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MIS-11 duration key to disappearance of
the Greenland ice sheet

Alexander Robinson'23, Jorge Alvarez-Solas'?, Reinhard Calov3, Andrey Ganopolski® & Marisa Montoya'2

Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope
Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this
time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it
remains unclear how such conditions led to an almost complete disappearance of the ice
sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain
estimates of regional temperature anomalies and Greenland's contribution to the MIS-11
sea-level highstand. We find that Greenland contributed 6.1m (3.9-7.0m, 95% credible
interval) to sea level, ~7kyr after the peak in regional summer temperature anomalies of
2.8°C (2.1-3.4°C). The moderate warming produced a mean rate of mass loss in sea-level
equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial
conditions around Greenland was a necessary condition for the ice sheet to disappear almost
completely.
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he globally averaged MIS-11 sea level is estimated to have

reached between 6-13 m above that of today!. With only a

small contribution from thermal expansion of the ocean,
this implies that significant parts of either or both the Greenland
ice sheet (GrlIS) and the West Antarctic ice sheet disappeared
during this time. While direct evidence of ice-sheet volume and
area changes during past interglacial periods is generally not
available, several palaeo records point to a significant reduction of
the GrIS during MIS-11.

Ancient DNA has been identified in the silt beneath the DYE-3
ice core pertaining to several boreal forest species including Alder,
Spruce and Pine, as well as that of some insects?. The existence of
such material, most likely local in origin, indicates that most or all
of southern Greenland, and particularly the DYE-3 location,
was ice free for a period of time. Approximate dating of this
material suggests that it predates the last interglacial period
(ca. 130-115kyr BP), which makes MIS-11 a likely candidate.
Recent dating of air trapped near the base of the ice core also
suggests that the oldest ice at DYE-3 may have appeared at the
end of MIS-11, though this result is highly uncertain®.

This finding is further supported by oceanic sediment records.
Pollen obtained from cores off the southern coast of Greenland
corroborate the existence of a pronounced increase in abundance
of several species of boreal vegetation?. The high concentrations
of pollen and the proximity of the core make southern Greenland
the most likely source. In addition, analysis of a core on the Eirik
Drift shows a cessation of proglacial sediment deposition during
MIS-11, consistent with retreat of the ice sheet from most
bedrock terrane boundaries of southern Greenland”, that is, south
of 69 °N.

Meanwhile, air trapped in the basal layers of the GRIP ice core
(drilled at the present-day summit of the ice sheet) has been
estimated to date to around 1 Myr BP>. Furthermore, analysis of
cosmogenic elements in the soil beneath the ice sheet shows that
the glacial landscape there has been preserved over the last few
million years®. These data indicate that it is unlikely that this
location became ice free for any extended period of time since the
glacial inception of Greenland.

The above palaeco information provides complementary
constraints on the Greenland climate and ice-sheet extent during
this time. The DNA and pollen records provide information
about local climatic conditions over southern Greenland, while
the sediment records, ice core dating and the summit landscape
dating give lower and upper bounds, respectively, to changes in
ice area in key locations.

Indeed, Reyes et al.> recently proposed that a large sea-level
contribution from Greenland of 4.5-6 m during this time would
be consistent with the above evidence. Their conclusion was
obtained by comparing the constraints with published
simulations of GrIS retreat in different scenarios (MIS-5e,
global warming). However, no regional ice sheet model
simulations have yet been performed for Greenland under
MIS-11 climatic conditions, precluding a rigorous comparison
with the data until now.

Most importantly, what also remains unclear is the key factor
responsible for the decline of the ice sheet. Insolation was not
anomalously high compared to today throughout most of
MIS-11, and temperatures in the region were likely not as high
as during MIS-5e (ref. 4)—the most recent period when the GrIS
lost significant volume. However, temperatures most likely did
stay warmer than present around Greenland for much longer
than during MIS-5e (refs 4,5,7). As suggested by Reyes et al.’, this
may mean that the GrIS crossed a stability threshold in
temperature that allowed the ice sheet to decline over several
thousand years. In general, the rate of ice-sheet decline is
proportional to the magnitude of the temperature anomaly above
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such a stability threshold—estimated for Greenland to be around
1-2°C given present-day insolation®.

