN nanowires

[261]

the variable-range hopping,
[473]

the Poole-Frenkel conduction,
[474]

and the phonon-assisted tunnel-

ing
[475,476]

have to be taken into account as additional escape mechanisms.
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6.3 Photocurrent measurements and time-resolved photoluminescence spectroscopy

electrons because of the larger excess energy transferred from the exciting photons to the

electrons.

It is well-known that relaxation processes in semiconductors are faster than 10 ps in

III-nitrides
[479,480]

which is faster than τTE,e from the excited states. Thus, our excited

charge carriers thermalize rapidly, and we only have to consider the thermionic emission

of holes from the ground state of the QW as an additional loss process. As indicated

by the dashed lines, the experimentally determined value of the effective PL lifetimes

(τeff) are shorter than τ
TE,h for 0 and −20 V [see red dotted line in Fig. 6.6(b)]. This result

rules out thermionic emission as the origin of the photocurrent, which was also shown

experimentally by Meneghini et al. [481]
for a similar sample.

Next, we examine carrier escape by tunneling. According to Landau and Lifshitz,
[482]

we formulate the tunneling time τT,i (i � e , h) through a triangular potential barrier with

the respective height U(z)i , the energy (κi) and mass (mi) of the particle in the QW in

the Wentzel-Kramers-Brillouin approximation. The bias-dependent electric field F of the

barrier determines the slope of the triangular potential. Hence, we consider the special
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Figure 6.6: (a) Band structure of first (solid lines), second (dashed lines) and higher (dotted

lines) states for electrons (blue) and holes (red) of a field free, 3-nm-thick In0.24Ga0.76N QW

embedded in GaN barriers calculated with an eight-band k ·p model with parameters from

Ref. 307. The calculations have been performed by O. Marquardt. The (dark) gray solid lines

indicate the band gap Eg of the (In,Ga)N/GaN QW at the Γ-point at 300 K. Electron-hole pairs

are excited by the laser (orange arrow) with Elaser � 2.79 eV. Electrons relax via the emission

of longitudinal optical phonons (LO) indicated by curved black arrows until they reach the

yellow region, where further relaxation toward the conduction band minimum occurs via the

emission of acoustic phonons.
[152]

The direct transition (green arrow) at the Γ-point can be

observed in the PL spectra. (b) Thermionic emission time depicted over the effective barrier

height for electrons (blue) and holes (red) for a 3-nm-thick In0.24Ga0.76N QW embedded in

GaN barriers at a temperature of 300 K. The colors of the dotted lines indicate the effective

barrier height and thermionic emission times of the lifetime-defining species at 0 and −20 V.

The experimentally determined effective PL lifetimes (τeff) are indicated by horizontal lines.
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6 Impact of an external reverse bias on the recombination mechanism

case of Fowler-Nordheim tunneling.
[483]

Therefore,

τT,i � τesc × exp

©­«2

∫ z1

z0

√
2mi/ℏ2

[eF(z) − κi]
dzª®¬ . (6.2)

To calculate absolute tunneling times, the collision frequency of the particles with the

walls of the confining QW potential has to be calculated.
[484]

Utilizing the Oppenheimer

formalism,
[485]

we convert the collision / attempt-to-escape frequency of particles in a

QW into the escape time τesc by expressing the velocity of the particles in terms of

energy
[484,486]

τesc � d
(
κi

2mi

)−1/2

�
ℏπ
κi
. (6.3)

Inserting Eq. (6.3) into Eq. (6.2) and selecting proper integration limits (i. e., z0 � 0 and

z1 � (U0 − κi)/F with U(z0 � 0) � U0), results in

τT,i �
ℏπ
κi

exp

[
4

√
2mi

3eℏF
(U0 − κi)3/2

]
. (6.4)

Utilizing electric fields and barrier heights from the calculations of the band profiles,

we obtain values of τT,i as a function of κi as shown in Figs. 6.7(a)–6.7(c) for 0 V, −15 V,

and −20 V, respectively. Here, we define κi as the energy above the band gap. At 0 V,

τT,e and τ
T,h for relaxed particles are longer than the experimental determined effective

PL lifetimes (green dashed line) as shown in Fig. 6.7(a). Although the tunneling time

of electrons is only a few ns (i. e., shorter than τeff), a relaxation process on the order

of ps
[479,480]

prevent significant tunneling from the QW. Hence, we do not expect any

tunneling escape at 0 V from the simulations. Consequently, we expect no photocurrent to

be present at 0 V (as thermionic emission is not present either), which is in fair agreement

with our experimental observations.

For −15 and −20 V the situation is different, because of the strong electric field inside

the barriers and the resulting small effective barrier height [see pink area in Fig. 6.1(d)].

In Figs. 6.7(b) and 6.7(c), we observe that τT,e is on the order of a few ps even for electrons

relaxed to the ground state. The carrier dynamics should thus be completely dominated

by the tunneling escape of electrons. In contradiction to this theoretical result, we exper-

imentally detect significant PL intensity and effective PL lifetimes much longer than the

few ps at −15 and −20 V expected from Figs. 6.7(b) and 6.7(c) [cf. Figs. 6.2(b) and 6.5(b)].

Martinet et al. [486]
reported a similar discrepancy for GaAs/(Al,Ga)As QWs and specu-

lated that scattering at defects cause wave vectors being not perpendicular to the QW

interfaces. Consequently, they assume a severe reduction of the attempt-to-escape fre-

quency. In (In,Ga)N/GaN, charge carriers scatter at structural defects, rough interfaces or

impurities, and most likely at alloy disorder.
[487,488]

Thus, the classical tunneling escape

picture seems not to hold for (In,Ga)N. Furthermore, tight-binding calculations suggest
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Figure 6.7: Tunneling time as a function of the kinetic energy of electrons (blue) and holes

(red) for the In0.24Ga0.76N/GaN QW at (a) 0 V, (b) −15 V, and (c) −20 V. The shaded area

mark the kinetic energy for the respective particle ranging from “relaxed to the ground

state” (maximum effective barrier thickness; opaque) to “maximum excess energy” (almost

transparent). The limits are additionally indicated for ground states and excited states by

vertical dashed and dotted lines, respectively. The experimentally measured effective PL

lifetimes are indicated by horizontal lines.

strongly localized wave functions of holes at random compositional fluctuations.
[68]

The

localization of holes, however, significantly reduces the probability of direct tunneling

which in turn prolongs τesc. Consequently, the above presented estimation of the clas-

sical tunneling escape, with delocalized wave functions, represents the lower limit of

τT.

Another explanation may originate from the formation of excitons. The Coulomb

attraction may counteract the tunneling of the individual particles, because electrons and

holes tunnel through opposite barriers of the QW (see, e. g., Ref. 470). Hence, we should

not consider electrons and holes individually, but as an entity. We propose to approximate

the tunneling escape time of the exciton with that of the holes in a first approximation.

For a bias of −15 V, the tunneling escape of excitons is prevented because the escape

time of the holes (which “capture” the electrons) is much longer than the measured

exponential PL lifetime of the asymptote. However, at −20 V, the tunneling escape time of

electrons and holes are significantly shorter than any experimentally determined lifetime

[see Fig. 6.7(c)].

Summarizing this subsection, we believe that the experimentally observed photocurrent

results predominantly from the tunneling of excited electrons which do not immediately

form excitons. Consequently, tunneling escape from the active region does not influence

the PL transients of the investigated QWs up to at least −15 V, but reduces the effective

excitation density only.
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Figure 6.8: Dependence of the (a) peak and time-integrated PL intensity (squares and circles)

as well as the (b) effective (τeff) and radiative (τr) PL lifetimes (squares and circles) on the

reverse bias. The PL intensities have been corrected for the losses due to the increasing

photocurrent and for the spectral response of the detection system. Approximate values for

τr have been obtained by assuming an IQE of 70 % at −1 V. All solid lines are a guide to the

eye.

6.3.2 Quantitative analysis of the photoluminescence transients

The statement that tunneling escape from the active region does not influence the PL

transients at least up to −15 V allows us to correct the measured PL intensities for the

photocurrent and hence to draw quantitative conclusions. In Fig. 6.8(a) we show the

voltage dependence of the corrected peak and integrated intensities of the PL transients

shown in Fig. 6.5(a). From this voltage dependence, we obtain two important results.

First, we observe that the corrected peak intensity increases monotonically with increas-

ing reverse bias, before it saturates at about −15 V. Second, the integrated PL intensity

is almost constant up to −15 V and decreases thereafter [see Fig. 6.8(a)].
¶

From the first

observation, it directly follows that the calculated radiative lifetime (deduced from the in-

verse peak intensity with the assumption of an IQE of 70 % at−1 V) decreases by a factor of

13 when the reverse voltage is increased from 1 to 15 V, and saturates thereafter as shown

in Fig. 6.8(b). From the simulations of the overlap of the electron and hole wave functions,

we expect an increase of a factor of about 2 only. However, as the recombining species

change from spatially separated electrons and holes to excitons, the radiative rate is not

simply proportional to the overlap. For GaN, for example, the radiative rate increases

by about one order of magnitude when including Coulomb interactions (formation of

excitons) in the simulations.
[148]

However, not only the radiative recombination rate increases, but also the nonradiative

one [see Fig. 6.8(b)]. Thus, the overall recombination rate becomes faster which is expected

for the higher overlap of the wave functions of electrons and holes. In combination with

the saturation of τr, we explain our second observation, namely, the reduction of the in-

tegrated PL intensity for a large reverse bias, by an enhanced nonradiative recombination

¶
The minor discrepancy of the value at −2.5 V may be due to the adjustment of the spectral position of the

detection to follow the blueshift of the PL band.

90



6.4 Summary and conclusions

for excitons in our Ga-polar (In,Ga)N/GaN QWs. Additionally, the shorter effective PL

lifetime and the reduced integrated PL intensity [see Fig. 6.8(b)] for reverse biases above

−15 V may indicate the escape of excitons, which do not contribute to the photocurrent.

