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Abstract. Consider the resolvent problem associated with the linearized viscous flow around a rotating body. Within a
setting of classical Sobolev spaces, this problem is not well posed on the whole imaginary axis. Therefore, a framework of
homogeneous Sobolev spaces is introduced where existence of a unique solution can be guaranteed for every purely imaginary
resolvent parameter. For this purpose, the problem is reduced to an auxiliary problem, which is studied by means of Fourier
analytic tools in a group setting. In the end, uniform resolvent estimates can be derived, which lead to the existence of
solutions to the associated time-periodic linear problem.
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1. Introduction

The present article is mainly concerned with the study of the problem
⎧
⎨

⎩

isv + ω(e1 ∧ v − e1 ∧ x · ∇v) − Δv + ∇p = g in Ω,
div v = 0 in Ω,
v = 0 on ∂Ω

(1.1)

in a three-dimensional exterior domain Ω ⊂ R
3. Here s ∈ R and ω > 0 are given parameters, g : Ω → R

3

is a given vector field, and v : Ω → R
3 and p : Ω → R are the unknown functions. Then (1.1) can be

regarded as a resolvent problem with a purely imaginary resolvent parameter is, s ∈ R. Problem (1.1)
naturally arises when studying the associated time-periodic problem

⎧
⎨

⎩

∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u) − Δu + ∇p = f in T × Ω,
div u = 0 in T × Ω,
u = 0 on T × ∂Ω.

(1.2)

System (1.2) may be regarded as the linearization of the nonlinear problem
⎧
⎪⎪⎨

⎪⎪⎩

∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u) + u · ∇u = f + Δu − ∇p in T × Ω,
div u = 0 in T × Ω,
u = ωe1 ∧ x on T × ∂Ω,
lim|x|→∞ u(t, x) = 0 for t ∈ T,

(1.3)

which describes the time-periodic flow of a viscous incompressible fluid around a rotating rigid body
B := R

3 \ Ω in the three-dimensional space. More precisely, here we assume that the fluid adheres to
the boundary of B and is at rest at infinity, and that the body rotates about the x1-axis with (scalar)
rotational velocity ω > 0. Then the motion of the fluid flow, described in a frame attached to the body,
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is governed by (1.3). The functions u : T × Ω → R
3 and p : T × Ω → R are velocity and pressure fields,

and f : T × Ω → R
3 is an external body force. In (1.2) and (1.3) we choose T := R/T Z for T > 0 as the

time axis, so that all occurring functions are intrinsically time periodic. Observe that in the formulation
of (1.1) and (1.2) we omitted the condition (1.3)4 at infinity, which is later incorporated in the definition
of the function spaces in a generalized sense.

Concerning the analysis of the nonlinear time-periodic problem (1.3), the first result was given by
Galdi and Silvestre [1], who showed the existence of weak solution in the more general configuration
where the rigid body performs a time-periodic motion. However, in their functional framework the spatial
asymptotic properties of the flow were not captured. This problem was recently solved by Galdi [2], who
showed existence of regular solutions satisfying certain pointwise decay estimates. A different approach
to characterize the spatial behavior of solutions is inspired by the fundamental work of Yamazaki [3],
who showed existence of time-periodic solutions to (1.3) in the case ω = 0 in a framework of L3,∞ spaces,
also known as weak-L3 spaces. His analysis was based on well-known Lp–Lq estimates for the Stokes
semigroup. For ω > 0 analogous Lp–Lq estimates for the semigroup associated with the initial-value
problem corresponding to (1.2) were shown by Hishida and Shibata [4], so that Yamazaki’s method also
leads to solutions to (1.3) in the L3,∞ framework, as was demonstrated by Hishida [5]. Later, Geissert,
Hieber and Nguyen [6] developed a semigroup-based approach in a general framework, where this analysis
was also carried out as a special case.

With regard to the linearized time-periodic problem (1.2), observe that for ω = 0, it reduces to the
well-known Stokes problem. In this case the unique existence of time-periodic solutions, which satisfy
suitable a priori estimates, was successfully derived in [7]. The aim of the present article is to establish
a similar result in the case ω > 0. Observe that the additional rotation term ω(e1 ∧ u − e1 ∧ x · ∇u) for
ω > 0 cannot be treated as a lower-order perturbation of the Laplace operator because the term e1 ∧x ·∇
is a differential operator with unbounded coefficient. Therefore, for the derivation of a priori estimates,
this term has to be handled in a different way. One suitable method was recently developed in [8,9] and
is roughly described as follows: The rotation term ω(e1 ∧u− e1 ∧x ·∇u) in (1.2) and (1.3) stems from the
change of coordinates from an inertial frame to a rotating frame. Undoing this transformation, one can
simply absorb this term again. However, in general this leads to a problem on a time-dependent spatial
domain. Therefore, the idea is to first employ this procedure in the setting of the whole space Ω = R

3,
where the domain is invariant, and to use cut-off techniques to return to the case of an exterior domain
afterwards. While in [8,9] steady motions were investigated, in the recent article [10] the described method
was successfully applied to the time-periodic problem

⎧
⎨

⎩

∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u) + λ∂1u − Δu + ∇p = f in T × Ω,
div u = 0 in T × Ω,
u = 0 on T × ∂Ω

(1.4)

for λ �= 0. System (1.4) differs from (1.2) by the term λ∂1u, which arises when the body B performs,
besides a rotation, an additional translation with velocity λe1. However, in [10] well-posedness of (1.4)
with λ �= 0 was merely shown under the restriction that the time period T and the angular velocity
ω are related by 2π

T = ω. The results in the forthcoming paper [11] show that this restriction is not
necessary but can be weakened and replaced with 2π

T /ω ∈ Q. One main observation of this article is that
in the present situation, that is, in the case λ = 0, where (1.4) reduces to (1.2), such an assumption
is not necessary at all, and we provide a framework of well-posedness for any ω, T > 0 without further
restrictions.

To this end, the major part of the subsequent analysis is focused on the resolvent problem (1.1).
Observe that if (u, p) is a T -periodic solution to (1.2), then the Fourier coefficient of order k is a solution
to (1.1) with s = 2π

T k. This explains why we restrict our analysis to purely imaginary resolvent parameters
is, s ∈ R. Moreover, since we want to choose arbitrary time periods T > 0, we need well-posedness of
the resolvent problem (1.1) for all s ∈ R.
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At first glance, it may seem reasonable to analyze (1.1) as the resolvent problem isv +Aωv = g of the
closed operator Aω : D(Aω) ⊂ Lq

σ(Ω) → Lq
σ(Ω) given by

D(Aω) :=
{
v ∈ Lq

σ(Ω) ∩ W1,q
0 (Ω)3 ∩ W2,q(Ω)3 : e1 ∧ x · ∇v ∈ Lq(Ω)3

}
, (1.5)

Aωv := PΩ

[
ω(e1 ∧ v − e1 ∧ x · ∇v) − Δv

]
, (1.6)

where Lq
σ(Ω), q ∈ (1,∞) is the space of all solenoidal functions in Lq(Ω)3, and PΩ is the associated

Helmholtz projection. Farwig, Nečasová and Neustupa [12] could show that the essential spectrum of Aω

is given by

σess

(
Aω

)
=

{
α + iω� : α ≤ 0, � ∈ Z

}
. (1.7)

In particular, we see that is, s ∈ R, does not belong to the resolvent set of Aω in general, and this
setting does not provide a framework for well-posedness of (1.1) if s ∈ ωZ. Since, as explained above,
we need such a framework in order to solve the time-periodic problem (1.2), we introduce a different
functional setting instead, namely a setting of homogeneous Sobolev spaces that renders (1.1) well posed
for arbitrary s ∈ R. One peculiarity of the derived a priori estimate is that instead of the classical form

|s|‖v‖q + ‖Aωv‖q ≤ C‖g‖q, (1.8)

we deduce the non-classical resolvent estimate

‖isv + ω(e1 ∧ v − e1 ∧ x · ∇v)‖q + ‖Δv‖q ≤ C‖g‖q,

see (3.1) below. In particular, we do not obtain separate estimates of the terms isv and ω(e1∧v−e1∧x·∇v)
or even of isv, ωe1 ∧ v and ωe1 ∧ x · ∇v. This is not a surprise since a separate estimate of isv would lead
to (1.8) for all s ∈ R, which would contradict (1.7). Moreover, it is well known that separate estimates of
ωe1 ∧ v and ωe1 ∧ x · ∇v are not even feasible for the steady-state problem, that is, for (1.1) with s = 0;
see [13, Theorem VIII.7.2] for example.

