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Abstract. Reaction systems and population dynamics constitute two highly
developed areas of research that build on well-defined model classes, both in
terms of dynamical systems and stochastic processes. Despite a significant
core of common structures, the two fields have largely led separate lives.
The workshop brought the communities together and emphasised concepts,
methods and results that have, so far, appeared in one area but are potentially
useful in the other as well.
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Introduction by the Organisers

Background and focus: Reaction systems and population dynamics are two
areas of research that have recently experienced many novel developments and
currently attract increasing attention, which goes far beyond mathematical bi-
ology and (bio)chemistry. Reaction systems describe the time evolution of the
composition of a mixture of different (bio)chemical species that undergo a variety
of chemical reactions. Population dynamics is concerned with the time evolution
of the composition of a population of individuals of different types that interact
with each other; the interaction can be competition, symbiosis, predation, etc.
Traditionally, it is assumed that the number of molecules of each species (or the
number of individuals of every type) is so large that a law of large numbers applies
that allows to neglect random fluctuations. The systems are then described deter-
ministically by a system of nonlinear ordinary differential equations or, if spatial
behaviour is taken into account, by partial differential equations. Recently, there
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has been a boost of stochastic approaches in both areas, which lead to a wealth of
new challenges, concepts, and results.

The workshop: In line with the above, the goal of the workshop was to bring
together the two subcommunities, which have been somewhat separate so far, to
provide the opportunity for mutual stimulation. Of the 26 participants, roughly
equal proportions came from reaction networks and population dynamics; some,
including the three organisers, had already worked in both areas. The workshop
started with an expository talk by Hofbauer, who highlighted connections between
the fields by means of illustrative examples. This set the scene for more detailed
contributions to follow. Altogether, the following core of common structures led
the way:

• In many cases, equations have similar or even identical structures and can
be translated into each other. For example, the process of recombination
in population genetics may be reformulated as a bi-molecular reaction;
populations living in symbiosis may be understood as a reaction system
with mutual catalysis.
• Both the transient and the asymptotic behaviour is relevant. For large
subclasses of reaction systems and population models, the deterministic
behaviour is captured by a Lyapunov function that is related to (relative)
entropy.
• Scaling arguments are of importance for stochastic systems in both cases
to achieve simplifications, model reductions, and limits. In particular,
diffusion processes appear as limits, and separation of time scales plays a
decisive role.
• Recently, there has been a boost of stochastic approaches in both areas,
which lead to a wealth of new challenges, concepts, and results. Charac-
teristically, the stochastic models of population genetics have a standard
representation in terms of interacting particle systems, which also form
the basis of reaction systems.
• The further development of the mathematical theory is also driven by a
new quality and quantity of data acquisition (in particular via the high-
resolution methods of systems biology in reaction systems and of genome
research in population genetics) and the need to solve problems of infer-
ence.

Throughout the workshop, emphasis was on concepts, methods, and results that
have, so far, appeared in one area but are potentially useful in the other as well.
Let us summarise the most important topics.

• Many qualitative properties of deterministic reaction systems can already
be deduced from the algebraic or graphical properties of the network. For
example, the global attractor conjecture (Craciun) states that, for the so-
called complex balanced systems, all trajectories converge to a unique sta-
ble equilibrium point. For certain classes of systems that are not complex-
balanced, necessary and sufficient conditions for multistationarity may be
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given (Dickenstein). For others, such as the model of T-cell receptor phos-
phorylation (Rendall), no general results are available, so they must be
considered on a case-by-case basis. High-dimensional reaction systems can
often be reduced to lower dimensions with the help of algebraic methods
(Walcher).
• Many processes of population genetics are much more accessible to analysis
in terms of the ancestral processes than in terms of the original (forward-
time) dynamics. This gives rise to processes of branching and pruning
(Cordero), coalescence (Möhle), partitioning (M. Baake), or a mixture
thereof (Jenkins). Closely-related growth-fragmentation equations appear
in cell biology forward in time (Doumic).
• Stochastic aspects of reaction networks become increasingly important.
For certain classes (namely, host-parasite reaction networks), the long-time
asymptotics can now be characterised analytically (Majumdar). Noise
might not always be a nuisance — in fact, an emerging paradigm is that
it can have beneficial effects on biological processes (Gupta). Due to the
high dimensionality, stochastic reaction systems call for new approaches
to simulation (Williams) and inference (Rand, Hilfinger).
• Models taking into account spatial behaviour are much more developed for
population models than for reaction networks. In genetics, for example,
the theory of clines, which describes the spatial structure of a population
under migration and selection, is well developed (Bürger). Likewise, the
behaviour of populations under selection, mutation, and migration may
be characterised, provided that there is time-scale separation due to rare
mutations (Léman). There is a definite need to consider spatial structure
in reaction systems, but this is more difficult due to the high dimensionality
of the models and due to cell compartmentalisation.
• Deterministic and stochastic models do no longer belong to separate worlds.
Rather, the connections between them are being increasingly recognised.
This is true of several of the topics already mentioned above, but was in the
centre of attention in the context of finite population models (Schreiber),
where the quasistationary states of the stochastic system correspond to the
stationary states of the deterministic one. Likewise, a stochastic model of
adaptive dynamics which converges to an adaptive walk that jumps be-
tween Lotka–Volterra equilibria (Kraut). Results on complex-balanced
reaction systems that have, so far, been available in the deterministic
situation only, have recently been extended to the stochastic setting (Cap-
pelletti).

Problem sessions were held on Thursday afternoon and evening, on the following
topics:

• multiscale models
• spatial aspects of reaction networks
• moment closure
• Lyapunov functions
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• dualities, ancestries and hidden linearities in reaction systems

From the very first minute, the workshop was blessed with an extraordinarily in-
tense atmosphere of discussion and curiosity. The coherence between the talks was
astonishing, and additional connections were made by the speakers. Specifically,
Paul Jenkins spontaneously changed the topic of his talk so as to blend in perfectly
with the previous one. The intensity of the workshop under the spell of the MFO,
added by the lively conversations in the warm midsummer nights, made this a
very special week to most, if not all, participants, many of whom were newcomers
to Oberwolfach or returning after many years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Sebastian Schreiber in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Population dynamics and reaction systems – some crossovers

Josef Hofbauer

Many basic models studied in population biology can be rephrased as simple chem-
ical reaction networks.

In 1920 Lotka wrote two papers: In one he introduced his famous predator–
prey system with conservative oscillations

ẋ = ax− bxy, ẏ = cxy − dy,

which was studied in 1926 again independently by Volterra. In the other he arrived
at the same system via mass action kinetics of the set of reactions

S+ X→ 2X, X+ Y → 2Y, Y→ P.

The basic model in epidemiology, the SIR model of Kermack–McKendrick
(1927) is given by the ODEs

Ṡ = −aSI, İ = aSI − bI, Ṙ = bI

with S + I +R = const., and is equivalent to the reactions

S + I −→ 2I, I −→ R

with mass action kinetics. Similarly, the SIS model corresponds to S + I −→
2I, I −→ S. The SEIR model (with an additional class of exposed individuals
which are infected but yet infectious) corresponds to the reactions

S + I −→ E + I, E −→ I −→ R.

The SIRS model (where immunity is not permanent) to the reaction network

S + I −→ 2I, I −→ R −→ S.

The Ivanova reaction [7]

X + Y −→ 2Y, Y + Z −→ 2Z, Z +X −→ 2X

leads with mass action kinetics to the system

ẋ1 = k2x3x1 − k3x1x2 = x1(−k3x2 + k2x3)

ẋ2 = k3x1x2 − k1x2x3 = x2(k3x1 − k1x3)

ẋ3 = k1x2x3 − k2x3x1 = x3(−k2x1 + k1x2).

It has two constants of motion, x1 + x2+ x3 = C1 and xk1
1 xk2

2 xk3
3 = C2, and hence

closed orbits in each stoichiometric class. It is equivalent to the rock–scissors–paper
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game with replicator dynamics. More generally, for a skew–symmetric matrix
A = −AT, the system of ODEs

ẋi = xi





n∑

j=1

aijxj





is a special Lotka–Volterra system with conservation of mass
∑

ẋi = 0, as well
as the replicator dynamics for the zero–sum game with payoff matrix A. It arises
from (bimolecular) chemical reactions

Xi +Xj
aij

−→ 2Xi if aij > 0.

If x̂ satisfies Ax̂ = 0 (this exists for odd n) then
∑

i x̂i log xi is a constant of

motion:
∑

i x̂i
ẋi

xi
= x̂TAx = −xTAx̂ = 0. If x̂ ≥ 0 then x̂ is a stable equilibrium,

see [3].

General Lotka–Volterra systems

ẋi = xi



ri +

n∑

j=1

aijxj





also arise from chemical reactions:

Xi
ri−→ 2Xi if ri > 0, resp. Xi

|ri|
−→ 0 if ri < 0

2Xi
aii−→ 3Xi if aii > 0, resp. 2Xi

|aii|
−→ Xi if aii < 0

Xi +Xj
aij

−→ 2Xi +Xj if aij > 0, resp. Xi +Xj
|aij |
−→ Xj if aij < 0.

The standard mutation model in population genetics (mutation between
n alleles) gives rise to a linear system of ODEs and corresponds to a network of

first order reactions Xi
µji

−→ Xj :

ẋi =
∑

j 6=i

µijxj − xi

∑

j 6=i

µji

with
∑

i ẋi = 0. Here the Chemical Reaction Network Theory of Horn & Feinberg
[2] works well: m (the number of complexes) = n, ℓ (the number of linkage classes)
= 1 if (µij) is irreducible, s (the dimension of the stoichiometric subspace) is n−1.
Hence the deficiency (the magic quantity of CRNT, see [2]) δ = m − ℓ − s = 0.
Together with weak reversibility of the network this shows that there is a unique
positive equilibrium in each class

∑
xi = C, and it is globally asymptotically

stable there.

Recombination, or chromosomal crossover, in the simplest case of two alleles
on each of two loci, is equivalent to the reversible chemical reaction

g1 + g4
k
←→ g2 + g3.
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The dynamics of gamete frequencies

ṗ1 = ṗ4 = k (−p1p4 + p2p3) = −ṗ2 = −ṗ3

has the conservation laws (p1 + p2)
· = (p1 + p3)

· = (p4 + p2)
· = (p4 + p3)

· = 0
of which three are linearly independent. The equilibrium manifold is given by
the quadric (the linkage equilibrium manifold) p1p4 = p2p3. The stoichiometric
compatibility classes are 1-dimensional. There, the solutions converge to a unique
detailed-balancing equilibrium.

The general recombination model, with L loci and finitely many alleles at each
locus leads to a rather complicated reaction network, see [6]. It resembles a dis-
crete version of the Boltzmann equation. Since it is strongly reversible (forward
and backward reaction rates are the same), entropy is a Ljapunov function, and
convergence to linkage equilibrium or detailed-balanced equilibrium follows, see
[1, 4, 6, 7].

Finally, every strongly reversible reaction network (more generally, every de-
tailed balanced network) results in a generalized gradient system [5]: the potential
function is a relative entropy, the underlying metric is a somewhat complicated
expression involving the logarithmic mean (compare [1]). Suppose all reactions

∑

i

αriXi

kr←→
∑

i

βriXi

are reversible: k+r > 0, k−r > 0. Then the mass action dynamics is given by

ṗ = R(p) =
∑

r

(βr − αr)(k
+
r p

αr − k−r p
βr).

Suppose there is a detailed balanced equilibrium p̂ > 0 so that for all reactions r:
k+r p̂

α = k−r p̂
β =: kα↔β .

The relative entropy

H(p) = −
∑

i

pi(log
pi
p̂i
− 1) satisfies ∇H(p) = (− log

pi
p̂i
)

and together with the symmetric positive semidefinite matrix

C(p) =
∑

α↔β

kα↔βL(
pα

p̂α
,
pβ

p̂β
)(β − α)(β − α)T

the dynamics can be written as the generalized gradient system

ṗ = R(p) = C(p)∇H(p).
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Dimension reduction for reaction equations

Sebastian Walcher

We discuss parameter-dependent polynomial (or rational) systems of ordinary dif-
ferential equations, with an emphasis on those derived from reaction networks.
Such systems may be high-dimensional but frequently model assumptions or in-
tuition suggest reduction to equations of small dimension, and there are various
methods and heuristics to obtain such reductions. The work outlined below, done
jointly with Lena Nöthen, Alexandra Goeke, Eva Zerz and others, provides a sys-
tematic mathematical approach to reduction methods and their validity, based
on Tikhonov’s and Fenichel’s classical work on singular perturbation theory. The
focus is on reaction equations but the methods are applicable to all parameter-
dependent ODEs with polynomial or rational right-hand side.

Reduction with no a priori separation of slow and fast variables. In reaction equa-
tions one frequently has (or assumes) slow-fast phenomena but no slow and fast
variables are known a priori. If it is possible to cast the problem in the form

(1) ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + · · ·

with a small parameter ε > 0 then, as was shown in [1], a Tikhonov–Fenichel re-
duction is possible if and only if h(0) satisfies a number of requirements, the most
important of which is the existence of non-isolated stationary points. The reduced
equation itself is defined on an algebraic variety and can be determined explicitly,
using methods from algorithmic algebra.

Finding ”small parameters” in parameter-dependent systems ; see [2]. More to the
point, this problem concerns so-called Tikhonov–Fenichel parameter values from
which singular perturbations emanate: Starting with an ODE

(2) ẋ = H(x, p)

which depends on parameters p ∈ R
m, the task is to identify parameter values p∗

so that a small perturbation (along a curve in parameter space) will lead to the
setting of Tikhonov’s and Fenichel’s theorems. (Loosely speaking, p∗ corresponds
to ε = 0 in (1).) This task is amenable to algorithmic algebra; in particular the
existence of non-isolated stationary points at p = p∗ naturally brings elimina-
tion ideals into play. From a theoretical perspective, a complete characterization
of Tikhonov-Fenichel parameter values was given. Among other results, by this



Reaction Networks and Population Dynamics 1757

approach we were able to determine systematically all parameter values for the
standard systems from biochemstry (Michaelis-Menten, cooperative and competi-
tive systems) at which singular perturbations take place.