6.4 Summary and conclusions

By applying a reverse bias to a Ga-polar (In,Ga)N/GaN LED, and thereby decreasing

the internal electric field in the QWs, we have demonstrated the possibility to tune the

recombination mechanism from the decay of individual, spatially separated electrons and

holes to the decay of excitons. Once the exciton binding energy exceeds the localization

energy, the asymptote of the PL transient does not obey a power law, but follows a

single exponential function. Additionally, the transition is accompanied by a decrease

of the radiative PL lifetime. Taking into account that tunneling of electrons out of the

QW (causing the observed photocurrent) does not influence the shape of the transient, we

obtain an increase of the radiative rate by about one order of magnitude. However, also the

nonradiative rate increases at a large reverse bias. Consequently, the higher spatial overlap

of electrons and holes is not entirely beneficial for (In,Ga)N/GaN, because electrons

and holes are present at nonradiative centers simultaneously. Moreover, the increase of

the nonradiative recombination rate may be responsible for the lower IQE of nonpolar

(In,Ga)N/GaN QWs with comparable structural quality, for which the recombination of

excitons is common. Finally, we conclude that the large localization energy and spatial

separation of charge carriers, caused by the internal electric fields in Ga-polar (In,Ga)N

QWs embedded in GaN, actually enhance the IQE.
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Chapter 7
(In,Ga)N/GaN short-period
superlattices

This chapter deals with SPSLs composed of In-containing QSs embedded between GaN QBs. These
SPSLs are predecessors of digital alloys, made of InN/GaN heterostructures, which are briefly introduced
in the beginning of this chapter. The combination of both, in-situ and ex-situ structural characterization
techniques, indicates that an In adsorbate structure can be utilized to fabricate SPSLs containing InN QS
with sub-ML coverage and lateral ordering. The main focus of this chapter lies on the PL spectroscopy of
such structures. We observe an electronic coupling of the QSs embedded between QBs as thin as 6 MLs.
However, time-resolved PL reveals asymptotes of the decay that obey a power law at low temperatures.
Thus, we conclude that the sub-ML InN QSs act electronically as two-dimensional random alloys such as
conventional (In,Ga)N/GaN QWs. At elevated temperatures, not only the vertical separation of electrons
and holes along the SPSL, but also an extremely effective nonradiative recombination channel quenches the
PL intensity significantly. Parts of this chapter have been published in Ref. 489.

7.1 InN/GaN digital alloys

In the previous chapters, we presented a detailed study of the effect of the localization

of charge carriers in the random ternary alloy (In,Ga)N on the PL properties. The high

efficiency of light emitters used for solid-state lighting,
[20,44]

display technologies,
[342]

and

diode lasers
[343,490]

is believed to be linked to this carrier localization by the inevitable

compositional fluctuations occurring on an atomic scale in the random alloy (In,Ga)N

(see also Sec. 2.4).
[45,56]

However, the inhomogeneous broadening of electronic transitions

and a strongly retarded recombination dynamics in the (In,Ga)N/GaN QWs are simul-

taneously caused by the localization at random compositional fluctuations as shown in

Chaps. 4 and 5. Both of these effects are detrimental for laser applications.
[491,492]

So-called digital alloys have been proposed to avoid localization effects, but to retain the

widely tunable band gap of (In,Ga)N for solid-state lighting.
[76]

In contrast to the ternary

compound, these digital alloys are composed of ML-thick alternating layers of the binary

compounds InN and GaN. These SPSL are envisioned to eliminate alloy disorder and the
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Figure 7.1: (a) Schematic of the replacement of a conventional (In,Ga)N/GaN QW with

random In fluctuations by a digital alloy in the form of an SPSL composed of ML-thick layers

of the binary compounds InN (green) and GaN (blue). To fabricate a light emitting device,

the active regions are embedded between n- and p-doped GaN. Band diagrams and wave

functions of electron (blue) and hole (red) ground states of active regions containing (b) an

In0.31Ga0.6N QW with a thickness of 2.7 nm and (c) a SPSL consisting of 3 periods of 1 ML

InN and 2 MLs GaN. Both active regions are embedded between 20-nm-thick n- and p-doped

GaN. Operating the devices at 4 V results in similar transition energies, as indicated by the

arrows.

resulting localization phenomena.
[76,493–496]

For example, these structures are expected to

exhibit a reduced inhomogeneous broadening and an enhanced radiative recombination

rate, both beneficial for laser applications.
[497]

To tune the transition energy in an SPSL, the thickness of the InN QS and of the GaN

QB has to be adjusted as shown in detail by Gorczyca et al. [78]
The coupling of the QSs

through the sufficiently thin QBs (i. e., only a few MLs) results in a structure with a

transition energy corresponding to a layer with an effective In content. In Fig. 7.1(a), we

illustrate the replacement of a conventional (In,Ga)N/GaN single QW with random alloy

fluctuations by an SPSL consisting of InN QSs (green) separated by GaN QBs (blue). To

obtain emission from an LED at a bias of 4 V in the desired green to yellow spectral range, a

single QW has to contain an In content of about 31 % as deduced from Schrödinger-Poisson

calculations presented in Fig. 7.1(b). Figure 7.1(c) shows an active region consisting of 3

periods of 1 ML InN and 2 MLs GaN. Coupling between the InN QSs through the thin

GaN QBs, i. e., a spreading of the electron and the hole wave functions over the entire

SPSL, energetically lowers the electron and hole ground states of the InN QSs (compared

to isolated thin InN QSs) and leads to a similar transition energy at 4 V. However, the

coupling is weaker than compared to flat-band conditions due to polarization charges at

the interfaces.

In contrast to the GaAs/(Al,Ga)As system, for which superlattices have been fabricated

by Dingle et al. [498]
already in 1975,

[498]
the realization of group-III-nitride superlattices is

much more challenging. The growth of digital alloys out of the binary constituents InN

and GaN is hampered by the large lattice mismatch between InN and GaN of 11 %
[499]

and
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the tendency of In to segregate on the growth front.
[500]

Furthermore, the incompatible

growth conditions of the binary constituents
[501]

and the fact that plastic relaxation occurs

already during the formation of the first MLs of InN on GaN
[502,503]

impede the fabrication

of these digital alloys.

For GaAs-based superlattices, it has been shown that the miniband, resulting from the

coupling of the QWs, splits into a so-called Stark ladder when applying an external electric

field.
[504,505]

Small external fields cause Wannier-Stark localization of charge carriers.

However, large external electric fields separates electrons and holes to the opposite sides of

the superlattice and cause a vanishing overlap of the electron and hole wave functions,
[505]

which is detrimental for optical devices. As GaN-based devices are typically grown along

the polar direction, the separation of electrons and holes across the SPSL by the internal

electric fields limits the maximum vertical extension of SPSLs grown along this direction.

Nonetheless, Yoshikawa et al. [76]
reported the realization of InN/GaN SPSLs with

PL transition energies in the range of 2.9–3.3 eV in 2007. However, a recent microscopic

investigation of InN/GaN SPSLs grown under identical conditions demonstrated that the

nominal InN MLs in the SPSL exhibit a coverage of only 0.33 MLs.
[506]

This finding raises

the question whether the InN QSs consist of microscopic two-dimensional InN islands,

i. e., InN patches with sub-ML coverage, or of a single ML of disordered In0.33Ga0.67N.

A third possibility arises from the existence of an In adatom-induced surface recon-

struction on GaN(0001) that is expected to be formed by 1/3 MLs of In,
[500,507]

the same

coverage as observed by Suski et al. [506]
This agreement may be coincidental, but it may

also suggest that, under the usual growth conditions, the In coverage in the first ML of

InN growth is restricted to the one that constitutes the energetically favorable surface

phase, i. e., the (
√

3×
√

3)R30
◦
-In adsorbate structure. Note that a reconstruction with this

symmetry has also been observed for (In,Ga)N by Friedrich et al. [508]
as well as for pure

InN by Himmerlich et al. [509]
Since this surface phase is self-limiting in thickness to a

single ML and is laterally ordered, it may provide a template for the insertion of ordered

InGa2N3 QS in GaN.
[510]

7.2 Growth and structural characterization

Here, we focus on the comparison of two samples exhibiting periodically inserted InN

QSs with the same nominal coverage, but with a different vertical separation by GaN

QBs. The QBs in sample I have a thickness of 6 MLs enabling an electronic coupling

of the QSs,
[511]

while the 50-ML-thick QBs in sample II electronically isolate the QSs

from each other. Thus, sample II is used as a reference representing thin and uncoupled

QSs. Plasma-assisted molecular beam epitaxy was employed to realize SPSLs with abrupt

interfaces.
[512] ,∗

Details about the growth of this specific structures have been reported by

Chèze et al. [77]
In the following, we will summarize their results to introduce the samples

subsequently analyzed by PL.