The analysis of the resolvent problem (1.1) for an exterior domain Ω ⊂ R
3 goes back to Hishida [14],

who derived suitable resolvent estimates in an L2 framework that showed that the operator Aω generates
a contractive C0-semigroup if q = 2. For general q ∈ (1,∞) a similar statement in the Lq setting was
later proved by Geissert, Heck and Hieber [15]. However, since the resolvent estimate (1.8) is invalid on
for all is with s ∈ ωZ, the operator Aω does not generate an analytic semigroup. Nevertheless, one can
derive additional smoothing properties of the semigroup that allow to establish solutions to the nonlinear
initial-value problem [15,16] and to carry out a stability analysis of steady-state solutions, as was done by
Hishida and Shibata [4,17]. Moreover, the investigation of the spectrum of the operator Aω was further
deepened by Farwig, Nečasová and Neustupa [12,18,19].

As explained above, in our investigation of the resolvent problem (1.1) we follow a different approach
and investigate (1.1) in a different functional framework. Our analysis is based on the study of the
auxiliary problem

isu + ∂tu − Δu + ∇p = f, div u = 0 in T × R
3, (1.9)

which may be regarded as a mixture of the Stokes resolvent problem with the time-periodic Stokes
problem. In contrast to (1.1) and (1.2), we can directly derive a formula for the solution to (1.9) by
means of a Fourier multiplier on T × R

3. Using tools from harmonic analysis in this group setting, we
can further deduce suitable Lq estimates. By means of the aforementioned transformation, we can then
introduce the rotational terms and relate the resolvent problem (1.2) to problem (1.9).

This article is structured as follows: After introducing some notation in Sect. 2, we state our main
results on the well-posedness of the resolvent problem (1.1) and the time-periodic problem (1.2) in Sect. 3.
In Sect. 4 we study the resolvent problem (1.1) in the case of the whole space Ω = R

3, which is based on
the examination of the auxiliary time-periodic problem (1.9). In the subsequent Sect. 5 these findings are
transferred to the case of an exterior domain. Finally, in Sect. 6 we show the existence of a unique solution
to the time-periodic problem (1.2) in a framework of functions with absolutely convergent Fourier series.
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2. Notation

In order to state and prove our main results, we first introduce the basic notation.
The symbols C and Cj with j ∈ N always denote generic positive constants. We occasionally emphasize

that C depends on a specific set of quantities {a, b . . . } by writing C = C(a, b, . . . ).
When we fix a time period T > 0, the associated torus group is denoted by T := R/T Z. Then every

element of T can be identified with a unique representative in [0, T ), which we tacitly do from time to
time. Moreover, T is always equipped with the normalized Haar measure such that

∀f ∈ C(T) :
∫

T

f(t) dt :=
1
T

∫ T

0

f(t′) dt′,

where C(T) is the class of continuous functions on T. A point (t, x) ∈ T × R
3 is composed of a time

variable t ∈ T and a space variable x = (x1, x2, x3) ∈ R
3. We denote the Euclidean norm of x by |x|, and

x · y, x ∧ y and x ⊗ y represent the scalar, vector and tensor products of x, y ∈ R
3. We further use the

shorthand x ∧ y · z := (x ∧ y) · z for x, y, z ∈ R
3.

Time and spatial derivatives are denoted by ∂t and ∂j := ∂xj
, j = 1, 2, 3, respectively, and the symbols

for (spatial) gradient, divergence and Laplace operator are ∇, div and Δ. The symbol ∇2u denotes the
collection of all second-order spatial derivatives of a sufficiently regular function u.

In the whole article we either have Ω = R
3 or we let Ω ⊂ R

3 be an exterior domain, that is, Ω is a
domain and its complement is a compact nonempty set in R

3. Moreover, BR ⊂ R
3 denotes the ball of

radius R > 0 centered at 0, and ΩR := Ω ∩ BR.
For classical Lebesgue and Sobolev spaces we write Lq(Ω) and Wk,q(Ω), where q ∈ [1,∞] and k ∈ N,

and ‖·‖q;Ω and ‖·‖k,q;Ω denote the associated norms. When the domain is clear from the context, we
simply write ‖·‖q and ‖·‖k,q instead. This convention is adapted for the norm ‖·‖q,T×Ω of the Lebesgue
space Lq(T × Ω) in space and time. We further let C∞

0 (Ω) be the class of all smooth functions with
compact support in Ω, and W1,q

0 (Ω) denotes its closure in W1,q(Ω). For the dual space of W1,q
0 (Ω) we

write W−1,q′
(Ω), where 1/q + 1/q′ = 1, which we equip with the norm ‖·‖−1,q′;Ω. Moreover, Lq

loc(Ω) and
Wk,q

loc (Ω) denote the classes of all functions that locally belong to Lq(Ω) and Wk,q(Ω), respectively.
We usually do not distinguish between a space X and its vector-valued version Xn, n ∈ N, when the

dimension is clear from the context. By ‖·‖X we denote the norm of a general normed space X. We write
Lq(T;X) for the corresponding Bochner–Lebesgue space when q ∈ [1,∞), and we define W1,q(T;X) :={
u ∈ Lq(T;X) : ∂tu ∈ Lq(T;X)

}
.

In our subsequent analysis, the configuration for Ω = R
3 plays an important role. In this case, the

space-time domain is given by G := T × R
3, which is a locally compact abelian group with dual group

isomorphic to Ĝ := Z×R
3. As natural generalizations of the classes of Schwartz functions and tempered

distributions in the Euclidean setting, one can define the Schwartz–Bruhat space S (G) and its dual space
S ′(G) on G, which were first introduced by Bruhat [20], see also [21] for more details and a precise
definition of these spaces. In this framework, the Fourier transform FG and its inverse F−1

G , defined by

FG : S (G) → S (Ĝ), FG[u](k, ξ) :=
∫

T

∫

R3
u(t, x)e−ix·ξ−i 2π

T kt dxdt,

F−1
G : S (Ĝ) → S (G), F−1

G [w](t, x) :=
∑

k∈Z

∫

R3
w(k, ξ)eix·ξ+i 2π

T kt dξ,

are mutually inverse isomorphisms provided that the Lebesgue measure dξ is normalized in a suitable
way. By duality, the Fourier transform can be extended to an isomorphism S ′(G) → S ′(Ĝ). By analogy,
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the Fourier transforms on the groups T and R
3 are given by

FT : S (T) → S (Z), FT[u](k) :=
∫

T

u(t)e−i 2π
T kt dt,

F−1
T

: S (Z) → S (T), F−1
T

[w](t) :=
∑

k∈Z

w(k)ei 2π
T kt,

and

FR3 : S (R3) → S (R3), FR3 [u](ξ) :=
∫

R3
u(x)e−ix·ξ dx,

F−1
R3 : S (R3) → S (R3), F−1

R3 [w](x) :=
∫

R3
w(ξ)eix·ξ dξ.