In order to better understand this time period, we use the
above palaeo information to constrain an ensemble of simulations
of the GrIS through MIS-11. The coupled climate-ice-sheet
model REMBO-SICOPOLIS?!? is used to complete transient
simulations that start at 550kyr BP (to properly initialize
the ice sheet) and run through MIS-11 until glacial conditions
are reached again. Simulations are considered valid when the
GRIP location always remains ice covered and the DYE-3
location becomes ice free at some point during the warm period.
In addition, the simulations that exhibit more ice-free area
south of 69 °N are considered to be more likely. A 300-member
ensemble consisting of perturbed model parameters (two
parameters) and temperature scaling (one parameter) was
generated via Latin Hypercube sampling!'!. By applying the
palaeo constraints described above, we checked the plausibility of
each simulation and generated probabilisitic estimates of both the
climatic forcing and ice-sheet evolution (see Methods for more
details).

Results

Greenland during MIS-11. The MIS-11 regional positive sum-
mer (June-July-August mean) temperature anomalies in our
simulations are coincident with positive anomalies in summer
insolation peaking near 411 kyr BP (Fig. 1). The applied summer
temperature anomalies range from 1.6 to 3.6°C, while the
duration of these anomalies above 0°C ranges from 12.8 to
17.5 kyr. The wide range of interglacial trajectories sampled result
in a GrIS response ranging from almost no mass loss to complete
deglaciation. The application of the palaeo constraints to the ice-
sheet extent (DYE-3 and southern Greenland ice free, GRIP ice
covered), however, limits the magnitude and duration of summer
temperature anomalies to a range that reflects the fact that
temperatures needed to be high enough for a long enough period
of time to melt ice away from southern Greenland, but not high
enough to melt the ice sheet completely (Fig. 1). From the con-
strained simulations, we estimate that the peak MIS-11 regional
summer temperature anomaly was 2.8°C (2.1-3.4°C, 95%
credible interval) relative to present day, with a duration of
positive regional summer temperature anomalies of 16.1kyr
(14.3-17.3kyr). The corresponding most likely peak sea-level
contribution from the GrIS was 6.1 ms.le. (sea level equivalent)
(3.9-7.0ms.le.) (Fig. 2a).

The majority of the ice-sheet response lags the temperature
forcing. Retreat begins around the time that temperatures above
those of present day are reached in the model. When the summer
temperature anomaly reaches its maximum at around 411 kyr BP,
the GrlIS has already lost between 1-3ms.le. of ice. This is also
when peak rates of mass loss of around 0.8 ms.l.e. per kyr are
seen (Fig. 1). The maximum total GrIS mass loss is reached about
5-8Xkyr after the peak in temperature anomalies, due to a return
to temperatures colder than the present day. The simulated GrIS
never reached equilibrium during the MIS-11 interglacial period,
which implies that the ice sheet would have disappeared
completely had the warm climate persisted. In addition, a much
longer time is needed to regrow the ice sheet than was needed to
melt it, even though the applied climatic forcing is essentially
symmetrical. This can be attributed to the fact that the
accumulation rate during the colder glacial period is much lower
than the rate of melting during the warm interglacial period. In
general, the lag and asymmetrical evolution of the ice sheet with
respect to the forcing highlight the fact that the GrIS is a system
with strong inertia and inherent hysteresis in the temperature
phase space®12.
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Figure 1 | MIS-11 time series. Insolation anomaly (W m ~2) for March-September at 72 °N (a) and regional summer (JJA) temperature anomaly (°C)
forcing (b) relative to present day, simulated sea-level equivalent volume loss (m s.l.e.) of the Greenland ice sheet (¢) and simulated rate of sea-level

