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ApstrACT. Optimal a posteriori error estimates in L>(0,T; L?(f2)) are derived for the finite
element approximation of Allen-Cahn equations. The estimates depend on the inverse of a
small parameter only in a low order polynomial and are valid past topological changes of the
evolving interface. The error analysis employs an elliptic reconstruction of the approximate
solution and applies to a large class of conforming, nonconforming, mixed, and discontinuous
Galerkin methods. Numerical experiments illustrate the theoretical results.

1. INTRODUCTION

In this paper, we derive optimal a posteriori error estimates in L>°(0,T; L?(Q2)) for the finite
element approximation of the Allen-Cahn problem

Ou—Au+e2f(u)=0 1in (0,T) x Q,
(1) Opu =0 on (0,7) x 0,
u(0, ) = ug,

with T > 0, Q CRY, d = 2,3, up € L%(Q), f(u) = uv® —u, and 0 < ¢ < 1. Our ultimate goal
is to prove estimates that are robust in the small parameter € past generic singularities in the
evolution described by (1).

The mathematical model (1) is the simplest version of a phase field model and was introduced
in [AC79] to model the motion of phase boundaries by surface tension. The interface I'y :=
{z € Q: u(x,t) = 0} separates regions in which u(¢,-) ~ +1 from those in which u(t, ) ~ —1.
As € — 0, the evolution of the interface approaches the motion of a hypersurface governed
by Brakke’s mean curvature flow |Bra78, Ilm93|. An important feature of the diffuse interface
model (1) is that topological changes in 'y are captured whereas sharp interface models typically
require artificial adaptations to model such effects.

A straightforward error analysis for the numerical approximation of (1) leads to an exponential
dependence of error estimates on e . The first successful attempt to establish robust a priori
error estimates, i.e., error estimates that depend on ™! only in a polynomial, for the approx-
imation of Allen-Cahn equations is due to [FP03]. Those results are based on uniform bounds
for the principal eigenvalue of the linearized Allen-Cahn operator about the exact solution, i.e.,
for the quantity

[Voll? + (' (u(t))v, v)

—Aac(t) =
act) = 38 o RIE ’

where (-,-) and || - || denote the inner product and the norm in L?(f2), respectively. Such
bounds are available as long as (1) describes the smooth evolution of a developed interface T,
cf. |[AF93, Che94, dMS95|. The ideas of [FP03| have been carried over to an a posteriori error
analysis in [KNS04, FW05| employing a continuation argument. Instead of using a priori bounds
for Aac(t) to derive a posteriori error estimates, it has been proposed in [Bar05| to extract the
relevant information about the stability of the evolution from the approximate solution U by
considering the principal eigenvalue of the linearized Allen-Cahn operator about U(t), i.e.,

V]2 + (f'(U(¢)v,v) .
ve HH(Q)\{0} [v]]?

—AAc(t) =
This still allows to rigorously derive a posteriori error estimates and establishes a mechanism to

detect critical times at which uniform bounds for A4¢ and its approximation A ¢ break down.
In the recent paper [BMOO09b| it has been shown that the weaker bound

T
/ AGo(t)dt < Co +log(e™™)
0



is sufficient for a robust a posteriori error analysis and that this bound is realistic for generic
topological changes of Allen-Cahn evolutions. Specifically, the computable left-hand side of the
estimate enters the error estimates of [BMO09b| exponentially and hence no bounds are required
a priori.

The estimates of [BMOO09b| hold provided that the computable upper bound 7721y for the
error in L2(0,T; H'(Q)) satisfies

N2y < Ce' "

which imposes restrictive conditions on discretizations since we only expect 12 g1y ~ e5/2 (t+
h) for an implicit scheme with temporal and spatial step sizes 7 and h, respectively. The
quantity nz2(g1y also controls the error in the weaker norm of L>(0, T} L?(£2)) but this bound is
suboptimal since the optimal convergence rate is 7 + h? for the error measured in this norm. By
establishing optimal estimates for the error in L>(0,T; L?(€2)) we expect to obtain a posteriori
error estimates that are valid under less restrictive conditions on the corresponding computable
estimator 7peo(r2y.

Optimal a posteriori error estimates in L>°(0,T; L?(Q2)) for parabolic problems have been de-
rived under certain conditions on triangulations in [EJ95a, EJ95b| using duality arguments. A
different approach to the derivation of such estimates by energy techniques has been proposed
and analyzed for semidiscrete schemes in [MN03| and investigated for fully discrete schemes
in [LM06, GL08]. The approach consists in constructing at each time step ¢; a function w?
such that the approximate solution U7 of the linear parabolic problem at time tj is the Galerkin
approximation to an elliptic problem whose exact solution is w/. This concept is called ellip-
tic reconstruction and allows to derive a posteriori error estimates for parabolic problems by
reducing a large part of the analysis to known a posteriori error estimates for elliptic prob-
lems. Elliptic reconstruction may be regarded as the a posteriori analogue of elliptic projection
which has been used to derive optimal a priori error estimates in L°°(0,7'; L?(€2)) for parabolic
equations in [Whe73].

