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Abstract

We suggest an abstract approach for point contact problems in the framework of bound-
ary triples. Using this approach we obtain the perturbation series for a simple eigenvalue
in the discrete spectrum of the model self-adjoint extension with weak point coupling.

1 Introduction

Let Hy be a self-adjoint operator with an isolated simple eigenvalue Ay. Further let V' be a
bounded or unbounded self-adjoint operator such that the family of operators H () := Hy +
»xV is well-defined and self-adjoint for sufficiently small coupling constants sz € R. If V is
relatively compact with respect to Hy, then there is a smooth function A(s¢) such that A\(x¢)
is a simple eigenvalue of H () for each s and lim,,_q A(3r) = Ay holds, cf. [11]. Since the
function \(s¢) is smooth it admits a Taylor-type expansion of the form

A(3¢) = N + ax + bs® + O(5°). (1)

The problem is to compute the coefficients a and b of this perturbation series in terms of the
operators Hy and V.

In a slightly modified form, similar problem appears for point contacts in quantum mechanics.
Typically one considers two quantum systems which do not interact, where one of them has a
simple isolated eigenvalue Ag. If both systems are coupled by a point contact, then the eigen-
value \¢ can move either along the real axis or become a pole of the analytic continuation of
the resolvent of the coupled system in the lower complex half-plane. In the last case one speaks
of resonances. The eigenvalue case realizes if the second system has no spectrum around
Ao While the resonance case appears if the second system has continuous spectrum around
Ao, that is, if Ag is an embedded eigenvalue for the decoupled systems. If the point interaction
depends on a parameter ¢ such that for 2 — 0 the coupled system converges to the de-
coupled one, then again a perturbation series is expected either for the eigenvalues or for the
resonances. In the following we focus on the eigenvalue case.

Perturbation series for point interactions were perhaps first studied by B.S. Pavlov in [15, 16]
for a model of point interactions with an inner structure, where the first order coefficient a was
computed. A direct sum of two three-dimensional Schrédinger operators coupled by a point
contact was considered by P. Exner in [9]. In this paper he was able to compute the first and
second order coefficients a and b. See also related work [4] on spin-dependent point interactions
and [5] for perturbation of eigenvalues at threshold in point contact models. A survey on the
resonance case can be find in [8], see also references therein. Point contact models are often
used in other areas of mathematical physics. In [17] a model of a small window in the screen is



studied. In [18] Maxwell and Schrédinger operators are coupled via a point contact and in [19]
a model of a three-dimensional Helmholtz resonator is constructed via point coupling.

In the following we consider an abstract point contact model and are interested in the perturba-
tion series for its eigenvalues. In particular, let A and A be two densely defined closed symmet-
ric operators in the Hilbert spaces H and H, respectively, both having equal finite deficiency
indices (d, d). Let us consider the direct sum A := A & A which is also a densely defined
closed symmetric operator in H © H with deficiency indices (2d, 2d). Further, let Af,) and Ajg

be self-adjoint extensions of A and A, respectively. The Hamiltonian of the decoupled system is
given by Hy := A, @ Ay, which is a self-adjoint extension of A. As usually the Hamiltonian
of the point coupled system is given by another self-adjoint extension H ofNA, which can not
be decomposed into the orthogonal sum with respect to the decomposition H & H. The family
H (¢) from above is now replaced by a one-parametric family of point contacts, that means, by
a family of self-adjoint extensions H (¢) of A.

To make the problem precise we use the framework of boundary triples. In this framework a
subfamily A, of self-adjoint extensions of A are labeled by Hermitian matrices A in C2¢ via an
abstract boundary condition involving A. In particular, there is a Hermitian matrix A such that
Hy = Aj,. Let us assume that )\ is an isolated eigenvalue of A[m, but a resolvent point of
A[a]. Moreover, let A(2r) be a one-parametric sufficiently regular family of Hermitian matrices in
C??, which converges to Ay as 2z — 0. Setting H(x):= AA(%) one gets a family of self-adjoint
extensions H (3¢) of A which converges in an appropriate sense to Hy as » — 0 and in the
discrete spectra of the operators H () exists a branch of the type (1). The goal is to compute
the coefficients a and b for this branch in terms of the Taylor coefficients of A(s¢) and the
abstract Weyl function M (-) which is an important ingredient of the boundary triple approach.
In general this problem can not be reduced to the investigation of holomorphic operator families
of the types (A) or (B) in the sense of Kato which are thoroughly discussed in [11]. Only in some
special cases such a reduction can be done.

