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Abstract For the first time, colocated dual-field of view (dual-FOV) Raman lidar and Doppler lidar
observations (case studies) of aerosol and cloud optical and microphysical properties below and within
thin layered liquid water clouds are presented together with an updraft and downdraft characterization at
cloud base. The goal of this work is to investigate the relationship between aerosol load close to cloud base
and cloud characteristics of warm (purely liquid) clouds and the study of the influence of vertical motions
and turbulent mixing on this relationship. We further use this opportunity to illustrate the applicability of
the novel dual-FOV Raman lidar in this field of research. The dual-FOV lidar combines the well-established
multiwavelength Raman lidar technique for aerosol retrievals and the multiple-scattering Raman lidar
technique for profiling of the single-scattering extinction coefficient, effective radius, number concentration
of the cloud droplets, and liquid water content. Key findings of our 3 year observations are presented in
several case studies of optically thin altocumulus layers occurring in the lower free troposphere between
2.5 and 4 km height over Leipzig, Germany, during clean and polluted situations. For the clouds that we
observed, the most direct link between aerosol proxy (particle extinction coefficient) and cloud proxy
(cloud droplet number concentration) was found at cloud base during updraft periods. Above cloud base,
additional processes resulting from turbulent mixing and entrainment of dry air make it difficult to
determine the direct impact of aerosols on cloud processes.

1. Introduction

Field studies of aerosol-cloud interactions (ACI) to quantify the impact of natural and man-made pollution
on the evolution of warm (pure liquid) and ice-containing clouds are still challenging [see, e.g., Seifert
et al., 2007; Kim et al., 2008; Kanitz et al., 2011; McComiskey et al., 2009; Field et al., 2011; Rosenfeld et al.,
2011]. Because of the complexity of the involved processes which take place far away from the ground, the
experimental investigation of the influence of aerosol particles on liquid cloud formation [McComiskey and
Feingold, 2008] or of the specific impact of a given aerosol type or aerosol mixture on heterogenous ice
nucleation [DeMott et al., 2010; Eidhammer et al., 2010] remains very difficult. Besides a good knowledge of
the meteorological conditions and of cloud condensation and ice nuclei concentrations below, within, and
above the cloud layer, the impact of upward and downward motions below and within the cloud layers and
of turbulent mixing and entrainment processes, particle sedimentation, and cloud seeding effects on cloud
evolution has to be known, but these are usually not properly addressed by observations [Ansmann et al.,
2009]. This prohibits a clear, unambiguous identification of direct aerosol influences on cloud processes and
resulting optical and radiative properties. However, there is a strong need for a better quantification of the
role of natural and anthropogenic aerosols on cloud and precipitation formation in the atmospheric system
to improve our ability to predict climate change [Forster et al., 2007]. Long-term ground-based remote sens-
ing, short-term airborne in situ aerosol-cloud studies, and global satellite remote sensing contribute to the
investigations of aerosol-cloud interactions (ACI). All employed techniques have their advantages and also
limitations so that new techniques and methodological approaches need to be developed.

In this paper, we present a novel technique for liquid-cloud ACI studies solely based on lidar. Ground-based
active remote sensing provides powerful instrumentation for vertical profiling of aerosol and cloud prop-
erties and continuous monitoring of cloud evolution and life cycle [Shupe, 2007; Illingworth et al., 2007;
Ansmann et al., 2005, 2009; Martucci and O’Dowd, 2011; Wandinger et al., 2012; Bühl et al., 2013]. For
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investigations of the impact of varying aerosol conditions on cloud droplet formation, techniques are desir-
able that provide information on aerosol microphysical and optical properties such as aerosol particle
number concentration (APNC) or particle extinction coefficient just below cloud base as well as cloud micro-
physical properties such as cloud droplet number concentration (CDNC) or droplet effective radius just
above cloud base. In many studies, however, aerosol properties were measured at the surface or at heights
far below cloud base and then combined with column-integrated cloud properties [Kim et al., 2003; Feingold
et al., 2003a, 2003b, 2006; Garrett et al., 2004; McComiskey et al., 2009]. The respective results then describe
the overall effect of aerosol and meteorological influences on cloud processes. The specific role of aerosol
particles cannot be properly resolved. Twohy et al. [2005, 2013], Lu et al. [2007], Ditas et al. [2012], Kleinman
et al. [2012], and Painemal and Zuidema [2013] used airborne platforms to perform in situ observations of
aerosol and cloud properties. This approach allows for much more adequate studies of the impact of varying
aerosol conditions on cloud formation processes.

We recently introduced the dual-field of view (dual-FOV) Raman lidar method [Schmidt et al., 2013] which
permits us to characterize warm (no ice phase), optically thin, layered clouds in terms of height profiles of
single-scattering droplet extinction coefficient, CDNC, droplet effective radius, and liquid water content. By
implementing two multiple-scattering channels (elastic and nitrogen Raman multiple-backscatter channels)
into a state-of-the-art multiwavelength Raman/polarization lidar [Mattis et al., 2004, 2008; Müller et al., 2005],
we are now able to combine a detailed aerosol characterization in terms of accumulation-mode APNC,
effective radius, and aerosol particle extinction coefficient [Müller et al., 1999; Ansmann and Müller, 2005]
with a respectively detailed cloud microphysical characterization. A clear, unambiguous detection of the
cloud base is also possible by using the backscatter information from the Raman multiple-scattering chan-
nels. An accurate cloud base determination is required in our ACI studies but hampered or masked by a
strong increase of light backscattering caused by water-uptake by aerosol particles when using the standard
backscatter lidar method.

The limitations of lidar applications in cloud studies should also be mentioned in the beginning. Lidar obser-
vations are restricted to optically thin clouds. Cloud top detection and full profiling throughout warm-cloud
layers is only possible for cloud optical depths <2.5–3.0 and respective liquid water paths (LWPs) of less
than about 50 g/m2. Furthermore, the presence of intense drizzle virga may disturb aerosol characterization
below cloud base. Our dual-FOV lidar is only applicable to clouds above 1.3 km height [Schmidt et al., 2013].
To partly reduce these two shortcomings, we used colocated cloud radar observations for drizzle and cloud
top identification.

