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The dielectric constant of liquid electrolytes obtained
from periodic homogenization theory

Manuel Landstorfer

Abstract

The dielectric constant of an electrolytic solution is known to decrease with increas-
ing salt concentration. This effect, frequently called dielectric decrement, is experimen-
tally found for many salts and solvents and shows an almost linear decrease up to a
certain salt concentration. However, the actual origin of this concentration dependence
is yet unclear, and many different theoretical approaches investigate this effect. Here I
present an investigation based on microscopic Maxwell equations and periodic homog-
enization theory. The microscopic perception of anions and cations forming a pseudo
lattice in the liquid solution is exploited by multi-scale asymptotic expansions, where
the inverse Avogadro number arises as small scaling parameter. This leads to a ho-
mogenized Poisson equation on the continuum scale with an effective or homogenized
dielectric constant that accounts for microscopic field effects in the pseudo lattice. In-
complete dissociation is further considered at higher salt concentrations due to solvation
effects. The numerically computed homogenized dielectric constant is then compared
to experimental data of NaCl and shows a remarkable qualitative and quantitative
agreement in the concentration range of (0− 5)mol L.

1 Introduction

In this letter we investigate the dielectric constant εAC of an electrolytic solution AC and
its decrease with increasing salt concentration c. This effect is known as dielectric decrement
or dielectric depression[1] and was first observed by Hasted et al. in 1948 [2] and verified for
many electrolytic solutions, e.g. [3–11]. Up to a certain concentration csat a linear decrease
was found, i.e.

εAC = ε0(1 + χ)− AAC · c c < csat , (1)

where ε0 is the vacuum permittivity, χ the susceptibility of the solvent, and AAC an electrolyte
specific constant. At higher salt concentration, c > csat, the relation becomes non-linear and
flattens towards a plateau value (see Fig. 2b). Various theoretical approaches investigate this
effect [12–21], mainly based on Possion–Boltzmann equations and recent extensions.
However, none actually exploits the periodicity of the quasi-lattice structure in terms of periodic
homogenization theory and multi-scale asymptotic expansions. This mathematical tool [22–
28] is frequently and very successfully used to model porous media, but seldomly applied to
bridge the scale between atomistic and continuum descriptions. Based on a simple model
for an electrolytic solution which relies only on Maxwells equations on the atomistic scale
we use multi-scale periodic homogenization techniques to derive the Poisson equation on the
continuum scale, i.e. with a continuous charge distribution function. Due to the homogenization
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procedure, the dielectric constant becomes dependent on the salt concentration c, which is
shown in the following. The obtained concentration dependence of the homogenized dielectric
constant is in remarkable agreement to measured data, and it is further shown that incomplete
dissociation leads to an overall agreement for salt concentrations from (0− 5)mol L−1.
Consider a salt AC which is dissolved and, up to a certain limit csat [30], completely dissociated
in a liquid solvent S . The anions A− and cations C+ are assumed to form some quasi-
crystalline structure in the liquid solution, c.f. Fig. 1. The distance between two adjacent ions
is related to the bulk salt concentration c. The idea that ions in solution form a quasi-lattice
in liquid electrolytes is widely employed nowadays [31–35]. Bahe [31], for example, derived on
the basis of a face centered cubic pseudo-lattice an expression for the mean activity coefficient
which shows a remarkable accordance to experimental data [34].
The electrolyte Ω is considered as periodic repetition of unit cells ω in all three space dimen-
sions. In the unit cell ω, the cations C+ form a fcc crystal lattice, with an interpenetrated fcc
lattice of the anions A− ( NaCl -crystal structure). In total the unit cell captures 4 cations
and 4 anions whereby it is charge neutral. The unit cell width is denoted by a and determined
from the salt concentration c via

a =
(1

4 · c
)− 1

3
. (2)

