WeierstraB-Institut
fir Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855
ParMooN — a modernized program package based on mapped

finite elements

Ulrich Wilbrandt', Clemens Bartsch', Naveed Ahmed', Najib Alia', Felix Anker',
Laura Blank', Alfonso Caiazzo', Sashikumaar Ganesa?, Swetlana Giere',
Gunar Matthies®, Raviteja Meesala?, Abdus Shamim?, Jagannath Venkatesan?, Volker John'

submitted: October 13, 2016

' Weierstrass Institute 2 Indian Institute of Science

Mohrenstr. 39 Department of Computational and Data Sciences
10117 Berlin Bangalore - 560012

Germany India

email: ulrich. wilbrandt@wias-berlin.de email: sashi@cds.iisc.ac.in

clemens.bartsch@wias-berlin.de
naveed.ahmed@wias-berlin.de
najib.alia@wias-berlin.de
felix.anker@wias-berlin.de
laura.blank@wias-berlin.de
alfonso.caiazzo@wias-berlin.de
swetlana.giere@wias-berlin.de
volker.john@wias-berlin.de

8 Technical University of Dresden Free University of Berlin

Institute of Numerical Mathematics Department of Mathematics and Computer
01062 Dresden Science 14195 Berlin
Germany Germany

email: gunar.matthies@tu-dresden.de

No. 2316
Berlin 2016

I\
NSl

-

2010 Mathematics Subject Classification. 65Y05.
Key words and phrases. Mapped finite elements; Geometric multigrid method; Parallelization.

The work of Najib Alia has been supported by a funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sktodowska-Curie grant agreement No. 675715 (MIMESIS).
The work of Felix Anker has been supported through by grant Jo329/10-2 within the DFG priority programme 1679: Dynamic simulation of

interconnected solids processes.
The work of Volker John has been partially supported through by grant Jo329/10-2 within the DFG priority programme 1679: Dynamic simulation

of interconnected solids processes.

Edited by
WeierstraB3-Institut fir Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.

MohrenstraBe 39

10117 Berlin

Germany

Fax: +493020372-303

E-Mail: preprint@wias—-berlin.de

World Wide Web: http://www.wias-berlin.de/

Abstract

PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations.
It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element
spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric
multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid
hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects
of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers,
assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that
are available in external libraries. The results of these studies give a first indication whether the cumbersome
implementation of the parallelized geometric multigrid method was worthwhile or not.

1. Some Considerations about In-House Research Codes
MooNMD, a C++ program package for the numerical solution of elliptic

and parabolic partial differential equations based on mapped finite elements, has

been described in [28]. A modernized version of this package, called PARMOON,
has been recently developed to be used as a research code in the future.

Nowadays, several academic software packages for solving partial differen-
tial equations exist in the research community. They are usually developed
and supported by research groups for whom software development is one of the

main scientific tasks. Such software packages include, among others, DEAL.II

[10], FENICS [2], DUNE [15, 11], or OPENFOAM [32]. These packages have
advanced functionality and support features like adaptive mesh refinement, par-

allelism, etc.

Naturally, a research code developed in house possesses less functionality
than these large packages. In view of their availability, the following questions
aribe: Why is[it worth to[develop an own researcl dode? In particular, is
it worth to develop a code within a research group that focuses primarily on
numerical analysis? In the following, some arguments, mainly based on our own
experience, are presented.

The first key aspect of working with a code developed and maintained within
the research group is the detailed knowledge of the software structure. In fact,
applied mathematicians often work at the development of algorithms. These
algorithms have to be implemented, assessed and compared with popular state-
of-the-art algorithms for the same problem. A meaningful assessment requires
the usage of the algorithms in the same code. In this respect, it is important to
have access to a code where one knows and can control every detail.

For brevity, just one example will be mentioned that shows the importance of
knowing the details of a software package. This example concerns the clarifica-
tion of appropriate interface conditions in subdomain iterations for the Stokes—
Darcy problem, see [14]. Standard Neumann interface conditions can be used
only for viscosity and permeability coefficients that are unrealistically large.
For realistic coeflicients, appropriate Robin boundary conditions have to be
used. The implementation of the Robin interface conditions was performed in

a straightforward way in MOONMD /PARMOON.

Further advantages of an own research code are the possibility of controlling
its core parts and flexibility. In particular, for our research it is very impor-
tant that the code supports the use of different discretization strategies. As an

example, MOONMD was designed for finite element methods. But for the inves-
tigation of discretizations for time-dependent convection-diffusion equations in

[29], finite difference methods were implemented as well. Because these methods
performed very well, they were later used in the context of simulating population
balance systems defined in tensor-product domains, e.g., see [12, [36].

The list of examples could be extended. In addition, a number of numerical
algorithms have been developed and implemented in our research code which
turned out to be not (yet) competitive, like the optimization of stabilization
parameters in SUPG methods in [27]. Having a known and flexible research
code at disposal allows to test and support algorithms that, at the time of the
implementation, have not been benchmarked in detail.

Certainly, also the large packages mentioned above allow the implementation
of different algorithms and discretization strategies. However, we think that
a successful implementation often requires a very close interaction with core
developers of the packages. This effort might not be feasible for both the user
and the developer. Therefore, an own code might reduce the time from the
development to the assessment of numerical methods.

A further aspect, related with the interaction of the core development team,
concerns the students and the PhD students who are involved in the development
and in the usage of the code. Since the core developers of an own research
code are readily available and they are experts in the focused research topics
of the group, these students can be supported efficiently. In addition, students
working at the code stated several positive effects: the work at details of the
implementation facilitates the insight into the methods, which is important for
analyzing their properties, and the skills in software design and management
are enhanced. Of course, incorporating students into code development requires
that there is an easy use of the code and an easy access to basic routines, such
as, in the case of a finite element solver, assembling of matrices and solving
linear systems of equations.

This issue touches already the next question: What should be expected from
an own research code?

In order to support students when starting to work with the code, an easy
installation and basic testing setup are essential. There are even successful
attempts for designing complex codes that can be used for teaching students
in basic courses on numerical methods for partial differential equations, like
the so-called computational laboratory for Investigating Incompressible Flow
Problems (IFISS), see [16], which uses MATLAB, and the open source software
FREEFEM++ [19], which is based on an own language.

The code should be modular. In particular, there should be a general core
and individual projects should be attached to this core. Of course, the projects
use routines from the core. But with an own code, it seems to be easier than with
a large package, which is developed somewhere else, to incorporate contributions
from the projects into the core.

With respect to the required stability of the code, there are, in our opinion,
no fundamental differences between own research codes and large packages.