The instrumental and technical details of the novel dual-FOV Raman lidar method are discussed by Schmidt
et al. [2013]. In this first part of a series two papers (Part II is in preparation and will present the statisti-
cal analysis of about 30 cloud layer observations), we begin with three observational cases to illustrate
the applicability of the new lidar approach in warm-cloud research. By adding simultaneously measured
Doppler lidar profiles of the vertical-wind component at cloud base, we then present two illustrative cases
where we investigated the impact of different aerosol levels on the cloud droplet extinction coefficient
and cloud microphysical properties, and this separately for updraft and downdraft periods. In this way,
we can discuss the impact of vertical motion and related turbulent mixing on these interactions. Our find-
ings corroborate the hypothesis [Feingold et al., 2003a, 2003b; Kim et al., 2008] that vertical motion has a
strong impact on ACI and that entrainment processes severely complicate studies of the influence of varying
aerosol levels on cloud droplet formation as will be discussed in section 3.3.

We start with a brief description of the lidars, cloud radar, and microwave radiometer used in this study
(section 2.1). Details of cloud-retrieval aspects of the novel dual-FOV Raman lidar are given in section 2.2.
Key findings of our 3 year observations are illustrated by several cases presented in section 3. The first study
deals with the comparison of altocumulus evolution in clean and polluted air (section 3.1). The second case
illuminates explicitly the potential of the dual-FOV lidar to provide simultaneously APNC and CDNC infor-
mation (section 3.2). The third and central case study includes the Doppler lidar observations of the vertical
wind component at cloud base and in the lower part of a cloud layer (section 3.3). Based on these obser-
vations, the complications and blurring effects caused by updrafts, downdrafts, and turbulent mixing in
studies of aerosol-cloud interactions are discussed. Concluding remarks are given in section 4.
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Figure 1. Geometry and principle
of dual-FOV measurements. Yellow:
Inner, circular FOV. Light yellow:
Outer, annular FOV. Scattering by
larger droplets leads to smaller
scattering angles in forward direc-
tion and thus to a stronger signal in
the inner FOV (blue scattering pro-
cess). Smaller droplets cause larger
forward scattering angles and thus
a signal increase in the outer FOV
(green scattering process).

2. Instrumentation and Cloud Data Analysis
2.1. LACROS
The Leipzig Aerosol and Cloud Remote Observation System (LACROS,
51.3◦N, 12.4◦E) [Wandinger et al., 2012] of the Leibniz Institute for Tropo-
spheric Research (TROPOS), Leipzig, Germany, was established in 2011.
Cornerstones of LACROS are the multiwavelength Raman/polarization
lidar MARTHA (Multiwavelength Atmospheric Raman Lidar for Tem-
perature, Humidity, and Aerosol Profiling) which is part of EARLINET
(European Aerosol Research Lidar Network) [Mattis et al., 2004, 2008,
2010; Wandinger et al., 2004; Schmidt et al., 2013], the wind Doppler
lidar WILI [Engelmann et al., 2008; Bühl et al., 2012], the 35 GHz cloud
radar MIRA35 [Bühl et al., 2013], and the microwave radiometer HATPRO
(Humidity And Temperature Profiler) [Rose et al., 2005].

MARTHA is a powerful Raman lidar and was upgraded to perform
dual-FOV Raman lidar measurements for the retrieval of cloud micro-
physical properties in 2008 [Schmidt et al., 2013]. A Nd:YAG laser emits
radiation pulses at the wavelengths of 355, 532, and 1064 nm with pulse
energies of 0.3, 0.6, and 0.5 J, respectively, and a repetition rate of 30 Hz.
The receiver of MARTHA consists of a 0.8 m diameter telescope and a
beam separation unit with 12 detection channels. Particle backscatter
coefficients at 355, 532, and 1064 nm and extinction coefficients at 355
and 532 nm can be determined from these lidar observations [Ansmann
et al., 1990, 1992; Ansmann and Müller, 2005]. By applying the method
of inversion with regularization with constraints [Müller et al., 1999;
Wandinger et al., 2002; Ansmann and Müller, 2005] to the set of spectrally
resolved particle backscatter and extinction coefficients, microphysi-
cal properties of the aerosol particles in terms of volume and surface
concentration, effective radius, and APNC (covering accumulation and
coarse-mode particles with diameters of 0.1–10 μm) can be derived.

The novel dual-FOV Raman lidar technique makes use of two receiver
FOVs. Raman scattered light with a wavelength of 607 nm is detected with a conventional, circular FOV
and an annular, outer FOV encompassing the inner, circular FOV. The measurement geometry is illustrated
in Figure 1. In the case of lidar measurements in clouds, multiply scattered light is detected due to the
pronounced forward scattering peak of the phase function of cloud droplets. The width of the forward scat-
tering peak correlates unambiguously with the size of the scattering droplets. As the forward scattering
angles determine the ratio between the signals of the inner and outer FOV, the ratio of the signals from the
inner and outer FOV contains information about cloud droplet size up to 50 g/m2.

The new aspect introduced here is the detection of light which is forward scattered by cloud droplets and
Raman backscattered by nitrogen molecules. As illustrated in Figure 2, the key point of the technique is that
Raman backscattering from nitrogen molecules is nearly isotropic for scattering angles close to 180◦ so that
the angular distribution of the incoming light depends on the forward scattering by droplets only. In strong
contrast, the conventional multiple-scattering lidar technique is based on the measurement of elastically
backscattered laser light [Bissonnette and Hutt, 1995; Bissonnette et al., 2002; Bissonnette, 2005]. Forward
scattering and backscattering by cloud droplets influence the angular distribution of the incoming light but
both scattering processes depend on drop size in a different way (see Figure 2, green and blue curves). This
prohibits a clear straightforward determination of the drop size characteristics.