contribution (m per kyr) (d). In b-d, the grey lines show the individual simulations, while the shaded blue band and thick blue line indicate the constrained
95% credible interval and the most likely simulation, respectively.
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Figure 2 | MIS-11 peak estimates. Posterior probability distributions for the maximum Greenland ice sheet contribution to sea level versus the maximum
regional summer temperature anomaly (a) and the minimum ice cover south of 69 °N (b). Invalid (open circles) and valid (solid circles) simulations are
shown, as well as the most likely simulation (red diamond). The shading represents the 2D probability density estimate which combines the prior ensemble
with the posterior weighting as described in the text, while the lines show the 1D equivalent. The exponential weighting function (solid line in the inset) was
used by default, while uniform weighting was also tested (dashed lines), giving similar locations of the probability density maxima.
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Comparison with proxies. The simulated magnitude of warming
during MIS-11 compares well with proxy data for sea surface
temperatures just off of the Southern Coast of Greenland.
De Vernal and Hillaire-Marcel* present a reconstruction that
shows a maximum of 3.2+1.1°C summer warming. Our
simulations support the notion of such moderate warming
during this time, since warming higher than 3.4°C leads to a
violation of the ice-covered GRIP constraint given that
temperatures stay above present day for ca. 16 kyr ago.

The valid simulations show that southern Greenland was ice
free for several kiloyears. For example, DYE-3 was most likely ice
free for around 10 kyr ago between 410 and 401 kyr BP. Of a total
of 0.6x10°km? land area south of 69 °N (demarcating
the southern bedrock terranes), a minimum of 19% (8-37%)
ice-covered area was reached, with only the high elevation
mountainous regions remaining ice covered. Such a significant
deglaciation in the South is consistent with the cessation of
proglacial sediments for several kiloyears during this time
period®. We also find that the minimum southern ice-covered
area is essentially linearly correlated with the maximum
contribution to sea level (Fig. 2b). Given the high likelihood of
most or all southern ice disappearing during MIS-11 (ref. 5), this
supports our upper estimate of the sea-level contribution of
6.1 ms.le. as being most likely. Note that this estimate remains
the same even without additional weighting of simulations with
more southern ice loss (see Methods), although the uncertainty
increases (Fig. 2a).

A greatly reduced central dome of ice remains intact
throughout MIS-11 for the valid simulations. This is consistent
with the constraint of an ice-covered GRIP location®. In addition,
our simulations show that the GRIP location stays frozen to the
bed throughout the interglacial period. The contemporaneous
summit migrates towards the East as the ice sheet retreats, which
results in moderate ice motion in the region of the GRIP location
due to deformation. This favours a slight warming in the ice basal
layer. However, the reduced ice thickness also allows colder
temperatures from the surface to penetrate to the base. The latter
effect dominates in our simulations, resulting in temperatures in
the basal ice at the GRIP location that remain below the pressure-
melting point. Our simulations thus support the suggestion of
Bierman et al.® that the ice sheet remained frozen to the bedrock,
given the well-preserved glacial landscape there.

Boreal forest growth. The modelled climatic conditions during
MIS-11 are also consistent with the growth of boreal forest in
southern Greenland, particularly at the time of the maximum
summer temperature anomaly (Fig. 3). Most simulations show
significant forest cover along the low elevation southern coast by
around 411kyr BP, which could be the source of the pollen
increase recorded in ocean sediments?, as well as inland on the
western coast at latitudes between 65-70 °N where the ice has
already retreated. DYE-3 is also ice free at this time, which would
allow deposition of boreal forest DNA from nearby sources.
When the ice sheet reaches its minimum extent (ca. 403 kyr BP),
much less forest cover is simulated, since air temperatures over
ice-free land have already started to decline by this time due to
lower summer insolation.

