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The dielectric constant of liquid electrolytes obtained
from periodic homogenization theory

Manuel Landstorfer

Abstract

The dielectric constant of an electrolytic solution is known to decrease with increas-
ing salt concentration. This effect, frequently called dielectric decrement, is experimen-
tally found for many salts and solvents and shows an almost linear decrease up to a
certain salt concentration. However, the actual origin of this concentration dependence
is yet unclear, and many different theoretical approaches investigate this effect. Here |
present an investigation based on microscopic Maxwell equations and periodic homog-
enization theory. The microscopic perception of anions and cations forming a pseudo
lattice in the liquid solution is exploited by multi-scale asymptotic expansions, where
the inverse Avogadro number arises as small scaling parameter. This leads to a ho-
mogenized Poisson equation on the continuum scale with an effective or homogenized
dielectric constant that accounts for microscopic field effects in the pseudo lattice. In-
complete dissociation is further considered at higher salt concentrations due to solvation
effects. The numerically computed homogenized dielectric constant is then compared
to experimental data of NaCl and shows a remarkable qualitative and quantitative
agreement in the concentration range of (0 — 5)mol L.

1 Introduction

In this letter we investigate the dielectric constant €4¢ of an electrolytic solution AC and
its decrease with increasing salt concentration c. This effect is known as dielectric decrement
or dielectric depression[1] and was first observed by Hasted et al. in 1948 [2] and verified for
many electrolytic solutions, e.g. [3-11]. Up to a certain concentration ¢*' a linear decrease
was found, i.e.

eac = co(1+x) —Auc-c < (1)

where £ is the vacuum permittivity, x the susceptibility of the solvent, and A 4¢ an electrolyte
specific constant. At higher salt concentration, ¢ > ¢**, the relation becomes non-linear and
flattens towards a plateau value (see Fig. 2b). Various theoretical approaches investigate this
effect [12-21], mainly based on Possion-Boltzmann equations and recent extensions.

However, none actually exploits the periodicity of the quasi-lattice structure in terms of periodic
homogenization theory and multi-scale asymptotic expansions. This mathematical tool [22—
28] is frequently and very successfully used to model porous media, but seldomly applied to
bridge the scale between atomistic and continuum descriptions. Based on a simple model
for an electrolytic solution which relies only on Maxwells equations on the atomistic scale
we use multi-scale periodic homogenization techniques to derive the Poisson equation on the
continuum scale, i.e. with a continuous charge distribution function. Due to the homogenization
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procedure, the dielectric constant becomes dependent on the salt concentration ¢, which is
shown in the following. The obtained concentration dependence of the homogenized dielectric
constant is in remarkable agreement to measured data, and it is further shown that incomplete
dissociation leads to an overall agreement for salt concentrations from (0 — 5) mol L™

Consider a salt AC which is dissolved and, up to a certain limit ¢** [30], completely dissociated
in a liquid solvent S . The anions A~ and cations CT are assumed to form some quasi-
crystalline structure in the liquid solution, c.f. Fig. 1. The distance between two adjacent ions
is related to the bulk salt concentration c. The idea that ions in solution form a quasi-lattice
in liquid electrolytes is widely employed nowadays [31-35]. Bahe [31], for example, derived on
the basis of a face centered cubic pseudo-lattice an expression for the mean activity coefficient
which shows a remarkable accordance to experimental data [34].

The electrolyte € is considered as periodic repetition of unit cells w in all three space dimen-
sions. In the unit cell w, the cations C* form a fcc crystal lattice, with an interpenetrated fcc
lattice of the anions A~ ( NaCl -crystal structure). In total the unit cell captures 4 cations
and 4 anions whereby it is charge neutral. The unit cell width is denoted by a and determined
from the salt concentration ¢ via
1
a= (i : c) ’ (2)

For a salt concentration of 0.0lmolL™! the cell width is 8.72nm and for a concentration
of ImolL™" about 1.88nm. For comparison, solid NaCl has a lattice constant of an.c1 =
0.54 nm. Within each unit cell we consider a solvent phase wg, spherical anions w4 and spherical
cations we with w = wgUws Uwe. The respective interfaces within the unit cell are denoted
by 0;;,%,7 = S, A,C, where og 5 denotes the boundary to the adjacent unit cells. Note that
(9w5 =0g,5 U OA,S U gc,s-

Consider then the electrostatic Maxwell equation

divD = 0 (3)
with boundary conditions
€oZa
D-n= P on  0sq (4)

where e is the elementary charge in Coulomb, z, the charge number of the ion a = A, C,
and r, the respective ionic radius. Note that we assume thus spherical symmetry of each ion
as well as a homogenous surface charge distribution on the atomic scale. This is sufficient for
the sake of this work, but not a necessary constraint.