To be capable of performing dual-FOV cloud measurements in an extended altitude range from 1.3 to 6 km
height, the receiver of MARTHA is set up in the way that the measurement geometry can be easily opti-
mized regarding the contrast of the multiple-scattering effects in the two channels by exchanging the field
stop [Schmidt et al., 2013]. FOV pairs of 0.28 and 0.78 mrad (for clouds above about 4 km height), of 0.5 and
2.0 mrad (for clouds from about 2.7 to 4 km height), and of 0.78 and 3.8 mrad (for clouds with base <2.7 km)
are used [Schmidt et al., 2013]. Due to the small Raman scattering cross section, the dual-FOV Raman lidar
measurements are restricted to nighttime hours.

SCHMIDT ET AL. ©2014. The Authors. 5514
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Figure 2. Scattering phase function for cloud droplet ensembles (gamma distributions after Deirmendian [1969] and
Plass and Kattawar [1971]) with effective radius of 6 μm (green) and 18 μm (blue). Forward (0–5◦) and backward
(175–180◦) scattering angle ranges are enlarged. For comparison, the scattering phase function for air molecules (red,
Rayleigh or Raman scattering) is almost wavelength-independent at forward and backscattering angles.

The Doppler wind lidar WILI operates at a wavelength of 2022 nm and emits laser pulses of 450 ns (140 m)
length and 1.5 mJ pulse energy with a pulse repetition rate of 750 Hz [Engelmann et al., 2008; Bühl et al.,
2012]. Vertical and temporal resolutions are 75 m and 2 s, respectively. The uncertainty in the determination
of the vertical-wind component is of the order of 10 cm/s. WILI observations were mainly used in our study
to separate regions with upward and downward motions. To remotely sense the same volume with WILI
and MARTHA, both systems were located within a distance of less than 10 m, and both lidars were pointing
exactly to the zenith.

The cloud radar is used here only for drizzle detection and cloud top identification to corroborate the lidar
observations in cases with optically dense clouds. The HATPRO microwave radiometer allows us to esti-
mate LWP [Rose et al., 2005] which can be compared with the column-integrated liquid water content (LWC)
obtained from the dual-FOV Raman lidar observations (as explained in the next section). The uncertainty in
the HATPRO LWP is about 15–30 g/m2 [Westwater et al., 2001; Crewell and Löhnert, 2003; Gaussiat et al., 2007;
Ebell et al., 2011]. For a distinct reduction of the relative error to about 10%, the LWPs from HATPRO were
calibrated to 0 g/m2 in cloud-free regions indicated by lidar or ceilometer before or after the passage of
layered clouds [Gaussiat et al., 2007].

2.2. Retrieval of Cloud Microphysical Parameters
The novel dual-FOV Raman lidar technique permits the derivation of profiles of the cloud droplet effective
radius re (3V/A with droplet volume concentration V and surface area concentration A) and cloud droplet
(single-scattering) extinction coefficient 𝛼 [Malinka and Zege, 2007; Schmidt et al., 2013]. The effective radius
is the third moment (LWC) over the second moment (𝛼). LWC is given by 2∕3𝜌re(z)𝛼(z) with water density
𝜌. No assumptions about cloud properties (e.g., adiabatic profile of LWC or certain cloud droplet size dis-
tribution) have to be made in our dual-FOV lidar approach. The measured width (in terms of scattering
angle) of the light-scattering defraction peak is unambiguously related to the effective droplet radius re.
The range of observable effective radii is about 1.5–30 μm [Schmidt et al., 2013], in agreement with sim-
ulation studies of Veselovskii et al. [2006]. The uncertainties in the derived quantities (as shown as error
bars in section 3) are obtained by input variation of the measured signals in both FOVs, comparison of the
results when different height resolutions are applied in the computations, and by considering uncertainties
in the retrieved cloud base and cloud top heights [Schmidt et al., 2013]. The resulting uncertainties in the
presented cloud properties are mostly of the order of 10% to 30%.

To study the relationship between CDNC and the aerosol load (in terms of APNC or aerosol particle
extinction coefficient 𝛼p), we compute CDNC (denoted as N in the following formula) from [Brenguier
et al., 2000]

N = 𝛼

2𝜋r2
s

, (1)
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Figure 3. Simulated Raman signals (in arbitrary units, a.u.)
from the outer-FOV (multiple-scattering) channel with FOV
of (top) 2.0 mrad and (bottom) 3.8 mrad for clouds with
droplet effective radii of (left) 8 μm and (right) 3 μm and
extinction coefficients of 5 (green) and 20 km−1 (blue). Cloud
base heights at 1.2, 2.1, and 3.9 km are indicated by orange
lines. All simulations show a strong, unambigous increase
of the signal at cloud base due to multiple scattering by
cloud droplets.

with the surface mean droplet radius rs = (r2)1∕2.
N is the zeroth moment of the droplet size dis-
tribution. To obtain the unknown surface mean
radius rs from the retrieved effective radius re, we
assume a modified gamma distribution for the
shape of the droplet size spectrum. According to
in situ measurements [Miles et al., 2000], gamma
distributions well describe most cloud drop size
distributions. The modified gamma distribution is
defined by

n(r) = N
Γ(𝜈)

r𝜈−1𝜆𝜈exp(−𝜆r) (2)

with the parameters 𝜈, 𝜆>0. The relationship
between rs and re is then given by

r2
s = 𝜈(𝜈 + 1)

(𝜈 + 2)2
r2

e = lr2
e , (3)

with the factor l = 𝜈(𝜈 + 1)∕(𝜈 + 2)2 so that N can
be obtained from (see equations (1) and (3)):

N = 𝛼

2𝜋lr2
e

. (4)

Miles et al. [2000] set up a database from various
in situ measurements of droplet size distributions
of low-level stratus clouds. The fit of a modi-
fied gamma distribution to the size distributions
obtained from measurements in continental air
masses yielded 𝜈 = 8.7 ± 6.3 and thus a mean
value of l of 0.74 within a range from 0.42 to 0.83.