Our simulations thus indicate that most boreal forest growth
would have occurred at the peak of regional summer insolation
(and summer temperatures) at around 411 kyr BP. This result is
so far inconsistent with the timing of the peak pollen deposition
about 5-15 kyr later in the ocean sediment record*. However, the
dating of the core during this period could likely be improved.
The age model* was determined by correlating the core’s 580
record with the global §'80 stack of Lisiecki and Raymo!3.
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Comparison of the two records reveals a clear lag of the ocean
sediment record of about 10-15kyr ago during MIS-11.
Correcting for this lag would bring the timing of the pollen
record into close agreement with our results.

Comparison with MIS-5e. Our best estimate of MIS-11 regional
summer warming of 2.8°C is lower than recent estimates for
MIS-5e (refs 14-16) of 3-5 °C, yet the expected mass loss of 6.1 m
exceeds recent estimates for MIS-5e of between 0.6-4.3m
(refs 17,18). More recently and using the same model as
presented here, Yau et al'® show that for MIS-5¢ warming of
almost 5°C, the GrIS can be expected to lose around 5m sle.
While uncertainty persists for MIS-5e, the range of all estimates is
much lower than we predict for MIS-11. In fact, a comparison
with analogous results for MIS-5e (Figs 4 and 5) shows that for
any possible temperature anomaly, the ice sheet loses more mass
during MIS-11. Given that the peak insolation anomaly during
MIS-11 was lower than during MIS-5e, a larger reduction in
volume in MIS-11 seems surprising.

This difference can be attributed to the unusually long duration
of positive temperature anomalies during MIS-11, which allowed
the ice sheet enough time to react more significantly to the
climatic forcing. As hypothesized by Reyes et al>, the GrIS
becomes unstable during MIS-11 after crossing a threshold in
temperature leading to melting. However, several kiloyears are
needed to melt most of the ice sheet, due to the fact that only
moderate levels of warming were reached. Regional summer
temperatures were warmer than present day for 16kyr in the
most likely of our simulations, while for MIS-5e temperatures
were warmer than present day for only around 7kyr
(refs 15,19). The GrIS reacts immediately to warmer climates
through increased melt, but it exhibits strong inertia due to its
large size. Although the GrIS loses mass at rates up to 0.8 ms.le.
per kyr, the average rate is actually closer to 0.4ms.le. per kyr.
Thus for the estimated level of MIS-11 warming, the ice sheet
would need around 16kyr to melt away, as is seen in our
simulations.

Discussion

These simulations are the first to quantify the GrIS contribution
to MIS-11 sea-level changes from a coupled climate-ice sheet
perspective, and factors not accounted for here could affect our
estimates. First, the duration of the simulated interglacial period
is highly uncertain, and here is perturbed around that obtained
from a global climate simulation. The duration of the interglacial
period around Greenland is controlled by insolation, CO, and the
timing of the Northern Hemisphere deglaciation. The latter, in
particular, is poorly constrained for MIS-11, though it is unlikely
that the interglacial period would be shorter than that presented
here given other information from 5180 (refs 13,20) and sea-level
records?!. Tt is clear that our temperature anomaly forcing closely
follows the timing of local summer insolation anomalies over the
ice sheet (Fig. 1), which could explain a return to glacial
temperatures earlier than seen in Antarctica??. Given the inherent
trade-off between warming and interglacial duration with respect
to ice-sheet melting, if the interglacial period were longer in
reality, this would imply a lower range of plausible temperature
anomalies to achieve the same amount of ice mass loss. It is clear,
however, that the temperature anomaly must have at least
surpassed the threshold for stability of the ice sheet to be able to
induce its long-term decline.