By monitoring the growth, Chèze et al. [77]
have ensured that the InN QSs are formed

∗
Recently, Staszczak et al. [513]

have demonstrated the growth of similar structures with MOCVD.
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Figure 7.2: Structural characterization of sample I with 6 ML-thick barrier. Reflection high-

energy electron diffraction patterns along the (a) ⟨1¯
100⟩ and (b) ⟨11

¯
20⟩ azimuths of the

GaN(0001) surface showing the In-induced (
√

3 ×
√

3)R30
◦

surface reconstruction during In

and N supply. Blue and yellow arrows indicate integer and fractional order reflections,

respectively. (c) Semilogarithmic representation of experimental and simulated ω-2θ x-ray

diffraction profiles across the 0002 reflection of GaN. Satellite reflections due to the SPSL are

labeled SL±n. The AlN reflection originates from the template. (d) Cross-sectional scanning

transmission electron micrograph of the entire SPSL, and (e) magnified view of four periods

in the area enclosed by the dotted rectangle in (d). The micrographs were Fourier filtered

to remove high-frequency noise. The horizontal green arrows and the vertical blue lines

highlight the (In,Ga)N QSs and the 6 ML thick GaN QBs, respectively. (g) Color-coded map

of the c lattice parameter deduced from high-resolution transmission electron micrographs

for four periods revealing thicknesses of 1 ML and 6 MLs for the QSs and the QBs as well as

an In content of 25 %. The figure has been adapted from Ref. 77.

by a (
√

3 ×
√

3)R30
◦
-like surface arrangement of the In(N) adlayer [corresponding to a

(1×3) reconstruction pattern observed by reflection high-energy electron diffraction] and

not by actual InN growth. The heterostructures have been deposited onto commercial

GaN/AlN/Al2O3(0001) templates at a substrate temperature of 550
◦
C, i. e., significantly
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above the decomposition temperature of InN(0001).
[514] ,†

Flushing the GaN(0001) surface

with In under the exposure to active nitrogen has led to the reflection high-energy electron

diffraction pattern shown in Figs. 7.2(a) and 7.2(b) for each of the QSs. The pattern along

the ⟨1¯
100⟩ azimuth was found to exhibit sharp and intense 1/3 order reflections [see

Fig. 7.2(a)]. Along the ⟨11
¯
20⟩ azimuth, only the periodicity of the unreconstructed surface

was detected [see Fig. 7.2(b)]. The formation of the (
√

3 ×
√

3)R30
◦
-In adsorbate structure

on GaN(0001) was indicated by the simultaneous occurrence of both patterns.
[500,507]

The

supply of an excess of In, i. e., more than the 1/3 ML that was needed to form the adsorbate

structure, has led to a liquid In adlayer floating on the surface. This adlayer was found

to act as a reservoir that prevents a loss of In from the (
√

3 ×
√

3)R30
◦
-In structure when

overgrowth is initiated.
[516]

More details about the growth and monitoring the formation

of the In adsorbate structure with line-of-sight quadrupole mass spectrometry can be

found in Refs. 77 and 512.

For the structural characterization, triple-axis ω-2θ x-ray diffraction scans performed

with CuKα1 radiation in a Panalytical X’Pert™ diffractometer equipped with a Ge(220)

hybrid monochromator and a Ge(220) analyzer crystal, as well as high-resolution and

scanning transmission electron microscopy in an aberration-corrected FEI Titan™ 80-300

operating at 300 kV were used by Chèze et al. [77]
to assess the periodicity, the interface

abruptness and the composition of both SPSL samples. The distribution of the c lat-

tice parameter was deduced from high-resolution transmission electron micrographs as

described in Refs. 63 and 506.

Figure 7.2(c) shows an ω-2θ scan across the 0002 reflection of GaN exemplary for

sample I. The periodicity of the SPSL is reflected by the scans since clear first-order

satellite reflections have been observed. The coherent growth has been confirmed by

asymmetric 10
¯
15 reciprocal space maps (not shown). Accounting for the elastic strain, the

x-ray diffraction profile
[517,518]

of sample I as shown in Fig. 7.2(c) has been simulated by

using ten periods of 1 ML-thick In0.29Ga0.71N QSs separated by 6 ML-thick GaN QBs. For

sample II, the simulation of the x-ray diffraction profiles has indicated QSs with similar

properties separated by GaN QBs with a thickness of 50 MLs.

The periodicity of sample I is visualized by the micrograph shown in Fig. 7.2(d). The

interfaces were found to stay abrupt and do not deteriorate from the bottom to the top

of the structure. The progressively weaker contrast toward the top of the SPSL was

explained by a change in thickness of the cross-sectional sample. Figure 7.2(e) depicts the

magnified view of the area marked by the dotted line in the micrograph in Fig. 7.2(d). The

embedded QSs were found to exhibit monoatomic steps at some of the QS/QB interfaces,

and the thickness of the QS thus appears to fluctuate between 1 and 2 MLs. However,

the map of the c lattice parameter shown in Fig. 7.2(f), deduced from high-resolution

transmission electron microscopy on a very thin (10 nm) cross-section, has revealed three

increased interplanar distances for each of the QSs, corresponding to a single ML.
[506]

The

magnitude of the distortions of the c lattice parameter was found to correspond to an In

†
The substrate temperature was measured by a pyrometer. For calibrating the pyrometer, the boundary

between the intermediate and the Ga-droplet growth regimes on the GaN(0001) surface was used.
[515]
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7 (In,Ga)N/GaN short-period superlattices

content of about 25 %, which is in fair agreement with the In content deduced from x-ray

diffraction. A perfect 1-In/2-Ga repetition in the QS was detected in high-angle, annular

dark-field imaging using a scanning transmission electron microscopy (not shown) for

small sections.
[519]

This indicates the formation of an ordered InGa2N3 phase.

7.3 Photoluminescence spectroscopy of submonolayer InN
quantum sheets embedded in GaN

In what follows, we employ temperature-dependent PL spectroscopy under both steady-

state and pulsed excitation to explore the electronic properties of samples I and II in-

troduced above. For the basic characterization with steady-state PL spectroscopy, the

samples were excited by the 325 nm-line (Elaser � 3.814 eV) of a He-Cd laser with an ex-

citation power density of 100 W cm
−2

. Utilizing time-resolved PL spectroscopy, we have

the possibility to discern the PL decay of pure InN islands from the one of (In,Ga)N QSs

or ordered In2Ga3N. For the time-resolved PL experiments, a photon energy of 3.55 eV

was used to create pulses with an energy fluence per pulse of 50 µJ cm
−2

and a repetition

rate of 420 kHz. For detection, time-correlated single photon counting was employed.

The transients were recorded at the respective peak energies integrated over a spectral

range of about 10 meV. Further details about the experimental setups and techniques can

be found in Sec. 3.4.

7.3.1 Temperature-dependent steady-state PL spectroscopy

Figures 7.3(a) and 7.3(b) show temperature-dependent steady-state PL spectra on a

semilogarithmic scale of samples I and II, respectively. The PL bands peak at around

3.16 eV for sample I and at 3.25 eV for sample II. These transition energies are close to

those reported for nominally complete InN MLs (see, e. g., Refs. 511, 520, and 521 as well

as Ref. 506 and references therein). From the results of the structural characterization

presented in Sec. 7.2, we have established that these samples exhibit QSs with sub-ML

coverage. Hence, the agreement of the PL transition energies suggests that the samples

discussed in the literature do not have full InN coverage either. Furthermore, the mea-

sured PL transition energies agree very well with the calculated values using density

functional theory for SPSLs with an In coverage of 0.33 MLs.
[78,506,510,522]

In particular, we

observe the predicted redshift in the transition energy by Suski et al. [506]
for thin barri-

ers (sample I) as a result of the electronic coupling predominantly between the electron

states in the QSs. Note, however, that the peak energies do not follow the behavior of the

monotonically decreasing band gap of (In,Ga)N with increasing temperature as indicated

by the dashed lines in Figs. 7.3(a) and 7.3(b). Note further that the line width of the PL

band of 60 meV is not expected for emission from an ordered layer, but is rather indicative

of disorder although even larger line widths have been reported for InN/GaN samples

with nominally complete InN MLs.
[520]

Figure 7.4(a) shows the fit procedure to extract the spectral position, the linewidth, and
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Figure 7.3: Semilogarithmic representation of temperature-dependent steady-state PL spectra

of (a) sample I with 6 MLs barrier and (b) (reference) sample II with 50 MLs barrier. The dashed

lines indicate the peak position of the QS luminescence and the arrows the first- as well as

the second-order longitudinal optical phonon replica (LO).

the integrated intensity of the QS luminescence. The main band labeled by QSs as well

as the side-band of the first- and second-order longitudinal optical phonon replica are

fit by three Gaussian functions (dashed lines) which are separated by 92 meV, the energy

of a longitudinal optical phonon in wurtzite GaN at cryogenic temperatures.
[328,329]

The

extracted results of this line shape analysis of the temperature-dependent steady-state

PL spectra are shown in Figs. 7.4(b)–7.4(d). At low temperatures, the emission bands of

samples I and II differ significantly not only in the peak PL energy EPL, but also in the

integrated intensity IPL. This difference is partly due to the fact that sample II absorbs

about 79 % of the incident photons within the total thickness of 132 nm of the 10-period

InN/GaN superlattice as compared to 19 % for sample I with its total thickness of only

18 nm. However, this effect accounts only for a factor of four. In fact, the integrated

intensity obtained by utilizing an excitation energy of Elaser � 3.41 eV, for which the total

absorbance of the ten QSs is expected to be very similar for samples I and II, still differs

by a factor of 50 (not shown). A stronger influence of surface-induced electric fields for

sample I, causing carriers to escape from the QSs and to subsequently recombine at the

surface nonradiatively, can be excluded as well, since samples identical to sample I except

for a 33-nm-thick cap layer exhibit a comparable PL intensity.
‡

We believe that the large

difference in PL intensity between samples I and II originates from the electronic coupling

between the QSs in sample I. The redshift of EPL by 90 meV at 10 K [see Fig. 7.4(b)] indi-

cates that this coupling is strong, which in turn means that the electron states are basically

delocalized over the entire SPSL. This fact also increases the probability of electrons to

reside in the barriers and thus, as we will see below, to suffer from nonradiative recombi-

‡
Note that the PL energy of the capped sample, which exhibits the same In coverage, is blue-shifted by

60 meV. This may be caused by the different influence of the surface-induced band bending leading to a

higher internal electric field and thus to a steeper Stark ladder in the sample without the cap layer. See

Ref. 505 for related considerations.
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Figure 7.4: (a) Semilogarithmic representation of an exemplary steady-state PL spectrum

acquired at 10 K from the sample with 6 MLs barrier recorded at 10 K to illustrate the fit

procedure after subtraction of the background for the subsequent peak analysis of the QS

luminescence. The orange solid line represents a fit of the spectrum with three Gaussian

functions (dashed lines) separated by 92 meV, the energy of a longitudinal optical phonon

in wurtzite GaN at cryogenic temperatures.
[328,329]

Temperature dependence of the (b) peak

energy, (c) FWHM and (d) integrated PL intensity of the QS PL band of sample I with 6 MLs

barrier (blue squares) and (reference) sample II with 50 MLs barrier (red circles). The dashed

lines indicate the threshold temperature at which all three quantities change simultaneously.