Similar to equation (4), an alternative approach can
be obtained by starting from k = r3

v∕r3
e with the

volume mean radius rv [Martin et al., 1994] so that
equation (4) is then given as a function of k instead
of l. For continental air masses, Lu and Seinfeld

[2006] compiled a list of k-values for stratiform clouds based on a literature review. The k range of 0.75±0.15
well represents the values found for continental air masses. In the following, we use 0.75 for l in equation (4)
and assume an uncertainty in l of 20% in the computation of the uncertainty in N after equation (4).

2.3. Retrieval of Cloud Base Height
The detection of the cloud base height with lidar is often masked by a strong increase of the backscat-
ter coefficient by a factor of >5 below cloud base due to the rapid growth of aerosol particles by water
uptake. In the case of the dual-FOV Raman lidar, the outer–FOV signals (multiple-scattering channels) can
be used to identify the true cloud base (at which relative humidity reaches the 100% level). Significant
multiple-scattering occurs only if the aerosol particles become activated. Even large aerosol particles after
water uptake are not able to produce a significant multiple scattering signal. This potential to unambigu-
ously detect cloud base height is illustrated in Figure 3. The simulations of the Raman signals shown in
Figure 3 are based on the model of Malinka and Zege [2003]. In all simulations, the Raman signal from the
outer FOV strongly increases at cloud base. The slope of the increase differs with the measurement geome-
try and cloud properties. Water–uptake by aerosol particles is considered in the simulations and, as shown,
does not affect the precise cloud base detection.

3. Observations

The first two observational studies illuminate the influence of observed aerosol conditions close to cloud
base on the microphysical properties of optically thin layered clouds. The third case study includes measure-
ments of the vertical wind component with Doppler lidar and the comparison of aerosol-cloud relationships

SCHMIDT ET AL. ©2014. The Authors. 5516
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Figure 4. Altocumulus layer (in red) observed with MARTHA on (top,
clean conditions) 26 July 2011 and (bottom, polluted conditions) 5
September 2011 . The range-corrected signal (arbitrary units) at 532 nm
from the inner FOV is shown. The time period used for the cloud analy-
sis is indicated by pink vertical lines. Cloud top temperatures (in white)
are derived from GDAS (Global Data Assimilation System [Kanamitsu,
1989]) temperature profiles for grid point Leipzig at 00:00 UTC on 26
July 2011 and 21:00 UTC on 5 September 2011.

during updraft and downdraft periods.
This study is a useful guide for future
studies of aerosol-cloud interactions
by showing the consequences of orga-
nized vertical motions in updrafts and
turbulent mixing on ACI investigations.

3.1. Altocumulus in Clean and
Moderately Polluted Air
Figure 4 shows two observations of
layered clouds. They formed at free tro-
pospheric heights above 2.5 km in clean
and polluted air. On 26 July 2011, the air
mass was advected from Greenland over
Iceland and the North Atlantic (includ-
ing the North Sea) toward Germany. This
altocumulus layer was formed under
background aerosol conditions. On 5
September 2011, a haze layer reaching
to about 3 km height was present. This
aerosol originated from polluted regions
of North America and crossed polluted
parts of western Europe before arriv-
ing at Leipzig, Germany, according to
backward trajectory analysis.

Figure 5 presents profiles of temporal
mean aerosol particle extinction and
backscatter coefficients on these 2 days
with very different aerosol loads. The
basic mean lidar signal profiles were

smoothed with 60 m (backscatter coefficients) and 500–900 m window length (extinction coefficient) before
the computation of the optical properties. Clear-air (Rayleigh) backscatter-coefficient calibration at heights
above 5 km was performed during cloud-free periods. On the clean day (26 July) an average extinction coef-
ficient of 10 Mm−1 (or 0.01 km−1) for the green height area in Figure 5 was determined. Because the relative
humidity was 70%–80% in the green area according to nearby radiosonde ascents, the dry-aerosol extinc-
tion coefficient was probably below 8 Mm−1. The haze extinction coefficients on 5 September ranged from
20 to 50 Mm−1 in the green area (mean value of 30 Mm−1). Relative humidities were mostly 50%–70% in the
green area and indicated less water uptake by the particles. The dry-aerosol particle extinction coefficients
were probably 10%–20% lower than the one shown. The Raman lidar observations further yielded particle
extinction to backscatter ratios (lidar ratios) of 60–65 sr in the green areas on 5 September. These lidar ratios
are typical for aged fine-mode particles of anthropogenic origin [Müller et al., 2007].

According to the multiple-scattering signal profiles in Figures 5b and 5d, cloud bases were at 2.55 km (26
July) and 2.8 km (5 September) and thus 75 m (26 July) to 165 m (5 September) above the height at which
the particle backscatter coefficients begin to strongly increase. Fluctuations in the cloud base height as well
as water uptake by particles contributed to the shift of the backscatter–coefficient minimum by 75–165 m
below mean cloud base. The multiple-scattering signal is less sensitive to cloud base variations as our
simulations show and always provides robust information on the base of the cloud layer.

According to our cloud radar observations, cloud top was at 3.0 km height on 5 September. In agreement
with the lidar measurements virga of drizzle droplets were not observed. The radar indicated a cloud depth
of 100–150 m, in contrast to the lidar observations (cloud depth of 200 m). The cloud layer on 26 July 2011
was not detected with the cloud radar, which is almost insensitive to droplets with radii <10 μm. As shown
in Figure 6, the droplet effective radius was <10 μm throughout the cloud layer on 26 July.