However, there are different expectations with respect to the efficiency. A
research code should be flexible in many respects, since its main tasks include
supporting the development of numerical methods and results from numeri-

cal analysis. For instance, in the code MOONMD /PARMOON, the concept of
mapped finite elements is implemented, see Section In this way, the code
supports currently around 170 finite elements in two dimensions and 75 finite
elements in three dimensions. Consequently, all routines are implemented for
the general situation. For certain finite elements, this might be less efficient
than using tailored routines. However, also for a research code, efficiency is
a key property that should not be neglected. For instance, the simulation of
standard academic benchmark problems for turbulent incompressible flows re-
quires the computation of large time intervals to collect temporal averages of
statistics of interest. In our opinion, an own research code should be reason-
ably efficient on the available in-house hardware, which, in our case, are usually
laptops, compute servers, or small clusters.

2. On the Objectives of this Paper

One of the aims of this paper is to report on the development of the exist-
ing research code MOONMD towards a new package, in order to accomplish
the goals mentioned in Section The original code possesses some distinct
features, like the strict decoupling of geometry and finite element spaces, the
implementation of mapped finite elements as their definition can be found in
textbooks, or a multiple discretization multilevel (MDML) preconditioner, see
Section The core of MOONMD has been designed more than 15 years ago
and this code has been successfully used so far in many scientific studies. There
are almost 90 research articles citing MOONMD via [28], see [37]. Recent ad-
vances in computing hardware and language standards necessitate a re-design
and re-implementation of some of the core routines. With the new core and the
new features, the code was renamed to PARMOON (Parallel Mathematics and
object-oriented Numerics).

This paper focuses on the most relevant aspect concerning the development
of PARMOON, namely the parallelization. In particular, the technically most
cumbersome part, the parallelization of the geometric multigrid, is discussed.

Its main contribution is a first assessment of the resulting parallel geomet-
ric multigrid method in comparison with parallel solvers for linear systems of
equations that can be called from external libraries. The numerical studies
were performed on compute servers, which is the available in-house hardware.
We think that this assessment is also of interest for other groups who develop
their own code in order to get an impression whether it is worthwhile to im-
plement a parallelized geometric multigrid method or not. Two main problem
classes supported in PARMOON are considered in the numerical studies: scalar
convection-diffusion-reaction equations and the incompressible Navier—Stokes
equations.

3. Mapped Finite Element Spaces

The implementation of finite element methods in MOONMD /PARMOON
is based on a rather abstract definition of a finite element space and on the

mapping of each mesh cell to a reference mesh cell.

Let Q C R% d € {2,3}, be a bounded domain and let 7" be some triangula-
tion of) consisting of compact mesh cells. For each mesh cell K, a local finite
element space P(K) C C*(K), s > 0, is given by some finite-dimensional space
of functions spanned by a basis {¢K1}f\i’§ Furthermore, a set of local linear
functionals {®x ;}1% is given. The space P(K) is unisolvent with respect to
the functionals. Often, a so-called local basis is chosen, i.e., a basis that satis-
fies ®x ;(pK ;) = d;5 for i,5 =1,..., Ng. The local linear functionals might be
values of the functions or their derivatives in certain points, integrals on K or
on faces of K.

Let ®1,...,®y5 : C*(2) — R be given continuous linear functionals. The
restriction of each functional to C*(K) defines the set of local functionals. The
union of all mesh cells K, for which there is a p € P(K;) with ®;(p) # 0, will
be denoted by w;. Now, the global finite element space is defined as follows. A
function v(x) defined on Q with v|x € P(K) for all K € T" is called continuous
with respect to the functional ®; : C*(Q) — R if ®;(v|k,) = Pi(v|k,) for all
K1, K5 € w;. The space

S = {v € L*(Q) : v|g € P(K) and v is continuous with respect to

<I>i,i:1,...,N}

is called finite element space. The global basis {¢; }§V=1 of S is defined by the
conditions ¢; € S with ®;(¢;) = d;; fori,j=1,...,N.

Using this definition for the implementation of a finite element space requires

1.) the definition of the local basis and linear functionals for each K,
2.) the implementation of a method that assures continuity stated in the
definition of S.

The first requirement can be achieved in two different ways, via a mapped
or an unmapped implementation. In the unmapped approach, the local basis
and linear functionals are defined directly on K. In contrast, mapped finite
elements are closely connected to a standard way of analyzing finite element
discretizations. This analysis consists of three steps:

e Map an arbitrary mesh cell K to a compact reference mesh cell K.

e Prove the desired properties on K , which is the core of the analysis.

e Map the reference mesh cell K back to K to get the final result.
Hence, this approach has two main features:

e All considerations have to be done on K only.

e There is no information necessary and available about neighbor mesh cells

of K.

Mapped and unmapped finite element methods possess the same analytical
properties if the reference map Fx K — K is affine for every mesh cell
K of the given triangulation. In the case of non-affine maps, occurring, e.g., for
a triangulation consisting of arbitrary quadrilateral or hexahedral mesh cells,
mapped and unmapped finite element spaces might be different. In MOONMD/

PARMOON, the concept of mapped finite elements is implemented in the follow-
ing way. Reference mesh cells are the unit simplices, e.g., in two dimensions with
the vertices (0,0), (1,0), (0,1), and the unit cubes K = [—1,1]%. Affine maps
are available for all reference mesh cells. To account for arbitrary quadrilaterals
and hexahedra, d-linear maps are also implemented for the unit cubes. Based on
the different reference cells, local spaces on K, linear functionals, and reference
maps, MOONMD/PARMOON currently supports about 170 finite elements in
two dimension and 75 finite elements in three dimensions.

The use of mapped finite element spaces essentially requires the implementa-
tion of finite elements on the reference cells. The quadrature rules for numerical
integration have to be implemented only on these cells, since the integrals on
physical cells are transformed to integrals on the reference cells. Note that the
same strategy works also for the handling of cell faces, which are mapped onto
lower-dimensional reference cells by corresponding reference maps.

A d.o.f-manager (d.o.f. - degree of freedom) is used in MOONMD /PARMOON
for ensuring the continuity in the definition of the finite element space. For a
detailed description of the d.o.f.-manager, see [2§].

The implementation of the concepts described in this section have been
adapted from MOONMD to PARMOON in a straightforward way. It is clear that
the definition of the local basis and functionals is completely local and therefore
not affected by the parallelization. The required continuity in the definition
of finite element spaces is performed in PARMOON on each process separately.
The computed results are visualized with the software package PARAVIEW [I] [6]
that does not require global numbers for the d.o.f.s. However, if needed, global
numbers for d.o.f.s can be assigned, compare [I8]. Altogether, the used concepts
turned out to be applicable in the same way as well for the sequential as for the
parallel code.