We combine the method of elliptic reconstruction of [MN03, LM06]| with techniques recently de-
veloped in [BMOO09b] to derive robust and optimal a posteriori error estimates in L°°(0,T; L2(£2))
for the numerical approximation of the nonlinear parabolic partial differential equation (1). Let
(U7)j=01,...7 C L*(2) denote a sequence of approximations to the exact solution of (1) obtained
with the implicit Euler scheme in time and some finite element method in space, i.e., for given
Ui—le V{L_l the function U7 € V{L satisfies

) U = UL Y) 4 (U7, V) =~ (F(U9), V)

for all V € V{L. Here, 7; is a time-step size, V{L an approximation space, and ai a bilinear
form on V{L that approximates the Laplace operator. We let U € H'(0,T; L%(2)) denote the
function that is obtained by piecewise affine interpolation of the approximations (U‘j)j:()ylwnﬂj
subordinate to the partition of the time interval (0,7) defined by the time steps (7;);=1,2,.. -
Under moderate consistency and compatibility conditions on the bilinear forms ai, cf. (7) and
Assumption (COMP) below, that allow conforming, nonconforming, mixed, and discontinuous



Galerkin methods, we establish the computable error bound

sup [(u—U)(s)| < max Ep2(U7;V})
s€(0,T) 7=0,1,...,J

J

+8{ > 7 (Bl AU | + 73 72Cp 1 |07 | + E2(deUT; V) +£72Cp Jmax Epa(U* Vh)
. ]_
7=0

(ZTJCCZ Uy~ RO + () - B

J
+ |luo — U°|| + E2(UY; VY) }exp<4ZTJ (1 -¢? A]C—Fl—l—a n}/)+>,
7=0

which holds provided that the terms inside the curly brackets, denoted nzec(r2), and the expo-
nential factor, denoted F, satisfy

4

6 — K
(41,Cs(1 + T))2 (B)™ s C

(3) NEes(L2) <

The symbol d; denotes the backward difference operator, —Ai is a discrete version of the Laplace
operator defined by ai, hj is a positive meshsize function, P,Z is the L2 projection onto V{L,
Cy1;s ngc,, and pg are computable quantities related to the nonlinearity f, and Kﬁo stands
for a computable upper bound for Asc(t;). We refer the reader to the subsequent sections
for further details. It is important to notice the linear accumulation of error estimators for
space and time discretization residuals in the first sum inside the curly brackets on the right-
hand side of our error estimate. To evaluate the upper bound it is not necessary to compute
A%Uj explicitly since this term is known from (2). Moreover, the computation of the nonlocal
operator Pj can be avoided if the scheme (2) and the error estimate are slightly modified by
1ncorporat1ng appropriate local mesh transfer operators, cf. Remark 4.4 below. For lowest order
conforming methods based on regular triangulations ’T] of © that define the spaces V] the
estimator Er2 (U7 ,Vh) is, up to generic constants, given by

£12(U7:V9) = |03 (57 (W7 = BT 2 BLAWO) ||+ 152 (V07 ] ey

where we use standard notation for the jumps across element sides contained in .7-",{, cf. Re-

mark 4.1 below. Analogously, the estimator ELz(dtUj;Vfl_l/Q) is given by

< 2 -1 Jrri—1 —2pJ 7 3/2 J. ) .
Era(dU7; V) = ||R3dy (7 (U7 — PIUT™Y) + 2 PLF(UD))|| + ||B5° [V U7 - m #illl 2z
where the triangulation ’i;f defines @% and is the finest common coarsening of ’Z;f and ’Z;Lj_l.
A similar estimator is needed to obtain pointwise control over certain residuals related to the
nonlinearities in the error equation.

We expect that nzec(p2) ~ e 7/2 (7+h?) and therefore, we obtain a significantly weaker condition
for the validity of the error estimate than the one in [BMOO09b]. For smooth evolutions of
developed interfaces we deduce E ~ 1 from [Che94, dMS95] while for evolutions that undergo
topological changes we observe E ~ ¢™" with a small number «, cf. [BMOQ09b|. In particular, F
does not grow exponentially in 1.

As a byproduct we obtain an error estimate in the seminorm of L?(0,T; H'(2)) that holds under
a significantly weaker condition than the one stated in [BMOO09b], namely, if (3) holds then we



have for a lowest order conforming method that
T J
Ts - i1 . . _
= )6 s < 3 T 5 (07 V) 5 0 90)) + 2 B
§=0

with [|| - [ = IV - [ and

(U = Iy (77 (U7 — PUIY) 4 2B | + 2907 ] o

In contrast to the result of [BMO09b| we assume H? regularity of the Laplace operator in {2 and
we require one additional order of differentiability of the potential function f here. A similar
result can be derived for nonconforming and discontinuous Galerkin finite element methods by
choosing an appropriate extension || - ||| of the seminorm in H'(€2). For ease of presentation we
do not aim at stating the most general conditions on discretizations that lead to such estimates
and instead refer the reader to [GLO08| for a related, more detailed discussion in case of the linear

heat equation.