An overview of the lidar-derived cloud optical and microphysical properties for the 2 days is presented in
Figure 6. The altocumulus layers were measured with FOV pairs of 0.78 and 3.8 mrad (26 July) and 0.5 and

SCHMIDT ET AL. ©2014. The Authors. 5517
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Figure 5. Profiles of particle extinction coefficient (black)
and backscatter coefficients (red) below the clouds derived
from mean lidar signal profiles for the periods from (a)
00:00 to 01:18 UTC on 26 July 2011 (Figure 5a) and 19:35
to 20:06 UTC on 5 September 2011, excluding the period
from 19:49–19:58 UTC (Figure 5c). The mean aerosol opti-
cal properties in the green areas are assumed to represent
the aerosol conditions during cloud formation (i.e., at cloud
base). (b, d) Signal profiles from the outer FOV at 607 nm
(multiple-scattering channel) indicating the cloud base heights
(orange, horizontal lines) at 2.65 km height (Figure 5b) and
2.9 km height (Figure 5d).

2.0 mrad (5 September). For the analysis of
cloud microphysical properties, we averaged
dual-FOV Raman signal profiles for periods with
almost constant cloud base height. These signal
averaging periods are indicated by pink vertical
lines in Figure 4. At both days, droplet extinction
coefficients were 5–15 km−1 about 50 m above
cloud base, but the effective radii of the droplets
were 6±3 μm on the clean day and 4±1.5 μm
on the polluted day. LWCs were of similar mag-
nitude just above cloud base. The LWC profiles
are close to respective adiabatic LWC profiles
(not shown) up to 2710 m (26 July) and 2960 m
(5 September) when taking the uncertainties
(error bars shown in the figure) into account.
The computation of adiabatic LWC profiles is
explained below (when Figure 13 is discussed).
Deviations of the observed LWC profiles from
the adiabatic ones above 2710 m (26 July) and
2960 m (5 September) must be interpreted with
caution. Descending cloud parcels containing a
comparably high liquid water amount may have
contributed to such super adiabatic LWC pro-
files. However, it is more likely that the results
are erroneous because of the large uncertainties
in the lidar retrieval.

The clear difference between the cloud droplet
effective radii on 26 July and 5 September 2011
throughout the lower half of the cloud agrees
well with the predictions of the first indirect
aerosol effect, namely that the effective radius
decreases with increasing aerosol load.

In Figure 6 (right panels), the CNDC profiles are
shown. The comparably large uncertainties in
the derived CDNC values result from the strong
impact of the uncertainty in the effective radius
according to equation (4). The influence of the
uncertainties in cloud extinction coefficient and
in the gamma size distribution parameter l is
comparably small. The cloud embedded in the

cleaner environment shows a much lower CDNC in the lowest 50 m of the cloud. The CDNC difference (just
above cloud base) between the two cloud cases is of the order of a factor of 3–4. A factor of 3 describes the
difference in the aerosol optical properties.

We checked also the quality of our lidar-based LWC retrieval by comparing the height-integrated LWC val-
ues with the LWPs measured with the microwave radiometer HATPRO. Table 1 provides an overview of LWPs
derived from HATPRO and our lidar observations for all cloud cases discussed here. The column-integrated
LWCs match the LWPs from HATPRO for all clouds except for the cloud measured on 5 September 2011,
where the LWP from HATPRO is much larger than the column-integrated LWC. As mentioned in section 2,
the relative error of the HATPRO-derived LWP is about 10%. Different viewing geometries of HATPRO and
the lidar in combination with horizontal LWP inhomogeneities may be partly responsible for the larger
deviations in Table 1. Our cloud measurements (HATPRO, lidar) show at all low LWPs from about 5–33 g m−2.

To provide a more quantitative analysis of our observations, we computed several ACI parameters [Feingold
et al., 2001; Garrett et al., 2004; McComiskey and Feingold, 2008; McComiskey et al., 2009]. The indirect-effect
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Figure 6. Cloud microphysical properties in terms of droplet single-scattering extinction coefficient 𝛼, effective radius
re, liquid water content (LWC), and cloud droplet number concentration (CDNC) for the clean case (26 July 2011, red
profiles) and polluted conditions (5 September 2011, blue profiles). Error bars indicate the uncertainties (1 standard devi-
ation). They are computed with the dual-FOV lidar retrieval scheme (𝛼, re) and by applying the law of error propagation
to the LWC equation (defined in section 2.2) and equation (4) (CDNC).

parameter ACIr = −𝜕 ln(re)∕𝜕 ln(𝛼p) for constant LWC with the aerosol particle extinction coefficient 𝛼p

(index p here to distinguish from cloud droplet extinction 𝛼) describes the relative change of the droplet
effective radius re with a relative change in the haze aerosol load parameter 𝛼p at constant LWP (or LWC)
conditions. The requirement of similar cloud LWP and cloud-base LWC values was well fulfilled for these two
cases. The aerosol particle extinction coefficient 𝛼p was found to be the most robust aerosol parameter (e.g.,
compared to inversion retrieval products such as Nacc, see section 3.2). Effects of particle water uptake on
the measured or corrected ambient 𝛼p values may introduce uncertainties of the order of 25% in the derived
ACI values.

Similar to ACIr, the nucleation-efficiency parameter can be defined, ACIN = d ln(N)∕d ln(𝛼p), and
describes the relative increase of the droplet number concentration with increasing aerosol load. ACIr

is equal to 3 ACIN (for constant LWC) according to the re ∝ N−1∕3 relationship. ACIr and ACIN can vary
between zero (no dependence) and 0.33 and 1 (linear increase of CDNC with APNC), respectively. By using
the cloud effective radii at the lowest height above cloud base of 4 μm on 5 September and 6 μm on
26 July 2011 and the mean values of the aerosol particle extinction coefficient below the cloud layers
of 10 Mm−1 on 26 July and 30 Mm−1 on 5 September, we yield ACIr = 0.37. If we assume dry-particle
extinction coefficients of around 7.5 Mm−1 (26 July) and 26 Mm−1 (5 September) according to our dis-
cussion above, we obtain the maximum possible value of ACIr = 0.33 in this case. Because of the
large uncertainties in the derived CDNCs of 75%–100%, ACIN values are not presented. If we use the
cloud mean values of re (8.3 μm on 26 July, 9 μm on 5 September), as usually done in many previous
studies of ACI [Garrett et al., 2004; Feingold et al., 2006; McComiskey et al., 2009], we obtain a negative