4. Parallel Data Structures in PARMOON

PARMOON supports a single program, multiple data (SPMD) approach on
parallelism, making use of the Message Passing Interface (MPI) standard [31].
It relies on a decomposition of the domain, which is the standard for parallelized
finite element codes. Decomposing the computational domain and distributing
it among the processes naturally leads to a parallelization of matrix-vector op-
erations. The local aspect of the finite element method, which is reflected in the
sparsity of the arising matrices, limits the communication overhead.

4.1. Decomposing the Domain - Own Cells and Halo Cells

In order to distribute the domain among the participating MPI processes,
where each process executes a MPI parallel program, PARMOON makes use of
the METIS graph partitioning tool [30]. At program start, all processes read
the same geometry and perform the same initial domain refinement steps. Upon
reaching the first refinement level on which computations will be performed, the
root process (process number 0) calls the METIS library to compute a disjoint

ojofjof1(f1f1 0Oj0|0]1 of1]1]1
ofojoj1|1]|1 0OjO0]|O0|1 oOf1T]1]|1
ojojoj1(|1]1 0ojo0|0]1 01T 11{1
2(2]12(3[3]3 2121012102 AIBIHINE I E
2121233 |3
21213313
Cells distributed among On process 0: On process 1:
four processes {D Independent Cells {D Independent Cells
Oown Oown
D Dependent Cells D Dependent Cells

D Halo Cells D Halo Cells

Figure 1: Different cell types due to a domain decomposition.

domain decomposition, i.e., to determine which process is going to be in charge
of which mesh cells.

Root then communicates the METIS output to the other processes. Each
process is informed about the cells it will be responsible for. These cells are
called own cells of the process. Each process then maintains only its own cells
plus those cells that share a boundary face, edge, or vertex with an own cell.
In domain decomposition methods these cells are commonly referred to as halo
cells. The sketches in Figure [I] clarify that expression — the halo cells form a
one-layer thick halo around the set of own cells.

The own cells are further divided into dependent and independent cells, de-
noting with interface the set of faces shared by own cells and halo cells. All
own cells which share a piece of interface are called dependent cells, while the
remaining own cells are called independent cells.

The requirements on an efficient domain decomposition are twofold: the
computational load must be balanced, i.e., there should be a comparable number
of cells on each process, and the needed amount of communication must be small,
i.e., the interfaces should be as small as possible. Due to the deletion of cells,
each process stores only a part of the entire problem (multiple data), but all
processes execute the same program code (single program). With its domain
reduced to own cells plus halo cells, each process sets up a finite element space
and perform all further computations only on the own part of the domain.

4.2. Types of Degrees of Freedom

A d.o.f. with index i is defined by the finite element basis function ¢; and
the associated global linear functional ®;. It is represented, e.g., by the i-th
entry in the vectors for the solution and the right-hand side.

A d.o.f. on a certain process P will be classified depending on the localization
of the associated finite element basis function and on the classes of d.o.f.s it is
coupled with. Two degrees of freedom of a finite element in d dimensions are said

to be coupled if the supports of the corresponding basis functions intersect on a
set of non-zero d-dimensional measure. Note that, with this definition, coupling
only occurs for d.o.f.s that are located in the same mesh cell. The coupling of
two d.o.f.s transfers directly to a property of the finite element matrix A: the
coupling of d.o.f. ¢ and j will lead potentially to non-zero entries a;; and aj;
and the needed memory for these entries has to be allocated.

In the following, the classes for handling d.o.f.s in PARMOON will be de-
scribed shortly. All d.o.f.s that are localized in a cell known to processor P are
called known d.o.f.s and will be denoted by Df (D stands in the following
for number of d.o.f.s on P of type x). This set of d.o.f.s is then divided into
master and slave d.o.f.s, i.e.,

u Dk

P _ NP
Dknown =D slave>

master
where U denotes a disjoint union. A d.o.f. i is said to be a master d.o.f. on
P if P is responsible for the value of i, in a way that will be clarified below.
All known d.o.f.s which are not master on P are called slave d.o.f.s. It is worth
noticing that every d.o.f. in the entire problem is a master on exactly one
process. However, a d.o.f. can be slave on more than one process.

One can introduce the following classes of d.o.f.s:

e Independent d.o.f., i.e., all d.o.f.s which lie in P’s own cells but not in its
dependent cells. All P’s independent d.o.f.s are set as master d.o.f.s, since
they are not even known to any other process. They only couple to other
master d.o.f.s of P.

e Dependent d.o.f., i.e., those d.o.f.s lying in P’s dependent cells, but not
in its halo cells. Process P is the master of all its dependent d.o.f.s.
The notation is motivated by the fact that the dependent d.o.f.s are in a
vicinity to the domain interface and therefore possess, to some extent, a
dependency on other processes.

e Interface d.o.f., i.e., all d.o.f.s that lie on the intersection of dependent cells
and halo cells. These d.o.f.s are known to all adjacent processes as interface
d.o.f.; too. Only one of these processes will take master responsibility
for each interface d.o.f. In particular, on a process P, one distinguishes
between master interface d.o.f. (the interface d.o.f.s which are master
on P) and slave interface d.o.f. (all others d.o.f.s, for which neighboring
processors take master responsibility).

e Halo d.o.f., i.e., all d.o.f.s which lie in halo cells but not on the interface.
Since all of them are dependent d.o.f.s to neighboring processes, one of
these will take master responsibility for them. On P all halo d.o.f.s are
slave d.o.f.s.

Hence, the sets of master and slave d.o.f.s can be divided as

P _ NP ' P ’ P
Dmastcr - Dindcpcndcnt U Ddcpcndcnt U Dintcrfacc master »

DE =DF

slave interface slave

’ P
U Dhalo'

In general, the d.o.f. classification depends on the finite element spaces and the

Process 0

D.o.f. types:

| Independent
Da Dependent(a)
DB Dependent(B)
M Interface Master
S Interface Slave
Ha Halo(a)
HB Halo(B)

Figure 2: Types of d.o.f.s at the interface for two-dimensional Q2 finite elements, from the
point of view of process 0 and process 1.

decomposition of the domain. Figure 2 sketches the different types of d.o.f.s for
two-dimensional @5 finite elements at the interface between two processes.