The solid lines in (d) show fits to the data as discussed in the text.

nation. Furthermore, for an SPSL with a finite number of QSs, the large electrostatic fields

within the QSs will not be perfectly balanced by opposing fields in the barriers
[103,523]

(see

also Sec. 2.1), i. e., the heterostructure will exhibit a potential staircase, which in turn will

result in a vertical electron-hole separation.

With increasing temperature, EPL redshifts by about 20 meV for sample II with the

thicker barriers, before the band blueshifts by 30 meV. In contrast, EPL for sample I with

the thinner barriers blueshifts monotonically by about 50 meV. Simultaneously with the

change in transition energy, the full width at half maximum ∆EPL increases by about

40 meV (70 meV), and IPL decreases by 2 (3.5) orders of magnitude for sample I (sam-

ple II). These simultaneous changes of the three main characteristics of the emission

band, highlighted by the dashed lines in Figs. 7.4(b)–7.4(d), suggest that they have a

common origin.
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The evolution of the transition energy with temperature observed for sample II [see

Fig. 7.4(b)] clearly resembles the well-known S-shape commonly observed for random

(In,Ga)N alloys.
[53]

This behavior is most frequently ascribed to carrier localization at

low temperatures (see, e. g., Ref. 188 and references therein). At elevated temperatures,

carriers are able to relax from shallow to deep states (causing a decrease in the transition

energy, such as observed here for EPL around 90 K), while, at even higher temperatures,

they are thermally activated to higher energy states (resulting in an increase in EPL) and

become mobile within the band of interacting localized states. The latter phenomenon

is usually accompanied by an abrupt broadening of the emission band, as also observed

here [see Fig. 7.4(c)]. Furthermore, the delocalization of carriers that occurs at this point

frequently results in an onset of nonradiative recombination, which manifests itself by an

abrupt reduction of the luminous efficiency with increasing temperature.
[47]

Indeed, the

integrated intensities of the PL bands of samples I and II start to decrease at 90 K and are

described well by a common three-level Arrhenius-like model of a thermally activated PL

quenching
[360]

with activation energies of (42 ± 10) and (89 ± 15)meV for sample I and II,

respectively [see Fig. 7.4(d)].

An alternative explanation for the simultaneous blueshift of the emission band and a

quenching of its intensity as observed for (In,Ga)N/GaN(0001) QWs has been recently

proposed by Langer et al. [170]
Their model relies on the exponential variation of the

radiative lifetime with transition energy due to the strong piezoelectric fields within

the QWs. An activated nonradiative recombination preferentially quenches the longer

living transitions, resulting in an effective blueshift of the emission band. Within this

interpretation, the activation energy deduced from the data in Fig. 7.4(d) would be related

to the activation of nonradiative centers and not to the localization energy of carriers.

7.3.2 Temperature-dependent time-resolved PL spectroscopy

In order to distinguish between these two different interpretations of our steady-state

PL data presented at the end of the previous subsection, we performed temperature-

dependent time-resolved PL experiments. Additionally, time-resolved PL has the possi-

bility to identify the presence of an ordered phase (i. e., InGa2N3). Figures 7.5(a) and 7.5(b)

show the decay of the PL intensity at the peak energy of the emission band of samples

I and II, respectively, in a double logarithmic representation. Regardless of the specific

emission energy, the recombination dynamics observed is qualitatively similar for both

samples and is characterized by the following three major properties. First, the peak PL

intensity of the transient just after the laser pulse Imax is almost constant up to 50–70 K

and decreases thereafter with increasing temperature. Second, the decay at 10 K is very

slow for both samples and actually follows a power law [see Figs. 7.5(a)–7.5(b)]. Third,

the decay accelerates with increasing temperature and gradually approaches a single ex-

ponential dependence at 150 K [see the corresponding fit indicated by the dotted line in

Fig. 7.5(a)]. In the following, we will discuss these three observations in detail.
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Figure 7.5: Double-logarithmic representation of the experimental PL transients of (a) sample

I with 6 MLs barrier and (b) (reference) sample II with 50 MLs barrier at various temperatures

as indicated in (c). The dashed and dotted lines in (a) show a comparison with a t−2.4
power

law and a fit with a single exponential function, respectively. The inset in (b) displays the

temperature dependence of the inverse peak intensity of the transient, which is proportional

to the radiative lifetime τr. The solid lines in the inset are a guide to the eye and highlight the

change from constant to linear increasing τr with temperature. The corresponding simulated

PL transients are shown in (c) and (d). The simulations are based on the rate-equation system

(7.1)–(7.2), which is schematically depicted as the inset in (d).

(i) Since Imax is proportional to the inverse radiative lifetime,
[142]

it follows that the radia-

tive lifetime is almost constant up to about 50–70 K as shown in the inset of Fig. 7.5(b).

As shown in Sec. 2.3.4, a temperature-independent radiative lifetime is a fingerprint

for transitions arising from zero-dimensional states.
[372]

At higher temperatures, the

radiative lifetime approaches the linear increase expected for radiative transitions in

two-dimensional systems such as QWs and QSs [see the inset of Fig. 7.5(b)].
[372]

These

results thus support the interpretation of the data shown in Figs. 7.4(c)–7.4(d) in terms

of carrier localization at low temperatures followed by delocalization at 70–90 K and

not the model of activation of nonradiative centers.

(ii) The power law decay kinetics observed for both samples at 10 K furthermore demon-

strates that the recombination is not excitonic, but takes place between individually

localized electrons and holes with varying spatial separation
[48,49,79]

as explained in

detail in Chap. 4.
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(iii) Together with the acceleration of the decay at elevated temperatures, the time-inte-

grated intensity of the transients decreases significantly, suggesting that both obser-

vations are linked by a nonradiative channel made accessible by the delocalization of

carriers. To test this hypothesis, let us consider a simple model for the recombination

dynamics visualized by the level scheme in the inset in Fig. 7.5(d). We implicitly

assume that the recombination is determined by holes populating either localized

|nℓ⟩ or extended/delocalized states |nd⟩. These populations are coupled via the re-

laxation of holes from |nd⟩ to |nℓ⟩ with a time constant τc and by their thermally

activated emission from |nℓ⟩ to |nd⟩ with a time constant τe. To keep the model

as simple as possible, we assume that recombination from localized states is purely

radiative with a temperature-dependent lifetime τr(T) as observed experimentally,

while the extended states are supposed to be dominated by a nonradiative process

with a constant lifetime τnr.

These considerations lead to the following coupled system of differential equations

∂nd(T)
∂t

� −nd

τc

− nd

τnr

+
nℓ
τe

exp

(
− Ea

kBT

)
(7.1)

∂nℓ(T, t)
∂t

�
nd

τc

− ta−1
nℓ
τr(T)

− nℓ
τe

exp

(
− Ea

kBT

)
(7.2)

with the activation energy Ea for the emission of holes from localized to extended states.

The prefactor ta−1
of the radiative term ta−1nℓ/τr in Eq. (7.2) results in a stretched expo-

nential decay, but approaches a power law decay for a → 0.

Intensity transients simulated by Eqs. (7.1) and (7.2) are shown in Figs. 7.5(c) and 7.5(d)

corresponding to sample I and II, respectively. Evidently, the experimentally observed

evolution from a power law to a single exponential decay together with the simultaneous

loss in intensity are well reproduced. Our understanding of this phenomenon (namely,

that it is solely induced by delocalization) is thus confirmed. Quantitatively, we have

assumed activation energies Ea of 16 meV for sample I and 27 meV for sample II to obtain

a change with temperature in agreement with the experiments. Both of these values

are a factor of about 3 smaller than those derived from our steady-state PL experiments

[see Fig. 7.4(d)]. We ascribe this finding to the much higher (two orders of magnitude)

excitation density in the time-resolved PL experiments, which is known to significantly

increase the actual carrier temperature with respect to the temperature of the lattice.

7.4 Summary, conclusions and outlook

Using time-resolved PL, the sub-ML InN QSs, formed by utilizing the ordered (
√

3 ×√
3)R30

◦
-In adsorbate structure on GaN(0001), have been found to act electronically as

two-dimensional random alloys similar to conventional (In,Ga)N/GaN QWs. Especially,

a narrow linewidth of the PL transition or exponential PL transients at low temperatures
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could not be detected. Since the transition energies observed for our samples are es-

sentially identical to those reported in the literature as InN/GaN digital alloys,
[76,521]

we

suggest that these nominally complete InN MLs are in fact also formed by the energetically

favorable In adsorbate structure on GaN(0001), but without detectable lateral ordering.

Obviously, the high degree of lateral ordering evident from the reflection high-energy

electron diffraction pattern can be conserved upon overgrowth only partly as detected

by transmission electron microscopy.
[519,524]

Additionally, any deviation from a perfectly

ordered state in a two-dimensional system will induce carrier localization.
[525]

At present,

it seems be to unlikely to obtain perfectly ordered InGa2N3 on a macroscopic scale.

Furthermore, the minimal achievable transition energy in a SPSL containing the (
√

3 ×√
3)R30

◦
-In adsorbate structure is limited due to a maximum In content of 33 %.

Hence, the fabrication of InN/GaN digital alloys emitting in the green spectral range

may be more difficult than envisioned. The low growth temperatures of the QB, required

to embed the sub-ML InN QSs, cause nonradiative recombination and result in a low

IQE at room temperature. Moreover, the vertical separation of electrons and holes in

the SPSL due to the internal electric fields reduces the radiative recombination rate. To

overcome these problems, a radically different growth approach is necessary to realize

efficient InN/GaN digital alloys with narrow optical transitions. For example, the growth

along the N-polar crystal direction allows the stabilization of InN at higher temperatures

which may reduce the point defect density. On the other hand, the growth along the

nonpolar direction on bulk GaN substrates eliminates the strong internal electric fields

and impedes the vertical separation of electrons and holes. Finally, the growth of QSs with

higher In content may be possible for other morphologies. Only recently, spontaneous

ordering into alternating In-rich and Ga-rich MLs has been reported for strain-released

(In,Ga)N(000
¯
1) nanowires.