“Classical” quasi-steady state reduction. This is a well-known and much-used
heuristic for systems of type (2): Set the rates of change for certain variables
equal to zero and use the ensuing algebraic relations to obtain a system of smaller
dimension. It was recently investigated from a strictly mathematical perspective.
In [3] we could determine necessary and sufficient conditions for the procedure to
be consistent (again, these yield conditions on parameters which can be evaluated
using algorithmic algebra). Furthermore, we were able to clarify the mathemat-
ical connection to singular perturbation settings. The latter result implies that
classical QSS reduction in certain instances provides incorrect results, but on the
other hand we could establish conditions under which QSS reduction (essentially)
coincides with singular perturbation reduction and therefore is reliable.

References
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Chem. 52 (2014), 2596–2626.
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A constrained Langevin approximation for (bio)chemical reaction
networks

Ruth J. Williams

(joint work with Saul C. Leite)

Continuous-time Markov chain models are often used to describe the stochastic
dynamics of networks of reacting chemical species, especially in the growing field
of systems biology (see e.g., the survey of Anderson and Kurtz [2]). Practitioners
frequently simulate the sample paths of these Markov chains in order to generate
Monte-Carlo estimates. This typically involves simulating the next reaction to
fire, or in Markov chain language, simulating the next jump of the Markov chain.
In the chemical reaction network literature, this method is often called the Sto-
chastic Simulation Algorithm (SSA) or Gillespie algorithm, after Gillespie [6] who
first introduced this method to the chemistry community. In the stochastic pro-
cesses/operations research community, this method is often called discrete event
simulation and this way of viewing the sample path behavior of a continuous time
Markov chain with infinitely many states goes back to early work of Doob [3, 4].

A challenge with the use of simulation of the Markov chain is that the number
of reactions is often much larger than the number of chemical species involved in
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the reactions, and the stochastic simulations can rapidly become computationally
intensive. Methods for speeding up simulations to give approximate answers by
taking time steps larger than some reaction times have been studied (so-called tau
leaping methods), see e.g., [1, 7].

Another approach is to approximate the discrete-state Markov chain by a dy-
namic process with continuous states, where the dimension of the process is the
number of species. Deterministic (mean field) approximations involving ordinary
differential equations called reaction rate equations are often used if all chemical
species are present in large numbers. However, to capture stochastic effects, espe-
cially when some species are not present in large numbers, diffusion approxima-
tions (continuous strong Markov processes) are commonly used. However, existing
diffusion approximations either do not respect the constraint that chemical con-
centrations are never negative (linear noise approximation) or are typically only
valid until the concentration of some chemical species first becomes zero (Langevin
approximation). For a rigorous account of these approximations, see the articles
by Kurtz [9, 10].

In this talk, we propose an approximation for the continuous-time Markov
chains via obliquely reflected diffusion processes that respects the fact that con-
centrations of chemical species are never negative. We call this a constrained
Langevin approximation because it behaves like the Langevin approximation in
the interior of the positive orthant and it is constrained to the orthant by instan-
taneous reflection at the boundary of the orthant. The direction of reflection at
the boundary is oblique and varies along the boundary. An additional advantage
of our approximation is that it can be written down immediately from the chemi-
cal reactions. This contrasts with the linear noise approximation, which involves
a two-stage procedure - first solve a deterministic reaction rate ordinary differen-
tial equation, followed by a stochastic differential equation for fluctuations around
those solutions. Our approximation also captures the interaction of non-linearities
in the reaction rate function with the driving noise. (It is well known that the lin-
ear noise approximation can fail to capture such behavior [12].) In simulations, we
have found the computation time for our approximation to be at least comparable
to, and often better than, that for the linear noise approximation.

In [11], assuming stochastic mass action kinetics and that each chemical species
is produced and degraded, we first prove that our proposed approximation is well
defined for all time. Then we prove that it can be obtained as the weak limit
of a sequence of jump-diffusion processes that behave like the Langevin approx-
imation in the interior of the positive orthant and like a rescaled version of the
Markov chain on the boundary of the orthant. For this limit theorem, we adapt
an invariance principle for reflected diffusions, due to Kang and Williams [8], and
modify a result on pathwise uniqueness for reflected diffusions, due to Dupuis and
Ishii [5]. Some numerical examples given in [11] illustrate the advantages of our
approximation over discrete event simulation of the Markov chain or use of the
linear noise approximation. Our examples also demonstrate that approximating
by a diffusion process with normal reflection at the boundary of the orthant, or
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cutting off negative excursions that venture outside of the orthant, can produce
very inaccurate results.

There are various further directions that we are exploring. Systems in which
some species are not produced or degraded can be approximated by allowing some
reactions to have very small rate constants. However, a direct approximation of
such systems is desirable. While one can conjecture the form of such an approxi-
mation, in general, there are issues associated with proving the well posedness of
the reflected diffusion and in proving tightness of rescaled Markov chains approx-
imating it. In another vein, the type of diffusion approximation proposed here
is also likely to be of interest for researchers considering other continuous-time
Markov chains that live in the positive orthant, e.g., in population genetics and
neuroscience. The authors would appreciate hearing from researchers interested
in such models and approximations.
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Solution of the general recombination equation via Haldane
linearisation

Michael Baake

(joint work with Ellen Baake)

The stochastic process of recombination in population genetics, in its deterministic
limit of large population size, leads to a nonlinear ODE in the Banach space of
finite measures on a locally compact product space. It has an embedding into a
linear system of ODEs that reflects an underlying Markov partitioning process.
We discuss the solution and this connection, which works both in continuous and
in discrete time.

The classical setting of population genetics uses a finite set of sites (or loci),
S = {1, 2, . . . , n}, types x = (x1, x2, . . . , xn) ∈ X1 × X2 × . . . × Xn =: X and
partitions A = {A1, A2} ∈ P2(S) of S into two parts. The recombination equation
(in continuous time) for the probability pt(x) of type x at time t reads

(1) ṗt(x) =
∑

A∈P2(S)

̺(A)
(
pt(xA1

, ∗) pt(∗ , xA2
)− pt(x)

)
,

where ̺(A) is the recombination rate for the partition A and ∗ denotes marginal-
isation with respect to the corresponding components. Early versions (in discrete
time) go back to Jennings (1917), Geiringer (1944) and Bennett (1954); see [2] and
references therein for background. Their results indicate that the system should
be solvable explicitly, despite the nonlinearity.

In a modern (and more general) setting, one can work with the Banach space
(M(X), ‖.‖) of finite measures over X , where each Xi is a locally compact space
and ‖.‖ denotes the total variation norm, as defined by ‖ω‖ = |ω|(X). With
ω ∈ M(X) and general partitions A = {A1, A2, . . . , Ar} ∈ P(S), one can rewrite
and extend the recombination equation from (1) as

(2) ω̇t = Φ(ωt) =
∑

A∈P(S)

̺(A)
(
RA − 1

)
(ωt) ,

with the nonlinear operator RA being defined by RA(ω) =
ωA1⊗···⊗ωAr

‖ω‖r−1 together

with RA(0) = 0. Here, for any ∅ 6= U ⊆ S, the measure ωU emerges from ω via
marginalisation with respect to all sites in the complement of U . Likewise, the
induced recombination rates of the subsystem defined by U is given by

(3) ̺U (B) =
∑

A∈P(S)
A|U=B

̺(A) ,

for any B ∈ P(U). Analogous formulations hold for other lattices of partitions as
well; see [3] for more.

The operators RA are nonlinear for A 6= {S}, but globally Lipschitz. The
Cauchy problem for (2) thus has a unique solution. The flow leaves the positive
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cone M+(X) invariant in forward time and preserves the norm of positive mea-
sures. In particular, when ω0 is a probability measure, then so is ωt for all t > 0.
In the past, it was noticed that the convex combination ansatz

(4) ωt =
∑

A

at(A)RA(ω0)

led to a complete separation of the time evolution, which is described by a nonlinear
ODE system for the coefficients at(A), and the partitioning of the initial condition
ω0 by the recombinators; see [2] and references therein. This was used to obtain a
recursive solution for generic choices of the recombination rates, though it did not
result in a general solution.

Alternatively, the embedding into a larger system with linear evolution dynam-
ics emerges from considering the measure vector

(
RB(ωt)

)

B∈P(S)
, where ωt is a

solution of (2). Now, for B = {B1, B2, . . . , Br}, one finds

(5) d
dt

RB(ωt) = d
dt

(

ωB1
t ⊗ · · · ⊗ ωBr

t

)

=
∑

C∈P(S)

QBCRC(ωt) ,

where the marginalisation consistency of (2) was used [2, 1]. In particular, Q is
a Markov generator. Its elements satisfy QBC = 0 whenever B ≺ C, which stands
for B being a true refinement of C. Consequently, Q is upper triangular. Further,
when C ≺ B, one has QBC = ̺Bi(Ai) if C emerges from B by refining precisely one
part, Bi say, which is then replaced by a partition Ai ∈ P(Bi) with at least two
parts. The diagonal elements (which are the eigenvalues of Q) are given by

(6) λB = QBB = −

|B|
∑

i=1

∑

Ai 6={Bi}
Ai∈P(Bi)

̺Bi(Ai) .

These are the well-known (exponential) decay rates of the system, on its time
evolution to the unique equilibrium. The latter is given by the total product

measure ω
{1}
0 ⊗ · · · ⊗ ω

{n}
0 that emerges from the initial condition ω0 (assumed a

probability measure here). So, with ϕt =
(
RB(ωt)

)

B∈P(S)
, one has

(7) ϕ̇t = Qϕt , with solution ϕt = etQϕ0 ,

as well as ȧt(A) =
∑

B<A at(B)QBA with a0(A) = δA,{S}.

The matrix Q has an interpretation as the generator of a Markov partitioning
process backward in time, as indicated in Figure 1. Indeed, if Σt is the partition-
valued random variable attached to it, one has

(8) (etQ)BC = P(Σt = C | Σ0 = B) and at(A) = (etQ){S}A .

The process (Σt)t>0 describes how the sites of a sequence from the current pop-
ulation is partitioned into different ancestors in the past. Given Σt = A =
{A1, . . . , An}, an individual from the present population inherits the sites in Ai,
with 1 6 i 6 n, from one ancestor each, while its type distribution is then given by
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Σ
t
=

{

{1, 4}, {2, 3}, {5}
}

Σ
0
=

{

{1, 2, 3, 4, 5}
}

t

Figure 1. Realisation example of the partitioning process.

RA(ω0), which matches the structure of (4). With Φ as defined in (2), the embed-
ding (via Haldane linearisation) and the reduction back to the original equation
can thus be summarised as

(9) ω̇t = Φ(ωt)

Haldane
−−−−−−−−−→
←−−−−−−−−−

ωt=ϕt({S})

ϕ̇t = Qϕt

which explains the underlying linear structure and thus the complete solvability
of the original nonlinear equation.

The counterpart in discrete time starts from the iteration

(10) ωt+1 =
∑

A∈P(S)

r(A)RA(ωt) ,

with recombination probabilities r(A). Here, with ϕt =
(
RB(ωt)

)

B∈P(S)
, one finds

ϕt = M tϕ0 for t ∈ N0, where M is the Markov matrix given by

(11) MBC =

{∏|B|
i=1 r

Bi (C|Bi
), if C 4 B,

0, otherwise,

where rU for U ⊆ S is defined as in (3); see [1] for details. The rest is analogous.
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A coalescent dual process for a Wright–Fisher diffusion with
recombination

Paul A. Jenkins

(joint work with Robert C. Griffiths, Sabin Lessard)

Duality plays an important role in population genetics. Two well-known models
for genetic drift in a large, panmictic population are the Wright–Fisher diffusion
X = (Xt ∈ [0, 1] : t ≥ 0), with infinitesimal generator

L f(x) =
1

2
x(1− x)f ′′(x), D(L ) = C2([0, 1]);

and the block-counting process L = (Lt ∈ N : t ≥ 0) of the coalescent, with
generator

K f(n) =

(
n

2

)

[f(n− 1)− f(n)].

The two models are weak moment duals in the sense that, for F (x, n) = xn,

(1) LF (·, n)(x) = K F (x, ·)(n).

This is important from a statistical viewpoint since it tells us the two models lead
to the same likelihoods. There have been numerous extensions to this result to
incorporate more general type spaces, selection, and recombination, but in each
case the contribution of mutation to the dual process is either absent or determin-
istic. A different choice of duality function F yields a new class of genealogical
processes in which lineages are labelled by an allelic type and mutation contributes
random jumps. These processes are important because they describe the poste-
rior genealogical dynamics of a given sample. They can also be used to find an
expression for the transition function of the dual diffusion.

Consider now a multidimensional diffusion process X = (Xt ∈ ∆E : t ≥ 0)
on the simplex ∆E =

{
X = (xi)i∈E ∈ [0, 1]E :

∑

i∈E xi = 1
}
, where E is the type

space. A general strategy for finding the corresponding ‘posterior’ dual L = (Lt ∈
N

|E| : t ≥ 0) is to pose a duality function F : ∆E × N
|E| → R of the form

F (x,n) =
1

m(n)

∏

i∈E

xni

i ,

for some m : N|E| → R yet to be determined, and then to choose m(n) so that a
duality equation of the form (1) holds (e.g. [1]). However, this strategy has not
been attempted for models of crossover recombination; this is the goal of the work
described here.

In an L-locus model with recombination, denote the (finite) type space, muta-

tion parameter, and mutation transition matrix by El, θl, and P (l), respectively,
for locus l = 1, . . . , L. Between locus l and l + 1, denote the recombination
parameter by ρl. Let E = E1 × · · · × EL, i−l,j = (i1, . . . , il−1, j, il+1, . . . , iL),
and xA

i =
∑

j∈E: j|A=i xj denote a marginal frequency of alleles at the loci in
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A ⊆ {1, . . . L}. The diffusion on ∆E is described by the generator

(2) L =
1

2

∑

i∈E




∑

j∈E

xi(δij − xj)
∂

∂xj

+

L∑

l=1

θl




∑

j∈El

P
(l)
jil

xi−l,j
− xi



+

L−1∑

l=1

ρl(x
{1,...,l}
i x

{l+1,...,L}
i − xi)




∂

∂xi

.