Our investigation of the time-periodic problem (1.2) will mainly be performed in a framework of spaces
of absolutely convergent Fourier series. For a normed space X, these are defined by

A(T;X) :=
{

f : T → X : f(t) =
∑

k∈Z

fkei 2π
T kt, fk ∈ X,

∑

k∈Z

‖fk‖X < ∞
}

,

‖f‖A(T;X) :=
∑

k∈Z

‖fk‖X .
(2.1)

If X is a Banach space, then A(T;X) coincides with the Banach space F−1
T

[
�1(Z;X)

]
, and A(T;X) ↪→

C(T;X). Observe that many inequalities in spaces X have natural extensions to the corresponding spaces
A(T;X), for example, Hölder’s inequality or interpolation inequalities; see [10, Prop. 3.1 and 3.2]. We
also use the shorthand u ∈ A(T;Wk,q

loc (Ω)) when u ∈ A(T;Wk,q(K)) for all compact sets K ⊂ Ω.
The existence of solutions to the time-periodic problem (1.2) will be established in the following

functional framework. We fix ω > 0 and q ∈ (1, 3/2). Then the space for the velocity field is given by

X q
ω(T × Ω) :=

{
u ∈ A(T;W2,q

loc(Ω)3) :

∇2u, ∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u) ∈ A(T; Lq(Ω)),

u ∈ A(T; L3q/(3−2q)(Ω)), ∇u ∈ A(T; L3q/(3−q)(Ω))
}
,

and the function class for the pressure term is given by

Yq(T × Ω) :=
{
p ∈ A(T;W1,q

loc(Ω)) :

∇p ∈ A(T; Lq(Ω)), p ∈ A(T; L3q/(3−q)(Ω))
}
.

Similarly, we introduce the following function classes for solutions to the resolvent problem (1.1). For
ω > 0, q ∈ (1, 3/2) and s ∈ R, we define the class of velocity fields by

Xq
ω,s(Ω) :=

{
v ∈ W2,q

loc(Ω)3 : ∇2v, isv + ω(e1 ∧ v − e1 ∧ x · ∇v) ∈ Lq(Ω),

v ∈ L3q/(3−2q)(Ω), ∇v ∈ L3q/(3−q)(Ω)
}
,

and the corresponding pressure belongs to

Yq(Ω) :=
{
p ∈ W1,q

loc(Ω) : ∇p ∈ Lq(Ω), p ∈ L3q/(3−q)(Ω)
}
.

Observe that the function class Xq
ω,s(Ω) for the velocity field also depends on the resolvent parameter

s ∈ R. Moreover, if u belongs to X q
ω(T × Ω), then its k-th Fourier coefficient uk := FT[u](k) belongs to

Xq
ω,s(Ω) with s = 2π

T k.
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3. Main Results

The main results of this article concern the question of well-posedness of the time-periodic linear problem
(1.2) and the associated resolvent problem (1.1). At first, we address the resolvent problem.

Theorem 3.1. Let Ω = R
3 or Ω ⊂ R

3 be an exterior domain with C3-boundary. Let s ∈ R and 0 < ω ≤ ω0,
and let q ∈ (1, 3/2) and g ∈ Lq(Ω)3. Then there exists a unique solution (v, p) ∈ Xq

ω,s(Ω)×Yq(Ω) to (1.1)
that obeys the estimates

‖dist(s, ωZ) v‖q + ‖isv + ω(e1 ∧ v − e1 ∧ x · ∇v)‖q + ‖∇2v‖q

+ ‖∇p‖q + ‖∇v‖3q/(3−q) + ‖v‖3q/(3−2q) + ‖p‖3q/(3−q) ≤ C‖g‖q

(3.1)

for a constant C = C(Ω, q, ω0) > 0. In particular, C can be chosen independently of s ∈ R and ω ∈ (0, ω0].

Note that if s �∈ ωZ, then estimate (3.1) implies v ∈ Lq(Ω), which yields v ∈ D(Aω), where D(Aω) is
defined in (1.5). But a similar inclusion cannot be obtained if s ∈ ωZ. This observation is in complete
accordance with (1.7).

Working within a framework of absolutely convergent Fourier series, we can then employ Theorem
3.1 on the level of the Fourier coefficients to derive well-posedness of the time-periodic problem (1.2). As
will become clear from the proof, to conclude existence of T -periodic solutions, it is important that the
constant C in (3.1) can be chosen uniformly for s ∈ 2π

T Z.

Theorem 3.2. Let Ω = R
3 or Ω ⊂ R

3 be an exterior domain with C3-boundary. Let T > 0 and 0 <
ω ≤ ω0, and let q ∈ (1, 3/2) and f ∈ Lq(T × Ω)3. Then there exists a unique T -periodic solution
(u, p) ∈ X q

ω(T × Ω) × Yq(T × Ω) to (1.2) that obeys the estimates

‖∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u)‖A(T;Lq(Ω)) + ‖∇2u‖A(T;Lq(Ω))

+ ‖∇p‖A(T;Lq(Ω)) + ‖∇u‖A(T;L3q/(3−q)(Ω)) + ‖u‖A(T;L3q/(3−2q)(Ω))

+ ‖p‖A(T;L3q/(3−q)(Ω)) ≤ C‖f‖A(T;Lq(Ω)) (3.2)

for a constant C = C(Ω, q, ω0) > 0. In particular, C can be chosen independently of ω ∈ (0, ω0] and
T > 0.

Remark 3.3. In contrast to the other terms in estimate (3.1), the term ‖dist(s, ωZ) v‖q does not directly
correspond to any of the terms in (3.2). However, going through the proof of Theorem 3.2, one may
derive an additional estimate. Decompose the set of Fourier indices into A1 := {k ∈ Z : 2π

T k ∈ ωZ} and
A2 := {k ∈ Z : 2π

T k �∈ ωZ} and split the velocity field u accordingly as

u = u(1) + u(2), u(1) :=
∑

k∈A1

ukei 2π
T kt, u(2) :=

∑

k∈A2

ukei 2π
T kt.

Then the estimate
∥
∥dω,T u(2)

∥
∥

A(T;Lq(Ω))
≤ C‖f‖A(T;Lq(Ω))

follows, where

dω,T := inf
{

dist
(2π

T k, ωZ
)

: k ∈ Z,
2π

T k �∈ ωZ

}

= inf
{

|a| : 0 �= a ∈ 2π

T Z + ωZ

}

.

Of course, this estimate only provides new information when dω,T > 0. A classical argument shows that
this is the case if and only if 2π

T /ω ∈ Q.
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4. The Resolvent Problem in the Whole Space

We begin with the study of the resolvent problem (1.1) in the case Ω = R
3, where it simplifies to

{
isv + ω(e1 ∧ v − e1 ∧ x · ∇v) − Δv + ∇p = g in R

3,
div v = 0 in R

3.
(4.1)

In this section we show the following result on well-posedness of (4.1).