Furthermore, it is convenient to further refine the d.o.f. classification in

order to reduce the communication overhead, see also Section 4.3] To this aim,
the halo and the dependent d.o.f.s of P are further divided into Halo(«) and
Halo(8), and Dependent(«) and Dependent(f), respectively:

e Halo(a) and Halo(B) d.o.f.s.: The Halo(«) d.o.f.s are those that are cou-
pled with at least one (interface) master d.o.f. of P, while Halo(3) d.o.f's
are coupled solely with other slave d.o.f.s, i.e., with interface slave d.o.f.s
and other halo d.o.f.s.

e Dependent(a) and Dependent(B) d.o.f.s.: Dependent() d.o.f.s are those
connected to at least one (interface) slave d.o.f., while Dependent(3) d.o.f.s
are all those that are connected to master d.o.f.s only, i.e., to interface mas-
ter, other dependent, or independent d.o.f.s. Note that all Dependent(5)
d.o.f.s of process P will be Halo(8) d.o.f. on all other processes where
they are known. For Dependent(a) d.o.f.s the situation is not as simple.
Each of them is Halo(«) to at least one neighboring process, but can be
Halo(f) to others, see also the sketch in Figure

4.83. Consistency Levels

In parallel computations, values can be stored either in a consistent way or in
an inconsistent (or additive) way. Consistent storage means that all processes
have the same and correct value at all respective d.o.f.s as in the sequential
environment. In additive storage, a global value is the sum of the values over

all processes where it is known. In PARMOON mainly consistent storage and
weakened concepts hereof are used.

Four stages of consistency are important for PARMOON finite element ob-
jects, like vector representations of a finite element function or a matrix.

o Level-0-consistent. Consistency holds only with regard to master d.o.f.s.

Each master d.o.f. on each process holds the same value as it would in
a sequential computation. The values of slave d.o.f.s are in an undefined
storage state. In the implementation of operations care must be taken
of not losing Level-0-consistency - all master values must be kept as they
would be in a sequential execution.

e Level-1-consistent. All master d.o.f.s and all interface slave d.o.f.s are

consistent. The values of all halo d.o.f.s are in an undefined storage state.

o Level-2-consistent. Consistency is established for all but Halo(3) d.o.f.s.

The values of Halo(3) d.o.f.s. are in an undefined storage state while all
other values are consistent.

e Level-3-consistent. All d.o.f.s are stored consistently. This is the

consistent storage.
The main motivations behind introducing this classification are that different
operations require a different state of consistency of their input data and that
restoring a certain state of consistency requires a certain amount of communica-
tion — the lower the required state of consistency, the lower the required amount
of communication.

After the domain was decomposed, each process P assembles a finite element
matrix on all its known cells. The use of halo cells assures that all information
to assemble the rows belonging to master d.o.f.s is available on P. The finite ele-
ment matrix assembled in this way will therefore be row-wise Level-1-consistent
— all rows belonging to master and slave interface d.o.f. are correctly assembled.

Multiplication of a row-wise Level-O-consistent matrix with a Level-2-consis-
tent vector gives a Level-0-consistent vector. Level-3-consistency of the vector
factor is not needed. If the vector factor is Level-3-consistent, together with
the matrix being Level-1-consistent, the result will be even Level-1-consistent.
There is no further benefit in keeping the matrix in higher consistency levels
than Level-0-consistency.

Multiplying a vector with a constant scalar will maintain the current con-
sistency level, as will vector-vector addition. In the latter case, vectors with
different consistency level might be added and the result has the lower consis-
tency level. Scalar products require Level-O-consistency of both vectors, where
all slave d.o.f.s will be skipped, and a globally additive reduce operation to get
a consistent result.

Level-3-consistency of a finite element vector in PARMOON is only enforced
if operations require knowledge of the represented finite element function even
on the halo cells. Such operations are for example matrix assembling with an
input finite element function, like for the convective term of the Navier—Stokes
equations, grid transfer operations in multigrid methods, or gradient recovery
by averaging gradients over a patch of mesh cells.

¢

‘real”

10

Relation (shorthand) Master type updates Slave type

Interface (IMS) Interface Master — Interface Slave
Dependent(«)-Halo(a) (DHa) Dependent(«) — Halo(a)
Dependent(S)-Halo(8) (DHS) Dependent(S) — Halo()

Table 1: Master-slave relationship of d.o.f. types.

Enforcing certain consistency levels is a matter of communication. For each
d.o.f. which needs an update, the responsible master process communicates its
value to all processes where it is slave. These processes simply reset its value
to the received value. The required infrastructure for this communication is set
up just once for a certain finite element space and can be reused whenever an
update is necessary.

4.4. Organizing Communication

When setting up the communication structure, one has to find, for each
non-independent master d.o.f. 7, all those slave d.o.f.s on other processes that
are globally identical to . Certain master types match with certain slave types,
see Table [I] forming three distinct pairs of master-slave relations. To restore a
certain consistency level, at least one of these relations requires an update.

Note that it is not possible in general to immediately identify the global
number of a d.o.f., since each process creates finite element spaces only on its
own cells and it numbers its d.o.f.s locally, unaware of the other processes. In
PARMOON, the global identification of a d.o.f. is defined according to the global
number of the mesh cell in which the d.o.f. is located. These global cell numbers
are assigned to each cell before decomposing the domain. Performing uniform
refinements, such a globally unique cell number can easily be given to children
cells, too. Hence, the globally consistent cell number and a globally consistent
local d.o.f. number (within each cell) make it possible to identify each d.o.f.
globally.

The communication structure is stored in a class called ParFEMapper, while
the communication itself is performed by a class named ParFECommunicator.
Setting up the ParFEMapper and ParFECommunicator requires some com-
munication itself, and a detailed description of this task is presented in [I§]. In
what follows, only an overview of it is given, including a short description of
those data fields of ParFEMapper that are relevant when updating the d.o.f.s
of a certain master-slave relation, see Table[Il Since for all three relations these
data fields are corresponding, the interface (IMS) relation is presented as an
example.

For the IMS update, the ParFECommunicator wraps a call to the MPI
function MPI_Alltoallv, where every process may send a different set of val-
ues of the same type (MPI_DOUBLE in this case) to each other process. To
control the MPT_Alltoallv call, the ParFEMapper stores the following data,
where mpi_size is the total number of processes and nInterfaceSlaves is
the number of interface slaves local to process P.

11

e int* sendBufIMS isthe send buffer, filled with the values of all interface
masters, each one possibly appearing more than once, which will then be
sent to the other processes. Its total length equals the sum over all values
of sendCountsIMS.

e int* sendCountsIMS is an array of size mpi_size. It lists how many
values P has to send to each process.

e int* sendDisplIMS isthesend displacement, an array of size mpi_size.
It stores where in the array sendBuf IMS the message for a certain process
starts. In PARMOON there are neither overlaps nor gaps, so sendDis—
plIMS [i] holds the sum of sendCountsIMS[0] to sendCountsIMS [i—
1].

e int* recvBufIMS is the receive buffer, which will be filled with sent
values from the other processes in the communication routine. Its size
equals nInterfaceSlaves.

e int* recvCountsIMS is an array of size mpi_size. It lists how many
values are to be received from each process. The sum of its values is
nInterfaceSlaves.

e int* recvDisplIMS isthe receive displacement. Like for int* send-
DisplIMS there are neither gaps nor overlaps.