Table 1. Comparison of LWP From HATPRO and Integrated
LWC From Dual-FOV Raman Lidar Measurements for All
Clouds Presented in This Study

LWP From LWP From

Date HATPRO (g/m2) Lidar (g/m2)

26 July 2011 8.4 ± 4.2 15.2 ± 8.6
15 August 2011 21.0 ± 7.3 27.7 ± 9.4 (up)c

31.6 ± 7.5 (down)c

29 August 2011 11.8 ± 6.6 12.9 ± 4.6 (up)c

7.6 ± 2.4 (down)c

5 September 2011 33.2 ± 3.1 14.7 ± 3.3
29 August 2012a 5.4 ± 5.3 9.8 ± 4.8
29 August 2012b 10.3 ± 10.0 11.0 ± 4.8

aCloud with base at 3.7 km height.
bCloud with base at 3.3 km height.
cUp and down denote up and downdraft periods.

ACIr of −0.08. It should be mentioned here that
the ACI values computed above from cloud
mean effective radii differ insignificantly from
the ones obtained when explicitly LWP and
cloud optical depth information is used to esti-
mate the column-integrated effective radii in
the respective ACIr estimation. These cloud col-
umn values are usually derived when passive
remote sensing is involved in ACI studies.

3.2. Link Between CDNC and APNC
at Cloud Base
The combination of multiwavelength aerosol
Raman lidar and dual-FOV lidar allows us for
the first time to derive APNC (aerosol particle
number concentration, here the concentration
of accumulation–mode particles with radii
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Figure 7. Altocumulus layers (in red) observed on 29 August 2012.
The range-corrected signal (arbitrary units) at 532 nm from the
inner FOV is shown. The two layered clouds formed at 3.3 and
3.7 km height in moderately polluted air. The time periods used
for the cloud analysis are indicated by pink vertical lines. Cloud
top temperatures (in white) are derived from GDAS data for grid
point Leipzig at 18:00 UTC. Aerosol particle properties shown in the
next figure are calculated from the lidar observations during the
cloud-free period from 19:15 to 19:30 UTC.

>50 nm) at heights below the cloud layer
and CDNC just above cloud base. Figure 7
shows two cloud layers at 3.3 and 3.7 km
height and a cloud-free period from
19:10–19:30 UTC. In Figure 8(a) and (b),
the determined backscatter and extinc-
tion coefficients of the aerosol particles for
this cloud–free period are shown. In the
case of the extinction profiles, the basic
Raman signals were vertically smoothed
with 600–900 m window length to reduce
the statistical uncertainty to about 20%.
In contrast, the backscatter coefficients
are given with 60 m resolution. To obtain
the aerosol particle concentration of the
accumulation and coarse modes (APNC
or Nacc, retrieval diameter range from
0.1–10 μm) and the corresponding parti-

cle effective radius reff in Figure 8(c), we applied the method of inversion with regularization as explained
in section 2.1.

The optical properties in Figures 8a and 8b indicate moderately polluted aerosol conditions up to 3–4 km
height. The 532 nm particle extinction and backscatter coefficients were <20 Mm−1 and <0.5 Mm−1 sr−1

(lidar ratio was about 40 sr) above 3.2 km height where the clouds formed. The APNC was high with val-
ues of around 1500 cm−3 below 3 km height. In the height range from 3.2 to 3.8 km, where the cloud layers
occurred, an APNC of about 300 cm−3 with an uncertainty of approximately 100 cm−3 was derived. The
aerosol particle effective radius was low (about 100 nm) and indicated the dominance of fine-mode haze.
It must be emphasized that lidar-derived APNC considers aerosol particles with diameters from 100 nm to
10 μm at ambient humidity conditions. In contrast, in situ aerosol measurements usually provide dry-particle
information. In situ measured APCNs then include particles with dry-particle diameters >100 nm. Our APNC
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Figure 8. (a) Raman-lidar-derived aerosol particle backscat-
ter coefficient for three laser wavelengths, (b) aerosol
particle extinction coefficient for two wavelengths, and
(c) aerosol particle number concentration (Nacc, particles
with radius >50 nm) and aerosol particle effective radius
(reff) obtained by means of a lidar inversion scheme applied
to the optical properties (a,b) for two layers from 2.45 to
2.95 km and 3.0 to 4.0 km height. Mean aerosol properties
for 29 August 2012, 19:15–19:30 UTC are shown. This period
is used to characterize the aerosol properties in the period
between the two cloud layers shown in Figure 7.

values for ambient aerosol conditions therefore
may include a significant amount of particles
with dry-particle diameters as small as 70–80 nm,
and correspondingly our ambient APNCs may
be considerably larger than the in situ measured
dry-particle APNCs.

Figure 9 shows the microphysical properties of the
two cloud layers. The cloud extinction coefficients
and the LWC values are significantly higher in the
upper cloud layer than in the lower one. Both
LWC profiles significantly deviate from the respec-
tive adiabatic LWC profiles, except for the lowest
retrieval height above cloud base. Again, this may
be widely the result of large uncertainties in the
lidar retrieval.

Effective radii are similar in both clouds in Figure 9.
The CDNC values are rather uncertain because
of the relatively large errors in the cloud droplet
effective radii of 25%–40% and a respective error
contribution to the CDNC relative uncertainty of
50%–80%. The colocated cloud radar only identi-
fied the lower cloud layer and did not indicate any
drizzle formation.
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Figure 9. Same as Figure 6 except for 29 August 2012, 19:04–19:07 UTC average (upper cloud, blue) and 19:34–19:39
UTC average (lower cloud, red).