Our estimates naturally lead to adaptive algorithms for the efficient approximation of (1) by
local mesh refinement. The contributions to the right-hand sides of our estimates can be catego-
rized into localizable estimators related to spatial and temporal discretization errors as well as
mesh-change and oscillation residuals which allows an individual local adjustment of time-step
and mesh-sizes. Owing to the strongly localized features of solutions to (1), adaptivity is of
fundamental importance for the development of efficient approximation schemes and the tech-
niques discussed in this paper directly transfer to other, more sophisticated phase field models
such as Ginzburg-Landau, Cahn-Hilliard, and Cahn-Larché equations, cf. [BM08, BMO09a).
In particular, the estimates presented in this paper do not rely on the validity of a maximum
principle.

The outline of this paper is as follows. We state some preliminaries in Section 2, derive an
abstract a posteriori error estimate in Section 3, and discuss the application to various finite
element methods in Section 4. Numerical experiments that illustrate the reliability of our method
are reported in Section 5.

2. PRELIMINARIES

Let Q C R? d = 2,3 be a bounded, polygonal or polyhedral Lipschitz domain. The outer unit
normal on Jf) is denoted by n and 9,v is the normal derivative of a function v on 0€2. For a
real number r > 0 we set B,.:= {z € R’ : |z| < r}; the positive part of a real number is denoted
by sT, i.e., sT = max{s,0} for all s € R. Standard notation is used for Sobolev and Lebesgue
spaces and we write || - || whenever || - [[12(q) is meant; (-,-) is the inner product in L2 (;RY),
¢ € N. For a Banach space X its dual is denoted X* and (-;-) is the corresponding duality
pairing. We define

V:=HYQ)
and write || - ||« for the induced norm on V*. The bilinear form a : Vx V — R is for v,w € V
defined through
(4) a(v,w) := (Vv, Vw).

We assume that 0 < & < 1 and that the potential function f has the following properties.

Assumption (POT). (i) There exists a nonnegative function F € C3(R) such that f = F'.
(i) There exists Cy > 0 such that f'(u) > —C} for all u € R.

(15i) There exist § > 0 with 6 < 2 if d = 2 and 6 < 1 if d = 3 and a nonnegative function
g € C(R) such that for all a,b € R we have

(f(a) = f(b) = f(b)(a—b))(a—b) > —g(b)|a — b**°.



For F(u) = (u? —1)2/4, w € R, and f = F’ the estimate f'(u) = 3u? — 1> —1, u € R, and the
Taylor expansion

f(a) = f(b) = f'(b)(a — b) = 3b(a — b)* + (a — 1),
valid for all a,b € R, imply that (POT) holds with Cy =1, 6 = 1, and ¢(b) = 3|b|, b € R.

Assumption (POT) implies that there exists a unique function
u € Xac = HY0,T;V*) N L¥(0,T;V)
satisfying u(0) = ug continuously in L?(Q2) and

(5) (Bpu(t), v) + a(u(t),v) = = *(f(u(t)),v)
for almost every ¢t € (0,7) and every v € V. The function u is called weak solution of the

Allen-Cahn equation. We suppress the dependence of u upon € but stress that all appearing
constants do not depend on e~!. Notice that (5) is the L? gradient flow of the energy functional

E.(u):= %/Q|Vu|2d:n+6_2/QF(u)da:.

The following generalization of Gronwall’s lemma, which allows an additional superlinear term
that can be controlled as long as the function remains sufficiently small, is an essential tool for
our error analysis. Its proof is adapted from [KNS04, BMOQ9b|.

Lemma 2.1 (Generalized Gronwall lemma). Suppose that the nonnegative functions y; €
C([0,7)), y2,y3 € L*0,T), a € L>®(0,T), and the real number A > 0 are such that y; is
monotonically increasing and that

y1(t) + /Otyg(s)ds < A+/

; a(s)yi(s) d3+/0 ys(s)ds

for allt € [0,T]. Assume that for B >0, 3 > 0, and every t € [0,T] we have
t t
/0 y3(s)ds < Bylﬁ(t)/0 (y1(s) +ya2(s)) ds.
Set E := exp (fOT a(s)ds) and assume that AAE < (4B(1 + T)E)~Y/8. We then have
T T
y1(T) +/ y2(s)ds < 4Aexp </ a(s) ds).
0 0
Proof. Set § := 4AE if A >0 and let > 0 such that 2B(1 + T)0°E < 1 otherwise. Define

Iy := {t’ €0,7]: T(t/) = yl(t’) + /Ot ya(s)ds < 9}

Since y1(0) < A < 6 and since T is continuous and monotonically increasing we have Iy = [0, t,,,]
for some 0 < t,,, <T. For every t € [0, t,,] we have

un(t) + /0 ya(s)ds < A+ /0 a(s)y1(s) ds + Byl(t) /O (41(5) + a(s)) ds

t
<A+ / a(s)y1(s)ds + B(1 4 T)6 P,
0

An application of Gronwall’s lemma, cf., e.g., [IT79], the condition on A, and the choice of 6
yield that for all ¢ € [0, t,,] we have

N D

yi(t) + /Ot ya(s)ds < (A+ BA+T)0AE <



This implies Y(¢,,) < 6, hence t,,, = T', and thus proves the lemma if A > 0. If A =0 we may
choose @ arbitrarily small to deduce the assertion. O

Remark 2.2. The factor 4 on the right-hand side of the estimate of the lemma can be replaced
by any number bigger than 2 or by 2 if a Z 0.