We introduce the Faraday constant F' = ey /N4 which yields

oF 1
D-nzd-ga with ga:;rﬂ and N—A::(S. (5)

Note that ¢ is a small parameter for the periodic problem, and we can consider a multi-scale

asymptotic expansion of D in this small parameter §. Actually ¢ is the parameter bridging the
scale from the atomistic to the continuum scale.
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Figure 1: Sketch of a liquid electrolyte with quasi-lattice structure.

Consider now for the displacement field
D= —-eVyp (6)

where ¢ = g5(1+4x) and x is the susceptibility of the pure solvent. We consider the multi-scale
expansion

p(x) = (x, 5) + 8" (%, ) + O(5) ”)

and require ¢’ to be periodic with respect to the unit cell w. With y = 5 being the micro-scale
we have

div = div, + 6 'div, and V=V,+46'V,. (8)
Hence we obtain for the Maxwell equation
divD = § 2 - div, (eV,¢°) + 67" (divx(evygoo) + div, (V. + 5Vyg01)>
+0° (diva(eVaie® +eV,0") + div,e Vo' ) = O(9) . (9)

The corresponding boundary condition at 0,5, @ = A, C, S with gg = 0 read
D -n= (5’1 (V") + 0%+ (eVep” + V") + 8'eVap! + 0(52)> ‘n=46-q,. (10)

In the limit § — 0 we obtain a sequence of PDEs in orders of the small parameter § [22].

Order 62: In leading order we have

div, V" =0 for y € w; (11)
together with

Ve’ n=0 on 0 (12)

and the periodicity condition of ©°(x, y) with respect to y. Note that the maximum principle[23]
yields

' (x,y) = ¢’ (x), V' =0. (13)

The leading order or macroscopic electrostatic potential ¢ is thus independent of the micro-
scale y.
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Order §7':  Since ©°(x,y) = ©°(x) we obtain from (9) the condition
0 = div, V', (14)
together with the boundary condition
Ve m=-V,0o'-n on oy (15)
and the periodicity condition for ¢!. The solution ¢'(x,y) can be written as
P (x,y) = —&(y) - Vo' (x) (16)
where € = (&1, €2, €3) satisfies the cell problem (k =1,2,3)

divyvyé’“ =0 Yy € ws
(C1) VR n =N (17)
% is periodic

The geometric function & thus encodes the microstructure of the electrolyte since the cell
problem (C1) is dependent on the unit cell geometry w. In order to determine the microscopic
eletrostatic potential contribution ¢!, the cell problem (C1) has to be solved (numerically).

Order §°: The ¢%-equation
div, (V0" + eV, ') + div,eV, o' =0 (18)

can be integrated with respect to wg which yields

div,, /E(VIQOO + Vygol) dV =4z, F 4+ 420 F' (19)
ws
since
/divyevxcpld\/ = / eVt ndA =4-4drriqa +4 - dmriqe (20)
wg 0s,4Uos ¢ ’ ’

The integral expression in (19) can be written, by re-considering o' = —¢ - V¢ whereby

Vyp! = =V, 6 Vo, (21)
as
/(ngoo — V¢ V) dV = (/(1 - V,€) dv) - Va” (22)
With

DOI 10.20347/WIAS.PREPRINT.2531 Berlin 2018



Dielectric constant of liquid electrolytes obtained from homogenization theory 5

and

1
[1av

g = 4Fz; =4Fza3 = Fze 1=A,C (24)

we obtain the homogenized Poisson equation
—div, (sAC : ngpo) =qa+qc . (25)
with homogenized dielectric constant
eac=¢co(l+x) ™ (26)

of the electrolyte AC . We call the term 7 dielectric homogenization factor and emphasize
that 7 can be calculated (numerically) from the cell problem C1 for a specific unit cell w.
Note that 7 is actually dependent on the electrolyte concentration c via the lattice parameter
a of cell problem. This is a very interesting result since it shows that the homogenization
procedure actually impacts the dielectric constant € 4¢ of the continuous Poisson equation
(25).

In order to compare this result to experimental and theoretical work of others we consider
explicitly the 3D unit cell w of a NaCl structure (see Fig. 1) and solve numerically the cell
problem C1 with COMSOL® Multiphysics. For the numerical determination of 7 the only
paramters are the ionic radii 74 and r¢ since the unit cell width a is determined from eq. (2).

However, the radii r,, of ions in solutions are a difficile quantity[36, 37] and we discuss several
values and their impact on the homogenized dielectric constant. As lower bounds for Na™ and

Cl™ we consider the values of the crystal ionic radii, i.e. r;- = 168pm and ry,+ = 116pm. For
comparison, we consider also the soft ionic radii[38], which are r¢- = 218pm and 7“1“‘\?;1 = 150.

