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Agent-based modeling and simulation for malware spreading in
D2D networks

Ziyad Benomar, Chaima Ghribi, Eli Cali Alexander Hinsen, Benedikt Jahnel

Abstract

This paper presents a new multi-agent model for simulating malware propagation in device-
to-device (D2D) 5G networks. This model allows to understand and analyze mobile malware-
spreading dynamics in such highly dynamical networks. Additionally, we present a theoretical
study to validate and benchmark our proposed approach for some basic scenarios that are less
complicated to model mathematically and also to highlight the key parameters of the model. Our
simulations identify critical thresholds for no propagation and for maximum malware propagation
and make predictions on the malware-spread velocity as well as device-infection rates. To the
best of our knowledge, this paper is the first study applying agent-based simulations for malware
propagation in D2D.

1 Introduction

D2D communications is one of the key emerging technologies for 5G networks and beyond. It enables
a direct exchange of data between mobile devices, which extends coverage for devices lacking direct
access to the cellular infrastructure and therefore enhances the network capacity. However, security
issues are very challenging for D2D systems as malware can easily compromise mobile devices and
propagate across the decentralized network. Compromised devices represent infection threats for all
of their connected neighbors as they can, in their turn, propagate malware through susceptible devices
and form an epidemic outbreak. This enables attackers to infect a larger population of devices and to
launch cyber- and physical malicious attacks. Therefore, it is of great importance to have a good
understanding of vulnerability and security issues, particularly of the malware propagation processes,
in such networks and to be able to design optimal defense strategies.

Modeling malware propagation in D2D is challenging due to the complexity of such networks induced
for example by topology or device mobility. In order to cope with this, D2D can be investigated and an-
alyzed using analytical models (e.g., stochastic geometry, stochastic processes, etc.). Some of these
approaches have been proposed to model malware spreading in D2D networks [?, ?, ?]. Neverthe-
less, classical simulation and analytical tools are often not suitable for capturing the global dynamics
of complex systems.

In this paper we propose to tackle the problem from the perspective of complex-systems science and
present a new agent-based model (ABM) in order to analyze and understand malware propagation
in D2D networks. For this, the agent-based simulation approach provides the possibility to simulate
complex-systems dynamics and to test theories about local behaviors and their emergence. Unlike tra-
ditional techniques of simulation, based on mathematical or stochastic models, multi-agent simulation
is more suitable for complex problem modeling and simulation. In fact, applying classical simulation
and analytical tools, such as differential equations, to complex systems often produces undesired com-
plications. Indeed, many challenges that arise in the traditional numerical modeling come from the fact
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that individual actions (activities that result in a modification of the system) and their impact on the dy-
namics of the system are often underrepresented. Usually, individual behaviors, i.e., decisions made
at the individual or group level, cannot be incorporated into these simulations. On the other hand, in
a multi-agent simulation, the model is not a set of equations as in mathematical models, but a set of
entities. Here agents represent the set of all the simulated individuals, objects encode the set of all
represented passive entities, and the environment is the topological space where agents and objects
are located and which they can move in and act upon.

Although agent-based simulations have been successfully used to model complex systems in different
areas like biology, sociology, political science and economics, it is still insufficiently explored in the
field of telecommunication networks, specifically for malware spreading in D2D. In this work, we aim
to shed more light on whether such highly dynamical D2D networks can be treated as a complex sys-
tem and whether complex-systems science can give insights on the emergent properties of malware
propagation. The main contributions of this paper are as follows:

� We propose a new ABM for studying malware propagation in D2D 5G+ networks and we for-
mally prove its correctness for predicting different agents status over the time.

� We perform a theoretical study to estimate the critical values of the model’s parameters and to
identify the most important ones to consider for simulations.

� We perform simulations to study and understand malware-spreading dynamics. Some critical
thresholds have been identified. Important aspects like malware infection rates and velocities
have been also studied to understand how they will evolve as functions of the parameters.

The rest of the manuscript is organized as follows. Section 2 reviews related work. Section 3 describes
the ABM for malware propagation in D2D networks. Section 4 shows details of our multi-agent simula-
tion implementation. Section 5 presents a theoretical study for the problem in some specific scenarios.
Section 6 shows simulation results followed by conclusions in Section 7.

2 Related work

ABMs are effective and robust tools in simulating complex and dynamic phenomena like epidemic
spreading. These models have been used primarily in epidemiological studies of infectious diseases
and have recently gained a great importance also in the epidemiological modeling as can be seen
from the vast literature in the context of the COVID-19 pandemic, see for example [?,?,?,?].

However, ABMs are still in their infancy with regard to telecommunication networks. Some ABMs have
been proposed in the literature for IoT networks. Authors in [?, ?, ?] proposed ABMs for analyzing
IoT systems. Other applications of ABMs to telecommunication networks are proposed in [?] and [?],
where authors analyzed the effectiveness of ABMs to understand self-organization in peer-to peer and
ad-hoc networks. These studies provide further motivation to our investigation on applying ABMs for
studying malware spreading dynamics in D2D 5G networks.

