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ABSTRACT. In this paper we prove L∞-estimates for solutions of divergence operators in case

of mixed boundary conditions. In this very general setting the Dirichlet boundary part may be

arbitrarily wild, i.e. no regularity conditions have to be imposed on it.

1. INTRODUCTION

It is well-known that L∞-estimates for elliptic operators play an eminent role in the investigation

of partial differential equations and systems. Such estimates are established since the work of

De Giorgi, Nash and Moser in case of Dirichlet boundary conditions (compare [LU, Chapter III],

[GT, Chapter 8] or [WYW]). In this paper, we are interested in mixed Dirichlet/Neumann bound-

ary conditions. If the domain is Lipschitzian and the Neumann/Dirichlet boundary parts satisfy

a certain compatibility condition, introduced by Gröger in [Grö], then global Hölder continuity of

solutions is known ([GR], see also [Gri] and [HMRS]). We weaken these conditions consider-

ably: first, the Dirichlet part may be an arbitrary closed subset of the boundary, and, secondly,

only for points in the closure of the Neumann boundary part we require bi-Lipschitz charts. This

includes domains which are not necessarily situated on one side of the boundary – as long

as this boundary part carries a homogeneous Dirichlet condition. The reader may think, as an

example, of a ball minus one half of its equatorial plane; another example is shown in Figure 1.

The essential instruments are Gaussian estimates, derived in [AE], and a result of Duong and

McIntosh [DM] on Riesz transforms.

FIGURE 1. The black apex and the shaded circle carry the Dirichlet condition

2. PRELIMINARIES

All function spaces under consideration are real valued. Let Ω ⊂ R
d be a bounded domain and

let Γ be an open subset of ∂Ω. For all q ∈ (1,∞) we define W 1,q
Γ (Ω) as the closure of

(2.1) C∞
Γ (Ω) =: {ψ|Ω : ψ ∈ C∞

c (Rd), suppψ ∩ (∂Ω \ Γ) = ∅}



2

in the Sobolev space W 1,q(Ω). Of course, if Γ = ∅, then W 1,q
Γ (Ω) = W 1,q

0 (Ω). If q′ is the

dual exponent of q then we denote by W−1,q′

Γ (Ω) the dual space of W 1,q
Γ (Ω). Throughout this

paper we make the following assumption.

Assumption 2.1. For all x ∈ Γ there is an open neighbourhood Vx of x and a bi-Lipschitz

mapping Fx from Vx onto the open unit cubeE, such that Fx(x) = 0 and Fx(Ω∩Vx) is equal

to the lower open half cube E− = (−1, 1)d−1 × (−1, 0) of E.

Further, we suppose that µ is a bounded, Lebesgue measurable function on Ω, taking its values

in the set of real d× d-matrices, which, additionally, satisfies the usual ellipticity condition

(2.2) inf
x∈Ω

inf
|ξ|=1

µ(x)ξ · ξ > 0.

Define the (closed) form t : W 1,2
Γ (Ω)×W 1,2

Γ (Ω) → R by

(2.3) t[u, v] :=

∫
Ω

µ∇u · ∇v dx.

We denote byA the operator associated with t on L2(Ω) and let S be the semigroup generated

by −A.

If misunderstandings are not to be expected, we usually drop ‘Ω’ in the notation of spaces, i.e.

we write W 1,q
Γ instead of W 1,q

Γ (Ω) etc.

3. MAIN RESULT

Our main results are as follow.

Theorem 3.1. The semigroup S has a positive kernel satisfying Gaussian upper estimates, i.e.

(e−tAf)(x) =

∫
Ω

Kt(x, y) f(y) dy, x ∈ Ω, f ∈ L2(Ω)

for some measurable function Kt : Ω × Ω → [0,∞) and there exist constants b, c > 0 and

ω ∈ R such that

(3.1) 0 ≤ Kt(x, y) ≤
c

td/2
e−b

|x−y|2
t eωt, for almost all (x, y) ∈ Ω× Ω

for all t > 0.