Before proceeding with the strategy outlined above, note that we would like the
resulting dual, call it L, only to label loci that are ancestral to the leaves of the
genealogy. We can achieve this by a slight modification of the state space of L
and of the duality function. More precisely, replace N

|E| with

ΞE =
{
n = (nA

i )∅6=A⊆[L], i∈EA
: nA

i ∈ N
}
, where EA = ×l∈AEl.

This now labels each lineage both by a type and by a set A identifying the loci
at which a lineage is ancestral. Now the appropriate form for the duality function
F : ∆E × ΞE → R becomes

(3) F (x,n) =
1

m(n)

∏

∅6=A⊆[L]

∏

i∈EA

(xA
i )

nA
i .

We have derived the appropriate choice for m(n) and the dual process L:

Theorem. Let m(n) = E

[
∏

∅6=A⊆[L]

∏

i∈EA
(XA

i )n
A
i

]

. With respect to the duality

function (3), X is dual to a Markov process on ΞE with transitions as follows:
Coalescence. For each A,B ⊆ [L], i ∈ EA∪B, the process jumps from n to
n− eAi − eBi + eA∪B

i at rate

1

2

m(n− eAi − eBi + eA∪B
i )

m(n)
nA
i (n

B
i − δAB),

where eCj is a unit vector in ΞE with a 1 in the entry corresponding to C ⊆ [L]
and j ∈ EC , and 0 otherwise; and where δAB is 1 if A = B and 0 otherwise.
Mutation. For each A ⊆ [L], l ∈ A, i ∈ EA, j ∈ El, the process jumps from n

to n− eAi + eAi−l,j
at rate

1

2

m(n− eAi + eAi−l,j
)

m(n)
nA
i θlP

(l)
jil

.

Recombination. For each A ⊆ [L], i ∈ EA, l = minA, . . . , maxA − 1, the

process jumps from n to n− eAi + e
A∩{1,...,l}
i + e

A∩{l+1,...,L}
i at rate

1

2

m(n− eAi + e
A∩{1,...,l}
i + e

A∩{l+1,...,L}
i )

m(n)
nA
i ρl.

One application of this result is to obtain expressions for haplotype fixation
probabilities in the absence of mutation. When θ = 0, any unit atom on a single
haplotype is an invariant distribution for X , and we can find a corresponding dual
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process. In other words, a dual process arises by ignoring the types of lineages and
tracking only the sets indicating ancestry. For a sample of size one, the state space
is equivalent to partitions on {1, . . . , L} and the dual process Θ = (Θt : t ≥ 0) has
been called the partitioning process [3]. Specialising the Theorem to this case, we
find that its generator is

Pf(Φ) =
1

2

∑

A∈Φ

∑

B∈Φ\{A}

[f(Φ ∪ {A ∪B} \ {A,B})− f(Φ)]

+
1

2

∑

A∈Φ

maxA−1∑

l=minA

ρl
[
f
(
Φ ∪

{
A ∩ {1, . . . , l}, A ∩ {l+ 1, . . . , L}

}
\A

)
− f(Φ)

]
.

The partitioning process describes the way genetic material of an individual dis-
perses among its ancestors backwards in time, and has been studied by several
authors, e.g. [3, 6]. The duality equation for the partitioning process can be used
to show that its stationary distribution, P(Θ∞ = Φ), is equal to the probability
that there are |Φ| individuals whose descendants cause a haplotype to fix accord-
ing to the partition Φ—that is, if φk is the kth block of Φ then the kth of the |Φ|
individuals is the ancestor to the whole population at the loci in φk.

Two open problems related to this work are as follows. First, is it possible to
incorporate both recombination and selection? This would require consolidating
the present work with [1]. Second, the function m(·) is fundamental to this and
related work: it governs the jump rates of the dual, the transition function of
the diffusion, and likelihoods of sampled data. Yet it is not known in closed form
except for the special case of a reversible diffusion at one locus. Is it possible to say
anything about m(·)? Under the assumption of strong recombination (ρl = 4Nβr
for β ∈ (0, 1)), a diffusion limit simpler than that of (2) has been derived for L = 2
[5]. It describes the Gaussian fluctuations of linkage disequilibrium (LD) about the
linkage equilibrium manifold. Is it possible to extend these arguments for L > 2,
and to obtain a ‘posterior’ dual in this limit? This question is not straightforward
because there are numerous choices of co-ordinate system for multilocus LD [2].

The work described here is mostly based on [4].
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Growth-fragmentation equations and processes: Critical behaviours

Marie Doumic

(joint work with Etienne Bernard, Pierre Gabriel, Bruce Van Brunt)

Growth-fragmentation equations have risen much interest for several decades, since
it appears in many applications, ranging from protein polymerisation to internet
protocols or cell division equation. This equation under a fairly general form is
the following:

∂

∂t
u(t, x) +

∂

∂x

(
g(x)u(t, x)

)
+B(x)u(t, x) =

∞∫

x

k(y, x)B(y)u(t, y)dy.

Here u(t, x) denotes the concentration of ”individuals” (e.g. proteins, or cells) of
size x at time t, g their growth rate per instant of time, B(x) the instantaneous
fragmentation probability rate of individuals of size x and, among fragmenting
particles of size y, k(y, x) is the fragmentation probability to give rise to individuals
of size x.

Under assumptions linking fragmentation and growth parameters B, k and g, a
steady asymptotic behaviour appears, i.e. there exists a unique couple (λ, U) with
λ > 0 such that u(t, x)e−λt → U(x) - see for instance the pioneering papers [6, 14],
or more recently [5, 16] for a global picture. Many studies have focused on this most
important case, also observed in biological experiments [17], and have investigated
optimal assumptions to obtain this convergence, or optimal assumptions to have
an exponential rate of convergence - linked to the existence of a spectral gap, see
most recently [2].

To obtain a steady behaviour two main ingredients are needed.
First, balance assumptions linking B, g and k are required. In the exemplary

case of power law parameters g and B, i.e assuming

(1) ∃B0 > 0, g0 > 0, B(x) := B0x
γ , g(x) := g0x

ν ,

Convergence towards a steady state may happen iff we have [15]

(2) 1 + γ − ν > 0.

This illustrates very well the fact that fragmentation needs to be “strong enough”
for large sizes compared to growth, so that the individuals cannot grow to infinity
without fragmenting, and on the contrary growth needs to be ”fast enough” for
small sizes compared to fragmentation, so that the individuals cannot be trapped
around zero, dividing more and more and giving rise to a concentration of 0−size
particles.

In [9], we studied one of the ”critical” cases where 1 + γ − ν = 0, namely the
case γ = 0 and ν = 1. Cases γ < 0 and ν = 1 have been studied by B. Haas [13]
and probabilistic aspects by J. Bertoin and A. Watson [3, 4].

The main results obtained in [9] were the following:

• a formulation in terms of Mellin and inverse Mellin transform was ob-
tained, as soon as the initial condition u0 decays sufficiently fast,
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• no steady or self-similar behaviour was possible for L1 functions,
• the asymptotic behaviour was described along lines of the type x = e−ct,
with an exponential speed of convergence at places where the mass was
decaying, but with at most polynomial growth for the lines where the mass
concentrates,
• in the case of a fragmentation kernel defined as a dirac mass (or a sum
of dirac masses linked by a specific algebraic relation), the asymptotic
behaviour was also defined thanks to the Mellin transform, but was more
involved, with an infinite sum of contributions and a still slower polynomial
rate of convergence.

The second ingredient to obtain a steady asymptotic behaviour (exponential
growth or decay) is that growth and fragmentation must be such that there is a
kind of ”dissipativity” in the equation, fragmenting individuals mixing together.
This requires some more technical assumptions. The simplest but not optimal
assumption is for instance that the probability kernel k(y, ·) contains a part abso-
lutely continuous with respect to the Lebesgue measure.

A typical case where this dissipativity fails to be satisfied is when the growth
is exponential, i.e. g(x) = g0x, and the fragmentation is a dirac, k(y, x) = αδ x

y
= 1

α

with α > 1. In such a case, we can see that following the characteristic curve of
an individual of size x0 at time t = 0, all its descendants at time t belong to the
countable set x0e

g0t2−n, n ∈ Z.
In such a case, if the division rate B is such that there exists a positive eigen-

triplet (λ, U, φ) where (λ, U) is solution of the eigenproblem and (λ, φ) of the dual
eigenproblem (e.g. under the assumptions in [10] applied to these specific g and
k), there also exists a countable set of complex eigentriplets λk, Uk, φk with k ∈ Z

of the form

λk = λ+
2ikπ

logα
, Uk := x− 2ikπ

log αU, φk := x1+ 2ikπ
log α

which leads to a periodic limit cycle, see [1, 12]. In [1] we proved the following
result, based on an entropy inequality, which surprisingly revealed useful despite
the lack of dissipativity.

Theorem. Assume that B : (0,∞) → (0,∞) is measurable, with B(x)/x ∈
L1
loc(R+), and

∃γ0, γ1,K0,K1 > 0, ∃x0 ≥ 0, ∀x ≥ x0, K0x
γ0 ≤ B(x) ≤ K1x

γ1 .

Then for any u0 ∈ E2 = L2(R+, x/U(x) dx), the unique solution u(t, x) ∈ C
(
R+, E2

)
to the equation

(3)
∂

∂t
u(t, x) +

∂

∂x
(gxu(t, x)) + bu(t, x) = bα2u(t, αx), u(0, x) = u0(x).

satisfies
∞∫

0

∣
∣
∣
∣
u(t, x)e−t −

+∞∑

k=−∞

(u0, Uk)Uk(x)e
2ikπ
log 2 t

∣
∣
∣
∣

2
x dx

U(x)
−−−−→
t→+∞

0.
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Numerical illustrations of this result, obtained using a non-dissipative numerical
scheme, may be viewed in the small video [7].

In [11] finally, we combined the previous critical cases in a brief study, observing
periodicity when a proper rescaling is chosen in the doubly critical case where
γ = 0, ν = 1 and k(y, x) = αδ x

y
= 1

α
. This has been illustrated in the video [8].

Many open problems remain to be solved, among them we can quote: critical
behaviours in other cases 1+ γ − ν = 0; link between the probabilistic results and
the deterministic ones; further studies of the “over critical” cases 1 + γ − ν < 0.
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Algebraic tips in the study of biochemical reaction networks

Alicia Dickenstein

The algebraic tips summarized in this short notice of my talk evolved from my
previous joint articles [4, 5], and discussions with Jeremy Gunawardena on the use
of algebraic invariants to eliminate complexity in steady–state analysis of biological
network. We refer the reader to the survey article [2] for further references.

Setting: Chemical reaction networks with mass-action kinetics

A chemical reaction network (on a finite set of s species, which we assume ordered)
is a finite labeled directed graph G = (V,E, (κij)(i,j)∈E , (yi)i=1,...,m), whose ver-

tices are labeled by complexes y1, . . . , ym ∈ Z
s
≥0 and whose edges i

κij

→ j, are
labeled by positive real numbers. Mass-action kinetics specified by the network
G gives the following autonomous system of ordinary differential equations in the
concentrations x = (x1, x2, . . . , xs) of the species as functions of time:

(1)
dx

dt
=

∑

(i,j)∈E

κi,j x
yi (yj − yi) = fκ(x).

Note that the coordinates f1, . . . , fs of fκ are polynomials in R[x1, . . . , xs]. Many
systems occurring in population dynamics, for example the oscillatory Lotka–
Volterra equations, can be viewed as arising from a chemical reaction network
as in (1), but for instance not the “chaotic” Lorenz equations.

Another direct consequence of the form of the equations in (1) is that for any
trajectory x(t), the vector dx

dt lies for all t (in any interval I = [0, t0) where it is
defined) in the so called stoichiometric subspace S, which is the linear subspace
generated by the differences {yj − yi | (i, j) ∈ E}. Using the shape of the polyno-
mials fi it can be seen that the positive orthant R

s
>0 (and then also its closure

R
s
≥0) is forward-invariant for the dynamics. Then, any trajectory x(t) starting at

a nonnegative point x(0) lies for all t ∈ I in the closed polyhedron (x(0)+S)∩Rs
≥0,

called a stoichiometric compatibility class. Given a basis ℓ1, . . . , ℓq of linear forms
in S⊥, the equations ℓ1(x) = T1, . . . , ℓq(x) = Tq (where Ti = ℓi(x(0))) of x(0) + S
are called conservation relations and the constant coefficient Ti of such a linear
equation is called a total amount.

One main question in biochemical reaction networks: multistationarity

The positive steady state variety Vκ(f) of the kinetic system (1) equals the positive
real zeros of f1, . . . , fs. Any element of Vκ(f) is called a steady state of the system.
We say that system (1) exhibits multistationarity if there exist at least two steady
states with the same total amounts, that is, in the same stoichiometric compatibil-
ity class. In fact, the underlying reaction network G′ = (V,E, ((yi)i=1,...,m) defines
a family of autonomous polynomial dynamical systems depending on positive pa-

rameters κ ∈ R
#E
>0 . We say that G′ has the capacity for multistationarity if there

are reaction rate constants (κij)(i,j)∈E and total amounts T1, . . . , Tq for which the
intersection of the steady state variety Vκ with the positive points of linear variety
ST = {ℓ1(x) − T1 = · · · = ℓq(x) − Tq = 0} consists of more than one point. This
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is a crucial property for chemical reaction networks modeling biological processes,
since the ocurrence of multistationarity allows for the richness of responses of the
cell.

The important biological mechanism of n sequential phospho-dephosphory-
lations is a chemical reaction network with 3n + 3 species (so 3n + 3 variables,
corresponding to the concentrations of n + 1 substrates, 2n intermediate species
and 2 enzymes, a kinase and a phosphatase), 4n+2 complexes and 6n−6 reactions
(so 6n−6 reaction rate constants). For any n, S has codimension 3, so there are 3
linearly independent conservation relations. So ST can be cut out by 3 equations,
where usually the total amounts correspond to total substrate, total kinase and
total phosphatase. Therefore, there are only 3n linearly independent differential
equations in the system. It is well known that the underlying reaction network
has the capacity for multistationarity and that for n = 2 there can be up to 3
positive steady states in Vκ(f) ∩ ST (for particular choices of the rate constants
κ and the total amounts T ). This system has been first studied by L. Wang and
E. Sontag (2008). The maximal possible number of positive steady states for the
general n-site sequential phosphorylation mechanism is still unknown.