Let us again mention that conventionally D2D systems are modeled using analytical methods (e.g.,
stochastic geometry) which have proven to be powerful tools for modeling spatial device and road
systems. In this context, the authors in [?] and [?] present a framework for the modeling and under-
standing of malware spread in D2D with mobile devices and study some strategies of both defenders
and attackers. The proposed model is based on an analytical approach and does not consider urban
environments. In view of this, a standard SIR model is presented in [?], to study malware propaga-
tion in D2D considering urban environments but mobility was not taken into account. Even though
the obtained results were promising, some questions remained open regarding the convergence of
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the malware propagation speed, the shape theorem of the infection and the critical thresholds. This
mainly comes from the fact that the dynamics of the system were insufficiently captured.

3 System model

This section gives a detailed description of the D2D malware propagation model in urban environ-
ments. In this ABM description, devices are represented as reactive agents that move in the environ-
ment and have a variety of capabilities like neighborhood discovery and malware propagation. In short
terms, the system has the following composition. We consider an urban environment. At initial time,
devices are placed randomly on the streets (we make the simplifying assumption that devices that are
situated in buildings are not to be taken into account : this can be justified by the high frequencies used
in 5G). The devices move independently and randomly at a constant speed. Moreover, two devices
can communicate directly with each other if they are close enough and on the same street. Let us
note that this approach takes shadowing into account, but not interference. At time zero, a virus is
introduced carried by a device near to the center of the city. The virus can now propagate from one
device to another if they can communicate for a sufficiently long time that represents the discovery
time plus the transmission time.

3.1 Street systems and devices

We consider our urban street environment E as a two-dimensional planar Poisson–Voronoi tessella-
tion (PVT, see [?]) induced by a homogeneous Poisson point process (PPP) XE of positive intensity
λ. The PVT is a one-parameter segment process that has been shown to be a good fit for the street
systems of European cities (see [?, ?, ?]). It has been widely used to model different urban environ-
ments as random tessellations, since it allows to go beyond specific urban topologies. We will denote
by S the set of edges of E (representing the streets). The devices are placed on S as a linear PPP
of intensity θ, thus forming a Cox point process (CPP) on the plane with random intensity measure
Λ(B) = θ|S ∩B| for every measurable B ∈ R2. Here |S ∩B| stands for the total length of S in the
area B.

3.2 ABM for malware propagation in D2D

We note first that the environment is modeled as an undirected graph, relying on some stochastic-
geometry concepts, as described in Section 3.1. Then, we define our malware-propagation system in
D2D as a finite number of agents, states, actions and rules,

MAS := {A, St,Act,R,T}.

More precisely, we consider a set of n agentsA = { ai : i ∈ [1, n] } corresponding to devices and a
state space St = {susceptible, infected}. Further, Act = {move, discover, connect, infect} denotes
the set of actions that each agent can perform according to its state. R represents the set of the
behavioral rule base. Time T is assumed to be divided in time units called slots, where each slot k is
represented by a positive integer.

Initially, agents are distributed on the edges of E (i.e., streets of the city) as described in Section 3.1.
One agent of type infected is introduced around the center of the map. Then, formally, each agent ai
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is defined at each time slot by a tuple

Mi,k := {Xi,k, Vi,k, Ni,k,Acti,k, ξi,k, T
(I)
i,k }.

Here, Xi,k specifies the agent’s location in terms of coordinates at time kdt, Vi,k = v represents the
agent’s moving speed and Ni,k the knowledge base, representing what each agent ai knows about
its neighboring agents and the environment at time slot k. Further, ξi,k ∈ St represents the state of

agent ai and Acti,k is the set of actions that can be performed by ai. Finally, T (I)
i,k represents the

first time when ai becomes infected. It will be updated during the simulation depending on the agent’s
interactions. T (I)

i,0 is set to +∞ for initially susceptible agents and 0 for the infected one. The state of
ai ∈ A at kdt for k ≥ 1 is given by

ξi,k :=

{
susceptible if kdt < T

(I)
i,k−1,

infected if kdt ≥ T
(I)
i,k−1.

In particular, the state of ai at a step k of the simulation is computed using the variables (T
(I)
i,k−1)ai∈A

from the previous step. This formula also implies that the states of the agents will not change between
the steps 0 and 1. It will be indeed the case since we will consider a time step dt smaller than ρ. (See
Section 4.2).

3.3 Agent behavior and states

Let us describe the three different behaviors of agents: mobility, communication and infection.

3.3.1 Mobility behavior

Devices move at the same constant speed v, starting from a base position, and repeating indefinitely
the following street-adapted random-waypoint model:

� Each device independently picks a destination on the street. For this we sample a random point
P in the plane using a Gaussian distribution centered on the device X , and with a standard
deviation equal to σX = (15min)× v. The destination we take for X is then the closest point
of P in E. This choice of σX shows that devices will go to destinations that they can reach in
an average time of 15min if they take a straight path.

� Devices move to their destinations following the shortest path along the streets.

� Once arrived, devices go back to their starting position following the shortest path along the
streets (anchored movement).

3.3.2 Communication behavior

In order to exchange messages, two communicating devices/agents must obey the following rules:

� (RAD): The Euclidean distance between the two devices less than given constant threshold r.