Remark 3.2. Note that the Gaussian upper bounds imply that for all p ∈ [1,∞] there exists a

continuous semigroup S(p) on Lp which is consistent with S, compare [AE, Theorem 4.4]. If no

confusion is possible then we denote by −A the generator of S(p) and write S for S(p).

We emphasize that the coefficients do not have to be symmetric in Theorem 3.1.

Theorem 3.3. Assume µ(x) is symmetric for all x ∈ Ω. Let q ∈ [2,∞) and ε > 0. Then one

has the following.
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i) The space Lq, equipped with the W−1,q
Γ -norm, is continuously mapped by

(
A + ε

)− 1
2

into Lq.

ii) For every θ > 1
2
(1+ d

q
), the operator (A+ ε)−θ admits an extension which continuously

maps W−1,q
Γ into L∞.

For the proofs we need some prerequisites:

Lemma 3.4. There are a continuous extension operator E : W 1,2
Γ (Ω) → W 1,2(Rd) and a

c > 0 such that ‖Eψ‖L1(Rd) ≤ c ‖ψ‖L1(Ω) for all ψ ∈ W 1,2
Γ (Ω) ∩ L1(Ω).

Proof. For all x ∈ Ω let Bx be a ball around x which does not intersect ∂Ω. Further, for all

∂Ω \ Γ let Ux be an open neighbourhood which does not intersect Γ. Lastly, for all x ∈ Γ, let

Vx be an open neighbourhood which satisfies the condition in Assumption 2.1. Obviously, the

union of the systems {Bx}x∈Ω, {Uy}y∈∂Ω\Γ and {Vz}z∈Γ forms an open covering of Ω. Let

Bx1 , . . . , Bxk
,Uy1 , . . . ,Uyl

,Vz1 , . . . ,Vzm be a finite subcovering and let ζ(1)
1 , . . . , ζ

(1)
k , ζ

(2)
1 ,

. . . , ζ
(2)
l , ζ

(3)
1 , . . . , ζ

(3)
m be a smooth partition of unity over Ω, subordinated to this subcovering.

Then ψ =
∑k

r=1 ζ
(1)
r ψ +

∑l
r=1 ζ

(2)
r ψ +

∑m
r=1 ζ

(3)
r ψ for all ψ ∈ L1(Ω).

We next define for all i and r a constant ci,r > 0 and an operator E
(i)
r from C∞

Γ (Ω) into

W 1,2(Rd) such that 1Ω E
(i)
r ψ = ζ

(i)
r ψ, ‖E(i)

r ψ‖W 1,2(Rd) ≤ ci,r‖ψ‖W 1,2(Ω) and ‖E(i)
r ψ‖L1(Rd) ≤

ci,r‖ψ‖L1(Ω) for all ψ ∈ C∞
Γ (Ω). First, for all r ∈ {1, . . . , k} define the map E

(1)
r : C∞

Γ (Ω) →
W 1,2(Rd) by E

(1)
r ψ = ζ

(1)
r ψ. Then E

(1)
r is continuous and ‖E(1)

r ψ‖L1(Rd) ≤ ‖ψ‖L1(Ω) for all

ψ ∈ C∞
Γ (Ω). Secondly, let r ∈ {1, . . . , l}. Then supp ζ

(2)
r ∩ Γ = ∅. Let ψ ∈ C∞

c (Rd) and

suppose that suppψ ∩ (∂Ω \ Γ) = ∅. Then supp(ζ
(2)
r ψ) ∩ ∂Ω = ∅. Hence ζ(2)

r ψ 1Ω ∈
C∞

c (Ω) ⊂ W 1,2(Rd). Define E
(2)
r (ψ|Ω) = ζ

(2)
r ψ 1Ω. Clearly E

(2)
r is well defined, and it sat-

isfies the claimed requirements. Finally, let r ∈ {1, . . . ,m}. Let Ê be the even reflection from