We solve this problem for arbitrary d € N for the first order coefficient a. In the special case
of d = 1 we obtain first and second order coefficients a and b which is beyond Pavlov [15, 16]
and covers [9]. In general, it would be also possible to compute b for arbitrary finite deficiency
indices, however, we have not included that for the purpose to avoid tedious computations.

Acknowledgments. V. L. thanks Jonathan Rohleder for fruitful discussions, the Austrian Science
Fund (FWF) for financial support in the frame of the project P 25162-N26, and Weierstrass
Institute for Applied Analysis and Stochastics for invitation in January 2013.

2 Boundary triples and Weyl functions

The reader may consult with [2, 3, 7, 6, 14, 20] for the theory of boundary triples and its appli-
cations. In this note we use this concept only in the case of finite deficiency indices. Throughout
this section the following hypothesis is employed.

Hypothesis I. Let A be a closed, symmetric, densely defined operator in a Hilbert space H with
equal finite deficiency indices (d, d).



Definition 2.1. Assume that Hypothesis | holds. The triple {C%, Ty, 1}, [y, 'y : dom A* —
C4, is a boundary triple for A* if the following conditions hold: the mapping I" := (g, T'1)" is
surjective onto C?? and the abstract Green’s identity (A* f, ) —(f, A*9)n = (L1f,Tog)ca—
(Do f,T'1g)ca holds for all f, g € dom A*.

Boundary triples is an efficient tool to parametrize self-adjoint extensions of a symmetric oper-
ator.

Proposition 2.2 ([6, Proposition 1.4], [20, Proposition 14.7]). Assume that Hypothesis | holds.
Let {C? Ty, Ty} be a boundary triple for A*. Then for each self-adjoint extension A of A there
is a unique self-adjoint relation © in C? such that A = Ag := A* | {f € dom A*: T'f € ©}.

Remark 2.3. The self-adjoint extension Ay := A* | ker Iy is distinguished. It corresponds to

the self-adjoint relation © o, := { G]L) che (Cd}. If © is the graph of a Hermitian matrix A in

C9, i.e © = graph(A), then one easily checks that
Agraph(a) = Ap = A" [ {f € dom A*: 'y f = AT f }. )

The operator A is called the boundary operator with respect to the boundary triple {(Cd, o, Iy}

One can associate y-fields and Weyl functions with boundary triples.

Definition 2.4. Assume that Hypothesis | holds. Let {C%, Ty, ", } be a boundary triple for A*.
The function~y: p(Ag) — B(C? H) defined as

1

Y(A) == (To I ker(A* = X)), A€ p(Ay),

is called the ~y-field. The function M : p(Ay) — C%*? defined as M ()\) := I'1y(\) is called
the Weyl function.

Proposition 2.5. Assume that Hypothesis | holds. Let M be the Weyl function associated with
a boundary triple {C?% Ty, T'1} for A*. Let the self-adjoint operator A, in H be as in (2). Then
the following statements hold.
(i) The function M (-) is holomorphic on p(Ap).
(iy For A € p(Ay) the relation dim ker(Ay — \) = dimker(A — M(\)) holds.
(iiiy If N\o € p(Ayp) is a simple eigenvalue of Ay, then the function
Dy(N) :=det(A — M()N)), A € p(Ap),

has a simple zero at \ = X. In particular, D'y (A\g) # 0 holds.

Proof. All the statements of this proposition are known. Item (i) can be found in [3, Proposition
1.21], see also [20, Proposition 14.15 (iv)] and item (ii) is given in [3, Theorem 1.36 (1)], see also
[20, Proposition 14.17 (ii)]. For item (iii) see [14, Corollary 4.4, Proposition 5.1 (iii)]. O



3 Abstract point contact and its weak coupling regime

In this section we present an abstract treatment of point contacts in the framework of boundary
triples and obtain the perturbation series of the simple eigenvalue in the weak coupling regime.
We make use of the foIIowmg hypothesis.