� (LOS): The two devices are on the same street.
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The first rule supposes that the emission power of the devices is a constant and that we do not take into
account interference. The second rule means that the signal cannot go through the buildings and that
reflections and diffractions are not taken into account. In symbols, forXi(t) the position of device ai at
time t andN (ai, aj) := {t ≥ 0: ‖Xi(t)−Xj(t)‖ < r and ∃s ∈ S such that (Xi(t), Xj(t)) ∈ s},
we have that ai and aj are connected at time t if and only if t ∈ N (ai, aj).

3.3.3 Infection behavior

We will follow a standard SI compartmental model, very similar to SIR which is a classical approach
in epidemiology often used within the framework of differential equations. However, unlike the latter,
in a D2D context, users are constrained to be positioned on streets and are mobile, two aspects that
are usually not represented in epidemiological studies. The SI model is formulated by first partitioning
devices into two distinct categories called susceptible (S) and infected (I). At time zero, only one
device will be in the infected state, while a CPP XS with intensity θ will define the susceptible devices,
independent of the former one given the PVT tessellation. When an infected device is connected to
a susceptible device for a time longer than a given threshold ρ, the susceptible device will become
infected. More precisely, if the device ai is infected at time t and if [t, t + ρ] ∈ N (ai, aj), then aj is
infected at (t+ ρ).

3.3.4 Agent states

Agent states specify what state an agent is in. Agent-state transitions are driven by the rule base R that
implements the reactive behavior of agents. It allows to select actions to take for agent ai depending
on its current local state ξi,k and its knowledge baseNi,k. More specifically, we write R = {Θ} where
Θ(ξi,k, Ni,k) are the active rules that map the set of states and observations to actions for reactive
tasks

Θ : (ξi,k, Ni,k) −→ Acti,k.

Let T (C)
i,j be the connection duration between agents ai and aj and ρ be the needed time for the virus

transmission from one agent to another. Then the principal rule-based function is described as follows.

� Malware infection rule: If agent ai is infected, agent aj is susceptible (ξi,k = infected, ξj,k =

susceptible ) and ai was connected to aj for a time longer than the infection threshold (T (C)
i,j ≥

ρ), then the state of agent aj will be transited from susceptible to infected (the action infect will
be activated),

ΘI : (ξi,k, Ni,k) −→ Infect.

A more detailed description of the algorithm associated to malware infection will be given in Section 4.

4 Agent-based simulation

In this section we present more details on the implementation of our multi-agent simulation tool. Let
us denote by

P := {dt, ρ, r, λ, θ, v}
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the set of key model parameters where dt represents the elapsed time in each step, ρ and r represent
respectively connection time needed for virus transmission and communication radius of agents. λ is
the intensity of Voronoi seeds (seed/km2), θ is the intensity of susceptible agents (agent/km) and v
denotes agents speed (km/h). Other parameters such as the dimensions (H1, H2) of the map can
be added to this list, but we will not focus on these in our study. For the most part of the manuscript,
we give the same speed to all the agents in order to keep a restraint number of parameters. However,
we can easily have a more general model where the speeds of the agents are distributed following
some probability law. Each agent could have for example a speed taken uniformly at random in some
interval [v1, v2].
Our simulation is done over steps, each step corresponds to a time instant kdt. In the following we
will denote by Mk the model at step k. It represents the map, the agents and all their attributes
(coordinates, states, etc.) at step k. In the simulation, we first generate a random map, then the
agents, and after that we run the function Step(Mk), that updates the variables of the model, taking
it from a step k to the next step k + 1, for a number kmax of iterations. Algorithm 1 describes the
entry function of the simulation. The function GenerateMap(λ) returns a random PVT with parameter

Algorithm 1: Main(P , kmax): The main function describing the simulation
Input : The set of parameters P and the maximum number of steps kmax

Output: The state of a randomly generated model at time kmaxdt
1 M← GenerateMap(λ);
2 A ← GenerateAgents(θ);

3 M0 ← (P ,M,A, (Xi,0)i, (T
(I)
i,0 )i);

4 for k ∈ {1, . . . , kmax} do
5 Mk ← Step(Mk−1);

6 returnMkmax

λ, whereas the function Generate(θ, v) returns the set of agents A := AS ∪ {ai0}, where AS is the
set of initially susceptible agents distributed on M using homogeneous PPP with parameters θ. ai0 is
the initially infected agent, placed near the center of the map.

4.1 Discrete-time approximations

Recall that our simulations are done over steps, where each step k corresponds to a time instant kdt.
A difficulty lies in the correct updating of the states of the agents. From step k to k + 1, each agent
moves independently as described in Section 3.3.1, which means that we can access the positions of
the agents at times (kdt)k∈N knowing their velocities and the edges they have been through, but it
is complicated to know all the interactions they had given only this information. To overcome this, we
first impose the constraint dt < ρ. This guarantees that, by only observing the positions of the agents
at discrete times with a step dt, we will not miss any two devices that connect for a duration longer
than ρ, see Section 4.2 for more details. Let k ∈ N, and let us assume that ai, aj are connected to
each other at kdt. We will treat the general case where they can have different speeds vi and vj ,
and we will compute the duration of the connection using their movement equations. Let us denote by
t
(in)
i,s (respectively t(out)

i,s ) the time when ai gets in (respectively out) of the street s. These can easily be
computed knowingXi and the lengthL(s) of the street s. Since s has two different directions, we need
to consider their velocities vi, vj . Let P1, P2 be the positions of the two extremities of the street s, let
e := (P2−P1)/‖P2−P1‖ (we can take−e instead), and νi, νj be such that vi = νie, vj = νje. We
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recall that the absolute speed vi of ai obeys vi = ‖vi‖ = ±νi, the same holds for aj . Finally, let us
also define the coordinates of ai, aj on the street s by di,k := (Xi,k−P1)·e and dj,k := (Xj,k−P1)·e.
Then we have the following result that we present without proof.