Theorem 4.1. Let ω > 0 and s ∈ R. For each g ∈ Lq(R3)3 there exists a solution (v, p) ∈ W2,q
loc(R

3)3 ×
W1,q

loc(R
3) to (4.1) that satisfies

‖dist(s, ωZ) v‖q + ‖isv + ω(e1 ∧ v − e1 ∧ x · ∇v)‖q

+ ‖∇2v‖q + ‖∇p‖q ≤ C‖g‖q

(4.2)

as well as

‖∇v‖3q/(3−q) + ‖p‖3q/(3−q) ≤ C‖g‖q if q < 3, (4.3)

‖v‖3q/(3−2q) ≤ C‖g‖q if q < 3/2, (4.4)

for a constant C = C(q) > 0. Moreover, if (w, q) ∈ L1
loc(R

3)3+1 is another distributional solution to (4.1),
then the following holds:

(i) If ∇2w, isw + ω(e1 ∧ w − e1 ∧ x · ∇w) ∈ Lq(R3), then
isw + ω(e1 ∧ w − e1 ∧ x · ∇w) = isv + ω(e1 ∧ v − e1 ∧ x · ∇v),

∇2w = ∇2v, ∇q = ∇p.

(ii) If q < 3/2 or s �∈ ωZ, and if w ∈ Lr(R3)3 for some r ∈ (1,∞), then v = w and p = q + c for a
constant c ∈ R.

For s = 0, problem (4.1) reduces to the steady-state problem associated with (1.2) for Ω = R
3. In

this case, estimate (4.2) was first derived in [22], where an explicit solution formula was derived and
examined by means of Littlewood–Paley theory. A different method was later introduced in [8], where
the steady-state problem with rotation terms was transformed to a time-periodic Stokes problem without
rotation terms by a suitable coordinate transform.

In order to prove Theorem 4.1, we use a similar approach and first consider the auxiliary problem
{

isu + ∂tu − Δu + ∇p = f in T × R
3,

div u = 0 in T × R
3,

(4.5)

which can be regarded as a mixture of the Stokes resolvent problem and the time-periodic Stokes problem.
In contrast to the original time-periodic problem (1.2), the differential operator associated with (4.5) has
constant coefficients, which enables us to express its solution via Fourier multipliers. Since (4.5) is a
problem in the locally compact abelian group G := T × R

3, we work with multiplier arguments in this
group framework. This is more involved compared to the usual Euclidean setting, and for a detailed
introduction to this theory, with a focus on the analysis of the Navier–Stokes equations, we refer to the
book chapter [21] as well as to the monographs [23,24]. The main tool for the derivation of Lq multiplier
estimates is the so-called transference principle for multipliers, which goes back to de Leuuw [25] and was
generalized by Edwards and Gaudry [26, Theorem B.2.1]. In our investigation we employ the following
special case.

Theorem 4.2. Let G := T×R
3 and H := R×R

3. For each q ∈ (1,∞) there exists a constant Cq > 0 with
the following property: If a continuous, bounded function M : H → C is an Lq(H) multiplier, that is,

∀h ∈ S (H) :
∥
∥F−1

H

[
M FH [h]

]∥
∥

Lq(H)
≤ CM‖h‖Lq(H)

for some CM > 0, then the restriction m := M |
Z×R3 is an Lq(G) multiplier with

∀g ∈ S (G) :
∥
∥F−1

G

[
mFG[g]

]∥
∥

Lq(G)
≤ CqCM‖g‖Lq(G).
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This result enables us to reduce Fourier multipliers in G = T×R
3 to Fourier multipliers in the Euclidean

space H = R × R
3, where more classical tools for the identification of Lq multipliers are available. This

strategy is used several times in the proof of the following theorem that establishes existence of solutions
to (4.5) in an Lq framework.

Theorem 4.3. Let ω > 0 and s ∈ R, and set Tω := 2π
ω and T := R/TωZ. For each f ∈ Lq(T × R

3)3 there
exists a solution (u, p) to (4.5) with

u ∈ W1,q(T; Lq
loc(R

3)3) ∩ Lq(T;W2,q
loc(R

3)3), p ∈ Lq(T;W1,q
loc(R

3))

that satisfies

‖dist(s, ωZ)u‖q + ‖isu + ∂tu‖q + ‖∇2u‖q + ‖∇p‖q ≤ C‖f‖q (4.6)

as well as

‖∇u‖Lq(T;L3q/(3−q)(R3)) + ‖p‖Lq(T;L3q/(3−q)(R3)) ≤ C‖f‖q if q < 3, (4.7)

‖u‖Lq(T;L3q/(3−2q)(R3)) ≤ C‖f‖q if q < 3/2, (4.8)

for a constant C = C(q) > 0. Moreover, if (w, q) ∈ L1
loc(T × R

3)3+1 is another distributional solution to
(4.5), then the following holds:

(i) If ∇2w, isw + ∂tw ∈ Lq(T × R
3), then

isw + ∂tw = isu + ∂tu, ∇2w = ∇2u, ∇q = ∇p.

(ii) If q < 3/2 or s �∈ ωZ, and if w ∈ L1(T; Lr(R3)3) for some r ∈ (1,∞), then u = w and p = q+ d for
a (space-independent) function d : T → R.

Proof. At first, we show that it suffices to consider s ∈ R with |s| ≤ ω/2. Indeed, for s ∈ R there exists
� ∈ Z such that |s − ω�| ≤ ω/2. We set s̃ = s − ω� and f̃(t, x) = f(t, x)eiω�t, and assume that (w, q)
is a solution to (4.5) satisfying (4.6)–(4.8) with s and f replaced with s̃ and f̃ , respectively. We now
define the Tω-periodic functions u(t, x) := w(t, x)e−iω�t and p(t, x) := q(t, x)e−iω�t. Then (u, p) satisfies
the original problem (4.5) and the corresponding estimates (4.6)–(4.8). Therefore, it is sufficient to treat
the case |s| ≤ ω/2 in the following.

In the case s = 0, the system (4.5) reduces to the classical time-periodic Stokes system, for which
existence of a solution (u, p) was shown in [27]. More precisely, in [27] the right-hand side was decomposed
as f = f0 + f⊥ with

f0(x) =
∫

T

f(t, x) dt, f⊥(t, x) = f(t, x) − f0(x), (4.9)

and existence of a solution (u, p) = (u0 + u⊥, p0 + p⊥), decomposed in the same fashion as f , was shown,
which satisfies

‖∇2u0‖Lq(R3) + ‖∇p0‖Lq(R3) ≤ C1‖f0‖Lq(R3),

‖∂tu⊥‖Lq(T×R3) + ‖∇2u⊥‖Lq(T×R3) + ‖∇p⊥‖Lq(T×R3) ≤ C2‖f⊥‖Lq(T×R3)

for constants C1 = C1(q) and C2 = C2(q, Tω). In particular, combining these inequalities, we end up with
(4.6) with the constant C = C1 + C2. Moreover, by a classical scaling argument we see that the constant
C in (4.6) is independent of Tω. Finally, (4.7) and (4.8) follow from Sobolev’s inequality in space.