What is the expected number of variables?

We need to describe the intersections Vκ(f)∩ST (called stoichiometric compatibil-
ity classes) in the positive orthant. The steady state variety is defined in principle
by s polynomial equations. Assume the dimension of S (and thus of ST for any
T ) equals s − q and can thus be defined by q linear equations. This implies that
there are (at most) s − q linearly independent polynomials among f1, . . . , fs. A
finite number of common solutions is expected, but this might not be true.

As ST are linear varieties, they can be also parametrized by s− q parameters.
For general algebraic varieties, one can find implicit presentations from a (rational)
parametrization, but (rational) parametrizations do not exist in general. However,
parametrizations do exist for the steady state variety in many enzymatic biochem-
ical networks, as proved by M. Thomson and J. Gunawardena (2009) and in many
other networks of biological interest. In particular, s-toric MESSI systems (which
contain the n-site phosphorilation networks) can be defined by binomial equations
and have explicit monomial parametrizations described in [5]. We refer the reader
to this paper for precise definitions.

In the case of the n-sequential phosphorilation network we can parametrize the
steady state variety with 3 parameters. To compute the intersection Vκ(f) ∩ ST ,
we can write 3 of the variables in terms of the remaining 3n variables from the
3 conservation relations and replace them into 3n linearly independent fi (which
exist in this case). This yields a system of 3n equations in 3n variables. Instead,
we could plug in the parametrization into the conservation relations and thus get 3
equations in 3 variables. This is what makes the n-site amenable to computations
even if in principle the number or variables tends to infinity with n.
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Deciding the capacity for multistationarity

There are many results to decide the capacity for multistationarity of a given chem-
ical reaction network. Most of them have been summarized in Theorem 1.4 of [4].
In fact, these results give in general sufficient and necessary conditions for the
stronger condition that the map fκ tis injective on the positive points of all stoi-
chiometric compatibility classes. In the particular case of an s-toric MESSI system,
we give necessary and sufficient conditions for multistationarity in Theorem 4.6
in [5], where an algorithm to find particular choices of rate constants for which
the system is multistationariy is presented (in case this has been determined to be
possible), based on the theory of oriented matroids. There are several implementa-
tions of different algorithms, starting with the pioneering algorithm implemented
by Feinberg and his group in the Chemical Reaction Network Toolbox. The link to
the corresponding webpage together with links to other algorithms can be found
at https://reaction-networks.net/wiki/Mathematics_of_Reaction_Networks.

Once the network has the capacity for multistationarity, the next main question
is how to predict regions in parameter space which give rise to multistationary
systems. The nice recent article [1] deals with this question based on degree theory.
Their results provide in case of the existence of a positive rational parametrization
a (necessary and sufficient) characterization of rate constants κ for which the
corresponding system dx

dt = fκ(x) is multistationary. The total amounts are not
part of the description since they are determined from the positive steady states, as
in the previous algorithms. A different approach using results from real algebraic
geometry by F. Bihan and P.-J. Spaenlehauer (2015) has been developed in [3],
where we only get open sufficient conditions, but jointly on rate constants and
total amounts. These tools allow us to find precise multistationarity regions in
enzyme cascades with any number n of layers, which are multistationary as soon
as the two first phosphatases are the same. Interestingly, the number of variables
is of the order of 4n and the dimension of the stoichiometric subspace S is of the
order or 2n, so it is cut out by roughly 2n equations and parametrized by a similar
number of variables. So, in both cases described above, we need to deal with of
the order of 2n equations in 2n variables.

Open questions

Once the capacity for multistationarity of a given chemical reaction network has
been established, the main open questions in the area are:

(1) Develop tools to find the number of positive steady states. As previous
steps: (a) develop tools to obtain better lower bounds for the number
of positive steady states; (b) develop tools to get upper bounds for the
number of positive steady states.

(2) Find regions in parameter space with the predicted number of positive
steady states, or at least where lower/upper bounds apply.

These are difficult questions in real algebraic geometry and systems of biological
interest usually have a big number of variables and parameters.
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Dynamical roles of intercellular randomness: Some Case Studies

Ankit Gupta

Intracellular processes are characterized by a lot of dynamical noise. Several recent
works have demonstrated that this dynamical noise can play useful functional roles
in Biology. The aim of my talk is to present some case studies in this direction.
These studies emphasize the beneficial effects of intracellular noise on important
biological processes which are crucial for the functioning of an organism. Below I
provide more details on these studies and mention its main findings.

(1) Cell Polarity: The phenomenon of cell polarity refers to the cluster-
ing of molecules on the cell membrane. It is well-established that the
formation of membrane clusters requires positive feedback between mem-
brane bound molecules and the molecules in cytosol. However as the
membrane molecules are constantly diffusing, it is unclear if the positive
feedback alone is sufficient to generate and sustain cell polarity. In my
talk I present results from [1] where I prove using tools from population
genetics that if membrane diffusion occurs at a slower timescale than the
feedback mechanism, then a Fleming–Viot process can be derived in the
infinite population limit which shows that positive feedback is indeed suf-
ficient to reliably create cell polarity. Interestingly the establishment of
cell polarity depends crucially on the stochastic nature of the molecular
dynamics, and this phenomenon does not occur if all the interactions are
assumed to be deterministic. The study in [1] considers only a basic model
of cell polarity but in another work [2], I prove that the same conclusions
can be drawn for more complicated polarity models with many types of
molecular species and interactions.

(2) Cellular Homeostasis: This property refers to the ability of a cell-
population to effectively discard external shocks and maintain a constant
level of key molecular species. I will discuss how a simple integral feedback
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controller motif can implement this adaptation feature and how the bio-
chemical noise inside cells plays a fundamental role in realizing the home-
ostatic property. This part of the talk is based on the results reported in
[3].

(3) Entrainment of oscillatory cell-populations: Many intracellular cir-
cuits have oscillatory dynamics. Often these oscillators entrain to external
periodic inputs by loosing their natural frequency and adopting the fre-
quency of the input signal. This phenomenon is called entrainment and
it is crucial for proper physiological functioning of an organism. Intra-
cellular dynamics is fundamentally noisy we would expect this noise to
cause disruptions in the entrainment response of oscillatory circuits. While
this is true at the single-cell level, surprisingly the opposite is true at the
population-level where the response of several noisy oscillators is averaged.
I mathematically explain this phenomenon and present experimental ev-
idence for it. This part of the talk is based on the results reported in
[4].

(4) Amplification of enzyme substrates: Many biomolecular reactions
are catalyzed by enzymes. The key rate parameter that quantifies enzy-
matic activity is generally assumed to be a deterministic constant. This
assumption is often inaccurate because enzymatic activity is inherently
stochastic due to fluctuations in the conformational states of enzymes and
also their abundance levels within a cell. I show that these fluctuations
can cause a large amplification in the concentration of the substrate on
which the enzyme acts and I present mathematical results that quantify
the amount of amplification based on the information about the kinetics
of fluctuations in enzymatic activity. This part of the talk is based on the
results reported in [5].
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Persistence, permanence, and global stability of interaction network
models

Gheorghe Craciun

The main topic of this presentation is mathematical models of interaction net-
works, and especially mathematical models of biological interactions.
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For example, many diseases are associated with the loss of one or more types of
molecules in affected cells, and this loss can destabilize normal cellular processes. A
better understanding of this process is of very high interest in biology and medicine,
because recovery of these processes in affected cells is a potential therapeutic
target.

We discuss a mathematical approach to understanding biological interaction
networks, by using differential equations to model the dynamics of concentrations
of various types of molecules involved in these networks, or more generally the
dynamics of populations in a network of interacting populations. Very often, the
standard dynamical systems models for such interactions are polynomial dynamics
systems.

Polynomial dynamical systems are very common in many types of applications.
For example, the most common population dynamics models for the spread of in-
fectious diseases or the dynamics of species in a ecosystem are polynomial dynami-
cal systems. On the other hand, there are many important unsolved mathematical
problems about polynomial dynamical systems: for example, Hilbert’s 16th prob-
lem about limit cycles, and problems about understanding chaotic dynamics.

We describe mathematical properties of these networks that may allow us to
understand which types of biological feedbacks are essential for the stability of nor-
mal cellular processes. More specifically, we discuss the mathematical properties
of ”persistence” and ”permanence” that are very closely related to the stability
and homeostasis properties of biological interaction networks.

We will describe the Global Attractor Conjecture, which says that a large class
of polynomial dynamical systems has solutions that converge to a fixed point,
and in particular cannot exhibit cycles or chaotic dynamics. The conjecture was
formulated by Fritz Horn in the early 1970s, and was inspired by his study of
mathematical models of chemical reaction networks with mass-action kinetics. We
will discuss an approach for proving this conjecture, as well as connections with
thermodynamics (the Boltzmann equation) and other implications for models of
population dynamics.

In addition, we also describe the other two main conjectures in this field: the
Persistence Conjecture, and the Permanence Conjecture. These conjectures say
that all weakly reversible networks give rise to persistent dynamics (i.e., any so-
lution of such a system has a positive lower bound) and moreover, the dynamics
is permanent (i.e., there exist uniform lower and upper bounds for all solutions of
such systems for large enough t). We give an overview of recent results and the
current state of the art on the study of these conjectures.
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Mathematical models for T-cell activation

Alan Rendall

(joint work with Eduardo D. Sontag)

T cells are a component of central importance in our immune system. One of their
main tasks is to recognize foreign substances (antigens) and become activated. The
process is initiated when the antigen binds to the T cell receptor, a molecule on the
cell surface. When this happens chemical reactions take place in the cell which
change its behaviour. Mathematical models for the reactions involved can help
to understand the complex process of T cell activation. There is a mathematical
model of this process due to Altan-Bonnet and Germain [1] which is so large and
complicated as to be difficult to treat with analytical techniques. At the same
time there is a later simplified version of this model due to François et. al. [2]
which has had comparable success in explaining experimental data. Together with
Eduardo Sontag we examined the qualitative properties of solutions of the model
of François et. al. analytically [3].

The model of [2] is constructed by writing down a network encoding the chemical
reactions involved in the process and applying mass action kinetics to get a system
of ordinary differential equations depending on many parameters. One parameter
of the system is a positive integer N which is the maximal number of phosphate
groups which can be attached to the T cell receptor in the model. We showed
that while in the cases N = 1 and N = 2 the system has a unique positive steady
state this is no longer the case for N = 3. In the latter case there are parameters
for which there exist three positive steady states. Simulations indicate that two
of these states are stable but this remains to be proved. In order to prove the
existence of steady states variables are eliminated from the system of algebraic
equations whose solutions are the steady states until a quartic equation for one
variable remains. Then it is shown that parameters can be chosen for which this
polynomial has three positive roots.

Of central biological interest is the response function C∗
N = f(L, ν). Here CN

is the concentration of the maximally phosphorylated state of the T cell receptor
and the star indicates that it is evaluated in a steady state. The quantities L and
ν are the parameters in the system which are believed to be most important in
controlling T cell activation. L is the concentration of antigen while ν is the inverse
of the time for which the antigen remains bound to the receptor. The function f
describes the degree of activation of the cell, as represented by CN , as a function
of the main input parameters. At first sight it is plausible that f should be an
increasing function of L and a decreasing function of ν. However this turns out not
to be the case. We proved that in certain parameter regimes the function f can be
approximated by a function fapp = g ◦ h. Here the function h is explicit and has
the monotonicity properties guessed to hold for f . On the other hand the function
g is more complicated and can be approximated by different explicit functions
in different ranges of its argument. The result is that fapp has the following
properties. For L small log fapp is a linear function of logL with slope one. Then
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it turns around and becomes a linear function of logL with slope 1 −N/2. Next
it returns to being a linear function with slope one which is translated compared
to what it was for small L. Finally, since it is bounded, the function tends to
a constant for large L. These conclusions give rigorous mathematical statements
corresponding to previous simulations and experimental measurements. We were
able to extend them further to obtain new results on the dependence of f on ν.

Going beyond the results of [3] it can be asked what can be said about the
asymptotics of solutions in the case of the model of [1]. Here only one aspect of
this will be mentioned. In both models considered here there is a kinetic proof-
reading submodule. It was shown in [4] using the Deficiency Zero Theorem of
Chemical Reaction Network Theory that the system corresponding to the kinetic
proofreading module of the model of [2] has a unique positive steady state which is
globally asymptotically stable. It appears that things are much more complicated
for the model of [1] with even the kinetic proofreading module having deficiency
one under even the strongest simplifying assumptions. It is unknown whether
it admits multiple steady states. This suggests an interesting avenue for further
investigation.
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Mutation, selection, and ancestry in the deterministic limit of the
Moran model

Fernando Cordero

(joint work with Ellen Baake, Sebastian Hummel)

The 2-type Moran model with selection and mutation describes the evolution of a
population of constant size N consisting of individuals that are characterized by
a type i ∈ {0, 1}. The underlying dynamics are given as follows. Individuals of
type 1 reproduce at rate 1, whereas individuals of type 0 reproduce at rate 1+sN ,
sN ≥ 0. If an individual reproduces, its single offspring inherits the parent’s type
and replaces a uniformly chosen individual, possibly its own parent. Mutation
occurs independently of reproduction. Each individual mutates at rate uN ; the
type after the event is i with probability νi, i ∈ {0, 1}.

Let Y N
t be the proportion of type-1 individuals at time t. It is well known that,

when the parameters of selection and mutation satisfy limN→∞ NuN < ∞ and
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limN→∞ NsN = σ <∞, the rescaled process (Y N
Nt)t≥0 converges to the proportion

of type-1 individuals in the Wright-Fisher diffusion model.
In contrast to the diffusion limit regime, we assume here that the parameters

of selection and mutation are independent of population size, i.e. uN ≡ u and
sN ≡ s. In this setting a deterministic limit emerges when N tends to ∞. More
precisely, it was shown in [1] that, if Y N

0 −−−−→
N→∞

y0, then (Y N
t )t≥0 converges to

the solution y(·, y0) of the initial value problem

(1)

dy
dt (t) = −sy(t)(1− y(t))− uν0y(t) + uν1(1− y(t)), t ≥ 0,

y(0, y0) = y0.