It should also be noted that the simulated stability of the ice
sheet critically depends on changes in the modelled surface mass
balance over such a long period. We have performed a large
ensemble of simulations to account for model parameteric
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a 410.6 kyr BP

b 402.8 kyr BP

Figure 3 | Transient change. Simulated Greenland ice sheet configuration for the most likely simulation at the time of peak regional summer warming (a)
and the minimum ice-sheet volume (b). Green shading indicates the estimated boreal forest cover for each case. Black diamonds show the following ice
core locations from North to South: Camp Century, NEEM, NGRIP, GRIP and DYE-3. The 69 °N parallel is highlighted (red dashed line) as the boundary

demarcating the southern bedrock terranes.
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Figure 4 | MIS-11 versus MIS-5e peak estimates. Comparison of
ensembles of simulations for the MIS-11 (black points) and MIS-5e

(blue points) maximum Greenland ice sheet (GrlIS) contribution to sea level
versus the maximum regional summer temperature anomaly. The
regression lines highlight that for the same temperature anomaly, the
GrlS generally loses more mass in MIS-11.

uncertainty. However, better understanding of how precipitation
patterns might change during MIS-11 as a result of large-scale
atmospheric circulation changes would be valuable.

Knowledge of an ice-free southern Greenland and ice-covered
GRIP location constrains the plausible maximum sea-level

contribution of the GrIS during this time to a range of high
values approaching full deglaciation. Furthermore, the timing of
peak warming at such high latitudes likely coincides with the
maximum insolation anomaly in summer, peak ice mass loss
rates and boreal forest growth. Meanwhile, the inertia of the ice
sheet implies at least a several kiloyear delay in the maximum
sea-level contribution thereafter. These results therefore provide
new information as to the potential level of warming, contribu-
tion of the GrIS to sea level and its timing. In the future, palaeo
evidence further corroborating the timing of any of these
characteristics would go a long way to further reducing
uncertainty in our understanding of the coupled climate-ice-
sheet system.

Methods

Model. We use the coupled climate-ice sheet model REMBO-SICOPOLIS®1?,
SICOPOLIS is a 3D polythermal shallow-ice approximation ice-sheet model?* run
at 20 km resolution. REMBO is a regional energy-moisture balance model that
simulates the climate and surface mass balance over Greenland at the same
resolution, with prescribed temperatures over the ocean. REMBO uses ECMWF
reanalysis data?® as boundary forcing for the present-day climate, to which
spatially-constant monthly temperature anomalies are added in transient palaeo
simulations. Time series of sea-level changes and atmospheric CO, concentrations
are also prescribed to account for marginal forcing of the ice sheet and changes in
the radiative forcing of CO,, respectively. Insolation chan%es are calculated
internally by the model using transient orbital parameters®>. The time series of
monthly temperature anomalies, sea level and equivalent CO, were obtained from
a transient global simulation of the last 8 glacial cycles®®.

The fraction of land covered by boreal forest was calculated offline using the
vegetation model VECODE?"?8, Here, VECODE was used to calculate the
expected equilibrium vegetation coverage for a given time slice, given the annual
mean temperature, annual mean precipitation and growing degree days (GDDs) as
input.

Uncertainty. The set of simulations performed here comprise a perturbed physics
ensemble. We varied two key model parameters that affect the surface mass balance
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Figure 5 | MIS-11 and MIS-5e ice sheet distributions. Minimum ice sheet distribution for MIS-11 (a) and MIS-5e (b) given the same model parameters
(melt parameter c= — 55 W m ~ 2, precipitation sensitivity dP/dT =7.1% °C ~ 1), and the same climatic scaling factor applied to the temperature anomalies
used to force the regional climate-ice sheet model. Black diamonds show the following ice core locations from North to South: Camp Century, NEEM,

NGRIP, GRIP and DYE-3. The peak simulated summer temperature anomaly during MIS-11 and MIS-5 in this simulation was 2.8 and 2.1°C, respectively.

of the ice sheet (melt and precipitation scaling parameters), consistent with the
ensemble presented by Robinson et al® and Yau et al.!®. The ensemble of model
versions exhibits a broad ice-sheet sensitivity to climate change. The melt
parameter ¢ appears in the insolation-temperature melt equation’,