Now let us consider the case 0 �= |s| ≤ ω/2. At first, let f ∈ S (T × R
3)3. Computing the divergence

of (4.5)1, we obtain Δp = div f . By means of the Fourier transform FG on the locally compact abelian
group G := T × R

3, we conclude −|ξ|2FG[p] = iξ · FG[f ], so that

p = F−1
G

[
−iξ

|ξ|2
FG[f ]

]

, ∇p = F−1
G

[
ξ ⊗ ξ

|ξ|2
FG[f ]

]

. (4.10)
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In particular, p is well defined as a distribution in S ′(G), and by continuity of the Riesz transforms
Lq(R3) → Lq(R3), which can be extended to continuous operators Lq(G) → Lq(G), we conclude

‖∇p‖q ≤ C‖f‖q. (4.11)

Next we apply the Fourier transform to (4.5)1. In view of (4.10), this leads to the representation formula

u = F−1
G

[
mFG[f − ∇p]

]
= F−1

G

[

m

(

I − ξ ⊗ ξ

|ξ|2
)

FG[f ]
]

(4.12)

where I ∈ R
3×3 is the identity matrix and

m : Z × R
3 → R, m(k, ξ) :=

1
is + iωk + |ξ|2

.

Since 0 �= |s| ≤ ω/2, the denominator

Ds(k, ξ) := is + iωk + |ξ|2

in the definition of m has no zeros (k, ξ) ∈ Z × R
3, so that m is a well-defined bounded function. Hence

u ∈ S ′(G) is well defined by means of a Fourier multiplier in G. To deduce estimate (4.6), it remains to
derive Lq estimates for dist(s, ωZ)u, isu + ∂tu and ∇2u, that is, estimates of isu, ∂tu and ∇2u. In virtue
of the representation formula (4.12) we have

isu = F−1
G

[

m0

(

I − ξ ⊗ ξ

|ξ|2
)

FG[f ]
]

,

∂tu = F−1
G

[

m1

(

I − ξ ⊗ ξ

|ξ|2
)

FG[f ]
]

,

∂j∂�u = F−1
G

[

mj�

(

I − ξ ⊗ ξ

|ξ|2
)

FG[f ]
]

,

(4.13)

with m0, m1, mj� : Z × R
3 → R defined by

m0(k, ξ) :=
is

Ds(k, ξ)
, m1(k, ξ) :=

iωk

Ds(k, ξ)
, mj�(k, ξ) :=

−ξjξ�

Ds(k, ξ)

for j, � = 1, 2, 3. We set m :=
{
m0,m1,mj� : j, � ∈ {1, 2, 3}

}
. Then the Lq estimate (4.6) follows if all

m̃ ∈ m can be identified as Lq(G) multipliers. For this purpose, we employ the transference principle
from Theorem 4.2. Let χ ∈ C∞(R) with 0 ≤ χ ≤ 1 and such that χ(x) = 0 for |x| ≤ 1/2 and χ(x) = 1
for |x| ≥ 1. We define the functions M0, M1, Mj� : R × R

3 → C,

M0(η, ξ) :=
is χ

(
1+ωη

s

)

Ds(η, ξ)
, M1(η, ξ) :=

iωη χ
(
1+ωη

s

)

Ds(η, ξ)
, Mj�(η, ξ) := −

ξjξ� χ
(
1+ωη

s

)

Ds(η, ξ)
,

and we set M :=
{
M0,M1,Mj� : j, � ∈ {1, 2, 3}

}
. Observe that

χ
(
1 +

ωη

s

)
= 0 if |s + ωη| ≤ |s|/2, χ

(
1 +

ωη

s

)
= 1 if |s + ωη| ≥ |s|,

so that the numerator of each term vanishes in a neighborhood of the only zero (η, ξ) = (−s/ω, 0) of
the common denominator Ds(η, ξ). We thus conclude that every multiplier M̃ ∈ M is a well-defined
continuous function. Moreover, we have m0 = M0|Z×R3 , m1 = M1|Z×R3 and mj� = Mj�|Z×R3 . Hence, by
the transference principle from Theorem 4.2, all elements of m are Lq(G) multipliers if all elements of M
are Lq(R × R

3) multipliers. By employing the technical inequalities

|s + ωη| ≥ |s|/2 =⇒
∣
∣
∣

ωη

Ds(η, ξ)

∣
∣
∣ ≤

∣
∣
∣

ωη

s + ωη

∣
∣
∣ ≤ 1 +

∣
∣
∣

s

s + ωη

∣
∣
∣ ≤ 3,

|s + ωη| ≤ |s| =⇒
∣
∣
∣
ωη

s

∣
∣
∣ ≤ 1 +

∣
∣
∣
s + ωη

s

∣
∣
∣ ≤ 2,



52 Page 10 of 17 T. Eiter JMFM

a lengthy but elementary calculation shows

sup
{∣
∣ηαξβ∂α

η ∂β
ξ M̃(η, ξ)

∣
∣ : α ∈ {0, 1}, β ∈ {0, 1}3, (η, ξ) ∈ R × R

3
}

≤ C

for all M̃ ∈ M and for an absolute constant C > 0 that is independent of s. By the Marcinkiewicz
multiplier theorem (see [28, Corollary 5.2.5] for example), we conclude that M̃ is an Lq(R×R

3) multiplier
such that

∀h ∈ S (R × R
3) : ‖F−1

R×R3

[
M̃FR×R3 [h]

]
‖q ≤ C‖h‖q,

where C = C(q) is independent of s. Since all M̃ ∈ M are continuous, the transference principle (Theorem
4.2) now implies that all m̃ ∈ m are Lq(G) multipliers with

∀g ∈ S (G) : ‖F−1
G

[
m̃FG[g]

]
‖q,≤ C‖g‖q

where C = C(q). By combining these estimates with the continuity of the Riesz transforms, the repre-
sentation formulas in (4.13) yield (4.6). Estimates (4.7) and (4.8) now follow from Sobolev’s inequality.
In summary, for f ∈ S (G) we have now constructed a solution to (4.5) with the desired properties.
A classical approximation argument based on the estimates (4.6)–(4.8) finally yields the existence of a
solution for any f ∈ Lq(G).

It remains to prove the uniqueness assertion for arbitrary s ∈ R. We consider the difference (ũ, p̃) =
(u − w, p− q) ∈ L1

loc(G)3+1, which is a solution to (4.5) with f = 0. As above, computing the divergence
of both sides of (4.5)1, we conclude Δp̃ = 0, which implies suppFG[p̃] ⊂ Z× {0}. Since an application of
FG to (4.5)1 leads to Ds(k, ξ)FG[ũ] = −iξFG[p̃] with Ds(k, ξ) = is + iωk + |ξ|2, we deduce

supp
[
Ds(k, ξ)FG[ũ]

]
⊂ Z × {0}.

Since Ds(k, ξ) can only vanish for ξ = 0, we deduce suppFG[ũ] ⊂ Z × {0}. Hence, ũ ∈ L1
loc(G) implies

suppFR3 [ũ](t, ·) ⊂ {0} for a.a. t ∈ T, so that ũ(t, ·) is a polynomial for a.a. t ∈ T. In the same way we show
that p(t, ·) is a polynomial for a.a. t ∈ T. This has the following consequences in the two distinguished
cases. In case i we have ∇2ũ, ∇p̃ ∈ Lq(G). Since both are polynomials in space a.e. in T, this is only
possible if ∇2ũ = 0 and ∇p̃ = 0. In virtue of (4.5)1, this also implies isũ + ∂tũ = 0, which shows the
assertion in this case. In case ii we have ũ ∈ L1(T; Lr0(R3)3 + Lr(R3)3) with r0 = 3q/(3 − 2q) if q < 3/2,
and r0 = q if s �∈ ωZ. Since ũ(t, ·) is a polynomial for a.a. t ∈ T, this is only possible if ũ = 0, and
returning to (4.5)1, we also conclude ∇p = 0. In total, this completes the proof. �

Now let us consider the modified time-periodic Stokes problem with rotating effect
{

isu + ∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u) − Δu + ∇p = f in T × R
3,

div u = 0 in T × R
3,

(4.14)

which differs from (4.5) by the rotational term ω(e1 ∧ u − e1 ∧ x · ∇u). In the particular case that the
angular velocity of the rotation ω coincides with the angular frequency 2π

T associated to the time period
T , this rotational term can be absorbed in the time derivative by a suitable transformation. In this way,
we reduce (4.14) to (4.5), and we transfer existence and uniqueness as well as a priori estimates from
Theorem 4.3. Observe that the restriction ω = 2π

T is crucial for this procedure.