Lemma 1. If ai, aj are connected at time kdt and if νi 6= νj , then they are connected during all the

time interval [t
(C,i)
i,j , t

(C,f)
i,j ], where

t
(C,i)
i,j := max{kdt− di,k − dj,k

νi − νj
− r

|νi − νj|
, t

(in)
i,s , t

(in)
j,s },

t
(C,f)
i,j := min{kdt− di,k − dj,k

νi − νj
+

r

|νi − νj|
, t

(out)
i,s , t

(out)
j,s }.

Moreover, if νi = νj , then

t
(C,i)
i,j = max{t(in)i,s , t

(in)
j,s } and t(C,f)i,j = min{t(out)

i,s , t
(out)
j,s }.

The connection duration of ai, aj is then T (C)
i,j := t

(C,f)
i,j − t(C,i)i,j .

In words, two agents on the same street can have different speeds and move either in the same or in
opposite directions. Recall that the connection-time interval is the set of all times such that the distance
of the two agents is less than r.

We saw in Section 3.2, that agents states will be determined by the variable T (I)
i,k−1 at each step

k ≥ 1. We call Sk, Ik the sets of susceptible and infected agents. Let ConnectionInterval(ai, aj, k)

be a function computing t(C,i)i,j , t
(C,f)
i,j as in Lemma 1 knowing that ai, aj are connected at kdt, and

let GetNeighbors(ai) be a function returning the set of neighbors of ai defined as: Nk(ai) := {aj ∈
A : ‖Xi,k−Xj,k‖ ≤ r and ai, aj on the same street}. Finding the neighbors of all the agents would
normally require a O(n2) time complexity, but since only agents on the same street can connect to
each other, we can considerably reduce this complexity by searching neighbors of each agent only
among those that are on the same street. From here, we can write Algorithm 2 that updates the values
T

(I)
j,k for the neighbors of an infected agent ai.

Algorithm 2: InfectNeighbors(ai)
Input : An infected agent ai
Output: Updates T (I)

j,k for all susceptible neighbors of ai

1 N
(S)
k (ai)← GetNeighbors(ai) ∩ Sk;

2 for aj ∈ N (S)
k (ai) do

3 t
(C,i)
i,j , t

(C,f)
i,j ← ConnectionInterval(ai, aj, k);

4 t
(C,i)
i,j ← max{t(C,i)i,j , T

(I)
i,k };

5 if T (C)
i,j := t

(C,f)
i,j − t(C,i)i,j ≥ ρ then

6 T
(I)
j,k ← min{T (I)

i,k , t
(C,i)
i,j + ρ};

Line 4 makes sure that we only compute the time when the agents are connected and ai is infected.
Note that in Line 6, we cannot set the value of T (I)

j,k simply to t(C,i)i,j +ρ as agent aj might be connected
to several infected agents, and it will become infected as soon as it stays connected to one of them for
longer than ρ. Finally, we can write the core function of our simulation, that is Algorithm 3.
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Algorithm 3: The Step Function
Input : The modelMk−1 at step k − 1
Output: The modelMk at step k

1 Sk, Ik ← The sets of susceptible and infected agents;
2 for ai ∈ A do
3 Xi,k ← Move(ai, Vi, Xi,k−1, dt); //Update the positions

4 T
(I)
i,k ← T

(I)
i,k−1; //Initialisation

5 for ai ∈ Ik do

6 InfectNeighbors(ai); //Update the variables T (I)
j,k

7 Mk ← (P ,M,A, (Xi,k)i, (T
(I)
i,k )i;

8 returnMk;

4.2 Equivalence of discrete and continuous time

We denote by ξi(t) the state of agent ai at continuous time t for any ai ∈ A. On the other hand, for
each k ∈ N we denote as before by ξi,k the state of ai at discrete time kdt as predicted by our ABM.
The following theorem states that for sufficiently small time slots, at the discrete time points, our model
is equivalent to its continuous-time version and is then theoretically proven to be correct.

Theorem 2. If dt < ρ, then we have

∀ai ∈ A,∀k ∈ N, ξi,k = ξi(kdt).

In words, Theorem 2 guarantees that, by discretizing, we do not miss infection events and the in-
troduced time differences do not induce errors in the discretized model. Let us first define the first
continuous time when aj ∈ A is infected, i.e., T̃ (I)

j := inf{t ≥ 0: ξj(t) = infected}. Regarding our
malware propagation rules, we can write

T̃
(I)
j = inf

ai 6=aj
inf

t≥T̃ (I)
i

{t+ ρ : [t, t+ ρ] ⊂ N (ai, aj)}, (1)

where N (ai, aj) is as defined in Section 3.3.2. Let us also denote Sk := {ai : kdt < T
(I)
i,k−1},

S̃k := {ai : kdt < T̃
(I)
i }, Ik := {ai : kdt ≥ T

(I)
i,k−1} and Ĩk := {ai : kdt ≥ T̃

(I)
i }. Finally, for

convenience, let T (I)
i,−1 := T

(I)
i,0 for all ai ∈ A. We have the following lemma.