3. ABSTRACT A POSTERIORI ERROR ANALYSIS

Given a sequence of positive time steps (7;);=o,1,....s that defines the partition 0 =to < t; < ... <
ty =T of (0,T) and subspaces (V)= 1,...; of L?(Q), we assume that (U7);=1,..s C L*(Q) is
such that for j =1,2,...,J we have U’ € VJ and

YU~ UL V) + a (U7, V) = —e H(f(U7), V)

for all V € V{L. Here, a{b : V?l X V{L — R is a bilinear form that approximates the bilinear form
a from (4). Equivalently, we have for j = 1,2,..., J that

(6) U7 - PlUTTY) — MUY = —e72P] F(UY),

where P}{ : L2(Q) — V{L denotes the L? projection onto V?l and —A{L : V{L — V{L is for V € V?l
defined through the identity
(A VW) = ap (VW)

for all W € V{L. We assume that for 7 = 0,1, ..., J constant functions are included in Vi and ai
vanishes for constant functions, i.e.,

(7) 1eV) and  a)(V,1)=0

for all V e Vfl. This ensures that the elliptic reconstruction of a function —AiV for V € Vfl is
well defined.

Definition 3.1 (Elliptic reconstruction). For j =0,1,...,J define
¢ = —AJUI
and let w? € V be such that
(Vw!, Vo) = (fi,v) and /ij dz = /Q U’ dx

forallv e V. Let w,U € HY(0,T; L*(2)) be for j =1,2,....,J and t € [tj_1,t;] defined through

w(t) = Gy (Bl + 6 (B,

U) = Ga (U + ()0,
where (;(t) = (t —tj—1)/7; and ;_1(t) =1 —£;(t) fort € [t;_1,1j].
Notice that for j =0,1,..., J we have

—Aw =¢ inQ, 9’ =0 on d

Moreover, owing to the definition of —Aj, we have that U7 € V{L isfor j =0,1,...,J the Galerkin
approximation of the Poisson problem with homogeneous Neumann boundary conditions and
right-hand side & = —AJ U7, i.e., we have

a(w’v) = (&,0), @ U7, V)=(&,V)
for all v € V and all V € V7.



Lemma 3.2 (Perturbed parabolic evolution). For j = 1,2,...,J and t € (tj—1,t;) define
[(w,U;t) € V* through

D(w,Ust) == Op(w — U) — Alw — w’) — 7']-_1(Uj_1 — P}{Uj_l) +e72(f(w) — P}{f(Uj)).
Then we have for almost every t € (0,T) that
(8) ow — Aw = —e 2 f(w) + '(w, Ust).

Proof. The identity follows from (6) upon noting that

U — 7 U7 - PIUTTY) = =M (U7 = PlUTTY)
and (Aw’ — A%U%v} =0foralveV. O
The motivation for the following theorem is that the quantity exp (fOT )\Xc(s) ds) is bounded by

some power of e~ and that computable bounds are available for the difference w — U in various
norms which can be made arbitrarily small by local mesh refinement.

Theorem 3.3 (General a posteriori estimate). Let §, Cy, and g be as in (POT). Suppose that
Aac € LY(0,T) is such that for almost every t € (0,T) we have

N . Vol + e 2(f(U(t))v,v
—Aac(t) < —Aac(t) = vegl\fm Vo]l ||v(||2( (t))v,v)

and assume that nro,nr1,np : (0,7) — R and pg € R are such that
(C(w,Ust),v) < nro@)|oll +nea (@) Vol
1/ (w(®)) = £ (U) | =(0) ny (1),
sup |[lg(w(s))ll L= (o) g

se(0,T

<
<

for almost every t € (0,T) and all v € V and set pp(t) :=8((1 — e?)Aac(t) + Cy +e 2np (t))+.
If

T 2 T
0= 16</ 7,0 ds) + 46_2/ 771211 ds + 4fjug — w0||2
0 0

£8/8 T -1-2/§
< 4 d
= (8ugCs(1+ T))?/é( o (/0 pnds))
then
1 T
sup [~ D)) < swp [0 = w)) +2mexp (5 [ nads)
s€(0,T) s€(0,T) 0
and, for any seminorm ||| - ||| defined on the span of VU U}‘Izo Vi such that ||[v||| = ||Vl for all
vev,

T

I~ w1 as) "+ Vaexs (5 [ nas),

(/OT|||<u—U><s>|||2ds)”2 <(]

Proof. We abbreviate ¢ := u — w and omit the argument ¢ in the following. Subtracting (8)
from (5) and testing the resulting equation by g we have, incorporating (iii) of (POT),

1d _
55\\@\\2 +[[Voll* = = 2(f(u) — f(w), 0) — (D(u, w), o)
< —e7%(f(w)o,0) + €_2|!9(w)”Loo(Q)HQH%ZS@(Q) +nroollell +nr1l[Vell
< —e2(f'(U)o,0) + & *npllol® + 6_2Mg||9||2;£fa(9) +nrollell + nr1l|Vell.