Theorem 4.4. Let ω > 0 and s ∈ R, and set Tω := 2π
ω and T := R/TωZ. For each f ∈ Lq(T × R

3)3 there
exists a solution (u, p) with

u ∈ W1,q(T; Lq
loc(R

3)3) ∩ Lq(T;W2,q
loc(R

3)3), p ∈ Lq(T;W1,q
loc(R

3))

to (4.14) that satisfies
‖dist(s, ωZ)u‖q + ‖isu + ∂tu + ω(e1 ∧ u − e1 ∧ x · ∇u)‖q

+ ‖∇2u‖q + ‖∇p‖q ≤ C‖f‖q

(4.15)

as well as (4.7) and (4.8) for a constant C = C(q) > 0.
Moreover, if (w, q) ∈ L1

loc(T × R
3)3+1 is another distributional solution to (4.14), then the following

holds:
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(i) If ∇2w, isw + ∂tw + ω(e1 ∧ w − e1 ∧ x · ∇w) ∈ Lq(T × R
3), then

isw+∂tw+ω(e1 ∧ w − e1 ∧ x · ∇w) = isu+∂tu+ω(e1 ∧ u − e1 ∧ x · ∇u),

∇2w = ∇2u, ∇q = ∇p.

(ii) If q < 3/2 or s �∈ ωZ, and if w ∈ L1(T; Lr(R3)3) for some r ∈ (1,∞), then u = w and p = q+ d for
a (space-independent) function d : T → R.

Proof. The proof is based on the idea to absorb the rotational term ω(e1 ∧ u − e1 ∧ x · ∇u) into the time
derivative by the coordinate transform arising from the rotation matrix

Qω(t) :=

⎛

⎝
1 0 0
0 cos(ωt) − sin(ωt)
0 sin(ωt) cos(ωt)

⎞

⎠ . (4.16)

Let f ∈ Lq(T × R
3)3 and define the vector field f̃ by

f̃(t, x) := Qω(t)f(t,Qω(t)�x).

Then f̃ ∈ Lq(T × R
3)3 since T = R/TωZ with Tω = 2π

ω . By Theorem 4.3 there exists a solution (ũ, p̃) to
(4.5) (with f replaced by f̃), which satisfies the estimates (4.6)–(4.8). We now define the Tω-time-periodic
functions

u(t, x) := Qω(t)�ũ(t,Qω(t)x), p(t, x) := p̃(t,Qω(t)x).

Since Q̇ω(t)x = ωe1 ∧ [Qω(t)x] = Qω(t)[ωe1 ∧ x] for any x ∈ R
3, a direct computation shows

∂tũ(t, x) = Qω(t)
[
∂tu(t,Qω(t)�x) + ωe1 ∧ u(t,Qω(t)�x)

− ωe1 ∧ [Qω(t)�x] · ∇u(t,Qω(t)�x)
]
.

Moreover, we have

Δũ(t, x) = Qω(t)Δu(t,Qω(t)�x), ∇p̃(t, x) = Qω(t)∇p(t,Qω(t)�x),

div ũ(t, x) = div u(t,Qω(t)�x).

Consequently, (u, p) is a solution to (4.14) and satisfies the estimates (4.15), (4.7), (4.8).
For the uniqueness statement, we set

ũ(t, x) := Qω(t)u(t,Qω(t)�x), p̃(t, x) := p(t,Qω(t)�x)

w̃(t, x) := Qω(t)w(t,Qω(t)�x), π̃(t, x) := q(t,Qω(t)�x),

f̃(t, x) := Qω(t)f(t,Qω(t)�x).

Mimicking the above calculations, we see that (ũ, p̃) and (w̃, π̃) are solutions to (4.5) with the same
right-hand side f̃ . The uniqueness statement now follows from the corresponding statement in Theorem
4.3. �

Observe that, by simply considering s = 0 in (4.14), we would obtain the original time-periodic
problem (1.2), and Theorem 4.4 yields existence of a unique solution to this problem. However, since we
required ω = 2π

T in Theorem 4.4, we only obtain well-posedness in this special case, and ω and T cannot
be chosen independently.

In contrast, if we consider time-independent solutions (u, p)(t, x) = (v, p)(x) to (4.14) for s ∈ R, we
obtain the resolvent problem (4.1), where the T -dependence does not appear anymore. From Theorem
4.4 we can thus extract Theorem 4.1 as the final result of this section.

Proof of Theorem 4.1. For the proof we set T := R/T Z with T = 2π
ω . At first, let g ∈ Lq(R3)3 and define

f(t, x) := g(x). Then f ∈ Lq(T×R
3)3, and by Theorem 4.4 there exists a solution (u, p) to (4.14). Then

v(x) :=
∫

T

u(t, x) dt, p(x) :=
∫

T

p(t, x) dt,
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defines a solution (v, p) to (4.1), and estimates (4.2)–(4.4) follow directly. With regard to uniqueness,
observe that every solution to (4.1) is a (time-independent) solution to (4.14), so that the uniqueness
statement follows immediately from Theorem 4.4. �

5. The Resolvent Problem in an Exterior Domain

After having established well-posedness of the resolvent problem (4.1) in R
3, we next consider the cor-

responding problem in an exterior domain Ω ⊂ R
3, given in (1.1). The aim of this section is a proof of

Theorem 3.1. At first, we address the question of uniqueness by considering (1.1) for g = 0.

Lemma 5.1. Let Ω ⊂ R
3 be an exterior domain of class C1,1. Let ω > 0, s ∈ R, and let (v, p) be a

distributional solution to (1.1) with g = 0 and ∇2v, ∇p ∈ Lq(Ω) for some q ∈ (1,∞) and v ∈ Lr(Ω) for
some r ∈ (1,∞). Then v = 0 and p is constant.

Proof. The proof follows exactly as in [10, Lemma 5.6], where the statement was shown for the case
s ∈ ωZ. Therefore, we only give a brief sketch here. The idea is to employ a cut-off argument that leads
to a Stokes problem on a bounded domain and to the resolvent problem (1.1) in the whole space, both
with error terms on the right-hand side. Using classical elliptic regularity of the Stokes problem and
regularity properties for (1.1) established in Theorem 4.1, one can then show that

∀r ∈ (1,∞) : isv + e1 ∧ v − e1 ∧ x · ∇v, ∇2v, ∇p ∈ Lr(Ω),

∀r ∈
(3
2
,∞] : ∇v ∈ Lr(Ω),

∀r ∈ (3,∞] : v ∈ Lr(Ω).

Next we multiply (1.1)1 by v∗, the complex conjugate of v. The above regularities enable us to integrate
the resulting identity over ΩR and to pass to the limit R → ∞. Arguing as in [10, Lemma 5.6], one
obtains

0 = is

∫

Ω

|v|2 dx +
∫

Ω

|∇v|2 dx.