Besides the data, which is needed in the immediate control of MPTI_Alltoallv,
the ParFEMapper contains two arrays that allow to interpret the sent and
received data, by mapping between send- or receive buffer and the local d.o.f.s:

e int* sentDofIMS interprets sentDofIMS[i]= d as: The i-th place
in sendBufIMS has to be filled with the value of the local d.o.f. 3.

e int* rcvdDofIMS interprets rcvdDofIMS[i]= d as: The i-th value
in recvBufIMS should update the local d.o.f. 4.

In the same way, the communication for DH(«) and DH(S) is organized.

To change a vector from Level-0-consistency to Level-1-consistency, only an
IMS update is required. For restoring Level-2-consistency, additionally a DH(«)
update is necessary while Level-3-consistency requires even a DH(3) update on
top.

5. The Parallel Geometric Multigrid Method

Geometric multigrid methods are an appealing option to be used as precon-
ditioners in problems where the necessary hierarchy of grids can be provided.
These methods have been used in the simulations performed with MOONMD in
particular for three-dimensional problems and for linear saddle point problems
arising in the linearization and discretization of equations modeling incompress-
ible flow problems [25].

The components of a geometric multigrid method are the following: function
prolongation, defect restriction, function restriction, smoother, and coarse grid
solver. Details of the algorithms and implementation of the first three compo-
nents in MOONMD /PARMOON can be found in [28] and it will be referred for
brevity. It shall be only noted that multilevel methods are supported that al-
low different finite element spaces on different levels of the multigrid hierarchy.

12

In particular, the so-called multiple discretization multilevel (MDML) method
for higher order discretizations can be used. This method possesses the higher
order discretization on the highest multigrid level and a low order discretiza-
tion on all coarser levels. The motivation for this approach is the experience
that multigrid methods often work very efficiently for low order discretizations.
Numerical studies of the efficiency of the MDML method can be found, e.g., in
[23, 24]. The grid transfer operations are performed with a local operator, tak-
ing values only on the mesh cells of the current level, proposed in [35] that can
handle different finite element spaces on different levels of the grid hierarchy,
see 28] [25] for details.

The implementation and parallelization of geometric multigrid methods re-
quire a considerable amount of work. The geometric data structures need to be
equipped with parent-child information and the grid transfer operations have
to be implemented. In the current version of PARMOON, each process is re-
sponsible of a part of the coarsest grid and refines this part uniformly, compare
Section Consequently, all parent-child information is available on the pro-
cess. More technical details on constructing the grid hierarchy can be found in
[18].

As usual in parallel geometric multigrid methods, block-Jacobi smoothers are
applied, where the blocks correspond to the master and interface slave degrees
of freedom of a process. Within the blocks, the actual smoother, like SSOR
or the Vanka smoother, is used. After each smoothing iteration, the values at
the interface are updated by computing their arithmetic average. As already
mentioned above, the grid transfer operators need as potential input all values
that are connected to a mesh cell. Since it is sufficient to perform the grid
transfer only on own cells, the input vectors for the grid transfer have to be
level-1-consistent.

6. Numerical Studies

The performed numerical studies are a first step of assessing the efficiency of
the parallelized geometric multigrid method in comparison with parallel solvers
that can be used by linking an external library to the code. The underlying
question is whether it was worthwhile to perform the complex parallelization
of this method. We think that this question arises also in other groups that
maintain an in-house research code.

In this paper, the numerical studies concentrate on the standard multigrid
method (same number of geometric and multigrid levels, same discretization on
each level) since we think that this method is of most interest for the community.
It was used as preconditioner in the flexible GMRES (FGMRES) method [33].
The system on the coarsest grid was solved with a sparse direct solver. Moreover,
the V-cycle was applied because of its better efficiency on parallel computers
compared with the more stable F- and W-cycle (the F-cycle is our standard
approach in sequential simulations). The V-cycle approaches less often coarser
grids, which possess an unfavorable ratio of computational work and necessary
communications, than the other cycles.

13

The efficiency of the geometric multigrid preconditioner has been compared
with the efficiency of the sparse direct solver MUMPS [3| 4] and the FGMRES
method preconditioned with SSOR (for scalar problems), the BoomerAMG [21]
(for scalar problems), or the LSC preconditioner [I7] (for linear saddle point
problems). These solvers were used as they are provided from the library
PETSc, version 3.7.2, [7, 8, ©]. The restart parameter in FGMRES was set
to be 50.

The numerical studies were performed on a hardware platform that can be
usually found in universities and academic institutes, in our case, on compute
servers HP BL460c Gen9 2xXeon, Fourteen-Core 2600MHz. We think that the
performance on a hardware platform that is widely available is of interest for
the community. The results will consider only the computing times for the
different solvers of the linear systems of equations. We could observe some
variations of these times for the same code and input parameters but different
runs. To reduce the influence of these variations, all simulations were performed
five times, the fastest and the slowest computing time were neglected and the
average of the remaining three times is presented below.

Example 1. Steady-state convection-diffusion equation. This example is a three-
dimensional extension of a benchmark problem for two-dimensional convection-
diffusion equations — the so-called Hemker example [20, 5]. The domain is
defined by

Q={{(-3,9 x (-3,3)}\ {(z,y) : 2 +¢y* <1}} x(0,6)
and the equation is given by
—Au+b-Vu=0 1inQ,

with e = 1075 and b = (1,0,0)”. Dirichlet boundary conditions u = 0 were
prescribed at the inlet plane {z = —3} and v = 1 at the cylinder. At all other
boundaries, homogeneous Neumann boundary conditions were imposed. This
example models, e.g., the heat transport from the cylinder. The solution exhibits
boundary layers at the cylinder and internal layers downwind the cylinder, see
Figure

It is well known that stabilized discretizations have to be employed in the
presence of dominant convection. In the numerical studies, the very popular
streamline-upwind Petrov—Galerkin (SUPG) method [22], 3] was used with the
standard parameter choice given in [26] Eqgs. (5) — (7)]. Simulations were per-
formed with @, finite elements. The initial grid is depicted in Figure

Computational results are presented in Figures [f] and [5] for refinement lev-
els 4 (1 297 375 d.o.f.s) and 5 (10 388 032 d.o.f.s). The PETSC solvers were
called with the flags ~ksp_type fgmres -pc_type sor and -ksp_type fgmres
-pc-type hypre -pc_hypre_type boomeramg, respectively. For the geometric
multigrid preconditioner, the V(2,2)-cycle was used and the overrelaxation pa-
rameter of the SSOR smoother within the block-Jacobi method was set to be
w = 1. This approach is certainly not optimal since with an increasing number

14

solution
1.06
EO.Q

=06

AN £
N
SERERY

N

%5
A

=}
w

-0.47

EX
N,

Figure 3: Example [1| numerical solution (left) and initial grid (level 0, right). The color
bar shows that the numerical solution computed with the SUPG method possesses under-
and overshoots. These spurious oscillations occur in particular in a vicinity of the cylinder,
compare [27], Fig. 14] for the two-dimensional situation.