Lemma 3. If dt < ρ, then for any k ∈ N, assertion Bk is true

(Bk) : ∀aj ∈ A,

{
T̃

(I)
j ≤ T

(I)
j,k−1,

T̃
(I)
j ≤ kdt =⇒ T̃

(I)
j = T

(I)
j,k−1.

Note that, if Bk is verified for some k ∈ N, then S̃k ⊂ Sk and Ĩk ⊂ Ik. But since S̃ ∪ Ĩk = Sk ∪Ik,
this means that S̃k = Sk and Ĩk = Ik and thus Theorem 2 is proved.

Proof. For k = 0 the assertion is true by definition of (T
(I)
i,−1)ai∈A. Let k ≥ 1, assume that Bk

is true and let aj ∈ A. If T (I)
j,k = T

(I)
j,k−1 then directly T̃ (I)

j ≤ T
(I)
j,k . Otherwise T (I)

j,k was updated
during step k, i.e., there exists an agent ai ∈ Ik for which InfectNeighbor(ai) was called and such
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that aj ∈ N
(S)
i,k and t2 − t1 ≥ ρ with t1 = max{t(C,i)i,j , T

(I)
i,k−1}, t2 = t

(C,f)
i,j . This implies that

[t1, t1 + ρ] ⊂ [t
(C,i)
i,j , t

(C,f)
i,j ] ⊂ N (ai, aj), and since ai ∈ Ik, we have by the induction hypothesis

that T̃ (I)
i = T

(I)
i,k−1 and thus t1 ≥ T̃

(I)
i . Thus, using Equation (1), we have that T̃ (I)

j ≤ T
(I)
j,k . For

the second part of the assertion, let us assume that T̃ (I)
j ≤ (k + 1)dt. If T̃ (I)

j ≤ kdt then T (I)
j,k ≤

T
(I)
j,k−1 = T̃

(I)
j (induction hypothesis), and we proved that T̃ (I)

j ≤ T
(I)
j,k and therefore T̃ (I)

j = T
(I)
j,k .

Otherwise kdt < T̃
(I)
j ≤ (k + 1)dt, this implies that aj ∈ S̃k and there exists ai ∈ A such that

[t̃, t̃+ ρ] ⊂ N (ai, aj) and t̃ ≥ T̃
(I)
i with t̃ := T̃

(I)
j − ρ. Given that dt < ρ we have

T̃
(I)
i ≤ t̃ = T̃

(I)
j − ρI ≤ (k + 1)dt− ρI < kdt < T̃

(I)
j = t̃+ ρI ,

and this implies that ai ∈ Ĩk and kdt ∈ [t̃, t̃ + ρ] ⊂ N (ai, aj). Thus InfectNeighbors is called on

ai at step k and aj is among the visited agents during this call (neighbors of ai). T̃
(I)
j,k will then be

updated and its final value will be at most t̃ + ρ = T̃
(I)
i . With the inequality T̃ (I)

j ≤ T
(I)
j,k that we

already proved, we deduce that T̃ (I)
j = T

(I)
j,k .

Finally, for any k ∈ N, we have by Lemma 3 that S̃k = Sk and Ĩk = Ik. This means that the states
of the agents predicted by the simulator correspond to their real states.

5 Mean-field version

The model that we presented so far is very rich with many parameters. It is therefore difficult to run
simulations varying all these parameters and see how each of them influences the propagation of the
virus. So, in order to better choose the values we will assign to them, in this section, we present a
theoretical study on a simplified model to identify critical relationships between parameters and values
that will lead to drastic changes in the system’s evolution. Let us highlight that we consider a different
model that does not arise as a limiting object. It is mainly introduced in order to sharpen the intuition
for threshold values of important parameters.

As in the first model, we start with a single infected agent ai0 , and we will take interest in the time of
the first virus transmission, which we will denote by τ in the following. Let us stress that the simpli-
fied model that we present here is used only as a mathematical model. All the simulations results in
Section 6 are based on the original model and not this simplified one.

We consider the following mean-field approximation of our spatial model. Instead of considering ai0
to be moving on a PVT, we will consider that it moves on a succession of streets s0, s1, . . ., each
having a length L(i)

λ that is a random variable with density fλ,L, where fλ,L is the density function of
the edges lengths in a PVT having a seeds intensity equal to λ (see Section 3.1). We will assume that,
when ai0 enters a street, other agents are distributed on it as an homogeneous PPP with parameter
θ, and that they can move in any of the two possible directions. What we mainly lose in this simplified
model is the dependence between the lengths of the successive streets visited by ai0 .

For each street si visited by ai0 , let Ci be the number of agents that ai0 infects while being on si. Let
p := Pr[Ci ≥ 1] denote the probability that ai0 infects at least some agent on si (p is independent of
i).

τ := inf{t ≥ 0: ∃j 6= i0 such that ξj(t) = infected}.

Then, we have the following main results.
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Theorem 4. If τ is the first time when ai0 infects another agent, then

2

3
√
λv

(1/p− 1) ≤ E[τ ] ≤ 2

3
√
λv
· 1/p.