We leave out a further investigation of the aerosol influence on cloud drop evolution in terms of ACIr and
ACIN in this cases with almost similar aerosol conditions for both detected cloud layers. Nevertheless, the
APNC and CDNC information can be used to estimate how many of the aerosol particles of the accumula-
tion and coarse-mode particles (0.1–10 μm diameter range) served as cloud condensations nuclei (CCN).
According to Figures 8 and 9, we see that CDNC is of the order of 40–80 cm−3 in the lowest part of the cloud
layers, whereas the APNCs below the cloud layers are around 300 cm−3 so that roughly 15%–25% of the
accumulation particles (for ambient humidity conditions) probably served as CCN in this measurement case.

3.3. Influence of Updraft and Downdraft Motions
In our last and central case study we discuss the impact of updrafts and downdrafts, turbulent mixing, and
entrainment of dry air on the evolution of the microphysical characteristics of layered clouds. On 15 August
2011, combined Doppler lidar and dual-FOV Raman lidar observations were performed. A 150–200 m thick
stable cloud layer was present for more than 2 h. The cloud radar detected the uppermost 50–100 m of the
cloud deck with top heights at 3.0–3.1 km height. Drizzle was not observed. Figure 10 provides dual-FOV
lidar information on aerosol conditions and cloud extent. The cloud base was rather constant over the 2 h
period and increased by about 50–100 m after the first 20 min of observation toward the end. The profiles
of aerosol particle backscatter and extinction coefficients below the cloud base in Figure 10 (right) are thus
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Figure 10. (left) Profiles of the particle extinction (black)
and backscatter coefficient (red) measured on 15 August
2011, 20:29–21:30 UTC average. (right) Signal profile from
the outer FOV at 607 nm (Raman multiple-scattering chan-
nel, 20:29–20:46 UTC average) indicating a cloud at 2.8 km
height (cloud base). The increasing relative humidity below
the cloud layer leads to a strong increase of the backscatter
coefficient by a factor of about 5 from 2.3 to 2.755 km (99%
relative-humidity height level). Cloud top temperature was
0.5◦C around 3.0 km height.

not disturbed by any cloud base variation. The
backscatter profile shows an almost textbook-like
increase between 2.4 and 2.75 km height caused
by particle water uptake. Particle extinction coeffi-
cient ranged from 20 to 50 Mm−1 between 1.5 and
2.5 km height.

The vertical wind velocity at cloud base and in the
lower part of the altocumulus layer obtained with
the Doppler lidar for the selected 16 min cloud
observation is presented in Figure 11 (top). Cor-
responding vertical wind statistics are shown in
Figure 11 (bottom). The updraft and downdraft
speeds were mostly <0.5 m/s.

The dual-FOV Raman lidar was run with FOVs
of 0.5 and 2.0 mrad. The cloud observations in
Figure 12 were sorted according to the occurrence
of updrafts and downdrafts. A dual-FOV Raman
signal profile was assigned to an updraft or down-
draft region if the corresponding vertical velocity
showed a positive or negative value at cloud base,
respectively. Eighty-three updraft-related and 123
downdraft-related MARTHA signal profiles (each
accumulated over 4 s) were added and averaged.
Afterward, the cloud retrieval algorithm
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Figure 11. (top) Vertical wind velocity at cloud base and
in the lower cloud part measured with Doppler lidar on
15 August 2011, 20:29–20:46 UTC. (bottom) Relative occur-
rence of measured vertical wind velocities (downdrafts in
green, updrafts in orange) at cloud base during the time
period shown in the top panel.

was applied to both data signal sets separately
to derive the cloud microphysical parameters as
shown in Figure 12. The applied signal averaging
is necessary to reduce the influence of signal noise
on the uncertainty in the cloud retrieval products
to an acceptable level.

A clear difference in the cloud properties for
updraft and downdraft times is especially visible in
terms of droplet extinction coefficient and CDNC at
the lowermost height level within the cloud layer.
The strong increase of the extinction coefficient
and CDNC can be attributed to new droplet for-
mation. Slightly lower cloud effective radii in the
ascending air are consistent with this hypothesis.
The LWC profile for the updraft times (orange pro-
file) is in agreement with the respective adiabatic
LWC profile. Again deviations from the adiabatic
LWC profile are observed for the downward times
(green profile, too large values).

A second example of combined dual-FOV and
Doppler lidar is shown in Figure 13. Less strong
updraft and downdraft motions were observed on
29 August 2011. The histogram of the measured
vertical wind velocities (not shown) indicated that

most of vertical wind velocities (70%) were in the range from −0.2 m/s to 0.2 m/s. On 15 August 2011, such
low wind speeds were found in only 50% out of all cases. Less strong vertical motions on 29 August 2011
may be favorable for other effects to become dominant, e.g., downward mixing of dry air from above the
shallow cloud layer.

Seventy-four and one hundred 4 s profiles recorded during updraft and downdraft periods, respectively,
were used for the data analysis of 29 August 2011. Aerosol particle extinction coefficients were as high as
70 Mm−1 within an 800 m thick aerosol layer (200 to 1000 m below cloud base), and the minimum value
was close to 45 Mm−1 just below the cloud base. Backward trajectory analysis indicates a slow aerosol trans-
port at low heights from Spain over France and southwestern Germany toward Leipzig (for aerosol arriving
at heights around 2000 m) and thus accumulation of aged anthropogenic haze particles. In contrast, on
15 August 2011, a comparably fast air mass transport occurred and the aerosol particles traveled at heights
of 2000–3000 m from the Atlantic, crossed Belgium and western Germany before arriving at Leipzig (at
about 3500 m height). In this case a composition of less aged European haze of low concentration mixed
with free-tropospheric background aerosol dominated.
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Figure 12. Cloud microphysical properties retrieved from the dual-FOV Raman lidar observations during updraft
(orange) and downdraft (green) periods on 15 August 2011, 20:29–20:46 UTC.
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Figure 13. Cloud microphysical properties retrieved from the dual-FOV Raman lidar observations during updraft
(orange) and downdraft (green) periods on 29 August 2011, 20:59–21:18 UTC. The calculated profile of the adiabatic LWC
is shown in pink with purple lines indicating the error margin.