[526]
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Chapter 8
Summary, conclusions, and outlook

In this thesis, we have investigated the influence of the localization of charge carriers on the recombination
dynamics in polar and nonpolar (In,Ga)N/GaN QWs by time-resolved PL. We have found that in polar
QWs recombination occurs by tunneling between individually localized, spatially separated electrons and
holes, but is due to the radiative decay of localized excitons in nonpolar QWs. In conjunction with Monte
Carlo simulations, we have analyzed the peculiar power law decay in polar (In,Ga)N/GaN QWs to gain
access to the diffusivity and the recombination rates. Furthermore, we have applied our understanding of
the recombination processes to evaluate the potential of three alternative concepts for future (In,Ga)N-based
light emitters. In this chapter, we briefly summarize and relate the main conclusions drawn from the previous
chapters. Finally, we present a general outlook on further investigations as well as on future concepts for
(In,Ga)N-based light emitters.

Summary and conclusions

The aim of this thesis was to understand the recombination dynamics of (In,Ga)N/GaN

heterostructures and investigate the influence of the localization of charge carriers. More-

over, the gained knowledge on the recombination dynamics was applied to evaluate

three different concepts for future (In,Ga)N/GaN light emitters, namely N-polar, axial

(In,Ga)N/GaN QDs in GaN nanowires, core/shell GaN/(In,Ga)N µ-rods, and SPSLs con-

taining sub-ML InN QSs embedded between GaN QBs. Utilizing temperature-dependent

steady-state and time-resolved PL spectroscopy, we arrived at the following main conclu-

sions:

• Similar to the decay of excitons in GaN, the recombination is excitonic for nonpolar

(In,Ga)N/GaN QWs and results in an exponential decay of the PL intensity. In

striking contrast, the PL transients of polar (In,Ga)N/GaN QWs asymptotically

follow a power law. The peculiar power law shape indicates that recombination

occurs by tunneling between individually localized, spatially separated electrons

and holes.
[51]

We explain the distinct difference in the recombination mechanism by

considering the balance between the localization and the exciton binding energies,
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which are both influenced by the magnitude of the internal electric field in the QWs

(see Chap. 5). Moreover, we verify this interpretation by altering the recombination

mechanism in one and the same sample, utilizing an external bias to tune its internal

electric field (see Chap. 6).

• The recombination of electrons and holes in polar (In,Ga)N/GaN QWs with its

power law asymptote cannot by characterized by a unique PL lifetime. Hence, also

the concept of a carrier or diffusion length cannot be applied to this case. In addition,

a long PL decay does not necessarily correlate with a high IQE, because not only

the radiative recombination slows down, but also the nonradiative one. Moreover,

the power law decay is preserved despite nonradiative recombination. Thus, the

PL transients of polar QWs have to be analyzed more carefully, for example with

the recombination model presented in Chap. 4, to extract any useful recombina-

tion parameters. For the simulation of the complex shapes of the decay in polar

(In,Ga)N/GaN QWs, we utilized a dedicated Monte Carlo algorithm,
[79]

which ef-

ficiently solved the position-dependent diffusion-reaction equations of our model.

From the simulations of the experimentally obtained PL transients, we deduced re-

combination coefficients and diffusivities.
[51]

From these results, we conclude that

the N-polar, axial (In,Ga)N/GaN nanowires suffer from a very efficient capture

of charge carriers by nonradiative centers even at low temperatures. The density

of these centers, however, is comparable to that of the Ga-polar, planar reference

sample, but their capture coefficients are significantly larger. Thus, it is the strong

localization at compositional fluctuations that prevents a strong thermal quenching

of the PL intensity. Hence, taking this thermal quenching as a measure for the IQE

may be entirely misleading.

• The analysis of the exponential PL transients in nonpolar core/shell GaN/(In,Ga)N

µ-rods reveals the radiative decay of excitons. This excitonic recombination occurs

on the order of ns and is thus much faster than the tunneling recombination in

polar QWs which takes place on the order of µs. However, not only the radiative

recombination rate increases, but also the nonradiative one as a comparison with

lifetimes reported in the literature for similar structures shows (see Chap. 5). Thus,

the higher overlap of electron and hole wave functions in these structures does not

necessarily result in a higher IQE.

• Temperature-dependent PL spectroscopy of sub-ML InN/GaN SPSL reveals a de-

cay asymptotically following a power law at low temperatures. Hence, individually

localized charge carriers with varying in-plane separation in the QSs recombine

via tunneling, which is reminiscent of the PL decay in conventional (In,Ga)N/GaN

QWs (see Chap. 7). At elevated temperatures, the power law asymptote smoothly

approaches an exponential decay. We explain this observation by efficient non-

radiative recombination, once delocalization sets in, probably caused by the low

growth temperature of the GaN QBs.
[489]

The high nonradiative rate in conjunction

with the low radiative rate, caused by the vertical separation of electrons and holes
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in the SPSL, leads to a weak PL intensity at room temperature. Consequently, the

replacement of conventional (In,Ga)N/GaN QWs by digital alloys consisting of the

binary compounds InN and GaN may be more difficult than envisioned.

Outlook

The presented understanding of the influence of localization of charge carriers on the

recombination dynamics in polar (In,Ga)N/GaN QWs enables the systematic and refined

analysis of samples grown on substrates with different polarities as well as grown with

various geometries and techniques. In the following, we suggest attractive structures

to explore the difference between N-polar and Ga-polar (In,Ga)N/GaN QWs grown by

MBE, to optimize In-containing SPSLs, and to test our model concerning the balance

between the localization and the exciton binding energies. Moreover, we propose an

improved experiment to analyze the PL transients of polar (In,Ga)N/GaN QWs at high

carrier densities.

• With our understanding of the recombination dynamics and our model for the

simulation of PL transients, we have the possibility to accurately characterize the

polar (In,Ga)N/GaN heterostructures and give useful feedback for the epitaxy. So

far, we have not investigated any N-polar (In,Ga)N/GaN heterostructures grown by

MOCVD which might be an interesting test bed for our model concerning the bal-

ance between the localization and the exciton binding energies. Due to the reversed

direction of the internal electric fields, electrons should reside at the lower interface

of the QWs, which is more abrupt in general and does exhibit less frequently mono-

layer fluctuations. Hence, the localization energy for electrons should be reduced,

resulting in an enhanced in-plane diffusivity of electrons and consequently in a

faster decay. The reduced localization and the faster decay, though, may not result

in an increasing IQE. In addition, the investigation of so-called second generation

LEDs,
[527]

which are fabricated on bulk GaN substrates, might give useful infor-

mation about the recombination dynamics of highly efficient polar (In,Ga)N/GaN

LEDs which may serve as a new reference.

• For meaningful simulations of the recombination dynamics of (In,Ga)N/GaN LEDs,

our results imply that it is imperative to consider the omnipresent localization of

holes at compositional fluctuations of the random ternary alloy (In,Ga)N. This lo-

calization results in excitation-dependent recombination coefficients. Consequently,

we suggest to revise conventional drift-diffusion simulations as well as phenomeno-

logical models (e. g. the ABC model) that use constant recombination coefficients to

extract the IQE. The diffusion-reaction equations employed in Chap. 4 constitute

a clear physically motivated framework on which a more general model of the re-

combination dynamics, also including effects for high excitation densities, could be

based. A recent atom-to-device simulation framework, paying attention to localiza-

tion effects in (In,Ga)N/GaN heterostructures, has been established in the Deepen
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project and can by employed for sophisticated device simulations.
[243]

Additionally,

the group of Weisbuch has introduced the so-called localization landscape theory

of disorder in semiconductors, whose results can be directly implemented into a

drift-diffusion model of carrier transport and into the calculation of optical transi-

tions.
[528]

For the investigation of PL transients of polar (In,Ga)N/GaN QWs at high

excitation densities, time-resolved PL experiments of biased LEDs (under typical

operation conditions) may provide additional insights. The experimental proce-

dure may be similar to the one described in Ref. 220, but the recorded PL transients

should exhibit a much higher dynamic range.

• In order to replace conventional (In,Ga)N/GaN QWs with digital alloys for efficient

and narrow-linewidth future light-emitting devices, the width of the QBs has to be

reduced from 6 MLs to 1–2 MLs. Utilizing the ordered (
√

3 ×
√

3)R30
◦
-In adsorbate

structure with an In content of 33 % grown on Ga-polar GaN at high temperatures

may enable the realization of superior blue laser diodes for Blu-ray™ applications.

To achieve green emission, the fundamental problem to deposit pure InN QSs or to

realize ordered QSs with an In content higher than 33 % in a GaN matrix has to be

solved. A higher incorporation of In at higher growth temperatures may be possible

along the N-polar direction of GaN. A possible structure may contain 3 periods of

1 ML InN and 3 MLs GaN embedded between GaN or even (Al,Ga)N barriers. In

addition, the growth along the nonpolar direction is an attractive alternative to

eliminate the internal electric fields in the SPSL stack. However, the absence of the

quantum-confined Stark effect demands a higher In content for transition energies

to be comparable to the polar ones.
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Appendix A
Analysis of the contrast pattern in
µ-electroluminescence maps

Localization and the recombination of individual, spatially separated charge carriers in polar (In,Ga)N not
only constitute interesting physical phenomena, but also have implications on real-world applications. In
this appendix, we extend our study of the diffusivity to normal operation conditions of LEDs and discuss the
influence of the diffusion on µ-EL patterns of (In,Ga)N/GaN LEDs. The comparison of µ-EL patterns with
drift-diffusion simulations suggests a limited diffusivity even under normal operating conditions. Moreover,
the correlation analysis of the µ-EL pattern reveals that the distribution of In content and point defects cause
the microscopic luminescence intensity pattern. This result questions the applicability of conventional
drift-diffusion simulations for (In,Ga)N/GaN QWs.