Theorem 5. There exists a positive constant C̃ such that if p is sufficiently small, then for t0 =
1/(3
√
pλv) we have

Pr[τ ≥ t0] ≥ 1− C̃p1/4.

These theorems indicate that, if the probability of infecting another agent on a single street si is low,
then the waiting time before the virus transmission is very large, and therefore the virus propagation
is weak. In terms of the asymptotic behavior of the system, we can state that, when p = o(1), then
E[τ ] = Ω(1/(

√
λvp) and for t0 = 1/(3

√
pλv) we have Pr[τ ≥ t0] = 1−O(p1/4).

The proofs rely on results for typical edge length in PVT and Berry–Esseen inequalities. Let us start
by presenting a first lemma on the edges-lengths distribution when λ = 1, as described in [?].

Lemma 6. In a random planar PVT, if we choose a random edge, then its lengthL is a random variable
having a distribution fL satisfying

1 fL(0) = 2/π, when l is large enough: fL(l) ∼ π2

3
√
2
l2e−

π
2
l2 ,

2 if L is a random variable with density function fL, then L has an n-th moment for any positive
integer n and

3 E[L] = 2/3, σ2
L := Var[L] ≈ 0.1856.

From this we deduce the result for any positive λ.

Lemma 7. If Pλ is a PVT generated with an intensity of seeds λ > 0, then the edges length in Pλ will
have a density function fλ,L given by

fλ,L(l) :=
√
λfL(
√
λl), ∀l ≥ 0.

Then we have the following statement.

Corollary 8. If Lλ is a random variable with density fλ,L, then for any positive integer n, Lλ has a
n-th moment given by

E[Lnλ] = λ−n/2E[Ln1 ].

Finally, since fL is a rapidly decreasing function when ` is large, we have the following probability
estimate.

Lemma 9. There exists l0 > 0 such that for any x ≥ l0/
√
λ

Pr[Lλ ≥ x] ≤ exp(−λx2).

Next, the following theorem is a corollary of the Berry–Esseen’s inequality [?, ?] applied to random

variables (Xi−µ) and using the trivial relation Pr[Yn > x] = 1−Pr[Yn ≤ x] for Yn := 1
n

n−1∑
i=0

(Xi−

µ).
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Theorem 10. There exists a constant C such that if X0, X1, . . . are i.i.d. random variables with
E[|X0|] = µ < +∞, Var[X0] = σ2 > 0 and E[|X0 − µ|3] = m < +∞, then for any n ∈ N and
x ∈ R

Pr

[
n−1∑
i=0

Xi > x

]
≥ 1− Φ

((x
n
− µ

) √n
σ

)
− Cm

σ3
√
n
.

Here Φ is the cumulative distribution function of the standard normal distribution.

We are now in the position to prove our main theorems.

Proof of Theorem 4. We only need to observe that τ0 + . . .+ τm−1 ≤ τ ≤ τ0 + . . .+ τm, where m
is the index of the first street such that Cm ≥ 1 and τi := L

(i)
λ /v is the time spent by ai0 on the street

i. Using the law of total expectation, we deduce that E[m]E[Lλ]/v ≤ E[τ ] ≤ (E[m] + 1)E[Lλ]/v,
and the result is obtained by computing the two expectations E[m] and E[Lλ].

Proof of Theorem 5. To prove this theorem, we first need to observe that for any m̃ ∈ N we have
Pr[τ ≥ t0] ≥ Pr[τ0 + . . . + τm−1 ≥ t0] ≥ Pr[τ0 + . . . + τm̃−1 ≥ t0] Pr[m ≥ m̃] (the second
inequality is true because all the τi are non-negative). In particular for m̃ = d1/√pe ≤ 1/

√
p + 1,

Bernoulli’s inequality gives that

Pr[m ≥ m̃] = (1− p)m̃ ≥ 1− m̃p ≥ 1−√p− p ≥ 1− 2
√
p.

On the other hand, if p ≤ (6σL)−4, using Theorem 10 and the inequality Φ(−x) ≤ exp(−x)/
√

2π,
which is true for any x ≥ 2, we find a constant C1 verifying

Pr[τ0 + . . .+ τm̃−1 ≥ t0] ≥ 1− C1p
1/4.

Finally, when p is small enough, we deduce using again Bernoulli’s inequality that

Pr[τ ≥ t0] ≥ (1− 2
√
p)(1− C1p

1/4) ≥ 1− (2 + C1)p
1/4.

This finishes the proof.

We will now apply the previous theorems to show that the virus propagation is slow in any of the
following cases.

� The transmission time of the virus is very large compared to the expected time spent by agents
on streets :

√
λρv � 1

� The number of agents reachable within the communication radius is very small: θr � 1

� The number of agents on each street is very small: θ/
√
λ� 1.

Corollary 11. If
√
λρv ≥ l0, then E[τ ] ≥ 2

3
√
λv

(eλρ
2v2 − 1).

Proof. We have the implications C0 ≥ 1 ⇒ τ0 ≥ ρ ⇒ L
(0)
λ ≥ ρv. Hence, using Lemma 9,

p = Pr[C0 ≥ 1] ≤ Pr[Lλ ≥ ρv] ≤ exp(−λρ2v2). The result follows directly from Theorem 4.