Hypothesis Il. Let H and H be separable Hilbert spaces. Let A and A be closed, densely
defined, symmetric operators in H and H, respectively, both with deficiency indices (d, d). Let
{Ce, Ty, Fl} and {C, FO, Fl} be boundary triples for A* and Ar respectively.

The next lemma appears to be useful in what follows.

Lemma 3.1 ([3, Section 1.4.4]). Assume that Hypothesis Il holds. Then the operator A b A
is closed, densely defined and symmetric in the Hilbert space H [ © H with deficiency indices
(2d, 2d) and {C2, Ty @& Lo, I1 @ Fl} is a boundary triple for (A ® A)

Our model operator A, in the Hilbert space 7-{ N7 7'7 is defined as

AA(f@ f) = Av*f@ E*J/”\,

o~ ~ —~ T 3
dom Ay — 4 Fo [ e dom & @ dom A0 o [LoL) — (L) L @
Tof I

with a Hermitian 2d x 2d matrix of the form

L O!Id wId
A= <w]d ﬁLj)’ a,€R, weC.

Proposition 3.2. The operator Ay, defined as above, is self-adjoint in the Hilbert space 7:Z ©® ﬁ

Proof. The statement of this proposition is a straightforward consequence of the structure of
the matrix A, Proposition 2.2, Remark 2.3 and Lemma 3.1. O

The next theorem contains the main results of this note: the two terms expansion of a bound
state of A, for small coupling parameter |w/| in the case of arbitrary d € N and the three terms
analogous expansion in the special case d = 1. In its formulation we use self-adjoint operators

g[a] = A* | ker(fl — ozfo), Ay = A* [ ker Dy, @
A = A* [ ker(Ty — fT,),  Ag:= A* | ker T,

Let L be a d x d-matrix. In the following we use the notion of the adjugate matrix adj(L), cf.
[1, 13]. Notice that the adjugate of a matrix is quite different from the adjoint one L*.

Theorem 3.3. Assume that Hypothesis Il holds with some d € N. Let M and M be the Weyl
functions associated with boundary triples from that hypothesis. Let the self-adjoint operators
A[a] and A[g be as above. Assume that the real value \, satisfies \g € ,o(AO) N p(AO)

A «1) and \q is a simple isolated eigenvalue of A
(o] 18-



(i) Then for sufficiently small |w| in the discrete spectrum of A, there is a branch
Awl?) = Xo +alwf +O(jwl*),  |w| — 0+, (5)

with
o (a0 (91— FT00) (W00) — 1)) o
' tr (adj (81— J\Y(Ao))f\?’(koﬁ |

o~

where adj (814 — M (o)) is the adjugate matrix.

(i) Suppose that d = 1. Then the expansion (5) can be extended as
Mwl?) = o + alw]’ + blwl* + O(|wl),  |w| — 0+, (7)

with 1
4= —— — (8)
(M(Ag) — ) M'(Ao)

and

- 1 ( M'(Ao) _1]\7"@0)).

(M) — a)M'(M))? \a— M(No) 2 M'(\o)

Proof. (i) The proof of this item is carried out in three steps.
Step I. For sufficiently small ¢ > 0 the interval I := (\g — &, Ao + ¢) is contained in the set
p(Ao) N p(Ap). By Proposition 2.5 (i) the following matrix-valued function

T(N) = (aly — M(N)(BIy — M()))
is well-defined and C'°°-smooth on . Next we introduce the scalar-valued function
F:IxR—R, F(\z):=det(T(\) —xly), (10)

which is C'*°-smooth on I x R.
Step II. The following two functions

Do(X) = det (aly — M(N) and Ds(A) == det (81, — M(N))

are well-defined and C'°°-smooth on I. Jacobi’s formula[10, 13] and the identity adj (L1Ls) =
adj (L) adj (L1) imply

Fy(0,0) = —tr (adj (81, — M(Xo))adj (aly — ]\NJ(AO))).