For a salt concentration of 0.01mol L−1 the cell width is 8.72 nm and for a concentration
of 1mol L−1 about 1.88nm. For comparison, solid NaCl has a lattice constant of aNaCl =
0.54 nm. Within each unit cell we consider a solvent phase ωS, spherical anions ωA and spherical
cations ωC with ω = ωS ∪ ωA ∪ ωC . The respective interfaces within the unit cell are denoted
by σi,j, i, j = S,A,C, where σS,S denotes the boundary to the adjacent unit cells. Note that
∂ωS = σS,S ∪ σA,S ∪ σC,S.
Consider then the electrostatic Maxwell equation

divD = 0 (3)

with boundary conditions

D · n = e0zα
4πr2

α

on σS,α , (4)

where e0 is the elementary charge in Coulomb, zα the charge number of the ion α = A,C,
and rα the respective ionic radius. Note that we assume thus spherical symmetry of each ion
as well as a homogenous surface charge distribution on the atomic scale. This is sufficient for
the sake of this work, but not a necessary constraint.
We introduce the Faraday constant F = e0NA which yields

D · n = δ · q
s
α with q

s
α = zαF

4πr2
α

and 1
NA

:= δ . (5)

Note that δ is a small parameter for the periodic problem, and we can consider a multi-scale
asymptotic expansion of D in this small parameter δ. Actually δ is the parameter bridging the
scale from the atomistic to the continuum scale.
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Figure 1: Sketch of a liquid electrolyte with quasi-lattice structure.

Consider now for the displacement field

D = −ε∇ϕ (6)

where ε = ε0(1+χ) and χ is the susceptibility of the pure solvent. We consider the multi-scale
expansion

ϕ(x) = ϕ0(x, x
δ

) + δ1 · ϕ1(x, x
δ

) +O(δ2) . (7)

and require ϕi to be periodic with respect to the unit cell ω. With y = x
δ
being the micro-scale

we have

div = divx + δ−1divy and ∇ = ∇x + δ−1∇y . (8)

Hence we obtain for the Maxwell equation

divD = δ−2 · divy(ε∇yϕ
0) + δ−1 ·

(
divx(ε∇yϕ

0) + divy(ε∇xϕ
0 + ε∇yϕ

1)
)

+ δ0
(
divx(ε∇xϕ

0 + ε∇yϕ
1) + divyε∇xϕ

1
)

= O(δ) . (9)

The corresponding boundary condition at σα,S, α = A,C, S with q
s
S = 0 read

D · n =
(
δ−1 · (ε∇yϕ

0) + δ0 · (ε∇xϕ
0 + ε∇yϕ

1) + δ1ε∇xϕ
1 +O(δ2)

)
· n = δ · q

s
α . (10)

In the limit δ → 0 we obtain a sequence of PDEs in orders of the small parameter δ [22].

Order δ−2: In leading order we have

divy∇yϕ
0 = 0 for y ∈ ωi (11)

together with

∇yϕ
0 · n = 0 on σi,j (12)

and the periodicity condition of ϕ0(x,y) with respect to y. Note that the maximum principle[23]
yields

ϕ0(x,y) = ϕ0(x) , ∇yϕ
0 = 0 . (13)

The leading order or macroscopic electrostatic potential ϕ0 is thus independent of the micro-
scale y.
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Order δ−1: Since ϕ0(x,y) = ϕ0(x) we obtain from (9) the condition

0 = divy∇yϕ
1 , (14)

together with the boundary condition

∇xϕ
0 · n = −∇yϕ

1 · n on σi,j (15)

and the periodicity condition for ϕ1. The solution ϕ1(x,y) can be written as

ϕ1(x,y) = −ξ(y) · ∇xϕ
0(x) (16)

where ξ = (ξ1, ξ2, ξ3) satisfies the cell problem (k = 1, 2, 3)

(C1)


divy∇yξ

k = 0 y ∈ ωS
∇ξk · n = nk

ξk is periodic
(17)

The geometric function ξ thus encodes the microstructure of the electrolyte since the cell
problem (C1) is dependent on the unit cell geometry ω. In order to determine the microscopic
eletrostatic potential contribution ϕ1, the cell problem (C1) has to be solved (numerically).