Corollary 12. If r < ρv, then E[τ ] ≥ 2

3
√
λv

(1/(θr)− 1).
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Proof. If r < ρv, then ai0 can only infect the agents moving in the same direction as him: its connec-
tion time with the agents moving in the opposite direction is upper bounded by r/v < ρ. LetNc be the
number of agents that ai0 connects to while being on s0. Since each agent in s0 can be moving in any
of the directions with a probability 1/2, Nc is dominated by a random Poisson variable with parameter
2θr/2 = θr, which means that

Pr[Nc ≥ 1] =

∫ +∞

0

Pr[Nc ≥ 1: L
(0)
λ = `]fλ,L(`)d`

≤
∫ +∞

0

1− e−θrfλ,L(`)d` = 1− e−θr ≤ θr.

Since C0 ≤ Nc, Theorem 4 gives the desired result.

Corollary 13. We have E[τ ] ≥ (
√
λ/θ − 4/3)/(2

√
λv).

Proof. We can easily prove that the number N of agents that were on s0 at some time instant when
ai0 was on it too follows a Poisson distribution with parameter 2θL

(0)
λ . In fact, when ai0 enters s0,

there are N1 agents on the street, and by the time it reaches the end of the street, since all the agents
have the same speed, all of these will have left it and N2 new agents will have come. N1 and N2 both
follow a Poisson distribution with parameter θL(0)

λ and N = N1 + N2. Finally, given that C0 ≤ N ,
we have

Pr[C0 ≥ 1] ≤ Pr[N ≥ 1] =

∫ +∞

0

Pr[N ≥ 1: Lλ,0 = l]fλ,L(l)dl

=

∫ +∞

0

(1− e−2θl)fλ,L(l)dl

≤
∫ +∞

0

2θl√
λ
fL(l)dl =

2θ√
λ
E[L1] =

4θ

3
√
λ
.

Applying Theorem 4 concludes the proof.

Using Theorem 5 in these three cases, we can also find lower bounds for τ that hold with high proba-
bility.

6 Simulation results

This section discusses simulations that were performed to analyze malware propagation in D2D, to
benchmark the mathematical study made in Section 5 and to show how the various parameters accel-
erate or slow down propagation. Our ABM was built based on Mesa [?], which is a very suitable python
framework for ABMs that we have extended to generate and visualize street system environments.

6.1 Evaluation indicators

We present some indicators that allow us to analyze malware propagation. They should be indepen-
dent of the dimensions of the map, since we theoretically want to study propagation on an infinite
plan.
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Definition 14 (Propagation speed). Propagation speed is the velocity of malware spread in space.
It is defined by

V := lim sup
u→+∞

uE[1/τu],

with τu the time when the infection reaches the distance u from the initial infection point

τu := inf{t ≥ 0: ∃aj ∈ I(t) : ‖Xj(t)−XI0(0)‖ ≥ u}.

To study the system behaviour, we will set a value of u large enough and observe Vu considering
that it approximates sufficiently the asymptotic values. We remind that we denote by I(t) the set of
infected agents at time t, and that we call aI0 the only initially infected agent, and XI0 its position at
time 0. aI0 is always chosen close to the center of the map.

Definition 15 (Infection rate). The infection rate is the rate of infected agents in the region reached
by the virus

R := lim sup
u→+∞

|I(τu)|
|{Xj(τu) : aj ∈ A} ∩B(XI0(0), u)|

,

where B(XI0(0), u) is the open ball of center XI0(0) and radius u, and τu is as in Definition 14.

Note that |{Xj(τu)}∩B(XI0(0), u)| is simply the number of agents insideB(XI0(0), u) at time τu.

V andR are defined as limits, let Vu andRu be the expressions in Definitions 14 and 15 that converge
to them respectively. Since the plots we will make require running lots of simulations, and thus take a
very long time to be constructed, we were not able to make them with different values of u and study
the convergence of Vu,Ru to V ,R. Since we are mostly interested in the behavior of the system and
not really in the exact values of the propagation speed and the infection rate, it is enough to set a large
enough value for u, consider that V ≈ Vu andR ≈ Ru, and interpret the results.

6.2 Simulation results

For all simulations, unless otherwise stated, parameters are set by default as follows: (u = 3.5km,H =
10km, λ = 50km−2, θ = 3km−1, v = 5km/h, ρ = 20s, r = 200m). where H is the side length
of the square surface containing the map. We assume dt = 0.9ρ. Each value in the diagrams we
will present later is the average over 20 simulations with the same set of parameters. In the diagrams
where λ does not vary, we use the same 20 maps for all the points.

6.2.1 The threshold
√
λρv

The critical regimes seen in Section 5 are relevant and confirm the intuitive expectations one may
have for the virus propagation. However, the most remarkable result concerns the regime

√
λρv � 1,

because the lower bound found for E[τ ] grows with a speed of x 7→ exp(x2)/x in the quantity
√
λρv,

we can thus expect to observe a rather tight threshold at the level of which the propagation is no longer
possible. To have meaningful results, we will vary λ from 10 to 200 and the speed of the agents from
1 to 90, and the other parameters will be set by default as in Sections 6.2. However, when λ is very
large, the number of agents E[|A|] = 2

√
λH2θ will be also large since, even if it is only proportional

to
√
λ, the multiplicative constant is large. To keep a reasonable number of agents, we use maps with

side-lengthHλ := 20λ−1/4 for each value of λ, and the stopping propagation radius uλ := 0.45×Hλ
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λ

v

Figure 1: Infection rateR

λ

v

Figure 2: Propagation speed V in (km/h)
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to have H > 2u. This will guarantee that the expected number of agents is E[A] = 2400 (θ = 3),
and the side-lengths will vary from ≈ 11.24 to ≈ 5.32km.