The convergence is uniform on compact sets of time in probability and is a con-
sequence of the law of large numbers for density dependent populations of Kurtz
[4]. The initial value problem (1) is the classical mutation-selection equation of
population genetics [3]. It has a unique stable equilibrium point in [0, 1], which is
given by

(2) ȳ :=







1
2

(

1 + u
s −

√
(
1− u

s

)2
+ 4u

s ν0

)

if s > 0,

ν1 if s = 0.

Our first goal is to attach an ancestral process to the previously described
deterministic model. In the Moran model one can trace back potential ancestors
of a given sample of the population with the help of the ancestral selection graph
(ASG) of Krone and Neuhauser [5]. WhenN tends to∞, keeping s and u constant,
the ancestral selection graph admits an asymptotic version, which is constructed
in the following three step procedure: (1) start with n lines representing a sample
of the population at (forward) time t. Each line branches independently at rate
s into an incoming branch and a continuing branch, both representing potential
ancestors of the line that branches, the descendant line. The true parent depends
on the type of the incoming branch, but for the moment we work without types.
In addition, each line is decorated by a mutation to type i at rate uνi, i ∈ {0, 1},
(2) assign types independently to each potential ancestor according to the initial
distribution of types, and (3) propagate the types forward in time, keeping track
of the changes by respecting the mutation events. At every selective event, the
incoming branch is the ancestor if it is of type 0, otherwise the ancestor is the
continuing line.

A relation between the deterministic mutation-selection model and the asymp-
totic ASG is obtained as follows. First, note that y(t, y0) can be understood as
the probability of sampling a type-1 individual at time t, where y0 represents the
initial proportion of type-1 individuals. Backward in time, we use the following
observation: in the absence of mutations, the type of the sampled individual at
time t is 1 if an only if all its potential ancestors at time 0 are of type 1. A dele-
terious mutation on a given line transfer type 1 on to its descendants, and hence
we don’t need to trace its ancestry further into the past. This leads to a prun-
ing in the ASG at rate uν1 per line. The first beneficial mutation in the pruned
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ASG determines the type of the sampled individual, and therefore we can stop the
process. The so-constructed process is called the killed ASG. In particular, the
line-counting process (Rt)t≥0 of the killed ASG is a continuous time Markov chain
with state space N ∪ {0,∆} (∆ is a cemetery point) and transition rates:

qR(i, j) =







is, if j = i+ 1, i 6= ∆
iuν1, if j = i− 1, i ∈ N,
iuν0, if j = ∆, i 6= ∆.

The states 0 and ∆ are absorbing. The previous arguments can be made rigorous,
leading to the following duality relation:

(3) y(t, y0) = E
[
yRt |R0 = 1

]
, t ≥ 0, y0 ∈ [0, 1].

In particular, taking the limit when t tends to∞ in (3), we see that the equilibrium
point ȳ corresponds to the absorption probability of R in 0. If ν0 = 0, formula (2)
can be recovered from classical results on birth and death processes with linear
growth. If ν0 > 0, formula (2) is obtained by means of a first step analysis.

Now we turn our attention to the representative ancestral type, i.e. the type of
the ancestor of a generic individual in the population. The ancestral process which
permits to determine the representative ancestral type is called pruned lookdown
ASG (pLD-ASG), and was introduced first in [6] in the diffusion limit setting and
extended to the Moran model and its deterministic limit in [2]. We recall here its
construction in the deterministic limit regime. The pLD-ASG starts with n lines.
Each line is assigned a different level from 1 to n. Every line branches at rate s; the
incoming line takes the level of the descendant line; the continuing line is assigned
the level above the incoming line; all the lines that were above the descendant line
are shifted one level upwards. Every line, except the top line, is pruned at rate
uν1; all the lines above the line affected by the deleterious mutation are shifted one
level downwards. At rate uν0, all the lines at higher levels than the one affected
by the beneficial mutation are pruned. In particular, the line-counting process of
the pLD-ASG is the continuous time Markov chain (Lt)t≥0 with transition rates:

qL(i, j) =







is, if j = i+ 1
(i − 1)uν1 + uν01{i>1}, if j = i− 1,
uν0, if 1 ≤ j ≤ i− 2.

The pLD-ASG has the feature that the ancestor of a single individual is of type
1 if and only if all the lines in the corresponding pLD-ASG are of type 1. In
particular, if we let Jt be the representative ancestral type at time t, i.e. the type
at time 0 of the ancestor of a sampled individual at time t, then

(4) gt(y0) := Py0(Jt = 1) = E[yLt

0 |L0 = 1],

where under Py0 the types are assigned to the lines in the pLD-ASG in an i.i.d.
manner according to the distribution (1 − y0, y0). We are particularly interested
in taking the limit when t tends to ∞ in (4).
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The process L is positive recurrent if and only if ν0 > 0 or u > s. Moreover, its
stationary distribution is geometric with parameter 1− p, where

p =

{ s
uν1

ȳ, if ν1 > 0,
s

s+u , if ν1 = 0.

This was already shown in [2]. We provide two alternative proofs of this fact. The
first one is based on a graphical argument. The second one is based on a first step
analysis for a process which is Siegmund dual to the the process L.

The fact that the stationary distribution of the process L is geometric leads to
explicit formulas for g∞(y0) := limt→∞ gt(y0) and for g∞(ȳ). Finally, we discuss
about possible extensions to the multi-locus case with additive selection.
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A scaling limit for the block counting process and the fixation line of
the Bolthausen–Sznitzman coalescent

Martin Möhle

(joint work with Jonas Kukla)

1. Mittag–Leffler process

Let ξ be Mittag–Leffler distributed with parameter α ∈ [0, 1]. Note that P(0 <
ξ <∞) = 1 and that the distribution of ξ is uniquely determined by its moments
E(ξm) = m!/Γ(αm + 1), m ∈ N0 := {0, 1, . . .}, where Γ denotes the gamma
function.

The Mittag–Leffler process X = (Xt)t≥0 is a continuous-time Markov process
with X0 = 1 and state space E := (0,∞). The name of this process comes from
the fact that for every t ≥ 0 the marginal random variable Xt is Mittag–Leffler
distributed with parameter e−t. The semigroup TX = (TX

t )t≥0 of X satisfies

(1) TX
t f(x) = E(f(xe−t

Xt)), t ≥ 0, f ∈ B(E), x ∈ E,
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where B(E) denotes the space of all bounded measurable functions f : E → R.

Conditional on Xs = x the random variable x−e−t

Xs+t is Mittag–Leffler dis-
tributed with parameter e−t. From the moment formulas in [6, Lemma 2.2] it
follows that there exists a constant M > 0 such that E((Xt − Xs)

2) ≤ M |t − s|
for all s, t ≥ 0, that is, X is Hölder continuous with index 1. The paths of X are
cadlag but not continuous. Let γ := −Γ′(1) ≈ 0.577216 denote Euler’s constant.
The generator AX of X satisfies

(2) AXf(x) = (1 − γ − log x)xf ′(x) + x

∫ x

0

f(x− h)− f(x) + hf ′(x)

h2
dh

for x ∈ E and f ∈ C2
c (E), the set of two times continuously differentiable functions

with compact support. For further details on X we refer the reader to [1, 5, 6].

2. Neveu’s continuous-state branching process

Neveu’s [7] continuous-state branching process Y = (Yt)t≥0 is as well a continuous-
time Markov process with Y0 = 1 and state space E. For every t ≥ 0 the marginal
random variable Yt is α-stable with Laplace transform E(e−λYt) = e−λα

, λ ≥ 0,
where α := e−t. The semigroup T Y = (T Y

t )t≥0 of Y is given by

(3) T Y
t g(y) = E(g(ye

t

Yt)), t ≥ 0, g ∈ B(E), y ∈ E,

and the generator AY of Y satisfies

(4) AY g(y) = (γ − 1 + log y)yg′(y) + y

∫ ∞

0

g(y + h)− g(y)− yh
y+hg

′(y)

h2
dh

for y ∈ E and g ∈ C2
c (E). The Mittag–Leffler process X is (see, for example,

[6]) Siegmund dual to Neveu’s continuous-state branching process Y , i.e. P(Xt ≤
y|X0 = x) = P(Yt ≥ x|Y0 = y) for all t ≥ 0 and x, y ∈ E.

3. Relations to the Bolthausen–Sznitman coalescent

The Bolthausen–Sznitman coalescent [4] is the particular Λ-coalescent [8, 9] where
the measure Λ is the uniform distribution on the unit interval. For n ∈ N :=
{1, 2, . . .} let N (n) = (N

(n)
t )t≥0 and L(n) = (L

(n)
t )t≥0 denote the block counting

process and the fixation line respectively of the Bolthausen–Sznitman coalescent

restricted to a sample of size n. Note that L
(n)
t = sup{k ∈ N : N

(k)
t ≤ n} and

N
(n)
t = inf{k ∈ N : L

(k)
t ≥ n}, t ≥ 0, n ∈ N. In particular, N (n) is Siegmund

dual to L(n), i.e. P(N
(n)
t ≤ m) = P(L

(m)
t ≥ n) for all t ≥ 0, n,m ∈ N. Define

the scaled block counting process X(n) = (X
(n)
t )t≥0 and the scaled fixation line

Y (n) = (Y
(n)
t )t≥0 via X

(n)
t := N

(n)
t /ne−t

and Y
(n)
t := L

(n)
t /net , t ≥ 0, n ∈ N.

Note that the processes X(n) and Y (n) are time-inhomogeneous. The fixation line

of the Bolthausen–Sznitman coalescent is a branching process with pgf E(sL
(n)
t ) =

(1− (1− s)e
−t

)n, s ∈ [0, 1], t ≥ 0, n ∈ N. Thus, for all t, λ ≥ 0,

E(e−λY
(n)
t ) = (1− (1 − e−λ/net

)e
−t

)n → e−λe−t

= E(e−λYt), n→∞.
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Hence, Y
(n)
t → Yt in distribution as n → ∞. The convergence X

(n)
t → Xt in

distribution as n→∞ is now either obtained via duality [5, p. 3] or alternatively
via moment calculations [6, p. 46, Step 1]. This convergence of the one-dimensional
distributions motivates the following convergence result [5].

Theorem 1. For the Bolthausen–Sznitman coalescent the following two assertions
hold. a) As n→∞ the scaled block counting process X(n) converges in DE [0,∞) to
the Mittag–Leffler process X. b) As n→∞ the scaled fixation line Y (n) converges
in DE [0,∞) to Neveu’s continuous-state branching process Y .

The theorem demonstrates the intimate relation between the Bolthausen–Sznitman
coalescent, the Mittag–Leffler process and Neveu’s continuous-state branching pro-
cess. We refer the reader to [1] and [2] for further insights concerning these
relations. Theorem 1 can be stated logarithmically as follows. The process

(logN
(n)
t − e−t logn)t≥0 converges in DR[0,∞) to X̃ := (X̃t)t≥0 := (logXt)t≥0

and the process (logL
(n)
t − et logn)t≥0 converges in DR[0,∞) to Ỹ := (Ỹt)t≥0 :=

(log Yt)t≥0 as n → ∞. The distributions of X̃t and Ỹt are characterized via the

self-decomposable distributional equations S
d
= e−tS+ X̃t and G

d
= e−tG+ e−tỸt,

where G is standard Gumbel distributed and S := −G. The semigroup (T X̃
t )t≥0

of X̃ is given by

(5) T X̃
t f(x) = E(f(xe−t + X̃t)), t ≥ 0, f ∈ B(R), x ∈ R,

and the semigroup (T Ỹ
t )t≥0 of Ỹ is given by

(6) T Ỹ
t g(y) = E(g(yet + Ỹt)), t ≥ 0, g ∈ B(R), y ∈ R.

Semigroups of this form belong to the class of generalized Mehler semigroups [3]
corresponding to generalized Ornstein–Uhlenbeck type processes. The generators

AX̃ and AỸ of X̃ and Ỹ satisfy

(7) AX̃f(x) = −(x+ γ)f ′(x) +

∫ ∞

0

(
f(x− h)− f(x) + hf ′(x)

) e−h

(1− e−h)2
dh

and

(8) AỸ g(y) = (y + γ)g′(y) +

∫ ∞

0

(
g(y + h)− g(y)− hg′(y)

) e−h

(1− e−h)2
dh

for x, y ∈ R and f, g ∈ C2
c (R). Note that (2) and (4) can be derived from (7) and (8)

via AXf(x) = AX̃(f ◦ exp)(log x) and AY g(y) = AỸ (g ◦ exp)(log y), f, g ∈ C2
c (E),

x, y ∈ E.

4. Extensions and work in progress

The results in the previous section can be extended at least in two directions as
follows. Convergence results similar to those presented in Theorem 1 hold for some
larger class of exchangeable coalescents without dust that do not come down from
infinity. Note that (except for the Bolthausen–Sznitman coalescent) the fixation
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line is not a branching process, which makes the situation more challenging. Al-
ternatively (instead of studying coalescent processes) one may start with a general

continuous-time branching process (L
(n)
t )t≥0 and analyze its asymptotic behavior

as the initial state L
(n)
0 = n tends to infinity. At least three convergence regimes

arise corresponding to the finite variance case, the finite mean but infinite variance
case and the infinite mean case.
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[3] V.I. Bogachev, M. Röckner and B. Schmuland, Generalized Mehler semigroups and appli-
cations, Probab. Theory Relat. Fields 105 (1996), 193–225.

[4] E. Bolthausen and A.-S. Sznitman, On Ruelle’s probability cascades and an abstract cavity
method, Commun. Math. Phys. 197 (1998), 247–276.
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On the theory of one- and two-locus clines

Reinhard Bürger

(joint work with Linlin Su)

A cline describes a gradual change in genotypic or phenotypic frequency within
a population as a function of spatial location. Clines frequently occur in species
distributed along an environmental gradient in which alternative phenotypes or
genotypes are better adapted to the different environmental conditions. Dispersal
leads to mixing, reduces local adaptation, and entails a change in type frequencies.
The study of clines can be used to obtain insight into the relative strengths of
the evolutionary and ecological forces acting on a population. For this purpose,
Haldane [7] devised and analyzed a one-locus model in terms of a reaction-diffusion
equation which approximates migration by diffusion; selection yields the reaction
term. His model was extended in several directions, and biologically important
and mathematically beautiful results about the existence and properties of clines,
i.e., spatially nonuniform equilibrium solutions, have been obtained [5]–[14], [16].