Holder’s and Young’s inequality, item (ii) of (POT), and straightforward manipulations lead to

3 dt Lijgl2 + Vel < —(1 - e 2(F (U)o 0) + Crllol* + g ol

1 g2
- 5
+ g0l + ol + 5t + Vel

The assumed property of Ao implies that we have

—e2(f'(U)o, 0) < Aacllel® + Vel
This yields that

d _ ~ - -
el +21Vel® < 2nrollell+e7*nf +2((1=*)Rac+Cre2np) ol +2e 2 pgllol 745 -

We integrate this estimate over (0,t) and employ Hélder’s and Young’s inequality to verify that

1 ¢ 2
® 5 s ol +5 [ IVelds <o) + 3 sup el +4( [ arods)
s€(0,t) se( 0

t t

_ 1 _

+e 2/ 77%‘71(13'1'1/ KA S?P)H‘an ds +2e 2:“9/ ||Q| L2+5(Q
0 0 re(0,s

where we used that supe(g ) a(s) +b(t) < 2¢(t) if a(t) + b(t) < c(t) for all t € (0,7). The
conditions on ¢ in (iii) of (POT) together with Hélder’s inequality and a Sobolev estimate
permit us to derive the bound

t t
6/2
(10) / 10180y 05 < [ el Nel oo oy ds < Cal sup 1P [ (lelP + [92?) ds

s€(0,t)
Setting

yi(t) = Sl(log)llg(S)HQ, ya(t) = 2% Va)IP, ws(t) = 8 g llo(D)1 755 g
se(0,

for almost every t € (0,7, the estimates (9) and (10) show that we are in the situation of

Lemma 2.1 with A = n?, B = 85—:_4,ugC'g, = exp (fo (s ds) and $ = 0/2. Hence, the
assumption on 7 implies that

T T
sup lo(s)|+ 22 [ [Vols)|?ds < arPexp ([ pnds)
0 0

s€(0,T)

Applications of the triangle inequality yield the asserted estimates. O

4. APPLICATION TO FINITE ELEMENT METHODS

We next discuss how Theorem 3.3 can be specified for various spatial discretizations of (1). Owing
to the employed elliptic reconstruction, this reduces to a posteriori error estimates for elliptic
equations and we assume that we are given a posteriori error estimators for the approximation
error of the Poisson problem in various norms. For the discussion of the construction of a
computable function A4c that fulfills the requirements of Theorem 3.3 we refer the reader

to [BMOOQ9b].

Assumption (ESTy»). The subspace Vy and the bilinear form ap : Vi x Vi, — R satisfy
assumption (ESTyr») if for all ¢ € L*(Q) with Jo&da = 0 the following holds: If w € V and
W € Vy, are such that fQ Wdx = widx and

a(wv U) = (5’ U) and ah(VVv V) = (57 V)



forallv eV and allV € Qh for some nontrivial subspace @h C Vy, then for p =2 and p = o0
we have

|w —Wllr) < Erp (W, &; Vi)
for a computable quantity Eppr(W, 5%§7h)-
Remark 4.1. For lowest order conforming methods assumption (ESTr») is well established

provided that the Laplace operator is H? reqular in Q, cf., e.g., [Noc95, Ver96, DDP00, NSSV06].
In particular, we may choose

E(W.& V1) = Co(Ih3, (Az W + ) + B2 IVW - ng Tl 25,
E1=(W, & V) = Coclog(bz,)* (g, (A7, W + Ol ey + IR VW -z M e 0,

if Vy, is the lowest order conforming finite element space related to the reqular triangulation Ty,
with meshsize function h?h whose minimum 1s ﬁ?h and with interelement sides contained in Fj,;

Aﬁ denotes the elementwise application of the Laplace operator on ’j}L

Another assumption is needed that guarantees compatibility of successive discretizations of the
Laplace operator.

Assumption (COMP). For j = 1,2,...,J there exists a subspace V{L_lp - V?L_l ﬂV?L and a
bilinear form

ai 1/2 . (V] 1+VJ) % W‘L—lm R
such that the pair (Vj_1/2 aj_1/2) satisfies assumption (ESTrr) and
al P+ Wy, V) = ad W, V) A+ dd (Wa, V)
for all Wy € Vi1 Wy € VI and Ve V)2,

Remarks 4.2. (i) Requiring that the pair (V{L_l/z il 1/2) satisfies assumption (ESTrr) avoids

that assumption (COMP) is trivially satisfied with the choice V?L_l/z = {0}.

(i1) Assumption (COMP) is trivially satisfied if the same spatial discretization that fulfills (ESTr»)
18 used in each time step.

(1i) For lowest order mnformmg methods assumption (COMP) 18 satisfied provided that there

erists a common coarsening ’]}L of the triangulations T] and T] that define the spaces V]
and ViL, respectively. In this case an eﬂiczen‘t choice for ViL 12 s the finite element space defined
through the finest common coarsening of’Z;f and ’Z;f_l, cf. |LMO6].

In the following, h; € L>(Q) denotes for j = 1,2, ..., J a positive meshsize function related to
the space ng' In particular, we assume that there exists a constant Ccp > 0 such that for every
veVand j=1,2,...,J we have the Clément type quasi-interpolation estimate

inf ||h7 (v = V)| < Coul[ Vo).
vevy

Given any sequence (a’)j—g 1,7 we set

dia? = T]-_l(aj —ah)
for j =1,2,...,J. If (COMP) is satisfied and all involved bilinear forms fulfill (ESTz») then we
immediately obtain bounds for the functional I'. Recall that & = AJ Ul and —Aw’ = §h for
i=0,1,..,J.