3500F FGMRES + SSOR (PETSc) ||

e »— FGMRES + SSOR (PETSc)
+—% FGMRES + AMG (PETSc) 80 4—4 FGMRES + AMG (PETSc) |1

3000} B8 FGMRES + MG (ParMooN) |4 70 m—8 FGMRES + MG (ParMooN)
o—e MUMPS

25001

2000

15001

solver time in sec.
solver time in sec.

10001

5001

e L L L = x h
2 4 8 12 16 20 24 2 4 8 12 16 20 24
processors # processors

Figure 4: Example [T} solver times on refinement level 4.

of processes the number of blocks of the block-Jacobi method increases, which
in turn makes it advantageous to apply some damping, i.e., a somewhat smaller
overrelaxation parameter. In order not to increase the complexity of the numer-
ical studies, we decided to fix a constant overrelaxation parameter that worked
reasonably well for the whole range of processor numbers which was used. The
iterative solvers were stopped if the Euclidean norm of the residual vector was
less than 10719, Parameters like the stopping criterion, the overrelaxation fac-
tor, and the restart parameter were the same in all iterative methods.

It can be seen in Figure[d] that the sparse direct solver performed less efficient
by around two orders of magnitude than the other solvers. This behavior was
observed for all studied scalar problems and no further results with this solver
for scalar problems will be presented. Among the iterative solvers, PETScC
FGMRES with SSOR preconditioner and PARMOON FGMRES with geometric
multigrid preconditioner (MG) performed notably more efficient than PETSc
FGMRES with BoomerAMG. The latter solver did not even converge on the

15

600

»—< FGMRES + SSOR (PETSc)
B8 FGMRES + MG (ParMooN)

w > w
S =) 1=}
S =) S
T T

solver time in sec.

N

=3

=3
T

100+

2 4 8 12 16 20 24
processors

Figure 5: Example[l] solver times on refinement level 5. PETSc FGMRES with BoomerAMG
converged only with two processors (1519 sec.).

finer grid in the simulations on more than two processors. FGMRES with
SSOR required considerably more iterations than PARMOON FGMRES with
MG: around 125 vs. 25 on level 4 and 320 vs. 45 on level 5. A notable
decrease of the computing time for the iterative solvers on the coarser grid can
be observed only until 8 processors. On this grid, PETSc FGMRES with SSOR
was a little bit faster than PARMOON FGMRES with MG. On the finer grid,
a decrease of the computing times occurred until 16 processors and PARMOON
FGMRES with MG was often a little bit more efficient.

Example 2. Time-dependent convection-diffusion-reaction equation. This ex-
ample can also be found in the literature, e.g., in [29], and it models a typical
situation which is encountered in applications. A species enters the domain
Q= (0,1)3 at the inlet T';, = {0} x (5/8,6/8) x (5/8,6/8) and it is transported
through the domain to the outlet Tyt = {1} x (3/8,4/8) x (4/8,5/8). In ad-
dition, the species is diffused somewhat and in the subregion where the species
is transported, also a reaction occurs. The ratio of diffusion and convection is
typical for many applications.
The underlying model is given by

O —eAu+b-Vu+cu=0 in (0,3) x £,
u=1uy in (0,3) x Ty,
52—2 =0 on (0,3) x I'y,
u=0 on (0,3) x (9Q\ (I'nUTyy,)),
u(0,-) =ug in Q.
The diffusion parameter is given by € = 1075, the convection field is defined by
b= (1,-1/4,-1/8)T, and the reaction by

e 1 <o.
() = {1 if dist(x, g) < 0.1,

0 else,

16

- T T u u y 140 T T T y
2000f *—x FGMRES + SSOR (PETSc) |] »— FGMRES + SSOR (PETSc)
+— FGMRES + AMG (PETSc) m—8 FGMRES + MG (ParMooN)
B—8 FGMRES + MG (ParMooN) 120} 1
J 15001 9]
& &
< £ 100
[(]
€
5 1000} E
= 8ol
E E
S 3
5001 60l
2 4 8 12 16 20 24 0% 8 12 16 20 24
processors # processors

Figure 6: Example [2] solver times on the 643 cubed mesh.

where g is the line through the center of the inlet and the center of the outlet
and dist(x, g) denotes the Euclidean distance of the point & to the line g. The
boundary condition at the inlet is prescribed by

sin(mt/2) if t € [0, 1],
U =4 1 ifte (1,2,
sin(n(t—1)/2) ifte (23],

The initial condition is set to be ug(x) = 0. Initially, in the time interval [0, 1],
the inflow increases and the injected species is transported towards the outlet.
Then, there is a constant inflow in the time interval (1,2] and the species reaches
the outlet. At ¢t = 2, there is almost a steady-state solution. Finally, the inflow
decreases in the time interval (2, 3], compare [29].

The SUPG stabilization of the)7 finite element method was used and as
temporal discretization, the Crank—Nicolson scheme with the equidistant time
step At = 102 was applied. Simulations were performed on grids with 643 and
1283 cubic mesh cells. The coarsest grid for the geometric multigrid method
possessed 43 cubic mesh cells. The SSOR method was applied with the over-
relaxation parameter w = 1.25. As initial guess for the iterative solvers, the
solution from the previous discrete time was used. The availability of a good
initial guess and the dominance of the system matrix by the mass matrix are
the main differences to the steady-state case.

Computing times for the iterative solvers are presented in Figures [6] and
On the coarser grid, a speed-up can be observed only until 8 processors and
on the finer grid until 12 to 16 processors. With respect to the efficiency of
the iterative solvers, the same observations can be made as in the steady-state
Example [II The same statement holds true for the number of iterations per
time step, e.g., on the finer grid there were up to 45 for PETSc FGMRES with
SSOR and around 1-3 for PETSc FGMRES with BoomerAMG and PARMOON
FGMRES with MG.