W 1,2(E−) into W 1,2(E) (see [Giu, Lemma 3.4]). Then Ê((ζ
(3)
r ◦ F−1

zr
)1E−) is continuous on

E and supp Ê((ζ
(3)
r ◦ F−1

zr
)1E−) ⊂ E. Transforming back, it follows that

supp
(
Ê(((ζ(3)

r ψ) ◦ F−1
zr

)1E−)
)
◦ Fzr ⊂ Vzr

for all ψ ∈ C∞
Γ (Ω). Hence we can define E

(3)
r : C∞

Γ (Ω) → W 1,2(Rd) by

(E(3)
r ψ)(x) =


(
Ê(((ζ

(3)
r ψ) ◦ F−1

zr
)1E−)

)
(Fzr(x)) if x ∈ Vzr ,

0 if x 6∈ Vzr .

Clearly there exists a c3,r > 0 such that ‖E(3)
r ψ‖L1(Rd) ≤ c3,r‖ψ‖L1(Ω) for all ψ ∈ C∞

Γ (Ω)

and E
(3)
r satisfies the claimed requirements.

Now define E : C∞
Γ (Ω) → W 1,2(Rd) by

E =
k∑

r=1

E(1)
r +

l∑
r=1

E(2)
r +

m∑
r=1

E(3)
r .
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Then E is continuous and ‖Eψ‖L1(Rd) ≤ (k + l +
∑m

r=1 c3,r)‖ψ‖L1(Ω) for all ψ ∈ C∞
Γ (Ω).

By construction Eψ = ψ for all ψ ∈ C∞
Γ (Ω). Therefore E extends to a continuous extension

operator from W 1,2
Γ (Ω) into W 1,2(Rd) and from L1(Ω) into L1(Rd). �

Remark 3.5. In case of Lipschitz domains Ω it is well known that the full space W 1,2(Ω) ad-

mits an extension operator to W 1,2(Rd), which simultaniously also extends L1, see [GT, Theo-

rem 7.25] or [Giu, Theorem 3.10]. In contrast, we exploited in Lemma 3.4 the detailed structure

of the space W 1,2
Γ (Ω).

Proof of Theorem 3.1. By Theorem 4.4 in [AE] it suffices to show that the form domainW 1,2
Γ (Ω)

of t satsifies the following four conditions:

a) W 1,2
0 (Ω) ⊆ W 1,2

Γ (Ω),

b) there is a linear, continuous extension operator E : W 1,2
Γ (Ω) → W 1,2(Rd) which maps

W 1,2
Γ (Ω) ∩ L1(Ω) continuously into L1(Rd),

c) u ∈ W 1,2
Γ (Ω) implies |u|, |u| ∧ 1 ∈ W 1,2

Γ (Ω),

d) u ∈ W 1,2
Γ (Ω), v ∈ W 1,2(Ω), and |v| ≤ u implies v ∈ W 1,2

Γ (Ω).

Condition a) is obvious. Condition b) is shown in Lemma 3.4. We next show Condition c).

Assume u ∈ W 1,2
Γ . Then, by definition, there is a sequence {un}n in C∞

c (Rd), such that

suppun ∩ (∂Ω \ Γ) = ∅ and lim ‖un|Ω − u‖W 1,2(Ω) = 0. Let n ∈ N. It is well-known that

u+
n , u

−
n ∈ W 1,2(Rd). Moreover, the supports of u+

n , u
−
n also have a positive distance to ∂Ω\Γ.

There exists a θn ∈ C∞
c (Rd) such that the supports of θn ∗ u+

n and θn ∗ u−n also have positve

distance to ∂Ω \ Γ, and, secondly,

‖u+
n − θn ∗ u+

n ‖W 1,2(Rd) ≤ 1
n

and ‖u−n − θn ∗ u−n ‖W 1,2(Rd) ≤ 1
n
.