Proposition 4.3 (Computable bounds). Suppose that the pairs (Vfl,ai), j=0,1,....J, sat-
isfy (ESTrr) and that assumption (COMP) holds. Then,
(a) we have

(C(w,Ust),v) < (nro(t) + 1) o]l + 151 (&) |V
with 17%70, Nt and nf y defined for t € (tj—1,t;], j=1,2,....J by
o o B . :
Mho(t) = AL U7 = AU ||+ e72Cp |0 = T,
; i i—1/2 _
Mho(t) := E2(dU7, di&3; V3, ) re 2Cy i, k:Hﬁ}l(jgy(Uk,fili;Vi),

b1 (8) := Coury g (U1 = BIUT) | + Cee ||y (f(U7) = BLFUD))]
where for £ = 1,2 we set

(11) Cro g, = ||f(z)||L°°(ij), dj = e (1T oo @) + ELoe (U*, €53 VE));

(b) we have

sup [[(U —w)(s)| < max  Er2(U7,€];V7)
s€(0,T) J= J

and
luo — w®|| < Jluo — Ul + E2 (U, &35 V});
(¢) with Cyn 1, from (11) we have fort € [tj_1,t;], j =1,2,...,J that

1f (w(®) = ' U)r=(0) < Cpri, kg}fi?fngw(Uk,élﬁ;Vﬁ);
(d) we have

sup |[lg(w(s))l ()
s€(0,T)

= 0t (Hg(Uj)”Lw(Q) + Cg’,lj”Uj - Uj_l”L‘X’(Q) +Cy1, kf}zi}lingw(Uk’gﬁ;Vz))v

=U,1,...,

where Cy 1. is defined as in (11) with O replaced by ¢'.

Proof. (a) Given t € (tj_1,t;), j = 1,2,...,J, we recast the functional I" as

(T(w, U t),v) = (8t(w—U),v)—i—(V(w—wj),Vv)—kT]-_l(Uj_l—P,{Uj_l,v)+a_2(f(w)—f(U),v)
+ e 2(f(U) — fIUD),w) + e 2(f(UT) = PIF(U7),w) =Ty + Ta + ... + Tp

and split the proof of (a) into three parts. ‘
Part 1: time discretization residuals. Using £;_1(t) = 1 — ¢;(t) < 1 and the definitions of w’
and w/~! we have

Ty = (V[lj_1()w’ ™ + £;(t)w! —w?],Vv) = £;_1(t)(V(w ™t —wl), Vo)
= a2 U+ AT U o) < AU = AU ol
Similarly, using the identity
1
£O) = 10D = ([ £V + 0= nui ) - o)
0
we derive the estimate

Ts = e 2(f(U) = f(U7),0) < e2Cpp, U = U |[lvl] < e7*Cp g 1071 = U7 o]

10



Part 2: coarsening and oscillation residuals. For the contributions T3 and T we get for arbitrary
VeV,

T3+ Ts =7 (U = PIUT 0 = V) + e 2(f(U7) — PLf(U7),v - V)
< (r Mg (U = PIUTY |+ &2 (F(U7) = BLFOIDI) 1B (0 = V).

A minimization over V leads to the contribution nf. ().
Part 3: space discretization residuals. Noting that

a(dew’,v) = (di&), v)
for all v € V and that owing to (COMP)
a AU, V) = (dig), V)
for all V € V?l_l/z we deduce with (ESTrr) that
Ty = (d? = dU?,0) < |ldiw? = iU o] < Eca(dU?, dig V) ol
Moreover, we have
Ty = e (f(w) = f(U),v) < e ?Cprpyllw = Ull|[o]]

< e Cppy max ot = UHlllo]l < e7*Cpopy mave Er2(UP, 5 V)0l

A combination of the estimates implies (a). The proofs of (b), (¢), and (d) are analogous. O

Remark 4.4. The computation of P,{Uj_1 and ng(Uj) in the evaluation of Nt | can be avoided
by using a modified scheme which computes for j = 1,2, ...,J the function UJ € Vi such that

TN U= BUITL V) 4l (U, V) = —e 2(ILF(U7), V)

for all V € V{L. Here, Ii :C(Q) — V{L 18 an appropriate mesh-transfer operator, e.g., the nodal
interpolation operator related to Vi in case of a conforming method. The quantity 7712,1(’5) of
Proposition 4.3 is then substituted by

i o _ . . .
nfo(t) =7 U7 = BUITH| + 72| F(U7) = L F(U7)]
and the third line of the error estimate stated in the introduction is is interchanged with

7 (7 U = U+ 7| f(U7) — L F(U)]).
1

J
Jj=

A significantly weaker version of (COMP) can be imposed. If the property (COMP’) stated below
is assumed then the quantity 2 (d; U7, di&; V?l_l/Q) appearing in the estimate of Proposition 4.3
needs to be replaced by

Cra(ry U9 77 U dis VT V).