Example 3. Steady-state incompressible Navier—Stokes equations. This exam-

17

»— FGMRES + SSOR (PETSc) »— FGMRES + SSOR (PETSc)

20000} 4—# FGMRES + AMG (PETSC) || 1400l = FGMRES + MG (ParMooN)||
B8 FGMRES + MG (ParMooN)

15000+

10000+

solver time in sec.
solver time in sec.

5000

2 4 8 12 16 20 24 2 4 8 12 16 20 24
processors # processors

Figure 7: Example solver times on the 1282 cubed mesh.

ple considers the benchmark problem of the flow around a cylinder defined in
[34]. The steady-state Navier—Stokes equations are given by

—vAu+ (u-V)u+Vp = 0 inQ,
V-u = 0 inQ,

where u is the velocity, p the pressure, v = 1072 is the dimensionless viscosity,
and € is the domain given by

Q = {(0,2.55) x (0,0.41) \ {(z — 0.5)* + (y — 0.2)> < 0.05} } x (0,0.41).

At the inlet x = 0, the velocity was prescribed by

7.2 r
u = <Wyz(0.4l —14)(0.41 — 2),0, O>)
at the outlet x = 2.55, the do-nothing boundary condition was imposed and on
all other boundaries, the no-slip boundary condition was used. The flow field
exhibits vortices behind the cylinder.

The Navier-Stokes equations were discretized with the popular Qo/Pfis
(continuous piecewise triquadratic velocity, discontinuous piecewise linear pres-
sure) pair of finite element spaces on a hexahedral grid, see Figure |8 for the
initial grid. Simulations were performed on level 2 (776 160 velocity d.o.f.s,
122 800 pressure d.o.f.s) and level 3 (6 052 800 velocity d.o.f.s, 983 040 pressure
d.o.f.s). The nonlinear problem was linearized with a Picard iteration (fixed
point iteration). In each step of this iteration, the iterative solvers reduced the
Euclidean norm of the residual vector by at least the factor 10 before performing
the next Picard iteration. The Picard iteration was stopped if the Euclidean
norm of the residual vector was less than 1075.

In the geometric multigrid preconditioner, the so-called mesh-cell oriented
Vanka smoother was used, e.g., see [23] [25]. This smoother is a block Gauss—
Seidel method that solves a local system in each mesh cell. The multigrid
preconditioner was applied with the V(2,2)-cycle.

18

Figure 8: Example initial grid (level 0).

50000 350/ T T T T |
—~ FGMRES + LSC (PETSC) [#= FGMRES + MG (ParMooN)
B8 FGMRES + MG (ParMooN)
40000} o MUMPS 1 3008
U [¢]
b & 2500
S 30000+ £
[} (V)
£ E 2000
s T
5 20000}
2 E 150}
2 3
10000F
100}
o - 5ol . . . n
2 4 8 12 16 20 24 2 4 8 12 16 20 24
processors # processors

Figure 9: Example [3] solver times on refinement level 2.

The linearization and used discretization of the incompressible Navier—Stokes
equations requires the solution of a linear saddle point problem in each Picard
iteration. We tried several options for calling an iterative solver from PETSc
for such problems, as well based on the coupled system as on Schur complement
approaches. Only with a Schur complement approach and the least square
commutator (LSC) preconditioner (-ksp_type fgmres -pc_type fieldsplit
-pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type upper
-fieldsplit_1_pc_type lsc -fieldsplit_1_1lsc_pc_type lu -fieldsplit_O_ksp_type
preonly -fieldsplit_O_pc_type lu), reasonable computing times could be
obtained, at least for the coarser grid, see Figure [0] Like for the scalar prob-
lems, the sparse direct solver performed by far the least efficient. The solver
with the geometric multigrid method was more efficient by around a factor of
20 compared with the iterative solver called from PETSc. For the finer grid,
the numerical studies were restricted to the geometric multigrid preconditioner,
see Figure[I0] It can be observed that increasing the number of processors from
2 to 20 reduces the computing time by a factor of around 6.6.

19

B8 FGMRES + MG (ParMooN)
2000 4

15001

1000

solver time in sec.

500

2 4 8 12 16 20 24 T2 4 8 12 16 20 24
processors # processors

Figure 10: Example [3] solver times and scaling on refinement level 3. The scaling is computed
by 2-t2/(p - tp), where p is the number of processors and t;, the corresponding time from the
left picture.

7. Summary

This paper presented some aspects of the remanufacturing of an existing re-
search code, in particular with respect to its parallelization. All distinct features
of the predecessor code could be incorporated in a straightforward way in the
modernized code PARMOON. The efficiency of the most complex method in the
parallel implementation, the geometric multigrid method, was assessed against
some parallel solvers that are available in external libraries. The major con-
clusions of this assessment are twofold. For scalar convection-diffusion-reaction
equations, the geometric multigrid preconditioner was similarly efficient as an
iterative solver from the PETSCc library. The larger the problems became, the
better was its efficiency in comparison with the external solver. For linear saddle
point problems, arising in the simulation of the incompressible Navier—Stokes
equations, we could not find so far any external solver that proved to be nearly
as efficient as the geometric multigrid preconditioner.

On the one hand, we keep on working at improving the efficiency of the ge-
ometric multigrid preconditioner. On the other hand, we continue to assess ex-
ternal libraries with respect to efficient solvers for linear saddle point problems,
which can be used in situations where a multigrid hierarchy is not available. In
addition, an assessment as presented in this paper on another widely available
hardware platform, namely small clusters of processors, is planned.

References

[1] James Ahrens, Berk Geveci, and Charles Law. ParaView: An End-User
Tool for Large Data Visualization. Visualization Handbook. Elsevier, 2005.

[2] Martin Alns, Jan Blechta, Johan Hake, August Johansson, Benjamin
Kehlet, Anders Logg, Chris Richardson, Johannes Ring, Marie Rognes,

20

and Garth Wells. The fenics project version 1.5. Archive of Numerical
Software, 3(100), 2015.

Patrick R. Amestoy, Tain S. Duff, Jean-Yves L’Excellent, and Jacko Koster.
A fully asynchronous multifrontal solver using distributed dynamic schedul-
ing. SIAM J. Matriz Anal. Appl., 23(1):15-41 (electronic), 2001.

Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and
Stéphane Pralet. Hybrid scheduling for the parallel solution of linear sys-
tems. Parallel Comput., 32(2):136-156, 2006.

Matthias Augustin, Alfonso Caiazzo, André Fiebach, Jiirgen Fuhrmann,
Volker John, Alexander Linke, and Rudolf Umla. An assessment of dis-
cretizations for convection-dominated convection-diffusion equations. Com-
put. Methods Appl. Mech. Engrg., 200(47-48):3395-3409, 2011.

Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Applica-
tion. Kitware, Inc., 2015.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl
Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc Web page. http://www.mcs.anl.gov/petsc, 2016.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl
Rupp, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne
National Laboratory, 2016.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools in Scientific Computing, pages 163—202. Birkh&user
Press, 1997.

W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kron-
bichler, M. Maier, B. Turcksin, and D. Wells. The deal.II library, version
8.4. Journal of Numerical Mathematics, 24, 2016.

Markus Blatt, Ansgar Burchardt, Andreas Dedner, Christian Engwer, Jor-
rit Fahlke, Bernd Flemisch, Christoph Gersbacher, Carsten Gréser, Felix
Gruber, Christoph Griininger, Dominic Kempf, Robert Klofkorn, Tobias
Malkmus, Steffen Miithing, Martin Nolte, Marian Piatkowski, and Oliver
Sander. The distributed and unified numerics environment, version 2.4.
Archive of Numerical Software, 4(100):13-29, 2016.

21

http://www.mcs.anl.gov/petsc

[12]

[13]

[16]

[17]

[19]

[20]

[21]

22]

[23]

Robert Bordéds, Volker John, Ellen Schmeyer, and Dominique Thévenin.
Numerical methods for the simulation of a coalescence-driven droplet size
distribution. Theor. Comp. Fluid Dyn., 27(3-4):253-271, 2013.

Alexander N. Brooks and Thomas J. R. Hughes. Streamline
upwind/Petrov-Galerkin formulations for convection dominated flows with
particular emphasis on the incompressible Navier-Stokes equations. Com-
put. Methods Appl. Mech. Engrg., 32(1-3):199-259, 1982.

Alfonso Caiazzo, Volker John, and Ulrich Wilbrandt. On classical itera-
tive subdomain methods for the Stokes-Darcy problem. Comput. Geosci.,
18(5):711-728, 2014.

Andreas Dedner, Robert Klofkorn, Martin Nolte, and Mario Ohlberger. A
generic interface for parallel and adaptive discretization schemes: abstrac-
tion principles and the DUNE-FEM module. Computing, 90(3-4):165-196,
2010.

Howard C. Elman, Alison Ramage, and David J. Silvester. IFISS: a compu-
tational laboratory for investigating incompressible flow problems. SIAM
Rev., 56(2):261-273, 2014.

Howard C. Elman, David J. Silvester, and Andrew J. Wathen. Finite
elements and fast iterative solvers: with applications in incompressible fluid
dynamics. Numerical Mathematics and Scientific Computation. Oxford
University Press, Oxford, second edition, 2014.

S. Ganesan, V. John, G. Matthies, R. Meesala, S. Abdus, and U. Wilbrandt.
An object oriented parallel finite element scheme for computing pdes: De-
sign and implementation. Technical Report 1609.048009v1, arXiv, 2016.

F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251—
265, 2012.

P. W. Hemker. A singularly perturbed model problem for numerical com-
putation. J. Comput. Appl. Math., 76(1-2):277-285, 1996.

Van Emden Henson and Ulrike Meier Yang. BoomerAMG: a parallel alge-
braic multigrid solver and preconditioner. Appl. Numer. Math., 41(1):155—
177, 2002.

T. J. R. Hughes and A. Brooks. A multidimensional upwind scheme with
no crosswind diffusion. In Finite element methods for convection dominated
flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York,
1979), volume 34 of AMD, pages 19-35. Amer. Soc. Mech. Engrs. (ASME),
New York, 1979.

Volker John. Higher order finite element methods and multigrid solvers
in a benchmark problem for the 3D Navier-Stokes equations. Internat. J.
Numer. Methods Fluids, 40(6):775-798, 2002.

22

[24]

[25]

[26]

[27]

[28]

[29]

[35]

[36]

[37]

Volker John. On the efficiency of linearization schemes and coupled multi-
grid methods in the simulation of a 3D flow around a cylinder. Internat.
J. Numer. Methods Fluids, 50(7):845-862, 2006.

Volker John. Finite Element Methods for Incompressible Flow Problems,
volume 51 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2016.

Volker John and Petr Knobloch. On spurious oscillations at layers di-
minishing (SOLD) methods for convection-diffusion equations. I. A review.
Comput. Methods Appl. Mech. Engrg., 196(17-20):2197-2215, 2007.

Volker John, Petr Knobloch, and Simona B. Savescu. A posteriori op-
timization of parameters in stabilized methods for convection-diffusion
problems—Part I. Comput. Methods Appl. Mech. Engrg., 200(41-44):2916—
2929, 2011.

Volker John and Gunar Matthies. MooNMD—a program package based on
mapped finite element methods. Comput. Vis. Sci., 6(2-3):163-169, 2004.

Volker John and Julia Novo. On (essentially) non-oscillatory discretiza-
tions of evolutionary convection-diffusion equations. J. Comput. Phys.,
231(4):1570-1586, 2012.

George Karypis and Vipin Kumar. MeTis: Unstructured Graph Partition-
ing and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.
edu/~metis, 2009.

MPI-Forum. Mpi: A message-passing interface standard, version 3.1. Tech-
nical report, University of Tennessee, Knoxville, Tennessee, June 2015.

OpenFOAM. OpenFOAM Web page. http://openfoam.org/, 2016.

Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm.
SIAM J. Sci. Comput., 14(2):461-469, 1993.

M. Schafer and S. Turek. Benchmark computations of laminar flow around
a cylinder. (With support by F. Durst, E. Krause and R. Rannacher). In
Flow simulation with high-performance computers II. DFG priority research
programme results 1998 - 1995, pages 547-566. Wiesbaden: Vieweg, 1996.

F. Schieweck. A general transfer operator for arbitrary finite element
spaces. Preprint 00-25, Fakultdt fiir Mathematik, Otto-von-Guericke-
Universitat Magdeburg, 2000.

Ellen Schmeyer, Rébert Bordas, Dominique Thévenin, and Volker John.
Numerical simulations and measurements of a droplet size distribution in
a turbulent vortex street. Meteorol. Z., 23(4):387-396, 09 2014.

Scopus. https://www.scopus.com /record /display.uri?src=s&origin=cto
&ctold=CTODS_701493876&stateKey=CTOF_701493878&eid=2-s2.0-
7444244347, accessed 13.09.2016.

23

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://openfoam.org/

	Some Considerations about In-House Research Codes
	On the Objectives of this Paper
	Mapped Finite Element Spaces
	Parallel Data Structures in ParMooN
	Decomposing the Domain - Own Cells and Halo Cells
	Types of Degrees of Freedom
	Consistency Levels
	Organizing Communication

	The Parallel Geometric Multigrid Method
	Numerical Studies
	Summary