Clearly, (θn ∗ u+
n )|Ω ∈ C∞

Γ , and we may estimate

‖(θ ∗ u+
n )|Ω − u+‖W 1,2(Ω) ≤ ‖(θn ∗ u+

n )|Ω − u+
n |Ω‖W 1,2(Ω) + ‖u+

n |Ω − u+‖W 1,2(Ω)

≤ ‖θn ∗ u+
n − u+

n ‖W 1,2(Rd) + ‖u+
n |Ω − u+‖W 1,2(Ω)

≤ 1
n

+ ‖u+
n |Ω − u+‖W 1,2(Ω).

But the second term approaches 0 for n → ∞, since the mapping v 7→ v+ from W 1,2(Ω)

into W 1,2(Ω) is continuous for arbitrary domains Ω, see [MM]. The same way one proves that

lim(θn ∗ u−n )|Ω = u− in W 1,2(Ω). Hence |u| = u+ + u− ∈ W 1,2
Γ .

The property |u| ∧ 1 ∈ W 1,2
Γ is obtained similarily, this time using the continuity of the maps

u 7→ |u| and then v 7→ v ∧ 1 from W 1,2 into W 1,2. See also [MM]. Finally, Condisition d) can

essentially be proved the same way, this time using the continuity result for the map u 7→ u∧ v
from [MM]. �

We next turn to the proof of Theorem 3.3.
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Theorem 3.6. Assume µ(x) is symmetric for all x ∈ Ω. For all q ∈ (1, 2] and ε > 0 the

operator (A+ ε)−1/2 admits an extension as a continuous operator from Lq into W 1,q
Γ .

For the proof we need the following result (see [DM, Theorem 2], see also [Ouh, Chapter 7.7]).

Proposition 3.7. LetB be a positive, selfadjoint operator on L2 with form domainW . Suppose

there exists a c > 0 such that ‖∇ψ‖L2 ≤ c‖B1/2ψ‖L2 for all ψ ∈ W . Assume that W is

invariant under multiplication by bounded functions with bounded, continuous first derivatives.

Moreover, assume that there exist β > d/2 andC > 0 such that the kernel L of the semigroup

(e−tB)t>0 satisfies bounds

(3.2) |Lt(x, y)| ≤
C

td/2

(
1 +

|x− y|2

t

)−β

for all t > 0 and x, y ∈ Ω. Then, for all j ∈ {1, . . . , d}, the operator ∂
∂xj
B−1/2 is of weak

type (1, 1), and, thus can be extended from L2 to a bounded operator on Lq for all q ∈ (1, 2].

Proof of Theorem 3.6. It follows from Theorem 3.1 that the kernel of the semigroup S satisfies

the estimate (3.1). Define ν := max(ε, ω), where ω is as in (3.1). Note that Aq generates a

contraction semigroup on Lq by [Ouh, Chapter 4.6]. Hence (A+ ν)−1/2 extends to the contin-

uous operator (Aq + ν)−1/2 on Lq.

Next we show that for all j ∈ {1, . . . , d} the operator ∂
∂xj

(A + ν)−1/2 extends to a bounded

operator from Lq into itself.

We wish to apply Proposition 3.7 to the operator B := A + ν and W := W 1,2
Γ . By a classical

result on forms the space W 1,2
Γ is the domain of (A + ν)1/2. Hence there exists a c > 0

such that ‖∇ψ‖L2 ≤ c‖(A + ν)1/2ψ‖L2 for all ψ ∈ W . The invariance property of W

under multiplication is concluded by straight forward arguments, see [HR, Proposition 3.8]. The

semigroup kernel for A+ ν satisfies again (3.1), but without the factor eωt due to the definition

of ν. Moreover, it is easy to see that the resulting Gaussian bounds from Theorem 3.1 are even

much stronger than the bounds required in (3.2), since the function r 7→ (1 + r)β e−br from

[0,∞) into R is bounded for every β > 0.