A.1 µ-electroluminescence spectroscopy of (In,Ga)N/GaN LEDs

Because of carrier localization in the fluctuating potential landscape of the random alloy

of (In,Ga)N, the carrier diffusivity is low in polar (In,Ga)N/GaN QW at the low excita-

tion densities employed for the time-resolved PL measurements presented in Chap. 4.

This situation might change if the density of charge carriers is as high as under normal

operation conditions of LEDs (in the range of 2.5 × 10
12

cm
−2

). Commonly, a filling of

localization centers
[529]

and the subsequent increase of the diffusion
[530]

are assumed to

occur.

In this section, we conduct µ-EL measurements of polar (In,Ga)N/GaN LEDs, emitting

in the blue or green spectral range. All measurements have been performed at room tem-

perature. The LEDs have been introduced and characterized in Sec. 3.5.2 and investigated

under reverse bias in Chap. 6. With electrical injection, we have the possibility to achieve

very high sheet carrier densities and to analyze the diffusion under operating conditions.

The EL of the LEDs was collected utilizing an 100× objective with a numerical aperture

of 0.7. Employing a monochromator and confocal microscopy, we achieve spectral and

spatial resolutions of about 1 meV and 250 nm, respectively (for more details see Sec. 3.4).
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Figure A.1: EL micrographs of a blue (a)–(c) and a green (d)–(f) LED. The current varies over

two orders of magnitude ranging from 3 mA (a, d) over 30 mA (b, e) to 350 mA (c, f). The

brightness of the true color micrographs represents the EL intensity of the different areas in

the LED.

At first, we took EL optical micrographs of a blue and a green LED with the current

varying over more than two orders of magnitude. The true-color micrographs are shown

in Fig. A.1 and represent the active region of the LED. While 3 mA represent a current

just slightly above the threshold of the LED, 30 mA is close to the value at which the LEDs

achieve their maximum EQE. The droop (a reduction of the EQE with increasing current

densities) reduces the EQE by approximately 20 % for the blue and 35 % for the green LED

at standard operating conditions of 350 mA [see Fig. 3.7(f) in Sec. 3.5.2]. We observe two

important facts from the micrographs in Fig. A.1. First, the distribution of the EL looks

the same regardless of the applied current for one specific color of the LED. Especially

no blurring of the contrast is observed with increasing current. Minor differences may

be due to different exposure times and slight changes of the focal plane while recording

the micrographs. Second, comparing the blue and the green LED, the distribution of the

luminescence intensity in the blue LED has a much coarser pattern
∗

than in the green

one. Note that the distribution of the EL does not correlate with features at the polished

surface of the LED as verified by atomic force microscopy (not shown), which could lead

to a different extraction of the light. In addition, focusing the microscope objective, the

EL intensity is maximal, when the contrast is maximal. Consequently, the EL pattern

originates from the active region of the LED.

On the basis of treating (In,Ga)N as a random alloy with localization phenomena,

∗
The pattern of the blue-emitting LED is similar to the one observed for (In,Ga)N layers.

[531]
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A.1 µ-electroluminescence spectroscopy of (In,Ga)N/GaN LEDs

it is conceivable to observe a patterned EL distribution at low current densities. Parts

with higher In content or regions with larger QW width (well-width fluctuations) attract

charge carriers due to the lower band gap. Hence, areas with a lower peak energy should

correlate with areas with a higher EL intensity. However, these fluctuations occur on an

atomic to a nanometer scale in (In,Ga)N.
[157]

Additionally, increasing the current density

should lead to a saturation of localization sites and thus an enhanced portion of mobile

charge carriers.
[530]

Particularly, for a homogeneous pumping of the active region, as it is

the case for the investigated samples, we expect to observe a blurring of the contrast at

high current densities.

The much finer contrast pattern of the green LED [see Figs. A.1(d)–A.1(f)] seems to

reflect major differences in the growth of the active region. The different luminescence

distribution may be directly linked to the reduced efficiency, because in contrast to the

blue LED no large bright areas exist, but only small spots. This may indicate that defects

(i. e., nonradiative recombination centers) cause the different contrast patterns in blue and

green LEDs.

In order to investigate the above mentioned correlation of peak energy and intensity,

we have mounted the samples on the x-y scanning stage of the Labram Evolution setup

(see Sec. 3.4.1) and acquired 20×20 µm
2 µ-PL and µ-EL maps with a scanning increment of

3 µm
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Figure A.2: Comparison of EL micrographs, µ-PL and µ-EL intensity maps for two LEDs

with different emission color. The color-coded integrated intensity of the maps ranges from

low intensity (blue) to high intensity (red). The EL micrographs (a) and (e), the µ-PL maps (b)

and (f) as well as the µ-EL maps (c, d) and (g, h) of the blue and the green LED are acquired at

the same position. The gray area in (h) has not been recorded due to an offset in the position.

The µ-EL maps label with low (high) have been recorded with a current of 30 mA (360 mA).

For the PL measurements, we used Elaser � 3.06 eV and with an excitation power density of

15 kW/cm
2
. The dashed ellipses mark an exemplary region where PL and EL intensity are

inverted. The size of the µ-EL maps amounts to 20×20 µm
2

with a step increment of 0.25 µm.
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A Analysis of the contrast pattern in µ-electroluminescence maps

0.25 µm for the blue [see Figs. A.2(b)–A.2(d)] and the green [see Figs. A.2(f)–A.2(h)] LED.

The µ-PL and µ-EL maps have been recorded at the same position for the respective LED.

We have integrated the intensity over a spectral range from 2.23–2.46 eV and 2.60–2.93 eV

for the green- and blue-emitting LEDs, respectively. The corresponding EL micrographs

of the investigated areas are shown in Figs. A.2(a) and A.2(e), respectively.

Comparing the luminescence patterns for each LED, slight differences between the EL

micrograph, the µ-PL, and the µ-EL maps are visible. In particular, the resolution of

the micrograph of the green LED seems to be higher than the corresponding maps. We

attribute this to a combination of the long acquisition time of the maps (1 h compared to

500 ms for a micrograph) and a thermally induced drift due to the current flow. As we are

investigating the active region of a polar LED, the PL in the unbiased device is sensitive to

minimal changes of the internal electric fields (induced, for example, by inhomogeneities

in doping or strain), which may explain the differences of the µ-PL and the µ-EL maps [see

area marked by the dashed circles in Figs. A.2(b) and A.2(d)]. Nonetheless, the µ-PL map

and the µ-EL maps reveal similar luminescence intensity distributions, indicating that an

enhanced density of charge carriers does not significantly change the spatial distribution

of the EL intensity. Utilizing the Michelson contrast
[532]

Imin − Imax

Imin + Imax

(A.1)

for the minimum (Imin) and maximum (Imax) integrated EL intensities to quantify the

contrast, we obtain 0.65 (0.64) and 0.54 (0.47) for blue and green LED at low (high) current

densities, respectively. We note that determining the intensity with the high accuracy of

3 % results already in an estimated error of about ±0.03 for the Michelson contrast.

A.2 Drift-diffusion simulations

In the following, we will discuss the observed luminescence pattern in the standard frame-

work of drift and diffusion of excitons in a potential landscape. In this picture, excitons

will drift into potential minima causing a high contrast in the resulting distribution of the

luminescence intensity (decay of the excitons). In contrast, diffusion will level/smooth

the distribution of excitons and thus the contrast. For a qualitative comparison of the

contrast for different diffusivities, we have carried out two-dimensional drift-diffusion

simulations by solving the equation

0 �
∂2n(x , y)

∂t
� G(x , y) + D∆n(x , y) + µ∗ ®∇

[(
®∇Eg(x , y)

)
n(x , y)

]
−

n(x , y)
τeff

(A.2)

for excitons with n, τeff � 100 ns, µ∗ � 50 cm
2
/(V s), and D being their density, effective

lifetime, mobility, and diffusivity, respectively. We place a potential minimum in the

middle of a given area [see Fig. A.3(a)]. Steady-state excitation conditions with a Gaussian

laser pulse G(x , y) have been used for the simulation in the potential landscape Eg(x , y).
The remaining parameters for the simulations are related to the experiment and shown
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Figure A.3: (a) Potential landscape with color-coded energy in eV. (b) Schematic of drift and

diffusion of excitons along the dotted line in (a). The excitons are created optically with a laser

with a given spatial distribution. Exemplary simulated intensity distribution (color-coded)

with diffusivities of (c) D � 0.1 cm
2
/s and (d) D � 1 cm

2
/s (Note the different scales.). The

position of the laser spot is marked by an X, and the dotted circle represents the area used for

the determination of the integrated intensity shown in (e) and (f). Resulting distribution of

the integrated intensity for (e) D � 0.1 cm
2
/s and (f) D � 1 cm

2
/s for scanning the laser spot

over the area in (a) with a step increment of 0.25 µm.

in the schematic in Fig. A.3(b). First, we calculate the intensity distribution for a given

position of the exciting laser spot for diffusivities of D � 0.1 cm
2
/s [see Fig. A.3(c)] and

D � 1 cm
2
/s [see Fig. A.3(d)].

Second, we scan the laser in the simulation over an area of 8×8 µm
2

around the potential

minimum with a scanning increment of the laser spot of 0.25 µm. The resulting map of the

integrated intensity around each position of the laser spot [see dotted line in Fig. A.3(c)]

exhibit a maximum at the center of the potential minimum for low (D � 0.1 cm
2
/s) [see

Fig. A.3(e)] and high (D � 1 cm
2
/s) [Fig. A.3(f)] diffusivities. However, the contrast of the

images significantly blurs from values of the contrast of 0.55 for D � 0.1 cm
2
/s to 0.09 for

D � 1 cm
2
/s. Thus, according to our simulations, we expect a pronounced blurring of

the drift-induced contrast in the experiments, if the diffusion is enhanced.