Assumption (COMP?). Suppose that for £371, &7 € L2(Q) satisfying Jo E-1dx = Jo gdx=0
and W=t ¢ V{L_l and W7 € Vi we have that
a WL VI = (@7 VT and af (W, V) = (¢0,V7)
for all VIi=t e Vi7" and VI € VI, Then
W9 =W < Cpa (VI VI € - @ VT V)
with a computable quantity Cp2(VI=1, VI &7 — Ej_l;V{L_l,V{L).

11



Appropriate error estimators are required to bound the approximation error in an extension of
the seminorm of L2(0,T; H*(92)). The following assumption and the conditions of Proposition 4.6
below hold for a large class of conforming and nonconforming finite element methods, e.g., with
the broken H' seminorm on a partition of § that is a common refinement of all employed
triangulations or partitions that define the spaces V{L, 7=0,1,...,J.

Assumption (ESTy1). The subspace Vy,, the bilinear form ap : Vi x Vi — R, and the
seminorm ||| - ||| defined on the span of V UV}, satisfy condition (EST 1) if for all £ € L*()
with fﬂgdx = 0 the following holds: If w € V and W € V}, are such that fQ Wdx = widaj
and

a(w,v) = (57'0) and CLh(VV, V) = (57 V)
for all v €V and all V € Vy, then we have
lw =Wl < Ega (W, Vi)
for a computable quantity Egr (W, &;Vy,).

Remark 4.5. Assumption (ESTy1) is well established for conforming methods, cf., e.g., |Ver96],
and also holds for mized, nonconforming, and discontinuous Galerkin methods, cf., e.g., [Car97,
RWO03, Ain05| with appropriate choices of extensions of the H' seminorm.

Proposition 4.6 (Energy norm estimate). If (ESTy1) is satisfied for all triples (V{L, afl, -1,
Jj=0,1,...,J, with the same seminorm ||| - ||| then

T J
T . . o . )
| = )61 as < 3% 2 @ 67V + £ 0. V).
j=1

Proof. For every j = 1,2, ..., J we deduce with Jensen’s inequality that
i i ; 1 2
W = w)()IP = (€1 HNT™ = 7H|[ + (L= g1 ()T — w7 )
< G = TP+ (L= ()T

Noting ﬁi?;l ¢;_1(s)ds = 7;/2 and incorporating (EST 1) implies the assertion. O

5. NUMERICAL EXPERIMENTS

We discuss our error estimate with numerical experiments leading to a generic topological change
in an evolution process governed by (1) in two dimensions. Motivated by our estimates we employ
the following strategy to efficiently simulate Allen-Cahn processes with a fixed time-step size.
We let Z7 denote the nodal interpolation operator associated to the lowest order conforming
finite element space defined by a triangulation 7.

Algorithm (ADAPT). Given a tolerance o > 0 iterate for j = 1,2, ..., J the following steps:

(a) Coarsen elements in 7c C 7;_; to obtain a triangulation 7;o with

g

c,1 _ - .
e (t) = 7 Iy (U7 = I, U < g

Set k:= 0.
(b) Compute U € VI* such that for all V € VI* we have

TN UMK — I UITL V) + (VUK YY) = —e (I, f(UPF), V).

12



(c) Refine elements K € 7, for which
Wil (U = T, UT) o+ €7 T SO+ B2 NIV U -, il oo, o0
=it = (1/2) max (el
set k:=k + 1, and go to (b) if ZKGTM (7715{20(153')|K)2 > o2
(d) Update U7 := U7*, set j:=j+ 1, and go to (a).
We tried Algorithm (ADAPT) with initial data that define a circular initial interface.

Example 5.1 (Vanishing particle). Let Q := (—2,2)?, set r := 1, and define d(z) := |z| —r for
x € Q. For given € >0 and x € Q let

ug(x):= — tanh (d(m)/(ﬁs))

FiGURE 1. Evolving interface and adaptively refined and coarsened triangula-
tions for ¢ = 0, 0.31, and 0.48 obtained with Algorithm (ADAPT) in Example 5.1
with € = 1/16 and o = ¢/10.

Snapshots of the evolution defined by the initial data of Example 5.1 for € = 1/16 together with
adaptively generated triangulations are shown in Figure 1. The approximations were obtained
with the uniform time-step size 7 = £3/16 and the parameter 0 = £/10. We see that the interface
I'; undergoes a topological change at ¢ ~ 0.49 when the particle vanishes. The employed adaptive
strategy refines the grid locally around the interface I'y where large gradients occur and coarsens
the triangulations when the interface has advanced.

For e =27¢ £ =2,3,...,6 we plotted in Figure 2 the numerically computed eigenvalue Aac(t)
(left plot) as a function of ¢ and the integral over (0,t) of its positive part (right plot), i.e., the
functions

t
t— Aac(t), t / Ao (s)ds.
0

The results of the experiment show that a uniform bound for A4 (t) breaks down when the
topological change occurs and we observe max;¢ o,7) Aac(t) ~ e72 In contrast, the integrated

1

eigenvalue grows logarithmically in €™, i.e., we have

T
(12) /0 A(8) dE ~ Cp + log(= ™).