In the talk given at the MFO, we presented generalizations of classical and
recent results by considering two recombining genetic loci, A and B, under selec-
tion. This generalization does not only add biological realism, but also substantial
mathematical difficulties and new phenomena. The resulting system of PDEs is



Reaction Networks and Population Dynamics 1783

defined on a bounded open domain Ω ⊂ R
n with C2 boundaries. Let α(x) and β(x)

be real-valued functions describing the spatial dependence of the fitnesses of the
alleles at loci A and B, respectively. We assume that both functions change sign,
so that A1(A2) is favored where α(x) > 0(α(x) < 0), and analogously for B. Fur-
thermore, let p1(x, t), p2(x, t), p3(x, t), and p4(x, t) denote the relative frequencies
of the gametes A1B1, A1B2, A2B1, and A2B2, respectively, and D = p1p4 − p2p3
the linkage disequilibrium. Then, with so-called additive fitnesses and appropriate
scaling, the time evolution of the pi(x, t) is given by

(1)
∂pi
∂t

= ∆pi + λSi(x, p)− ηiρD in Ω× (0,∞)

with Neumann boundary conditions ∂pi

∂ν = 0 on ∂Ω×(0,∞) and the constraints 0 ≤

pi(x, t) ≤ 1,
∑4

i=1 pi(x, 0) = 1. Here, λ measures the strength of selection relative
to diffusion, ρ ≥ 0 is the scaled recombination rate, and η1 = η4 = −η2 = −η3 = 1.
The terms ηiρD describe the effects of recombination, and the Si(x, p) describe
selection: S1(x, p) = p1[α(x)(p3 + p4) + β(x)(p2 + p4)], S2(x, p) = p2[α(x)(p3 +
p4) − β(x)(p1 + p3)], S3(x, p) = p3[−α(x)(p1 + p2) + β(x)(p2 + p4)], S4(x, p) =
p4[−α(x)(p1 + p2) − β(x)(p1 + p3)]. We are interested in the conditions for exis-
tence and stability of a two-locus cline, by which we mean a spatially non-uniform
equilibrium solution of (1) such that 0 < pi(x) < 1 for every i and x.

Assume (generically, w.l.o.g.) that gamete A1B1 has the highest spatially aver-
aged fitness. Then (i) the vertex equilibrium p̂(1)(p1(x) ≡ 1) is globally asymptoti-
cally stable if λ≪ 1, i.e., if selection is sufficiently weak; (ii) there exists a constant
λ1(ρ) > 0 such that p̂(1) is asymptotically stable if 0 < λ < λ1(ρ), and unstable
if λ > λ1(ρ); (iii) every vertex p̂(i) other than p̂(1) is unstable; (iv) increasing ρ
facilitates stability of p̂(1).

As λ increases from small values, edge or internal equilibria move into the state
space. If such an equilibrium moves into the state space by a bifurcation with the
asymptotically stable p̂(1), say at λ = λ1(ρ), then this equilibrium is asymptotically
stable for slightly larger values of λ than λ1(ρ). For general ρ ≥ 0 the analysis
of the model is very complicated, as is the case for a corresponding ODE model
in which there is migration between two niches [1, 4]. Various bifurcations can
occur and, motivated by analytical results for the much simpler ODE model, we
showed by numerical integration of (1) that, for instance, a two-locus cline may
be simultaneously stable with a boundary equilibrium.

We focused on two limiting cases, weak recombination (0 ≤ ρ≪ 1) and strong
recombination (ρ ≫ 1), and applied perturbation techniques. If ρ = 0, then the
theory developed in [9]–[11] for a single locus with multiple alleles can be employed
to determine the equilibria and their stability. Among others, we proved the
following results. (i) If ρ = 0 and α and β have the same sign, i.e., alleles A1(A2)
and B1(B2) are favored in the same region, then on the edge connecting p̂(1) and
p̂(4), an equilibrium p̂(14) exists and is globally asymptotically stable if λ≫ 1. (ii)
If for ρ = 0, p̂(14) exists and is linearly stable, then for small ρ > 0 a two-locus
cline p̂(ρ) exists in the vicinity of p̂(14) and is linearly stable.
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The case of strong recombination is biologically more important and mathe-
matically more challenging because it requires singular perturbation techniques.
Instead of the gamete frequencies, we now use the allele frequencies pA = p1 +
p2, pB = p1 + p2, and the linkage disequilibrium D. By fixing λ > 0, introducing
ǫ = 1/ρ, and rescaling time accordingly, (1) becomes equivalent to

(2)
∂pA
∂t

= F1(pA, pB, D, ǫ),
∂pB
∂t

= F2(pA, pB, D, ǫ),
∂D

∂t
= F3(pA, pB, D, ǫ) ,

where Fi : X × R → Y , X = {u ∈ C2+γ(Ω̄) : ∂u
∂ν = 0 and ∂Ω}, Y = Cγ(Ω̄) for

some γ ∈ (0, 1), and

F1(pA, pB, D, ǫ) = ǫ[∆pA + λα(x)pA(1− pA) + λβ(x)D],(3a)

F2(pA, pB, D, ǫ) = ǫ[∆pB + λβ(x)pB(1− pB) + λα(x)D],(3b)

F3(pA, pB, D, ǫ) = ǫ[∆D + 2∇pA · ∇pB(3c)

+ λ(α(x)(1 − 2pA) + β(x)(1 − 2pB))D]−D

We impose Neumann boundary conditions on (2) and the natural constraints 0 ≤
pA ≤ 1, 0 ≤ pB ≤ 1, and

(4) −min{pApB, (1 − pA)(1− pB)} ≤ D ≤ min{pA(1− pB), (1 − pA)pB}.

Obviously, the limit ǫ → 0 in (2) is degenerate because for ǫ = 0 the manifold
D = 0 consists of equilibria and is globally attracting. Inspired by [2] and [15], we

apply the perturbation approach p̂
(ǫ)
A = P + ǫp + o(ǫ), p̂

(ǫ)
B = Q + ǫq + o(ǫ), and

D̂(ǫ) = ǫd+ o(ǫ), where P and Q denote the clinal solutions of the corresponding
single-locus problems, i.e., F1(P, ∗, 0, ∗) = 0 and F2(∗, Q, 0, ∗) = 0, respectively.
It is well known that P and Q exist if λ exceeds a critical value [6, 8, 9]. Simple
calculations show that d = 2∇P · ∇Q and p satisfies

(5) ∆p+ λα(x)[1 − 2P (x)]p+ 2λβ(x)∇P (x) · ∇Q(x) = 0.

This has a unique nontrivial solution because P is the globally asymptotically
stable equilibrium of the one-locus problem, whence ∆+ λα(1− 2P ) is invertible.

We proved that all eigenvalues of the linearization F̃ of F = (F1, F2, F3) w.r.t.

(pA, pB, D), evaluated at (P,Q, 0, 0), are strictly positive. Therefore, F̃ is one-to-

one. However, because F̃ is apparently not onto, the implicit function theorem
in its usual Banach space form is not directly applicable. Therefore, we have
not proved that an equilibrium exists in an ǫ-neighborhood of (P,Q, 0) and the
above perturbation approach remains formal. For special fitness functions (a step
environment), explicit solutions of (5) defined on Ω = R were derived in [3], as was
the dependence of the shape of the two-locus cline on the underlying parameters.
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Metastability and intrinsic extinction risk in finite populations

Sebastian J. Schreiber

Mathematical biologists have extensively used differential and difference equation
models to understand the dynamics of interacting populations, whether they be
viruses, plants, or animals. These deterministic models have provided important
insights into conditions promoting species coexistence, disease persistence, and
the maintenance of genetic polymorphisms, and the dynamics of these persisting
populations. These models, however, keep track of population densities using real
numbers and, consequently, fail to account for the fundamentally discrete nature
of real populations. Real populations consist of a finite number of individuals
whose fates are never perfectly correlated. Even if all individuals have the same
risk of mortality, some survive the “live or die” coin flip, while others are less
fortunate. Even if all surviving individuals are expected to have the same number
of offspring, some individuals defy expectations while others fall short. This de-
mographic stochasticity can be captured by Markovian models with a countable
number of states. When these models represent a closed population for which
there is no immigration, the populations (generically) either go extinct in finite
time or grow without bound. In the words of Peter Jagers [1]

“Any population allowing individual variation in reproduction, ul-
timately dies out–unless it grows beyond all limits, an impossibility
in a bounded world. Deterministic population mathematics on the
contrary allows stable asymptotics. Are these artifacts or do they
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tell us something interesting about quasi-stationary stages of real
or stochastic populations?”

Building on prior work with Mathieu Faure [5], this talk introduced a general
class of Markov chain models (Poisson-Multinomial Population Process) for which
extinction is inevitable and discussed under what conditions the associated mean
field models provide insights about the quasi-stationary stages of these Markov
chains.

The Poisson-Multinomial Population Process are used to model a population
or community consisting of k types of individuals. The different types may cor-
respond to different states of individuals within a single species (e.g. age, stage,
spatial location, or genotype) or individuals of different species. Let Ni,t denote
the number of individuals of type i at time t, and Xi,t = Ni,t/S the density
of this type where S is the size of the habitat containing the population. Let
Nt = (N1,t, . . . , Nk,t) and Xt = (X1,t, . . . , Xk,t) denote the corresponding vectors
of abundances and densities. To update the process to time t + 1, individuals
experience two independent demographic events. First, an individual of type j
becomes an individual of type i with probability Tij(Xt) for i = 1, 2, . . . , k, or dies

with the complementary probabilityDi(Xt) = 1−
∑k

i=1 Tij(Xt). These transitions
may correspond to an individual moving into a new stage, surviving and staying
in the same state, or being consumed by an individual of another type and being
converted into one of its offspring (e.g. a host-parasitoid interaction). Second,
each individual of type j produces a Poisson number of type i offspring with mean
Bij(Xt) for i = 1, 2, . . . , k. The mean-field difference equation associated with this
stochastic process is

(1) xt+1 = (B(xt) + T (xt))xt =: F (xt) where xt = (x1,t, x2,t, . . . , xk,t) ∈ [0,∞)k

where B(x) and T (x) denote the k × k matrices with entries Bij(x) and Tij(x).
Assume that B and T are continuous maps, F is pre-compact, Di(x) > 0 for all
x, i, and there exists a closed subset C0 of the boundary of C = [0,∞)k such that
C0 is absorbing for Nt and such that Xt restricted to C+ = C \ C0 is irreducible.

Under these assumptions, the population process Xt gets absorbed by C0 ∩ Z
k

in finite time with probability one (in fact Xt = (0, . . . , 0) in finite time with
probability one). This absorption corresponds to the extinction of one or more
types in the population. However, when the habitat size S is sufficiently large,
Xt may exhibit long-term transients prior to this absorption. To characterize
this meta-stable behavior, let Q(x, x′) be the probability transition matrix for
the process restricted to C+ ∩ Z

k. We proved that there is a unique dominant
eigenvalue λ and left eigenvector q for the Q such that

∑

x∈C+∩Zk q(x) = 1 and

λ ∈ [0, 1). [7] implies that limt→∞ P[Xt = x|Xt /∈ C0] = q(x) for any x ∈ C+ ∩Z
k
+.

Hence, the quasi-stationary distribution q describes the meta-stable behavior of
Xt. 1− λ corresponds to the probability of extinction in the next time step given
the population is following this quasi-stationary stationary distribution. [6] call
1

1−λ the intrinsic mean time to extinction.
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Using methods from [5], one can show that if the deterministic map F has
an attractor in C+, then (i) there exists a compact set K ⊂ C+ such that the
weak* limit points of the law of q as S ↑ ∞ are supported by K, (ii) these weak*
limit points are invariant probability measures for F , and (iii) there exist positive
constants α, β such that 1 − λ ≤ αe−βS for all S. Statement (iii) implies that
intrinsic mean time to extinction increases exponentially with the habitat size S.
(i) and (ii) imply that quasi-stationary behavior tends to be uniformly bounded
away from extinction and is related to the asymptotic behavior of F.

To arrive at stronger conclusions about the quasi-stationary behavior, one needs
more information about the dynamics of F. Specifically, if F has a finite number
of extinction-preserving chain recurrent sets in C+ (see [4, 5] for a definition)
including at least one attractor, then the quasi-stationary distributions concentrate
only on the attractors in C+ as S ↑ ∞. If we interpret the “stable asymptotics”
as corresponding to these non-extinction attractors, then our results imply that
these stable asymptotics do “tell us something interesting about quasi-stationary
stages of real or stochastic populations.” To illustrate this conclusion, applications
to stochastic counterparts of the generalized Thompson model of host-parasitoid
interactions [3] and the LPA model for flour beetle dynamics [2] were given.

Partially complementing the results about long-term quasi-stationary behavior,
one can show that if C0 is a global attractor for the deterministic map F , then the
quasi-stationary distributions concentrate on C0 as S ↑ ∞. This raises two open
questions. Namely, where does the quasi-stationary behavior concentrate when
F has invariant sets in C+ but no attractors in C+? Furthermore, how do the
extinction probabilities 1− λ scale with S in these cases?
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Information and decision-making in dynamic cell signaling

David Rand

(joint work with Giorgos Minas, Dan Woodcock)

In this talk I discussed a new theoretical approach to information and decisions in
signalling systems and related this to new experimental results about various sig-
nalling systems. The importance of understanding information flows in biological
systems has been recognised as important for a very long time. For example, Fran-
cis Crick stated long ago that it is better to follow the flow of information rather
than those of energy or matter and, in a recent lecture on the five most impor-
tant ideas in biology, Sir Paul Nurse emphasised the importance of explaining the
higher-order phenomena of living systems by relating the chemical and physical
processes to the processing of information and its use to determine biological out-
puts. However, while the notion of information content is clear when one is talking
about strings formed from a finite alphabet as in DNA or RNA, there is currently
no clear conceptual framework once the genomic information has been passed into
the highly stochastic dynamic processes that determine cellular processes.