A.3 Correlation of peak energy and intensity

To evaluate only the contrast of the EL intensities may be an oversimplification if the

luminescence pattern is affected by processes in addition to drift and diffusion. To

overcome the problem of evaluating the contrast only, we analyze the Pearson correlation

coefficient ρ of the peak energy and the integrated intensity of the µ-EL maps. To assess

the peak energy, we have automatically processed the spectra as shown in Sec. 3.4.1. The

Pearson correlation coefficient ρ of N points of the integrated intensity I and the peak
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Figure A.4: µ-EL maps of the peak photon energy in eV of the (a) blue and (b) green LED

operated at 360 mA. The integrated µ-EL intensity for the (c) blue and (d) green LED ranges

from low intensity (blue) to high intensity (red). The dashed square marks an area with a

positive correlation coefficient, which is explained in more detail in the text. The size of the

µ-EL maps amounts to 20×20 µm
2

with a step increment of 0.25 µm.

energy E with their respective mean values µ̄ and standard deviations σ is defined as

ρ(E, I) � 1

N − 1

N∑
i�1

(
Ei − µ̄E

σE

) (
Ii − µ̄I

σI

)
. (A.3)

From the two-dimensional drift-diffusion simulations, we deduce that for negligible

diffusion a potential fluctuation is associated with a strict anti-correlation (high intensity

correlates with low peak energy; ρ � −1) as confirmed by Fig. A.3(c). As carriers are

distributed more uniformly for high diffusivities, we expect an experimental correlation

coefficient in the range −1 ≤ ρ ≪ 0.

In Figure A.4, we show exemplary µ-EL maps of the peak energy and the integrated

EL intensity for a blue and a green LED recorded at standard LED operating conditions.

Scanning over a comparably large area of 20×20 µm
2
, the difference of the maximum and

the minimum peak energy covers the range from 10 to 40 meV. Generally, the blue LED

seems to exhibit a slightly larger distribution of peak energies. This behavior appears to

be rather general, as we observe it not only in µ-EL, but also in µ-PL maps of undoped

blue and green single-QW samples (not shown). The contrast of the EL intensity amounts

to 0.64 and 0.47 for the blue and green LED, respectively [see Figs. A.4(c) and A.4(d)].

For the µ-EL map of the blue LED [see Figs. A.4(a) and A.4(c)], we obtain ρ ≈ −0.6,
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A.4 Correlation between photoluminescence intensity and structural defects

i. e., an anti-correlation. Figure A.5(a) exemplary shows the distribution of peak energy

and peak intensity which exhibit a negative correlation indicated by the red line. The

combination of the anti-correlation with the contrast pattern indicates a small diffusivity

for the blue LED. In contrast, the µ-EL map of the green LED [see Figs. A.4(b) and A.4(d)]

reveals a correlation coefficient of ρ ≈ 0. However, if we analyze the smaller area (5×5 µm)

surrounded by the dashed line in Fig. A.4(d), we achieve a correlation with a (positive)

correlation coefficient of ρ ≈ 0.8. A correlation, however, cannot be explained in the

framework of drift and diffusion alone.

The analysis of a larger number of µ-EL maps (from various areas of a 0.8 mm
2

LED

chip) reveals Pearson correlation coefficients of −0.7 ≤ ρ ≤ 0.2 for blue LEDs and values

of 0 ≤ ρ ≤ 0.8 for green LEDs as shown in Fig. A.5(b). Additionally, we present µ-PL

maps from similar (In,Ga)N/GaN heterostructures in the same graph. The scattering

of the correlation coefficient to values closer to zero for the PL experiments compared

to the EL experiments may be explained by the higher sensitivity of the PL intensity to

the internal electric fields of the unbiased samples. However, the finding of a positive

correlation coefficient in the green LEDs underlines that the contrast pattern cannot be a

result of drift and diffusion.

A.4 Correlation between photoluminescence intensity and
structural defects

Based on cathodoluminescence measurements, Pozina et al. [533]
proposed that structural

defects, such as dislocations, are at the origin of the contrast pattern in CL maps from

(In,Ga)N/GaN heterostructures. Kaneta et al. [534]
suggest a model for which they assume
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Figure A.5: (a) Example of a µ-EL map with 6561 data points where only every sixth point

is shown. The correlation coefficient of such as map is calculated by means of Eq. (A.3). The

solid line highlights the anti-correlation with a value of ρ ≈ −0.6. (b) Compilation of the

Pearson correlation coefficients of µ-PL maps (triangles), µ-EL maps recorded at low current

densities (circles), and µ-EL maps recorded at high current densities (squares). Blue- or

green-emitting LEDs are represented by the corresponding color. A correlation coefficient of

ρ � 1 denotes correlation (high intensity at high peak energy), while anti-correlation (high

intensity at low peak energy) is indicated by in a correlation coefficient of ρ � −1.
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Figure A.6: (a) Atomic force micrograph of an undoped blue single-QW sample. The V-pits,

forming at the outcrops of threading dislocations, are visible as black spots. (b) Convolution

of the dislocations with Gaussian functions with a full width at half maximum of 800 nm. The

intensity represents the assumed impact of nonradiative recombination and is color-coded

ranging from low (blue) to high (red) impact of nonradiative recombination. Color-coded (c)

peak energy in eV and (d) peak intensity (blue: low intensity, red: high intensity) of the µ-PL

recorded at the same position as the micrograph in (a).

a higher number of point defects accumulating in the regions of higher In content in green

LEDs.
†

Thus, charge carriers are attracted by these regions, but recombine preferentially

nonradiatively.
[534,536–540]

Both models support the idea that the luminescence pattern of

polar (In,Ga)N/GaN LEDs grown on foreign substrates is not necessarily determined by

drift and diffusion of charge carriers, but by the distribution of nonradiative centers.

To estimate a possible influence of structural defects, we analyze an atomic force micro-

graph
‡

of a blue (In,Ga)N/GaN single QW of similar structural quality as the blue LED

[see Fig. A.6(a)]. The V-pits, forming at the outcrops of threading dislocations, are visible

as black spots. It is possible that dislocations attract nonradiative centers due to their

strain field (Cottrell atmosphere).
[542]

However, more important is the change of the band

gap due to the strain field (several meV per µm).
[543]

If we assume a Gaussian distribution

of the impact of nonradiative recombination around threading dislocations with a full

†
A similar idea has been proposed by Vierheilig et al. [535]

by combining spatially resolved measurements

of PL and photocurrent.

‡
Acquired with a Veeco Dimension 3100 and analyzed with Gwyddion.

[541]
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width at half maximum of 800 nm and convolute this distribution with the dislocations,

we obtain a color-coded map of the impact of nonradiative defects as shown in Fig. A.6(b).

The obtained distribution of areas with a high impact of nonradiative recombination ex-

hibits a pattern qualitatively similar to the maps obtained by µ-PL. However, a map of

the PL peak energy [see Fig. A.6(c)] and PL peak intensity [see Fig. A.6(d)] recorded at the

same position as the atomic force micrograph shows a luminescence pattern that differs

from our simulation. Thus, the microscopic fluctuations in the luminescence pattern are

not linked to the V-pits, in contrast to the observations reported in Ref. 544, but may be

caused by a correlation of the In content and the density of nonradiative point defects.

A.5 Summary and conclusions

We have not observed an enhanced diffusivity of charge carriers under operating con-

ditions by combining drift-diffusion simulations with µ-EL intensity patterns of LEDs.

Moreover, the µ-EL patterns of LEDs cannot be explained in the framework of drift and

diffusion without taking additional effects into account such as, for example, the distri-

bution of nonradiative recombination centers (in particular, point defects).
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Appendix B
Anti-Stokes photoluminescence

In this appendix, we investigate the temperature- and excitation-dependent intense anti-Stokes luminescence
of (In,Ga)N/GaN QWs, which we found to originate from a two-step two-photon absorption process of
localized charge carriers. We suggest this mechanism to contribute to the leakage of charge carriers from the
active region in (In,Ga)N/GaN.

B.1 Two-step two-photon absorption

Nowadays, Auger recombination is believed to be (more or less exclusively) responsible

for the droop in GaN-based LEDs (see also Sec. 2.6).
[25,28]

However, direct experimental

indications of Auger recombination processes have been reported only by Iveland et al. [252]

using electron emission spectroscopy and by Binder et al. [254]
utilizing PL excitation of a

specially designed (In,Ga)N/GaN structure containing QWs with low and high In content.

Although Binder et al. [254]
only excited the QWs with high In content (low peak energy),

they observe luminescence from the QWs with low In content (high peak energy) and

propose electron-electron-hole as well as electron-hole-hole Auger processes to explain the

upconversion of the photon energy.
[254]

Similar, but more sophisticated experiments for

(In,Ga)N/GaN QWs have been reported already in 2000 by Satake et al. [545]
Considering

localization of charge carriers, Satake et al. [545]
explain the observed, so-called anti-Stokes

PL not by an Auger process, but by a so-called two-step TPA
[546]

process.
∗

Due to

localization of the charge carriers in real space, their wave functions in k-space exhibit

contributions from all k states in the Brillouin zone.
[547]

Thus, long-living carriers are able

to absorb photons directly without the participation of phonons.
[547,548]

For other material systems exhibiting localization and spatially separated charge car-

riers, intense anti-Stokes PL has been reported already in the 1990s.
[547,549]

Initially, the-

oretical calculations by Zegrya and Kharchenko
[550]

suggest a cold Auger process which

was used to describe the experimental observations in Refs. 549 and 551. However, in

the majority of publications, the intense anti-Stokes PL is attributed to a two-step TPA

∗
This sequential TPA process is also referred to as two-step absorption.
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Figure B.1: (a) Schematic of the two-step TPA in (In,Ga)N/GaN. Localized charge carriers

[here shown for electrons (green circles)] are able to reabsorb photons from the actual QW

transition, the laser, or from an additional laser source (2
nd

laser) with a photon energy below

the band gap of the QW. The excited charge carriers (orange circles) may relax into the sur-

rounding GaN barrier, the In-containing buffer, or be captured by the QW (dashed arrows).