Order δ0: The δ0-equation

divx(ε∇xϕ
0 + ε∇yϕ

1) + divyε∇xϕ
1 = 0 (18)

can be integrated with respect to ωS which yields

divx
ˆ
ωS

ε(∇xϕ
0 +∇yϕ

1) dV = 4zAF + 4zCF , (19)

since ˆ
ωS

divyε∇xϕ
1dV =

ˆ
σS,A∪σS,C

ε∇xϕ
1 · n dA = 4 · 4πr2

Aq
s
A + 4 · 4πr2

Cq
s
C . (20)

The integral expression in (19) can be written, by re-considering ϕ1 = −ξ · ∇xϕ
0 whereby

∇yϕ
1 = −∇yξ · ∇xϕ

0 , (21)

as
ˆ
ωS

(∇xϕ
0 −∇ξ · ∇xϕ

0) dV =

ˆ
ωS

(1−∇yξ) dV

 · ∇xϕ
0 . (22)

With

π := 1
vol(ω)

ˆ
ωS

(1−∇yξ) dV

 (23)
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and

qi = 4Fzi
1´

ω
1 dV = 4Fzia−3 = Fzic i = A,C (24)

we obtain the homogenized Poisson equation

−divx
(
εAC · ∇xϕ

0
)

= qA + qC . (25)

with homogenized dielectric constant

εAC = ε0(1 + χ) · π (26)

of the electrolyte AC . We call the term π dielectric homogenization factor and emphasize
that π can be calculated (numerically) from the cell problem C1 for a specific unit cell ω.
Note that π is actually dependent on the electrolyte concentration c via the lattice parameter
a of cell problem. This is a very interesting result since it shows that the homogenization
procedure actually impacts the dielectric constant εAC of the continuous Poisson equation
(25).
In order to compare this result to experimental and theoretical work of others we consider
explicitly the 3D unit cell ω of a NaCl structure (see Fig. 1) and solve numerically the cell
problem C1 with COMSOL R© Multiphysics. For the numerical determination of π the only
paramters are the ionic radii rA and rC since the unit cell width a is determined from eq. (2).
However, the radii rα of ions in solutions are a difficile quantity[36, 37] and we discuss several
values and their impact on the homogenized dielectric constant. As lower bounds for Na+ and
Cl− we consider the values of the crystal ionic radii, i.e. rCl− = 168pm and rNa+ = 116pm. For
comparison, we consider also the soft ionic radii[38], which are rCl− = 218pm and rsoft

Na+ = 150.
Since solvation effects1 occur in liquid solutions, rα can also be understood as the radius of
a (solvated) ion beyond which the solvent behaves as homogenous, continuous dielectrium2.
Y. Marcus[39] proposes for water as solvent values of rsolv

Cl− = 224pm and rsolv
Na+ = 218pm for

radius of solvated ions where 2.0 solvent molecules are bound to Cl− and 3.5 to Na+ in
the (first) solvation shell. Finally we consider rCl− = rNa+ = [250, 300]pm as free parameter
of a solvated ion to show the general impact of the radius on the dielectric constant.
Figure 2 shows a comparison between the numerically computed homogenized dielectric con-
stant εAC

ε0
(dashed line) and measured values of Hasted et. al [2], for aqueous NaCl . First

of all we find that εAC

ε0
is indeed dependent on the salt concentration c via the periodic ho-

mogenization procedure. In the concentration range up to csat = 2mol L−1 we find that the
qualitative concentration dependence of εAC is in well agreement to experimental data for a
completely dissociated electrolyte. The crystal ionic radii rCl− = 168pm and rNa+ = 116pm,
and also the soft ionic radii, underestimate the influence of the microstructure on the ho-
mogenized dielectric constant. For ionic radii of rC+ = rA− = 0.22nm we find a remarkable
quantitative agreement to the measured values of Hasted et. al. These values correspond to
the values proposed of Y. Marcus[39], and it is to emphasize that there is no additional fitting