This yields ∇v = 0 and, in view of the imposed boundary conditions, v = 0. From (1.1)1 we finally
conclude ∇p = 0, which completes the proof. �

In the next step we derive suitable a priori estimates by a cut-off procedure. We begin with the
following intermediate result. For simplicity, we only consider the case q < 3

2 .

Lemma 5.2. Let Ω ⊂ R
3 be an exterior domain of class C1,1, and ω > 0 and s ∈ R. Let q ∈ (1,∞) and

g ∈ Lq(Ω)3. Consider a solution (v, p) to (1.1) that satisfies

isv + ω(e1 ∧ v − e1 ∧ x · ∇v), ∇2v, ∇p ∈ Lq(Ω)3

and v ∈ Lr1(Ω)3, p ∈ Lr1(Ω) for some r1, r1 ∈ (1,∞). Fix R > 0 such that ∂Ω ⊂ BR. If q ∈ (1, 3/2),
then (v, p) satisfies the estimate

‖dist(s, ωZ) v‖q + ‖isv + ω(e1 ∧ v − e1 ∧ x · ∇v)‖q + ‖∇2v‖q + ‖∇p‖q

+ ‖∇v‖3q/(3−q) + ‖v‖3q/(3−2q) + ‖p‖3q/(3−q)

≤ C
(
‖g‖q + (1 + ω)‖v‖1,q;ΩR

+ ‖p‖q;ΩR
+ |s|‖v‖−1,q;ΩR

)
(5.1)

for a constant C = C(q,Ω, R) > 0.

Proof. Estimate (5.1) can be shown by a classical cut-off procedure. We skip the details here and refer
to [10, Lemma 5.7], where the related resolvent problem

⎧
⎨

⎩

isv + ω(e1 ∧ v − e1 ∧ x · ∇v) + λ∂1v − Δv + ∇p = g in Ω,
div v = 0 in Ω,
v = 0 on ∂Ω

(5.2)
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in the case λ > 0 and s ∈ ωZ was considered. In the present situation one may proceed in the very same
way by invoking estimates (4.2)–(4.4) from Theorem 4.1 as well as the uniqueness result from Lemma
5.1. �

Based on a compactness argument, we now show how to omit the error terms on the right-hand side
of (5.1) and to infer the estimate (3.1).

Lemma 5.3. In the situation of Lemma 5.2 let q ∈ (1, 3/2) and ω ∈ (0, ω0] for some ω0 > 0. Then (v, p)
satisfies estimate (3.1) for a constant C = C(q,Ω, ω0) > 0.

Proof. We employ a contradiction argument and assume that there exists no constant C > 0 with the
claimed properties such that (3.1) holds. Then there exist sequences (sj) ⊂ R, (ωj) ⊂ (0, ω0], (vj) ⊂
W2,q

loc(Ω)3, (pj) ⊂ W1,q
loc(Ω), (gj) ⊂ Lq(Ω)3 with

dist(sj , ωjZ)vj , isjvj + ωj(e1 ∧ vj − e1 ∧ x · ∇vj), ∇2vj , ∇pj ∈ Lq(Ω)3,

such that

‖dist(sj , ωjZ)vj‖q + ‖isjvj+ωj(e1 ∧ vj − e1 ∧ x · ∇vj)‖q + ‖∇2vj‖q

+ ‖∇pj‖q + ‖∇vj‖3q/(3−q) + ‖vj‖3q/(3−2q) + ‖pj‖3q/(3−q) = 1
(5.3)

and

lim
j→∞

‖gj‖q = 0.

Moreover, there exist sequences (rj) ⊂ (1,∞), (rj) ⊂ (1,∞) such that vj ∈ Lrj (Ω)3, pj ∈ Lrj (Ω) for all
j ∈ N. Observe that the left-hand side of (5.3) is finite by Lemma 5.2 and can thus be normalized as in
(5.3). By the choice of a suitable subsequence, we may assume that ωj → ω ∈ [0, ω0], sj → s ∈ [−∞,∞]
and dist(sj , ωjZ) → δ ∈ [−ω0/2, ω0/2] as j → ∞. For the moment fix R > 0 with ∂Ω ⊂ BR. In virtue of
(5.3) and the estimate

‖isjvj‖q;ΩR
≤ ‖isjvj + ωj(e1 ∧ vj − e1 ∧ x · ∇vj)‖q;ΩR

+ ‖ωj(e1 ∧ vj − e1 ∧ x · ∇vj)‖q;ΩR

≤ ‖isjvj + ωj(e1 ∧ vj − e1 ∧ x · ∇vj)‖q + ω0

(
‖vj‖q;ΩR

+ R‖∇vj‖q;ΩR

)
,

(5.4)

the sequences (isjvj |ΩR
), (vj |ΩR

) and (pj |ΩR
) are bounded in Lq(ΩR), W2,q(ΩR) and W1,q(ΩR), respec-

tively. Upon selecting suitable subsequences, we thus obtain the existence of w ∈ Lq
loc(Ω)3, v ∈ W2,q

loc(Ω)3

and p ∈ W1,q
loc(Ω) such that

isjvj ⇀ w in Lq(ΩR), vj ⇀ v in W2,q(ΩR), pj ⇀ p in W1,q(ΩR).

By a Cantor diagonalization argument, we obtain a subsequence such that the limit functions w, v, p are
independent of the choice of R. Moreover, the uniform bounds from (5.3) imply weak convergence of a
subsequence in the corresponding spaces, which implies

‖δv‖q + ‖w + ω(e1 ∧ v − e1 ∧ x · ∇v)‖q + ‖∇2v‖q + ‖∇p‖q

+ ‖∇v‖3q/(3−q) + ‖v‖3q/(3−2q) + ‖p‖3q/(3−q) ≤ 1

Firstly, we can now perform the limit j → ∞ in (1.1) (v, p, g is replaced with vj , pj , gj) and deduce
⎧
⎨

⎩

w + ω(e1 ∧ v − e1 ∧ x · ∇v) − Δv + ∇p = 0 in Ω,
div v = 0 in Ω,
v = 0 in ∂Ω.

(5.5)

Secondly, the compactness of the embeddings W2,q(ΩR) ↪→ W1,q(ΩR) ↪→ Lq(ΩR) ↪→ W−1,q
0 (ΩR) implies

the strong convergence

isjvj → w in W−1,q(ΩR), vj → v in W1,q(ΩR), pj → p in Lq(ΩR).
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By Lemma 5.2 we have (5.1) with v, p, g replaced with vj , pj , gj . Employing (5.3) and passing to the
limit j → ∞ in this inequality leads to

1 ≤ C
(
(1 + ω)‖v‖1,q;ΩR

+ ‖p‖q;ΩR
+ ‖w‖−1,q;ΩR

)
. (5.6)

We now distinguish the following cases:
(i) If |s| < ∞ and ω = 0, then w = isv and (5.5) simplifies to the classical Stokes resolvent problem

with resolvent parameter is. If s �= 0, this yields isv = Δv − ∇p ∈ Lq(Ω), so that v ∈ W2,q(Ω).
Uniqueness in this functional framework is well known, so that v = ∇p = 0; see [29] for example. If
s = 0, then (5.5) is the steady-state Stokes problem and v ∈ L3q/(3−2q)(Ω) implies v = ∇p = 0 as
follows from [13, Theorem V.4.6] for example.

(ii) If |s| < ∞ and ω > 0, then w = isv and (5.5) coincides with (1.1) with g = 0. Employing Lemma
5.1 and v ∈ L3q/(3−q)(Ω), we conclude v = ∇p = 0.