From either of these three levels, the charge carriers recombine radiatively (blue arrow) or

nonradiatively (violet arrow). (b) Exemplary low-temperature steady-state PL spectrum of

the (In,Ga)N/GaN multi QW excited with Elaser � 3.00 eV (dotted line) and additionally with

Elaser � 1.93 eV (dashed line). (c) Temperature- and excitation-dependent anti-Stokes lumines-

cence spectra of the same sample as used in (b) without and with additional excitation with

Elaser � 1.93 eV as indicated. Iexc,1 � 400 kW/cm
2

and Iexc,2 � 10 kW/cm
2
. (d) Anti-Stokes

luminescence spectra of the same sample recorded at 10 K, but with additional excitation at

Elaser � 1.16 eV. The luminescence signal from the buffer at around 3.4 eV as well as the GaN

peak at 3.48 eV at low temperatures are indicated in (c) and (d).

process, which was found to fully account for the experimental results.
[545–548,552]

The investigated polar (In,Ga)N/GaN heterostructure is similar to the one used by

Binder et al. [254]
and was also grown by OSRAM Opto Semiconductors GmbH. Our sample

contains three (In,Ga)N/GaN QWs and an In-containing buffer emitting in the green and

the UV spectral range, respectively. According to the results in Ref. 545, we expect a two-

step TPA process as depicted schematically in Fig. B.1(a) when utilizing a laser to excite

only the QWs with the higher In content (emitting in the green spectral range). Initially,

charge carriers are excited inside these QW by the (first) laser. Due to localization and the

spatial separation of charge carriers in polar (In,Ga)N/GaN heterostructures (see results in
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Chap. 4), their wave vectors and lifetimes are sufficient to absorb a second photon [either

from the first laser, a photon emitted from the QW (comparable to self-absorption
[85]

)

or from a second laser with a photon energy smaller than the band gap of the QW].

Depending on the electric fields in the barriers surrounding the QW (not shown), the

so-called up-converted charge carriers may relax into to the GaN barrier and/or the In-

containing buffer. Besides direct recombination in the GaN barriers, the up-converted

charge carriers may also drift and relax either into the In-containing buffer or the QW.

In general, normal or up-converted charge carriers recombine radiatively (blue arrows)

or nonradiatively (violet arrows) from their respective levels as schematically depicted in

Fig. B.1(a).

B.2 Photoluminescence analysis

In what follows, we demonstrate that the emission observed in the UV for our sample is

indeed a photon-mediated process (i. e., a two-step TPA) involving localized charge carriers

and is not caused by Auger recombination
[252,254]

or excitation-induced dephasing.
[263]

We present an exemplary spectrum of the Stokes-PL emission of the green (In,Ga)N/GaN

multi-QW sample recorded at low temperatures in Fig. B.1(b). The exciting laser with a

photon energy of 3.00 eV is indicated by a dotted line, while the additional laser with a

photon energy of Elaser � 1.93 eV is shown by a dashed line. The rather broad Stokes-PL

band peaks at about 2.65 eV. Figure B.1(c) shows steady-state PL spectra of the investigated

sample recorded on the anti-Stokes side at excitation densities and temperatures as indi-

cated. Obviously, we detect the PL bands of the GaN and the In-containing buffer at low

temperatures and moderate steady-state excitation densities, which are insufficient for

classical TPA or Auger recombination. At room temperature, the PL emission originates

from the In-containing buffer only.

Exciting the sample not only at 3.00 eV, but additionally with a laser emitting at 1.93 eV

(5 kW/cm
2
) results in an increase of the anti-Stokes PL intensity at low and high tempera-

tures [see Fig. B.1(c)]. Thus, photons from the laser become absorbed in the active region

although their energy is well below the interband energy of the QW states. Thus, we

observe an intraband absorption process of photons, which subsequently excite charge

carriers from the QWs. The excited charge carriers subsequently recombine in the GaN

or In-containing buffer as schematically depicted in Fig. B.1(a). To ensure that we do not

excite any deep levels at 1.93 eV in this structure, we conduct additional experiments with

an even lower photon energy of the second laser. Utilizing a photon energy of the second

laser of 1.16 eV (1 kW/cm
2
) results in an increase of the anti-Stokes PL recorded at 10 K

as presented in Fig. B.1(d). In contrast to the additional excitation with photons with an

energy of 1.93 eV, for which the anti-Stokes PL of the GaN is predominantly enhanced,

the anti-Stokes PL intensity of the In-containing buffer increases only for Elaser � 1.16 eV

[see Figs. B.1(c) and B.1(d)]. This observation may be explained as follows: Preferentially,

deeply localized charge carriers undergo the upconversion process. To populate the GaN

barrier after reabsorption of a second photon requires a photon energy of > 1.2 eV.
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Figure B.2: (a) Exemplary Stokes (blue) and anti-Stokes (red) PL spectrum of the

(In,Ga)N/GaN single QW on an In-containing buffer on GaN excited with Elaser � 3.00 eV at

10 K. (b) Corresponding, excitation-dependent integrated Stokes (blue) and anti-Stokes (red)

PL intensity (IPL) recorded at 10 K (squares) and 300 K (circles). The solid lines indicate fits

whose slopes are indicated.

To quantify the efficiency of the upconversion, we investigate an (In,Ga)N/GaN sin-

gle QW on an In-containing buffer on GaN, whose exemplary Stokes and anti-Stokes PL

spectra recorded at 10 K are depicted in Fig. B.2(a). In Fig B.2(b), we show the numerically

integrated Stokes and anti-Stokes PL intensity at 10 and 300 K over the excitation power

density (Iexc). Both, Stokes and anti-Stokes PL intensity, increase linearly with the exci-

tation density over four orders of magnitude at 10 K [see triangles in Fig. B.2(b)]. Thus,

we safely exclude conventional TPA or Auger processes as their dependence on excitation

density is not linear.
[251,553–555]

At 300 K, the Stokes PL intensity increases with I1.5
exc

[see

Fig. B.2(b)].
†

Despite the large excitation densities, we may attribute the superlinear slope

at 300 K to the saturation of nonradiative centers and an increasing overlap of electron and

hole wave functions (due to screening of the large piezoelectric field) in the single-QW

sample. We note that an identical heterostructure, but containing a single QW with a

higher In content (Stokes emission in the green spectral range), exhibits a slope of the

Stokes PL intensity that results in I2.5
exc

.

The anti-Stokes PL intensity is about two (four) orders of magnitude lower than the

Stokes PL intensity at 10 K (300 K). To explain the large difference between Stokes and

anti-Stokes PL intensity, especially at room temperature, we have to consider the effi-

cient nonradiative recombination in the surrounding GaN barriers
‡
, whose PL intensity

quenches over several orders of magnitude with increasing temperature. Additionally, we

†
The decrease of the slope of Stokes and anti-Stokes PL intensity at the high excitation densities is due to

band filling and spectral broadening of the Stokes spectrum which exceeds the energy of the photons

emitted from the laser. (See, e. g., Ref. 67 for related considerations.)

‡
While the nonradiative recombination of charge carriers at dislocations (density on the order of 10

8
cm

−2
)

is efficiently screened by V-pits in the (In,Ga)N/GaN QWs,
[269]

up-converted charge carriers in the GaN

barriers reach these nonradiative centers easily because no energy barrier exists. Moreover, the diffusivity

of charge carriers in GaN is much larger than in (In,Ga)N.
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have to take into account that charge carriers may partly delocalize at room temperature

(see Chap. 4) and, thus, that the two-step TPA is less efficient.

We note that we have observed anti-Stokes PL emission not only in the test structures,

but also in the nanowires characterized and investigated in Sec. 3.5.1 and Chap. 4 as well

as in the LED investigated in Sec. 3.5.2 and Chap. 6. However, we do not detect any

anti-Stokes luminescence by using only electrical injection in the LED. This might be

mainly due to two reasons: First, the active region of the LED is buried deeply in the

sample. Hence, we do not expect to observe a signal from GaN because of reabsorption

(despite the fact that the GaN signal is weak anyway at room temperature). And second

and most likely, the voltage-induced band bending attracts the electrons to the p-doped

region, and no carriers reach the In-containing buffer. However, the absence of anti-Stokes

luminescence does not automatically indicate an absence of the two-step TPA process.

B.3 Summary and conclusions

We have analyzed the intense anti-Stokes PL emission in polar (In,Ga)N/GaN heterostruc-

tures. Although the upconversion of photons or the emission of high energy electrons

have been ascribed to an Auger process,
[252,254]

our experiments indicate that both effects

may instead originate from the two-step TPA, in agreement with the results from Ref. 545.

The reduction of the efficiency of polar (In,Ga)N/GaN heterostructures in PL experiments

with excitation of the QWs may be partly attributed to the two-step TPA. Moreover, the

energy upconversion of localized charge carriers by the reabsorption of photons and the

subsequent nonradiative recombination in the GaN barriers may constitute an additional

loss channel in polar (In,Ga)N/GaN heterostructures—similar to a photon-assisted Auger

process.
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Appendix C
List of samples

sample structure; growth PL emission Lab-ID chapter

planar reference planar (In,Ga)N/GaN

QWs; MOCVD

blue NAE_02042f 3, 4

nanowires (In,Ga)N QDs in GaN

nanowires on Si; MBE

green M81310 4

blue LED planar (In,Ga)N/GaN LED

with polished surface;

MOCVD

blue HOEPL412 3, A

green LED similar to blue LED green HOEPL413 3, 6, A

µ-rods GaN/(In,Ga)N core/shell

µ-rods with a QW; MOCVD

violet – 5

(In,Ga)N layer 40-nm-thick (In,Ga)N layer

on Al2O3; MOCVD

violet S4 5

SPSL I SPSL with thin QBs; MBE UV M1497 7

SPSL II SPSL with thick QBs; MBE UV M1491 7

Anti-Stokes I planar (In,Ga)N/GaN QWs

with In-containing buffer;

MOCVD

green NAE_05090 B

Anti-Stokes II similar to Anti-Stokes I, but

with a single QW

blue NAE_05117 B

Table C.1: List of samples investigated in this thesis.
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