1Note that solvation occurs in two or more shells around the central ion. Since solvent molecules in the
first solvation shell are rather strongly bound to the central ion, they will certainly influence the dielectrium
due to their oriented dipole moment. Since solvent molecules are less bound in the second shell they are not
permanently oriented towards the central ion and thus not incorporated in rα.

2This is actually the implicit definition via the boundary condition (4).
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rC+ = 300 , rA− = 300
rC+ = 250 , rA− = 250
rC+ = 222 , rA− = 222
rC+ = 218 , rA− = 152.6
rC+ = 168 , rA− = 117.6
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(a) Computed dielectric constant based on the
periodic homogenization procedure.
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The accuracy of the calculated values of E. and 
X. depends on the correct choice of EO. This has 
been taken as 5.5, the value which has been found 
most suitable in the interpretation of our 
previous results on water. Additional weight is 
lent to this value for water by the infra-red 
measurements of Rubens6 and Hawley Cart-
wright. 6 It is found that n, which is not much 
greater than 2 at rises as the wave-length 
increases. It is unlikely that a very large de-
pression or elevation of EO for water occurs when 
ions are added, but a variation of ± 1 would only 
alter the values of E8 by ± 1 percent. 

The possibility of fitting the data to the above 
equations employing a single time of relaxation 
adds additional weight to the results; but the 
accuracy of some measurements at 10 cm is 
unsatisfactory when compared with our similar 
measurements on water, even when allowing for 
the higher loss angle. The experimental method 
was not pushed to its limit of accuracy, there 
being three principal defects: 

(1) Selection of too large a diameter of smaller 
wave guide for the absorption measurement of E'. 

(2) Unevenness in the cylindrical wave-guide 
walls in absorption measurements. 

(3) Mechanical defects of the pick-up probe 
movement. 

The first two defects arose owing to the dif-
ficulty of drilling 5-mm diameter holes through 
distances greater than about 7 cm if commercial 
drills are used. Therefore the wave guides were 
made of extruded copper tube, which is only 
available in certain diameters, and which shows 
defects when it is strained by the soldering of 
water jackets. The movement of the pick-up 
probe was designed for measurements on water, 
through which greater distances are traveled; 
it was therefore not so accurate for the small 
movements required in measurements on ionic 
solutions. 

At 3 cm the cylindrical wave guides of diam-
eters of a few millimeters were machined, and a 
standard micrometer used for the movement. 
There is every prospect of being able to increase 
the accuracy of these methods beyond even that 
at 3 cm, since the errors are not theoretical but 
technical in origin. 

6 H. Rubens, V. D. Physik. Ges. 17,315 (1915). 
6 C. Hawley Cartwright, J. Chern. Phys. 4, 413 (1936). 

80 

l' 
Es 

__ _____ ________ -+ ________ 

N-1' ________ ________ ________ 

FIG. 2. Static dielectric constant of NaCl solution plotted 
against normality N. Temperature 21.0°C. 

Previous Measurements 
Previous measurements on ionic solutions at 

low frequencies suffer from the drawback of a 
high loss angle mentioned above. 