The NF-κB system was used in the lecture as an exemplar to illustrate the
ideas behind the mathematical framework. NF-κB is an exemplar system that
controls inflammation and in different contexts has varying effects on cell death
and cell division. As such it is one of the most important stress response systems in
mammalian cells. It is commonly claimed that it is an information processing hub,
taking in signals about the infection and stress status of the tissue environment and
as a consequence of the oscillations, transmitting higher amounts of information
to the hundreds of genes it controls.

In my approach the value of the information in the signalling system is defined
by how well it can be used to make the “correct decisions” when those “decisions”
are made by molecular networks. The cell receives information about its external
environment through molecular interactions with, for example, receptor molecules
on its surface and other molecules used to monitor the internal state of the cell.
These provide the input signal S. This in turn causes a cascade of molecular
interactions which eventually activates a set of genes. We assume that the genes
interact in such a way as to choose an appropriate decision, such as committing
the cell to kill itself or to enter the cell cycle and divide. Thus in this model the
decisions are made by the dynamic interaction of genes following their activation
by the signalling system. We regard the value of the information carried by the
signalling system as being determined by how well the cell does in making “correct”
decisions. We assume that the decision is made using a criterion of the form
κ(ρ) > u where ρ is some aspect of the downstream response of the genes to the
input signal S. Thus we are particularly interested in understanding the way that
the distribution P (ρ|S) changes as the input signal S changes.

A significant mathematical challenge arises from the fact that these signalling
systems are often oscillators. In particular, when the NF-κB system is activated,
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the transcription factor p65 moves in and out of the nucleus in an oscillatory fash-
ion. Moreover, it is important to use a stochastic model because the process is
highly stochastic and the probabilistic structure plays a crucial role. Since cur-
rently there are effectively no analytical tools capable of handling such systems
and since current simulation algorithms are extremely slow it is necessary to pro-
vide improved methodology for such systems and this was a important part of the
presentation.

I outlined a new approach, called pcLNA, to such stochastic oscillatory systems
which is based on the Linear Noise Approximation (LNA). In this approach one
keeps resetting the phase of the stochastic trajectory in such a way as to keep
LNA approximations accurate for large times. The transversal distributions asso-
ciated with this approximation can be calculated analytically and this approach
provides a simulation algorithm that is substantially faster than current simula-
tion algorithms such as tau-leaping algorithms and the use of stochastic differential
equations. This work is about to appear in PLoS Computational Biology [1]. Us-
ing this methodology one can calculate quantities from information geometry that
are associated with understanding the mapping S → P (ρ|S) which is needed for
our information theory.

I then discussed binary decisions where the system has to choose between two
options and show how these can be characterised by ROC curves. By using the
Neyman-Pearson Lemma one can also calculate the optimal ROC curves and see
how effective the gene circuits are at making decisions compared to an optimal
decision-maker. I considered a number of examples coming from the NF-κB sys-
tem.

Then I moved on to more complex decisions and asked whether such a system
can multiplex. This is about whether a single signal can encode multiple aspects of
the external environment or internal state of the cell. I showed how you can formu-
late this question in terms of Fisher information and Kullback-Leibler Divergence.
The NF-κB system like many other regulatory and signalling system models which
are tightly coupled has the property that the Fisher Information Matrix has very
rapidly decreasing eigenvalues. It follows from this that if the system is described
by such models then it cannot multiplex effectively and I explained the theory
behind this. In particular, I showed how to formulate a theory of sensitivity for
such stochastic systems by relating the Fisher Information Matrix to the linearised
mapping from signals S to the parameters for the distribution P (ρ|S) . One can
then calculate from the sensitivity matrix coming from this theory the extent to
which the signalling system can multiplex.

This leads to what I believe is a important biological insight. We know from
experiments that in fact the NF-κB system is able to multiplex and that raises
the question of what is wrong with the model in this regard. A very natural
hypothesis that is justified by the above theory is that the model ignores the fact
that the NF-κB transcription factor undergoes a sequence of phosphorylations as
part of the signal activation. This is highly relevant because it is known that
the phosphorylation state of NF-κB determines what molecules complex with it
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and this in turn determines what genes it activates or represses. Using the above
theory one can show that inclusion of such processes into the model allows the
system to multiplexed signals much more effectively.
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Analytical approaches to characterize complex stochastic systems

Andreas Hilfinger

In cells many important molecules are present in small numbers. The probabilis-
tic nature of individual chemical events then creates spontaneous fluctuations in
cellular concentrations. As a result, genetically identical cells growing under iden-
tical conditions can differ significantly in almost any property. This non-genetic
variability shapes many biological processes ranging from microbial decision mak-
ing to stem cell differentiation and tumor growth. The challenge we face when
trying to model these stochastic processes is that fluctuations of any particular
component in a cell reflect all directly and indirectly connected processes many of
which are poorly characterized. This explains why fluctuations are so prevalent in
biology, and why they are so difficult to analyze, since both the parts of interest as
well as all interacting components must be described in the absence of a general
framework.

To address this problem, we derived fundamental relations between properties
of chemical fluctuations that reflect only some specified parts of a nonlinear and
complex reaction system, while being invariant to all aspects of the rest of the sys-
tem – regardless of nonlinearities, the number of components, or even the topology
of the rest of the network. Exact analytical results for such processes may seem
impossible because of moment closure problems, but deriving expressions not in
terms of rate constants but in terms of observable system properties that can be
measured or interpreted regardless of the reaction details circumvents this prob-
lem. The basic idea is to identify relations between system properties that reflect
the interactions within a part of the system while remaining invariant to all other
(unspecified) parts. The unspecified variables are then not ignored but rigorously
allowed to exhibit essentially any imaginable behavior, including non-linear and
non-Markovian dynamics, and also any imaginable network topology. We showed
that for all stationary or non-stationary systems in which the time-averaged sta-
tistical properties of the population as a whole converge, any pair of components
Xi,Xj that undergo elementary chemical reactions in any arbitrarily complicated
network, must satisfy the following exact and general relation

(1)
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−
j −R+
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j 〉
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where τi denotes the average lifetime of component Xi, R±
i are total fluxes of

production or degradation of component Xi, and 〈xi〉 are average abundances of
the components of interest. The average step-sizes, denoted as 〈sij〉, measure the
average change in the number of Xj molecules when an Xi molecule is made or
degraded. The value of 〈sij〉/〈xj〉 thus capture the size of the random events
relative to the size of the system. The covariance terms in turn capture how the
total fluxes respond to deviations in abundances. Eq. (1) can thus be understood
as balance between random perturbations and controlled responses within a large
network.

We used this framework to gain insights into biological processes in two ways:
First, we tested specific mechanistic hypotheses without making any assumptions
about the rest of the network [2]. Second, we derived hard universal bounds on the
behaviors of classes of complex systems that share some parts but differ arbitrarily
in all others [1].

Rigorous hypothesis testing using fluctuation data. Eq. (1) makes pre-
dictions that reflect “local” interactions between a subset of components but are
invariant to all indirectly connected dynamics. This greatly reduces the number of
assumptions when comparing models against experiments. Consider for example
all possible networks in which a protein (X2) is made probabilistically at a rate
proportional to its cognate mRNA (X1), and undergoing first order degradation,
leaving everything else in the network unspecified

(2)





arbitrary dynamics of
X1,X3,X4,. . .

including feedback loops





︸ ︷︷ ︸

unspecified dynamics

+
x2

λx1−−−−−−→ x2 + 1

x2
x2/τ2
−−−−−−→ x2 − 1

︸ ︷︷ ︸

specified dynamics

.

The specified dynamics in Eq. (2) are common to virtually all published models
of gene expression (the process of transcribing genes into mRNA and translating
mRNA into proteins). Without making any approximations, such as linearizing
rates or assuming a separation of time-scales, Eq. (1) translates those assumptions
into an exact invariant relation between the mRNA-protein correlations ρ12 and
their coefficient of variations CVi := σi/〈xi〉

(3) CV2
2 =

1

〈x2〉
+ ρ12CV1CV2 ,

which must hold regardless of the dynamics of the unspecified parts. The intuition
behind this is straightforward: the fluxes R±

2 are properties of only the reactions di-
rectly affecting X2, and all indirect effects must ultimately be transmitted through
those rates. The power of this approach was illustrated by revisiting recently
published gene expression data [3]. We showed [2] that observed mRNA-protein
fluctuations strongly contradict the above assumptions, ruling out the majority of
published gene expression models.
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Universal trade-offs in assembly processes. Without specifying the entire
dynamics of a network it is impossible to predict the fluctuations of any given
component. Indeed every term in Eq. (1) depends on all directly and indirectly
connected components in the network. However, we can use universal inequalities
such as Cauchy-Schwarz to turn a system of under-determined equations into
impossibility constraints that show what classes of systems can never do. As an
example we considered a network motif in which two subunits X1 and X2 come
together to form a stable complex. For any system – even when the subunits and
the complex can interact and regulate the production process in any way – we
showed that fluctuations in the subunits must fall above the simple yet universal
bound[1]

(4)
CV1 +CV2

2
≥

√

1

〈xi〉

1− E/2

2(1− E)
,

which diverges as the fraction of molecules E that eventually end up in complexes
approaches 100%. To prove that this bound is achievable we utilized numerical sim-
ulations of stochastic systems with randomly chosen parameters and controllers.
This illustrates how general constraints based on mathematical inequalities can
be used to characterize modules within biological networks without assuming they
act in isolation.
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From adaptive dynamics to adaptive walks

Anna Kraut

(joint work with Anton Bovier)

The starting point of the talk is a stochastic model of adaptive dynamics. It
considers a measure valued Markov process νK modelling the scaled density of
different traits in a population. As trait space we choose the n-dimensional hy-
percube H

n. Traits in H
n can for example be viewed as sequences of genes being

switched on or off.
Let νKt (x) denote the number of individuals of trait x at time t, divided by the
carrying capacity K, which scales the size of the population. The evolution of νKt
is driven by exponential birth, death and competition rates b, d and c, as well as
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a probability ε of mutation at birth and a mutant law m. The generator of νKt is
given by

LKφ(ν) =
∑

x∈Hn

Kν(x)
∑

y∈Hn

(

φ

(

ν +
δy

K

)

− φ(ν)

)

b(x)((1− ε)1x=y + εm(x, y)1x 6=y)

+
∑

x∈Hn

Kν(x)

(

φ

(

ν −
δx

K

)

− φ(ν)

)



d(x) +
∑

y∈Hn

c(x, y)

K
Kν(y)



 .

From a result of Ethier and Kurtz in [4] it follows that in the limit of large popula-
tions, i.e. as K tends to infinity, the scaled stochastic processes (νKt )t≥0 converge
on finite time intervals to the solution (νt)t≥0 of the system of differential equa-
tions

ν̇t(x) =



b(x)− d(x)−
∑

y∈Hn

c(x, y)νt(y)



 νt(x) + ε

(

∑

y∼x

b(y)m(y, x)νt(y)− b(x)νt(x)

)

.

These are similar to Lotka-Volterra equations but include an additional mutation
term. We only allow mutations between neighbouring traits, corresponding to
mutations of single genes. However this, and everything that follows, can be
generalized to finite directed graphs, where each vertex represents a trait and each
directed edge a possible mutation.
The main objective of the talk is to study the convergence of the deterministic
system in the limit of rare mutations, i.e. as ε tends to zero. The techniques used
to show the convergence are inspired by Bovier and Wang’s work in [2]. There is
a separation of time scales with slow exponential growth of the mutant traits up
to a threshold and afterwards a fast invasion phase.
In this context the notion of invasion fitness is introduced. For a subset of traits
x ⊂ H

n coexisting at equilibrium density, fy,x describes the exponential growth
rate of a single mutant y in this population. This defines a fitness landscape that
depends on the current state of the system.
The evolution of the population is approximated piecewise. First, while the co-
existing resident traits stay close to their equilibrium, the mutants starting out
with population size ν0(y) ≈ ελy are approximated by exponential functions that
include the growth of the trait by itself, as well as the growth due to mutants from
faster growing neighbouring traits.

νt(y) ≈
∑

z∈Hn

e
tfz,xε

|y−z|
ε
λz .

Inserting the time scale ln 1/ε, we attain that the first traits to reach an ε-
independent threshold η > 0 are realizing the minimum

min
y∈Hn

min
z∈H

n

fz,x>0

|y − z|+ λz

fz,x
ln

1

ε
,

which is exactly the time when the threshold is reached.
Afterwards, the invasion of the resident traits is approximated by the mutation
free Lotka–Volterra system (setting ε = 0 in the system of differential equations
above). As shown in [3], under certain positive definiteness assumptions on the
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competition kernel, a new stable equilibrium is attained.
In the limit the subcritical traits can be neglected and, combining the two approx-
imations, the system converges to an adaptive walk that jumps between Lotka–
Volterra equilibria.
The next step in future research will be to combine both limits and let ε = εK
tend to zero as K tends to infinity. To ensure that mutations are not separated,
i.e. that all traits will appear as mutants within a time of order 1 and before an
invasion takes place, the scaling would have to fulfil εK ≥ K−1/n. This is a much
larger mutation probability than the one in [1] for example, where mutations are
separated.
In the last part of the talk it is briefly discussed how a generalized version of the
above stochastic model can be used to study immunotherapy of skin cancer. This
is done in cooperation with the group of Prof. Michael Hölzel at the University
Hospital Bonn.
The generalized model includes several types of cancer cells, characterized by their
geno- and phenotype, interacting with cytotoxic T-cells and different chemokines.
In addition to birth, death, competition and mutation it also models a phenotypic
switch and various therapeutic effects.
The stochastic model has been implemented to simulate the process of T-cell
therapy. The challenge is to estimate the parameters to fit the experimental data.
If this is successful it serves as confirmation for the proposed pathways.
In addition, a future version of the program will combine deterministic simulation
of frequent events and stochastic simulation of rare events.
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Spatially structured population and trait substitution sequence model

Hélène Leman

The spatial aspect is an important issue in ecology. In particular, we are con-
cerned here with the interplay between spatial structure and Darwinian evolution
under two main biological assumptions : rare mutations and large population size.
We use the individual-based model first introduced by [1] to describe a spatially
and phenotypically structured asexual population. The dynamics of the process
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is driven by a birth and death diffusion process, in which each individual i is
characterized by

• its location X i
t ∈ X , open and bounded subset of Rd,

• its phenotypic trait U i
t ∈ U , countable subset of Rq.