Since solvation effects® occur in liquid solutions, r, can also be understood as the radius of
a (solvated) ion beyond which the solvent behaves as homogenous, continuous dielectrium?.
Y. Marcus[39] proposes for water as solvent values of ré’l",’ = 224pm and rf\?a"i = 218pm for
radius of solvated ions where 2.0 solvent molecules are bound to Cl~ and 3.5 to Na™ in
the (first) solvation shell. Finally we consider r¢- = ry,+ = [250,300]pm as free parameter

of a solvated ion to show the general impact of the radius on the dielectric constant.

Figure 2 shows a comparison between the numerically computed homogenized dielectric con-
stant €< (dashed line) and measured values of Hasted et. al[2], for aqueous NaCl . First
of all we find that E;‘TC is indeed dependent on the salt concentration ¢ via the periodic ho-

mogenization procedure. In the concentration range up to ¢ = 2molL™" we find that the
qualitative concentration dependence of € 4¢ is in well agreement to experimental data for a

completely dissociated electrolyte. The crystal ionic radii 7¢;- = 168pm and 7y,+ = 116pm,
and also the soft ionic radii, underestimate the influence of the microstructure on the ho-
mogenized dielectric constant. For ionic radii of 7o+ = ry- = 0.22nm we find a remarkable

quantitative agreement to the measured values of Hasted et. al. These values correspond to
the values proposed of Y. Marcus[39], and it is to emphasize that there is no additional fitting

INote that solvation occurs in two or more shells around the central ion. Since solvent molecules in the
first solvation shell are rather strongly bound to the central ion, they will certainly influence the dielectrium
due to their oriented dipole moment. Since solvent molecules are less bound in the second shell they are not
permanently oriented towards the central ion and thus not incorporated in r,.

2This is actually the implicit definition via the boundary condition (4).
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Figure 2: Comparison of the dielectric constant obtained from periodic homogenization and
measured values.

parameter in the modeling procedure. Note that larger ionic radii overestimate the dielectric
decrement.

Beyond a concentration of ¢ = 2mol L™ incomplete dissociation becomes important because
of the solvation effect [30]. The solvation number x4 ¢ of solvated ions A—, C" covers the
number of solvent molecules in the first and second solvation shell around the central ion
[40—-42]. The solvation effect binds (k4 + k¢) - ¢ solvent molecules, whereby the number of
free solvent molecules in solution is ng = nE — (k4 + k¢) - ¢, where n% is the number density
of pure solvent. For water as solvent and solvation numbers of k4 = k¢ = 12 this leads
to ng = (55 — 24 - ¢)mol L™!, whereby the number of free solvent molecules would become
negative beyond a salt concentration of 2.3mol L™'. This requires the introduction of ion pairs
AC in solution. These ion pairs are part of the mixture[30] and in thermodynamic equilibrium
to the solvated ions via the dissociation reaction

AC+ (ka+ko)S=Cr+A™. (27)
This yields a constraint

pac + (Ka + Ko)ps = fia + e (28)

where i, is the chemical potential of the constituent A,, ie. o = go + keT'In(ys) +
va(p — p®)[29]. Equation (28) is then an implicit equation between the dissociation degree
J, the salt concentration ¢, the solvation number (k4 + k¢) and the dissociation energy
Ag = go+ga—(kat+kc)gs—gac (28). We employ a value of Ag = 0.2 €V which corresponds
to a strong electrolyte and refer to [30] for details and a comparison to the classical Ostwald
dilution law. Eq. (28) allows us then to determine the dissociation degree § as function of the
salt concentration ¢, i.e. § = 5(0) The lattice constant a is then related to the electrolyte
concentration ¢ via ¢ = ¢ - 4a” 3.

In Fig. 2a, the dashed line corresponds to complete dissociation while the solid line accounts for
incomplete dissociation. The deviation beyond a concentration of ¢t = 2mol L' arises from
incomplete dissociations due to the solvation effect. For the ionic radii of Y. Marcus we obtain
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a remarkable qualitative and quantitative agreement of the homogenized dielectric constant
¢ to experimental data in the whole concentration range of (0 — 5)mol L™". Reconsidering
the rather simple model approach,i.e. a configuration of cations and anions in an fcc lattice,
this is a surprising result. It seems that multi scale expansions and periodic homogenization
are an effective tool to bridge the scale between atomistic and continuum descriptions of ionic
systems. The described model approach is certainly not limited to monovalent ions in an fcc
quasi lattice, but can also be applied to multivalent salts or even larger charged molecules.
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