The small increase in the dielectric constant of 
dilute solutions observed by Wien is not in con· 
flict with the present results, since the variations 
in question are not of great magnitude, and 
might very well take place before the fall in the 
dielectric constant of concentrated solutions 
comes into play. This can be seen from Fig. 2 in 
which the static dielectric constant of NaCI 
solution is plotted against the concentration. It 
is clear, however, that the considerable fall of 
dielectric constant observed by Sack is in dis-
agreement with the present results. Some of the 
most reliable work, that of Wyman,7 and Drake, 
Pierce and Dow8 on dilute solutions at 60 cm and 
4 meters, shows that the lowering of dielectric 
constant is of such small magnitude as would be 
in keeping with our results on concentrated solu-
tions. The only available results on concentrated 
solutions at centimetric wave-lengths are those 
of Elle9 at 4 cm using a free-wave method with 
damped waves from a Herzian oscillator, and 
those of CooperlO on N aCI solutions at wave-
lengths down to 7 cm using a transmission-line 
reflection method. The latter are in rough agree-
ment with the results of the present authors, 
though not interpreted as such. (In his Fig. 4 
much better agreement would be obtained by 
employing our values of the dielectric constant.) 

7 J. Wyman, Phys. Rev. 35, 623 (1930). 
8 F. H. Drake, G. W. Pierce, and M. T. Dow, Phys. 

Rev. 35, 613 (1930). 
9 D. EUe, Ann. d. Physik 30, 355 (1937). 
10 R. Cooper, J. Inst. Elec. Eng. 93, 69 (1946). 

(b) Measured static dielectric constant of NaCl
at 21◦C (Fig. 2 from [2] Hasted et. al., reprinted
with permission of AIP.)

Figure 2: Comparison of the dielectric constant obtained from periodic homogenization and
measured values.

parameter in the modeling procedure. Note that larger ionic radii overestimate the dielectric
decrement.
Beyond a concentration of csat = 2mol L−1 incomplete dissociation becomes important because
of the solvation effect [30]. The solvation number κA,C of solvated ions A−,C+ covers the
number of solvent molecules in the first and second solvation shell around the central ion
[40–42]. The solvation effect binds (κA + κC) · c solvent molecules, whereby the number of
free solvent molecules in solution is nS = nBS − (κA + κC) · c, where nBS is the number density
of pure solvent. For water as solvent and solvation numbers of κA = κC = 12 this leads
to nS = (55 − 24 · c)mol L−1, whereby the number of free solvent molecules would become
negative beyond a salt concentration of 2.3mol L−1. This requires the introduction of ion pairs
AC in solution. These ion pairs are part of the mixture[30] and in thermodynamic equilibrium
to the solvated ions via the dissociation reaction

AC + (κA + κC) S 
 C+ + A− . (27)

This yields a constraint

µAC + (κA + κC)µS = µA + µC (28)

where µα is the chemical potential of the constituent Aα, i.e. µα = gα + kBT ln (yα) +
vα(p − pR)[29]. Equation (28) is then an implicit equation between the dissociation degree
δ, the salt concentration c, the solvation number (κA + κC) and the dissociation energy
∆g = gC+gA−(κA+κC)gS−gAC (28). We employ a value of ∆g = 0.2 eV which corresponds
to a strong electrolyte and refer to [30] for details and a comparison to the classical Ostwald
dilution law. Eq. (28) allows us then to determine the dissociation degree δ as function of the
salt concentration c, i.e. δ = δ̂(c). The lattice constant a is then related to the electrolyte
concentration c via c = δ · 4a− 1

3 .
In Fig. 2a, the dashed line corresponds to complete dissociation while the solid line accounts for
incomplete dissociation. The deviation beyond a concentration of csat = 2mol L−1 arises from
incomplete dissociations due to the solvation effect. For the ionic radii of Y. Marcus we obtain
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a remarkable qualitative and quantitative agreement of the homogenized dielectric constant
εAC to experimental data in the whole concentration range of (0− 5)mol L−1. Reconsidering
the rather simple model approach,i.e. a configuration of cations and anions in an fcc lattice,
this is a surprising result. It seems that multi scale expansions and periodic homogenization
are an effective tool to bridge the scale between atomistic and continuum descriptions of ionic
systems. The described model approach is certainly not limited to monovalent ions in an fcc
quasi lattice, but can also be applied to multivalent salts or even larger charged molecules.
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