The total population is represented at any time t by the finite measure

νKt =
1

K

Nt∑

i=1

δ(Xi
t ,U

i
t )
,

with δy the Dirac measure at y and Nt the number of individuals at time t. The
parameter K scales the population size and the biological assumption of large
population size is stated by K → +∞.

Any individual with phenotypic trait u moves according to a diffusion process
normally reflected at the boundary ∂X with diffusion coefficient mu.

An individual with characteristics (x, u) ∈ X × U gives birth at rate bu(x).
The offspring appears at the location of its parents. A mutation may occur with
probability qKp, making the phenotypic trait of the offspring different from the
one of its parent. The law of the mutant trait is then given by a kernel k(x, u, ·).
The parameter qK scales the mutation probability and the biological assumption
of rare mutations is stated by qK → 0.

The natural death rate is du(x). Moreover, a competition is exerted by any
individual (y, v) on any individual (x, u) and depends on the location y and on the
two traits through a competition kernel c : U × X × U → R

+. For the population
ν = 1

K

∑n
i=1 δ(xi,ui) ∈MF (X ×U), the competitive pressure exerted on individual

(x, u) is

c · ν(x, u) =
1

K

n∑

i=1

cu,ui(xi) =
1

K

∫

X×U

cu,v(y)ν(dy, dv).

Hence, the total death rate of the individual is d(x, u) + c · ν(x, u).

Assuming that mutational scale and ecological scale are separated, our aim is
to describe the microscopic model in the mutation scale t 7→ t/(KqK).
Firstly, a macroscopic approximation of the microscopic model has been proved
in [1] as a large population limit and in the ecological scale (short scale) where
mutations do not appear. They proved that, when K goes to infinity, the sequence
of processes (νKt , t ≥ 0)K>0 converges in law to a deterministic process that ad-
mits a density (gu(t, x), t ≥ 0) solution to the following equation with Neumann
boundary conditions

∂tg
u(t, x) =

[

bu(x)− du(x) −

nU∑

k=1

∫

U

cuk,u(y)guk(t, y)dy

]

gu(t, x) +mu∆xg
u(t, x).

We study this equation to understand the behaviour of the process besides mu-
tations, in the particular cases of a dimorphic population (two traits u and v are
involved). According to [2], the equilibrium reached depends on the signs of the
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fitnesses f(u, v) and f(v, u) where f(v, u) is the invasion fitness of the individuals
with type v in a resident population with type u and writes

f(v, u) := Hvκuu −Huκvu,

with

• Hu (resp. ḡu) the principal eigenvalue (resp. eigenvector) of the operator
φ 7→ mu∆xφ+(bu−du)φ with Neumann boundary conditions on ∂X (resp.
such that

∫

X cuu(y)ḡu(y)dy = Hu),

• for any (u, v) ∈ U , κvu :=
∫

X
cvu(y)ḡu(y)dy

(∫

X
ḡu(y)dy

)−1
.

Secondly, we go back to the microscopic and stochastic process. Introducing a
mutant individual of type v in a resident population with type u at equilibrium,
we derive the probability for its offspring to survive. Using the previous studies
and a study on branching brownian motion (see Section 4 of [3]), we can prove
that the probability of invasion success of the descendants of the v-individual can
be described by means of its geographical birth position x0 and a function φvu

which is positive on X if and only if f(v, u) > 0.
To end, we state the following theorem which describes the convergence of the
microscopic model to a spatial structured Trait Substitution Sequence (TSS) under
the separation of time scales introduced in [4]. The TSS model, introduced by Metz
and al. [5], describes the succession of invading advantageous phenotypic traits
as a jump Markov process in the space of phenotypic traits. The originality here
comes from the fact that we also deal with a spatial component that makes the
process infinite dimensional.

Theorem 1 ([3]). We assume that for any u, v ∈ U , either f(v, u) < 0, or
f(v, u) > 0 and f(u, v) < 0 (no coexistence) and (separation of time scales)

log(K)≪
1

KqK
≪ eKV , for any V > 0.

Then for any T > 0,
(

νK(t/KqK)

)

t∈[0,T ]
converges as K → +∞, in the sense of

the finite dimensional distributions, to a jump Markov process (Λt)t≥[0,T ] which
belongs to the subspace {ḡu(dx)δu(dw), u ∈ U} and which jumps from the state
gu(dx)δu(dw) to the state gv(dx)δv(dw) at the infinitesimal rate

∫

X

pbu(x)φvu(x)ḡu(x)k(x, u, v)dxdv.

Hence, the limiting jump process describes an evolutionary phenomenon using
a sequence of monomorphic equilibria characterized by their spatial patterns and
their phenotypic trait.
A natural question to continue this work would be to find a canonical equation
of adaptive dynamics in this spatial context, that is, we would like to understand
how the jump process evolves in an asymptotic of small mutation steps.
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Node balanced graphs and subgraphs of deterministic and stochastic
reaction networks

Daniele Cappelletti

(joint work with Elisenda Feliu, Badal Joshi and Carsten Wiuf)

Chemical reaction networks (CRNs) are mathematical models mainly used to
study the time evolution of biochemical systems. If, for example, a molecule
of a chemical species A can bind to a molecule of a chemical species B to form 3
molecules of a chemical species C, we have a chemical reaction A+B → 3C. The
set of all the reactions (finitely many) form a graph, called the “reaction graph”.
In the given example, we want to study the time evolution of the amounts of the
molecules of the chemical species A, B and C, which undergo a chemical transfor-
mation. Each reaction is associated with a rate, which is a function that depends
on the current state of the system. For simplicity, in what follows we assume
that the rates are that of the so called “mass action kinetics”, so in particular are
polynomial functions.

If many molecules are present, then the concentration of the different chemical
species are considered, and their evolution is usually modelled by means of a
system of autonomous ordinary differential equations. In this case, the model we
are using is a deterministic CRN. If few molecules are present, usually, their counts
are considered, whose change in time is modelled by means of a continuous time
Markov chain.

In the deterministic setting, the relationship between dynamical features of
the model and structural properties of the graph have been intensively studied.
Specifically, complex balanced equilibria are introduced: a complex balanced equi-
librium is an equilibrium such that, for any given node of the reaction graph, the
sum of the rates of the reactions entering the node equals the sum of the rates
of the reactions exiting from the same node. Complex balanced equilibria are a
generalisation of “detailed balanced” equilibria, which have been largely studied
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in thermodynamics. In [1, 2], important dynamical properties of complex bal-
anced equilibria are proven, such their local asymptotic stability. Moreover, it is
proven that if a complex balanced equilibrium exists, then there exists exactly one
complex balanced equilibrium in every stoichiometric compatibility class, which
are invariant regions of the dynamical system. Furthermore, it is shown that a
deterministic CRN can have a complex balanced equilibrium (for some choice of
mass action rates) if and only if every linkage class of the reaction graph is strongly
connected. In this context, a new quantity is studied: the “deficiency” of a CRN
is a number associated with the reaction graph which was introduced in [1, 2] and
further analysed in [3]. The main role of the deficiency is that of counting how
many algebraic equations need to be satisfied for a deterministic CRN to exhibit
a complex balanced equilibrium.

In the stochastic setting, a similar theory was missing. In [4], we introduced
the concept of complex balanced stationary distribution. We further show that
complex balanced stationary distributions are deeply connected to complex bal-
anced equilibria, and that a similar theory as that developed by [1, 2] hold for
stochastic CRNs. Moreover, the role of product form stationary distributions is
studied, and the converse of a result proven in [5] is shown. Namely, a stochas-
tic CRN can have a product form stationary distribution only if it is complex
balanced, and consequently only if a related deterministic CRN has a complex
balanced equilibrium.

In a joint work with Elisenda Feliu and Carsten Wiuf, I explore further the
concept of node balancing in deterministic CRNs, by considering subgraphs of
the reaction graph. Namely, we study when subgraphs of the reaction graph are
node balanced, we introduce a more general concept of deficiency and prove results
similar to those for complex balanced equilibria shown in [1, 2, 3].

Finally, in a joint work with Badal Joshi I study the connection between sub-
graph node balancing in the deterministic and in the stochastic modelling regimes
of CRNs. Some interesting links are found. As an example, a new relationship be-
tween the detailed balanced equilibria of the deterministic model and the detailed
balanced distribution of the corresponding stochastic model is unveiled, continuing
in this way the line of research proposed in [6].
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Long-time asymptotics of some stochastic reaction networks

Abhishek Pal Majumdar

(joint work with Carsten Wiuf, Daniele Cappelletti)

We consider modelling a network of species whose evolution (birth, death, con-
version) depends on the presence of species from another reaction network (called
host) that is assumed to be stochastically ergodic by itself. This model is helpful
in explaining some aspects of gene regulatory network. We studied the joint distri-
bution of the species of interest (called parasites) for a finite time point along with
analyzing the ergodicity conditions. Under ergodicity condition the equilibrium
distribution of the parasite species is found to be a mixture of Poisson where the
mixing measure can be uniquely identified as the law of the fixed point of a sto-

chastic recurrence equation (of type X
d
= AX+B) where A and B are determined

by the path-wise functionals computed from the stochastic dynamics of the host
reaction network.

This work focuses on understanding long time behaviour of a special type of
stochastic reaction networks where the evolution of a particular subset of species
depends on path-wise evolution of the rest that have separate marginal evolutions.
For example in following Gene regulatory network (with species G1, G2,P repre-
senting the de-activated, activated genes and proteins respectively) the evolution
of P depends only on presence of (G1, G2) without changing their counts:

(1) R : G1 ⇋G2, G2→P+G2, G1 +P→G1.

The marginal evolution (G1, G2) is completely described by reactions G1 ⇋G2

that do not depend on P. Steady state stochastic analysis for (1) has been
studied in different settings [1],[2], [3] where the equilibrium distribution is de-
rived only under a restrictive condition of the initial total gene counts that is
G1(0) +G2(0) = 1.

For general initial condition that method doesn’t work. In general form these
models appear as jump type Markov processes (evolution of P) under switching
Markovian regimes (controlled by (G1, G2)) where many features (like ergodic-
ity/exponential ergodicity under Wasserstein distance) were established in differ-
ent settings [4], or in diffusion type contexts [5] but no explicit form of equilibrium
distributions are available.

Here we characterize the invariant measure in closed form for a generalized ver-
sion of (1) that is also applicable for arbitrary initial condition (which is important
in various examples of synthetic biology and wasn’t considered before in literature).
These characterizations involve a connection with solution of “Stochastic Recur-
rence Equation” [6]. We call the generalized version of (1) as Host-parasite
reaction network where one partitions the reactions R in two sets R = R1∪R2,
such that R1 completely describe the stochastic evolution of species taking part in
them (call as host) denoted by S1. Denoting the species S2 taking part in R2 we
call the species S2 \ S1 as parasites (since their evolutions are conditional on the



1800 Oberwolfach Report 28/2017

path-wise evolution of hosts). For example in (1) we have R1 = {G1 ⇋G2}, and
R2 = {G2→P+G2, G1 +P→G1} and {G1, G2}, {P} are respectively called the
host and the parasite. Following we consider a particular host-parasite reaction
network model:

1. Production-Conversion-Degradation process

In presence of genes G = {G1, . . . , Gn1}, n2 different types of proteins
{P1, . . . ,Pn2} evolve through following reactions R2 := PR2 ∪ CR2 ∪ DR2 such
that for 1 ≤ i, j ≤ n2

Production (PR2) : G0i −→ G0i +Pi,(2)

Conversion (CR2) : Gij +Pi −→ Gij +Pj ,

Degradation (DR2) : Gj0 +Pj −→ Gj0,

where {Gij : 0 ≤ i, j ≤ n2} are complexes made of genes {G1, . . . , Gn1}. Here
G = {G1, . . . , Gn1} is the set of host species specified by arbitrary R1 which does
not include any parasite species P := {P1, . . . ,Pn2}.

Keeping same species notations we denote the vector of counts of gene and
protein molecules (G,P) at time t > 0 by G(t) := (G1, . . . , Gn1)(t),P(t) :=
(P1, . . . ,Pn2)(t) respectively. The joint evolution of

(
G(t),P(t)

)

t>0
in (2) can

be expressed as

G(t) = an ergodic continuous time Markov chain on a state space(3)

⊆ N
n1with marginal stationary distribution π(·),

P(t) = P(0) +
∑

i∈PR2

N0i

(∫ t

0

λ0i(G(s)) ds

)

ei

+
∑

(i,j)∈CR2

Nij

(∫ t

0

λij(G(s))Pi(s) ds

)

(ej − ei)

+
∑

j∈DR2

Nj0

(∫ t

0

λj0(G(s))Pj(s) ds

)

(−ej)(4)

where {Nij(·) : i, j = 0, . . . , n2} is a set of independent unit rate Poisson processes,
ei is the i-th column vector of an identity matrix of order n2, {λij(·) : Nn1 →
R; i, j = 0, . . . , n2} is a set of functions specified by how the complex Gij is
composed of the co-ordinates {G1, . . . , Gn1}.

A sample result of the equilibrium distribution of {G(·),P(·)} is following. De-

noting the i-th hitting time of G(·) at state j by τ ji , under certain regularity
assumptions we found that {G(·),P(·)} is jointly ergodic. Moreover the joint
equilibrium measure µ∞ for the aggregate chain

(
G(t),P(t)

)

t>0
is found to be a

“Mixture” of Poisson distribution where the mixing measure can be expressed
as a solution of the following Stochastic Recurrence Equation

(5) Z
L
= BjZ + Cj , Z ⊥ (Bj , Cj).
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Explicit forms of (Bj , Cj) are respectively matrix and a vector valued integral

type functionals that are determined by chain G(·) over a recursion cycle (τ j1 , τ
j
2 ]

at state j which is randomly generated from π. It’s a closed form expression that is
derived using ideas of a regenerative renewal process. This characterization is very
helpful for sampling from the equilibrium distribution however some complications
arise while computing the rare events which we .
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