We observe in Figures 1 and 2 that the rate of infection and the speed of propagation both cancel out
above a certain threshold curve, having a shape of type v(λ) = c/(ρ

√
λ), as indicated in blue (for

c = 2/3) and white (for c = 3/2). This confirms the hypothesis of the exponential lower bound of
E[τ ], although it is obtained with a simplified mathematical model. It seems however that this threshold
is sharper for R than for V . The reason why we have such a threshold is that the distribution of the
edges lengths in a PVT makes it very rare to have edges much larger than the mean edge length
E[Lλ] = 2/(3

√
λ) (see Corollary 8), and therefore, when there is no edge larger than ρv, the virus

cannot propagate since connection require agents to be on the same street.

With respect to Figure 2, we see that the virus can hardly propagate if
√
λρv ≥ 3/2. A surprising

remark is that the maximum infection rate is always not far below the curve
√
λρv = 2/3, while the

maximum propagation speed seems to be achieved exactly at the points verifying this equation. We
also observe a lower threshold value of the speed: the virus hardly propagates for v = 3, but as soon
as v = 6, we see a remarkable jump in the values ofR and V . It is to be expected to have a weaker
propagation for the small values of the speed because in the limit v = 0 the virus can propagate at
most in the street where it was initially placed.

The third observation is that the virus propagation becomes slower as λ becomes larger. The reason
is that, as predicted by the simplified model in Section 5, when

√
λ becomes much larger than θ,

we have too many streets compared to the number of agents, and therefore aI0 will only meet a few
agents.

6.2.2 How is the propagation speed impacted by θ and v?

The propagation speed of the virus is certainly a function of all the parameters of our model. However,
the distance r is given by the technology and cannot be changed, and the intensity of streets λ is
known for a given city. Now, for a given malware, we want to see the influence of the intensity and
speed of users on the propagation speed and the infection rate. In fact, agents that move fast enough
but not too fast, i.e., not to have

√
λρv ≥ 3/2, will rapidly carry the virus to the other edges and

facilitate its spreading. Also, when agents’ intensity is important, there will be always agents on these
streets that will get infected and carry the virus further.

Considering Figure 4, we see that the propagation speed and the infection rate show different be-
haviors. Indeed, although both are increasing in θ, R is maximal for v around 7 − 10km/h, while
V is maximal for v around 15 − 20km/h. Moreover, the high values of the propagation speed are
more concentrated while those ofR seem to be more spread out. Also, for every θ, there is clearly an
increase and then a decrease of V when we increase v, going from ≈ 0km/h to the maximal value
and then returning to 0km/h. But the valueR does not change a lot in the first range of values of v.
This means that, when agents are slow, they will stay sufficiently long on every street and therefore,
once an infected agent reaches a street, it will infect many agents being on it too. Propagation speed
is nevertheless slow because agents take a lot of time before exiting each street and carrying the virus
to the next one. This correlation between R and V confirms the need to study these two quantities
together.

Returning to the results of Figure 3, the value of v for which
√
λρv = 2/3 is v0 ≈ 16.97. Thus,

we have again that R is maximal in the region below the level line
√
λρv = 2/3, and V is maximal

exactly in its close neighborhood. This property would therefore be true even when varying θ. For
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θ

v

Figure 3: Infection rateR

θ

v

Figure 4: Propagation speed V in (km/h)
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larger values of v, we expect that the virus will not propagate anymore because the streets are not
long enough, and we already see the beginning of this behavior. However, we notice that the speed
at which the propagation weakens depends on θ: the higher the intensity of the agents, the higher
the speed needed to weaken the virus propagation, which is to be expected since the increase of θ
favors the propagation of the virus. Moreover, for small values of θ, the propagation never takes place
whatever the value of v because the agents are few and do not establish enough connections (θ is
below the percolation threshold).

7 Conclusion and future work

This paper presents a novel ABM for analyzing malware propagation dynamics in D2D networks.
This approach, traditionally applied for complex systems, allows us to obtain relevant and surprising
findings about malware propagation in D2D, which demonstrate also the effectiveness for such dynam-
ical communication networks. Notably, malware propagation was not possible above a first threshold
(
√
λρv > 3/2) and was maximal around a second threshold (

√
λρv = 2/3), which corresponds

to having an average length of streets equal to the distance traveled by an agent during the time ρ
(needed for infection transmission). This shows the importance of street system characteristics, which
has been traditionally neglected when studying malware propagation in D2D. We believe that the ABM
approach has a great potential for studying malware spread in D2D communication networks. Besides
generalizations such as adding attributes for the street widths, devices out of the street system or
sojourn times, as future work, we aim to model and simulate countermeasure policies for reversing
malware attacks.
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