In view of \g € p(g[a]) and of Proposition 2.5 (i) the matrix a.l; — M(Ao) is invertible. For any
invertible matrix L the identity adj (L) = det (L) L™! holds. Hence, we arrive at

—~ —~

Fu(00,0) = Da(No)tr (adj (8L — M (X)) (M( ) — a[d)_1>. (11)



Note that F'(\,0) = IN)Q(A)E@(/\), where the identity det (L1 Ls) = det (L) det (L) is
used. In view of Ay € oq(Ag) and of Proposition 2.5 (i) we get D(A\g) = 0, which implies
F(Xo,0) = 0. Next we compute F), at the point (Ao, 0)
d
Fy(Mo,0) = (—F )\,0)’
000 = (Gre0)| ) .
= D/, (M) Ds(Xo) + Da(Ao) Dj(Ao) = Da(Ao) Do)

Since the eigenvalue )\ is simple in the spectrum of ﬁ[ﬁ], by Proposition 2.5 (i) ﬁg(Ao) £ 0
holds. Similarly D, (o) # 0 because of Ay € p(g[a]). Hence we obtain that I (g, 0) # 0.
Recall that F' is C'*°-smooth. Therefore, by the classical implicit function theorem [12, Theorem
3.3.1] there exists the C'*°-smooth function A(-) defined on a sufficiently small neighborhood of
the origin such that A(0) = A\ and and that F'(A(x), z) = 0 holds pointwise. The derivative of
A() is given as usual by

oy Fa(A@), @)
N(z) = FO\2).2) (13)
Again using Jacobi’s formula we get
Dly(Ao) = —tr <adj (81, — ]\//.7()\0))]\/4\’()\0)>. (14)

Substituting (11), (12) and (14) into (13) we arrive at A'(0) = a with a given by (6). Hence we
obtain that
Mz) =N +az+ 0%, x—0. (15)

Step . By Proposition 2.5 (ii) a point A € p(ﬁo) N p(ﬁo) satisfying
det a[d—M(/\) w_fi\ _
wly Blg — M(N)
is in the discrete spectrum of A,. By [21, Theorem 3] one gets that

Oé[d — M()\) w[d . - = )
det ( s 7 A)) — det((aly — M) (B1a — M(N) — [w]*Ta).

Thatis A € p(Ag) N p(Ay) satisfying FI(X, |w|2) = 0 with F as in (10) belongs to the discrete
spectrum of A, . Hence for sufficiently small |w|? we have A(|w|?) € gq(Ax) with A(+) defined
by Step II. Finally, the expansion (15) implies (5) in the formulation of the theorem.

(i) The proof of this item goes along the lines of the proof of (i) and we indicate only the differ-
ences. Let I be defined as in (10). In this special case (d = 1) we have

F(A\ @) = (o= MM) (8- M(X) - .
The 1st and 2nd order partial derivatives of F' are computed below
Fu(\ ) =1, FyA2)=0, Fu(\z)=0,
Fx(\z) = =M () (B = M) — (0 = MO)IM(), (16)

(A x) = =M"(\) (8 — M(N) + 2M' (\)M'(A) — (a — M(X)M"()).

6



In particular, we have at the point (Ao, 0)

F(20,0) = (M(Xo) — a)M' (M),

— — — — 17

FA)\<)\0, O) = 2M/()\0)M/(/\0> + (M(Ao) - CY)M”()\()), ( )
where we used that 3 — ]\/4\(/\0) = 0, which is true in view of )\, € ad(g[m). Similarly as on
Step Il in the proof of (i) we get that F'(Ag,0) = 0 and F) (Ao, 0) # 0. Hence, there exists the
(C'*°-smooth function \(-) defined on a sufficiently small neighborhood of the origin such that
A(0) = Ao, that F'(A(z), x) = 0 holds pointwise and that \'(z) is as in (13). Substituting the
identity F,(A(z),z) = —1 into (13) we obtain that

1

N(z) = A(\z),2)’

(18)

and further substituting (17) into the above formula we get \'(0) = a with a as in (8). Taking
the derivative in (18) we get

PuA\@),0)N (@) + Fu(\@), )
(Fr(A(z), 2))? '

Plugging (16) and (17) into the above formulae we obtain \”(0) = 2b with b as in (9). Hence
we arrive at the expansion

N'(z) =

Mz) =N +azx +br* +O(2%), -0,

which implies (7) similarly as on Step lll in the proof of (i) the expansion (15) implied the formula
(5). O

Remark 3.4. The roles of the operators ﬁ[a] and ﬁ[ﬁ] in the above theorem can be inter-
changed.

Remark 3.5. Note that adj (0) = 1 and in the special case d = 1 the formula (6) reduces to

(8).
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