(iii) If |s| = ∞, we note that for every R > 0 such that ∂Ω ⊂ BR, estimate (5.4) implies ‖vj‖q;ΩR
≤

CR/|sj | for some R-dependent constant C. Passing to the limit j → ∞ and employing that R was
arbitrary, we deduce v = 0 in Ω, and (5.5) reduces to w + ∇p = 0, which, in particular, yields
w ∈ Lq(Ω). Since we also have div w = 0 and w|∂Ω = 0, this equality corresponds to the Helmholtz
decomposition in Lq(Ω) of the zero function. By uniqueness of this decomposition, we conclude
w = ∇p = 0.

Finally, in all three cases we obtain w = v = ∇p = 0, which also yields p = 0 due to p ∈ L3q/(3−2q)(Ω).
In total, this is a contradiction to inequality (5.6) and finishes the proof. �

After the derivation of suitable a priori estimates in Lemma 5.3, we next show the existence of a
solution to the resolvent problem (1.1) for a sufficiently smooth right-hand side g.

Lemma 5.4. Let Ω ⊂ R
3 be an exterior domain of class C3. Let ω > 0, s ∈ R and g ∈ C∞

0 (Ω)3. Then
there exists a solution (v, p) to (1.1) with

∀q ∈ (1, 3/2) : (v, p) ∈ Xq
ω,s(Ω) × Yq(Ω).

Proof. Existence for the related resolvent problem (5.2) in the case s ∈ ωZ and λ > 0 was shown in [10,
Lemma 5.11] in full detail based on energy estimates and an “invading domains” technique together with
Lq estimates similar to (3.1). The proof for (1.1) for general s ∈ R, which means (5.2) for λ = 0, follows
along the same lines, which is why we only give a rough sketch here.

First of all, we choose R > 0 such that ∂Ω ⊂ BR. For m ∈ N with m > R we first consider the
resolvent problem (1.1) on the bounded domain Ωm = Ω ∩ Bm, that is,

⎧
⎨

⎩

isvm + ω(e1 ∧ vm − e1 ∧ x · ∇vm) − Δvm + ∇pm = g in Ωm,
div vm = 0 in Ωm,
vm = 0 on ∂Ωm.

By formally testing with the complex conjugates of vm and PΩm
Δvm, where PΩm

denotes the Helmholtz
projection in L2(Ωm), one can then derive the a priori estimates

‖vm‖6;Ωm
+ ‖∇vm‖2;Ωm

≤ C‖g‖6/5,

‖PΩm
Δvm‖2;Ωm

≤ C
(
‖g‖6/5 + ‖g‖2

)
,

where the constant C > 0 is independent of m; see the proof of [10, Lemma 5.11] for further details. In
order to derive a uniform estimate on the full second-order norm, we employ the inequality

‖∇2w‖2;Ωm
≤ C(‖PΩm

Δw‖2;Ωm
+ ‖∇w‖2;Ωm

)

for all w ∈ W1,2
0 (Ωm)3 ∩ W2,2(Ωm)3 with div w = 0. Since we assumed ∂Ω ∈ C3, the constant C can

be chosen independent of m; see [30, Lemma 1]. Based on these formal a priori estimates and a basis of
eigenfunctions of the Stokes operator on the bounded domain Ωm, we can then apply a Galerkin method
to conclude the existence of a solution (vm, pm), which satisfies the a priori estimate

‖vm‖6;Ωm
+ ‖∇vm‖1,2;Ωm

≤ C(‖g‖6/5 + ‖g‖2),
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where C is independent of m. After multiplication with suitable cut-off functions, one can then pass to the
limit m → ∞, which leads to a solution (v, p) to the original resolvent problem (1.1). Finally, another cut-
off argument that uses the uniqueness properties from Lemma 5.1 reveals that (v, p) ∈ Xq

ω,s(Ω) × Yq(Ω)
for all q ∈ (1, 3/2). �

After having shown existence of a solution for smooth data g, we can now combine the previous
lemmas to conclude the proof of Theorem 3.1 by an approximation argument.

Proof of Theorem 3.1. In the case Ω = R
3 the statement follows from Theorem 4.1 above. In the case

of an exterior domain Ω ⊂ R
3, the uniqueness statement is a consequence of Lemma 5.1, and estimate

(3.1) was shown in Lemma 5.3. It thus remains to show existence of a solution for general g ∈ Lq(Ω)3.
To this end, consider a sequence (gj) ⊂ C∞

0 (Ω)3 converging to g in Lq(Ω)3. By Lemma 5.4 there exists a
solution (vj , pj) ∈ Xq

ω,s(Ω) × Yq(Ω) to (1.1) with g = gj for each j ∈ N. From Lemma 5.3 we infer that
(vj , pj) is a Cauchy sequence in the Banach space Xq

ω,s(Ω)×Yq(Ω). Therefore, there exists a unique limit
(v, p) ∈ Xq

ω,s(Ω) × Yq(Ω), which is a solution to (1.1). This completes the proof. �

6. The Time-Periodic Problem

Now we consider the time-periodic problem (1.2) and prove the well-posedness results from Theorem 3.2.
For the proof, we reduce (1.2) to the resolvent problems for each Fourier mode, which can be solved by
means of Theorem 3.1. Due to the a priori estimate (3.1), these solutions constitute a summable sequence
in a suitable space, so that the associated Fourier series forms a solution to the time-periodic problem
(1.2).

Proof of Theorem 3.2. Let f ∈ A(T; Lq(Ω)3). Then there exist fk ∈ Lq(Ω)3, k ∈ Z, such that

f(t, x) =
∑

k∈Z

fk(x)ei 2π
T kt.

By Theorem 3.1 there exists a solution (uk, pk) ∈ Xq

ω, 2π
T k

(Ω) × Yq(Ω) to
⎧
⎨

⎩

i2π
T kuk + ω(e1 ∧ uk − e1 ∧ x · ∇uk) − Δuk + ∇pk = fk in Ω,

div uk = 0 in Ω,
uk = 0 on ∂Ω,

(6.1)

which satisfies

‖i2π
T kuk + ω(e1 ∧ uk − e1 ∧ x · ∇uk)‖q + ‖∇2uk‖q + ‖∇uk‖q

+ ‖∇uk‖3q/(3−q) + ‖uk‖3q/(3−2q) + ‖pk‖3q/(3−q) ≤ C‖fk‖q

for C as in Theorem 3.1. Since C is independent of k, the series

u(t, x) =
∑

k∈Z

uk(x)ei 2π
T kt, p(t, x) =

∑

k∈Z

pk(x)ei 2π
T kt, (6.2)

define a pair (u, p) ∈ X q
ω(T × Ω) × Yq(T × Ω), which satisfies estimate (3.2) with the same constant C

and is a time-periodic solution to problem (1.2).
It remains to prove the uniqueness statement. For this purpose, consider a solution (u, p) ∈ X q

ω(T×Ω)×
Yq(T×Ω) to (1.2) with right-hand side f = 0. Then the Fourier coefficients (uk, pk) ∈ Xq

ω, 2π
T k

(Ω)×Yq(Ω),
k ∈ Z, defined by (6.2), are solutions to problem (6.1) with fk = 0. From Theorem 3.1 we thus conclude
(uk, pk) = (0, 0) for all k ∈ Z, so that (u, p) = (0, 0). This shows uniqueness of the solution and completes
the proof. �
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