Thus the operator (A + ν)−1/2 maps Lq continuously into W 1,q for all q ∈ (1, 2]. Since

D((A + ν)−1/2) = D((A + ε)−1/2), with equivalent graph norm, it follows that the operator

(A+ε)−1/2 maps Lq continuously intoW 1,q. It remains to verify the correct boundary behavior

of the images. If f ∈ L2 ⊂ Lq, then (A + ε)−1/2f ∈ W 1,2
Γ ⊂ W 1,q

Γ . Then the assertion

follows from the continuity of (A + ε)−1/2, the closedness of W 1,q
Γ in W 1,q and the density of

L2 in Lq. �

Proof of Theorem 3.3. Statement i) follows by duality from Theorem 3.6.
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‘ii).’ Let b, c, ω be as in (3.1). Set δ := ω + 1. Then ‖e−t(A+δ)‖1→∞ ≤ c t−
d
2 for all t > 0.

One also has the contraction property ‖e−t(A+δ)‖∞→∞ ≤ 1 for all t > 0 for the semigroup

operators, see [Ouh, Theorem 4.9]. Then by interpolation ‖e−t(A+δ)‖q→∞ ≤ c
1
q t−

d
2q for all

t > 0 and q ∈ [1,∞). Let τ ∈ ( d
2q
,∞). Then

(A+ δ)−τ =
1

Γ(τ)

∫ ∞

0

tτ−1e−t(A+δ) dt,

by [Paz, Section 2.6]. Hence the operator (A + δ)−τ is bounded from Lq into L∞. Therefore

if θ > 1
2
(1 + d

q
) then Statement i) implies that Lq, endowed with the W−1,q

Γ -norm, is mapped

continuously by (A+ δ)−θ into L∞. Then ii) follows by the density of Lq in W−1,q
Γ . �

4. CONCLUDING REMARKS

� Everything can be carried over to complex spaces without difficulties. The form t has then

to be defined by taking the conjugate of v in (2.3), and W−1,q
Γ has to be defined as the

space of continuous antilinear forms on W 1,q′

Γ .

� Quite similar as in the proof of Theorem 3.3, upper Gaussian estimates imply that a finite

resolvent power maps L2 into L∞. The point is here, however, that the W−1,q-calculus

allows for jumps in the conormal derivative of solutions across internal interfaces. Thus,

one can deal on the right hand side of the elliptic equation with distributions which are

concentrated on internal interfaces. In electrostatics, for instance, a charge density on an

interface causes a jump in the normal component of the dielectric displacement, see for

instance [Tam, Chapter 1]. Secondly, it is essential that the resolvent power may be taken

smaller than 1 for q > d.

� It can be shown that the index 1
2
(1 + d

q
) in Theorem 3.3 is optimal: in smooth situations

and Dirichlet boundary conditions, A−s/2 provides a topological isomorphism between

Lq and W s,q
0 . But W s,q

0 embeds into L∞ only if s > d
q
.

� We do not know whether Hölder continuity for the semigroup kernel holds for the solution

in our setting, but feel that it cannot be expected.

� It is not hard to see that the continuous extension of (A+ ε)−θ to W−1,q
Γ is nothing else

as the restriction of the operator (Â + ε)−θ to W−1,q
Γ , where Â is the operator which

extrapolates A to W−1,2
Γ . Compare [Ouh, Subsection 1.4.2].

� It seems an interesting question whether the operator Ǎ := Â|W−1,q
Γ

, satisfies a resolvent

estimate like ‖(Ǎ + λ)−1‖ ≤ M
λ

uniformly for all λ > 0 and, thus, enables a selfcon-

sistent definition of fractional powers for Ǎ + ε on W−1,q
Γ . Unfortunately, the attempts to

prove this within the context of this paper have failed, compare [HR, Lemma 5.7].
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