M=t (1= )+t T, (1)
prm
where M; is the melt rate, p,, and L,, are the density of water and the latent heat of
melting, respectively, 7, is atmospheric transmissivity, o is surface albedo, S is
insolation at the top of the atmosphere and ¢+ AT is a linear parameterization of
the long-wave radiation and turbulent and latent heat fluxes as a function of near-
surface temperature T. The parameter ¢ was assigned a Gaussian prior of
—55+2Wm ™2, while the modelled sensitivity of precipitation to temperature
change was assigned a prior of dP/dT=6.3 +3.3% °C ~ ! and scaled internally in
the REMBO climate model. The priors were determined through comparison with
regional and global GCM simulations under present-day and global warming
scenarios®10.

As mentioned above, the regional climate model is driven by a time series of
monthly temperature anomalies over the surrounding ocean calculated in a global
transient glacial-interglacial simulation®®. We consider the long-term time series of
temperature anomalies as a robust forcing signal, as it is strongly driven by changes
in orbital forcing (Fig. 1). However, very little data exist to constrain the duration
and magnitude of warming during MIS-11 around Greenland. For this reason, we
also applied a free scaling parameter to adjust the boundary conditions during the
interglacial period, while maintaining the shape and timing of the original curve.
This allowed us to force the ice sheet model with time series exhibiting a wide range
of plausible interglacial temperature anomalies, and to better quantify the
uncertainty of our approach.

We thus accounted for this climatic uncertainty in the simulations by
incorporating a scaling factor applied to temperature anomalies during the
interglacial period. The scaling factor, f,, was used to modify the original
temperature anomaly time series proportionally to its maximum value, dTorigmaxs
such that

AT(t)= dTug(t) +: cos<f g ¥ n$> RO @)

fend — tstart

where ty,. and f.,q are the times of the beginning and the end of the interglacial
time window. In this case we applied this scaling to the period with summer
temperature anomalies above — 2.0 °C in the original time series, corresponding to
times between — 424 kyr BP and — 395kyr BP. The width of this window and the

cosine scaling was chosen to avoid artifacts in the time series related to the
application of the scaling perturbation only during the period of positive
temperature anomalies (that is, the method ensures a smooth transition between
the original time series and the perturbed section of the time series). The scaling
factor f; was given an even prior (all values equally likely). The parameter value
combinations used in the simulations were then obtained using Latin Hypercube
sampling with a total ensemble size of 300 members.

The ensemble of simulations was constrained by first eliminating any
simulation from consideration that did not satisfy the hard constraints of an
ice-covered GRIP location at all times and an ice-free DYE-3 location at some point
during the simulation. Based on palaeo data®, we further assume a likelihood
weighting function that gives higher weight to simulations with less ice cover in
southern Greenland. The likelihood weighting function used in our ensemble was

w = exp(— 0.1 Agoutn) (3)

where w is the non-normalized weight of the simulation and A,y is the ice-
covered land area below 69 °N (%). The weight is 1 when Ay, =0 and it descends
towards zero as the ice coverage increases. The exponential coefficient of 0.1 was
chosen such that the weight approaches zero at around 50% southern Greenland
ice coverage, which is consistent with the ice-free DYE-3 constraint. The weighting
function is shown in the inset of Fig. 2b. To ensure that our overall conclusions
are robust, we tested various coefficients, as well as no additional weighting

(also shown in Fig. 2b), with similar results.

The probabilistic information presented in this paper was calculated from a
weighted Kernel density estimate (KDE) of the probability distribution, given the
prior and posterior weighting as described above. We used the R package ks’*’ to
calculate the 2D KDE for the variables maximum summer temperature anomaly
and maximum sea-level contribution. The 2D density estimate was used to
determine the 95% credible intervals and the most likely simulation.

Data availability. All numerical code used in this study, analysis scripts and the
model results are available from the authors upon request.
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