Therefore, robust a posteriori error estimation in L>(0,T; L?(Q)) is possible past topological
changes in this prototypical example.

For fixed ¢ = 1/8 and decreasing tolerances o = 245/10, ¢ =0,1,2,3, we plotted in Fig-
ure 3 the error estimator npec(z2) defined through the approximate solution obtained with Al-
gorithm (ADAPT) as a function of ¢ € [0,0.6] and the number of degrees of freedom required
to reduce the spatial discretization residuals below the tolerance o. Consequently, we observe a

13
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FIGURE 2. Approximated eigenvalue A4¢(t) in Example 5.1 as a function of

t €[0.42,0.52] (left) and the integral of its positive part over (0,t) as a function
of t € [0,0.6] (right). The eigenvalue grows like e =2 at the time of the topological

change while its temporal integral only grows logarithmically in e~

linear relation between 7pe(z2y and o. The numbers of degrees of freedom shown in the right
plot of Figure 3 depend inverse proportionally on o, i.e., twice as many degrees of freedom are
required to decrease the approximation error by a factor 1/2. This relation corresponds to the
quadratic scaling 70 (r2y ~ h? and the fact that the theoretical mesh-size is h? = Nh_1 for the
number of nodes N}, in a two-dimensional triangulation 7. To illustrate the significant increase
in efficiency of the proposed adaptive method, we checked that to decrease the error estimator
below the largest tolerance o = £/10 using uniform grids, roughly eight times as many nodes
are required as in the case of an adaptive approach. We remark that in order to guarantee the
mesh compatibility condition (COMP) we either refined or coarsened the mesh in each time
step. Once the particle has disappeared at t = 0.49, the grid is maximally coarsened.

‘ 16720 ‘ ‘
||—0=¢/80 —0=¢/80
5-- -0=¢/40 @ - --0=¢/40
- = 0=¢/20 125 - = 0=¢/20
41—o0=¢/10 —0=¢/10
10¢ - --0=¢/10, uniform |
[%]
T T ke
sj ....... % 8F T "=~
= - 3*
2 s 6
.“"' --"---‘-‘-------- 4
1 T et e—— T
QU= ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0o 01 02 03 04 05 06 o 01 02 03 04 05 06
t t
FiGUure 3.  Estimator npe(z2) as function of ¢ € [0,0.6] (left) and degrees

of freedom of adaptively generated triangulations needed to reduce spatial dis-
cretization residuals below the tolerance o (right) for fixed ¢ = 1/8 and 7 =
0.00024.

To verify the expected scaling properties of the estimators npec(z2) and nz2(g1) we ran experi-
ments with uniform triangulations in which either € or h was fixed. The results for fixed e = 1/8
and decreasing discretization parameters h = 27¢ ¢ =5,6,7 and 7 = h?/32 shown in Figure 4
confirm that we have npe(p2) ~ h? and nr2(avy ~ h. These experimental convergence rates
can be read from the slopes of the curves shown in the left plot of Figure 6 where we displayed
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the total estimators at the final time ¢ = 0.6 versus the mesh-size h of the underlying uniform
triangulations with a logarithmic scaling used for both axes. We also observe in Figure 4 the
linear accumulation of contributions to npe(z2y while the estimator np2 g1y grows proportionally

to t1/2 in time.

5 : 3 ,
—h=1/32 —h=1/32
---h=1/64 ---h=1/64

all - - h=1/128 ] Sl - - h=1/128
~3r

=

8J

o 27

1 UL
Q=2

FIGURE 4.  Estimators 1y (z2) and 1721y as functions of ¢ € [0,0.6] for h =
1/32, 1/64, 1/128 and 7 = h?/32 and fixed ¢ = 1/8.

We ran the same experiment with a fixed uniform triangulation of mesh-size h = 1/64 and fixed
time-step size 7 = 0.00003 but varying e = 27¢, £ = 2,3,4,5. The corresponding values for
Nree(r2) and 721y as functions of ¢ € [0,0.6] are shown in the left and right plot of Figure 5,
respectively. The graphs reveal a polynomial dependence on €' and the double-logarithmic
scaling used in the right plot of Figure 6 shows that we have npec(g2) ~ e~ 7/2 and NL2(H) ~ g5/2
in this example. This can also be understood directly from the definitions of the estimators since
| D?u(t)|| < e73/% if u(t) represents a developed interface.

150

50

—&=1/32 —=1/32

---e=1/16 ---g=1/16
£=1/8 40() == e=1/8
e=1/4 e=1/4
100¢ 1
o 30
=) &
S_l N_l
ey o 207
50r
10r
0 e . . . O"_-..‘-‘-‘--‘--‘-‘-‘--‘--‘-‘-‘--‘--‘-‘-‘--‘--‘-‘-‘--‘--‘-
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
t t

FIGURE 5. Estimators 1. (z2y and nz2(g1y as functions of ¢ € [0,0.6] for ¢ =
1/4,1/8, 1/16, 1/32 and fixed mesh-size h = 1/64, 7 = 0.00003.

Although the proposed estimator 7pe(z2) has a worse dependence on e~! than Nr2(HL), 1ts
quadratic convergence in h makes it superior since a reasonable resolution of interfaces requires
h<e.
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