The cloud products presented in Figure 13 differ considerably from the findings in the preceding Figure 12.
Higher values of cloud extinction coefficient and CDNC were observed on this day with the higher aerosol
load. The aerosol particle extinction coefficients below the cloud layer were about a factor of 2 smaller on
15 August compared to the conditions on 29 August 2011. Lower effective radii and lower LWC values were
observed around cloud center during the downdraft periods on 29 August. Turbulent mixing and associated
entrainment of dry air from above and subsequent evaporation of the small droplet fraction is consistent
with this finding.

To corroborate the hypothesis of dry air entrainment, the adiabatic LWC profile is explicitly shown here.
For this calculation an accurate knowledge of the cloud base height and cloud base temperature is neces-
sary. The microwave radiometer HATPRO allows us to estimate the temperature profile. The accuracy of this
retrieval is about 1.5 K in an altitude range around 2.4 km height [Löhnert and Maier, 2012]. A temperature
of −0.2 ± 1.5◦C was obtained at cloud base. For comparison, the simulated GDAS temperature at cloud base
height was 0◦C for grid point Leipzig at 21:00 UTC on 29 August 2011. The computed profile of the adiabatic
LWC presented in Figure 13 suggests an adiabatic increase for the updraft times which is reasonable when
droplet growth through condensation dominates. For the downdraft times, the subadiabatic LWC profile is
consistent with entrainment of dry air from above.

Kim et al. [2008] summarized the complications in ACI studies by turbulent motions as follows. Strong tur-
bulent mixing may lead to strong evaporation of droplets associated with a strong reduction in CDNC and
an increase of the droplet effective radius because of predominant evaporation of small droplets. Stronger
turbulence within the cloud may, on the other hand, increase drop collisions with the result that CDNC
decreases and effective radius increases. Strong updrafts may cause new droplet formation (leading to a
decrease of effective radius) and/or growth of large droplets on the expense of smaller ones (leading to an
increase of effective radius). Our observations in Figures 12 and 13 clearly corroborate the conclusions of
Kim et al. [2008] that turbulent mixing reduces the aerosol effect on CDNC. From these reasons, studies of
the aerosol-cloud relationship based on measured cloud column parameters (or cloud mean values of effec-
tive radius and CDNC) of layered clouds must be interpreted with caution. The specific impact of varying
aerosol conditions cannot be separated from meteorological aspects. The latter may dominate the evolution
of a cloud layer and widely determine the cloud microphysical and optical properties.

We finally compared the two August 2011 measurements (with similar LWC conditions in the lower cloud
parts) and calculated several ACIN values. Figure 14 provides an overview of the aerosol and cloud observa-
tions, relevant for our ACI computation. In the ACIN computation, we distinguished four scenarios: (a) ACI
calculation with cloud properties at the lowest height level and by considering updraft periods only, (b)
same as scenario (a) but including all (updraft and downdraft) periods in the ACIN computation, (c) ACIN cal-
culation with vertical mean cloud properties considering updraft periods only, and (d) same as scenario (c)
but including all (updraft and downdraft) periods in the calculation. As aerosol proxy we used the minimum
particle extinction coefficients in Figure 14 of 20 Mm−1 (15 August) and 45 Mm−1 (29 August). For scenarios
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Figure 14. Aerosol-cloud relationship in terms of ACIN based
on lidar-derived particle extinction profiling below cloud
base (solid lines) and CDNCs just above cloud base (symbols,
same as the values in Figures 12 and 13 for the lowest height
level). The orange line indicates cloud base and defines
height level of 0 m for the particle extinction profiles, mea-
sured on 15 August (red, same as in Figure 10) and on 29
August 2011 (blue). Extinction coefficients are computed
from respective backscatter coefficients multiplied with an
aerosol particle lidar ratio of 50 sr. The Nacc scaling (second
x axis) assumes that an extinction coefficient of 50 Mm−1

corresponds to an accumulation–mode particle concentra-
tion of 750 cm−3. In the computation of indicated CDNC and
ACIN values, dual-FOV lidar observations of cloud properties
just above cloud base (also shown in Figures 12 and 13) are
used, for the entire cloud period (all: updarft + downdraft
periods; updraft: updraft periods only). In the computation
of ACIN, minimum particle extinction values of 20 Mm−1

(red) and 45 Mm−1 (blue) are considered.

(c) and (d), Table 1 indicates very different LWP
conditions with 7.6–12.9 g/m2 on 29 August 2011
and 27.7–31.6 g/m2 on 15 August 2011. For such
variable LWP conditions only the computation of
ACIN may lead to useful results.

For optimum conditions (scenario (a), use of
cloud-base cloud parameters, and consideration
of updraft periods only), we obtain ACIN=0.56. If
we ignore the wind information (scenario (b)), we
yield ACIN=0.77. When using vertical mean cloud
properties, we obtain ACIN=0.37 (for scenario (c),
for updraft periods only) and ACIN = −0.055 (sce-
nario (d), wind information ignored). Surprisingly,
ACIN for scenario (b) is larger than the values for
the optimum scenario (a). This is caused in the
shown case by the fact that the absolute CDNCs
are lower in both measurement cases when the
wind information is ignored, but the absolute dif-
ference between the two values remains almost
the same and does not depend whether we use
updraft periods only or the entire time interval
in the analysis. The ACIN parameter however is a
function of the relative CDNC difference which is
then higher for the lower absolute CDNC values.

For comparison, average values of airborne in
situ observation for ACIN were close 0.55 [Lu
et al., 2007; Terai et al., 2012]. As an exception,
Painemal and Zuidema [2013] found even larger
values of 0.76–0.92. In these airborne field cam-
paigns of marine layered clouds, flights were not
sorted according to different flight levels within
the cloud layer (base, center, and top level) and
all these observations were then equally consid-
ered in the ACI studies, i.e., without distinguishing

between the different height levels above cloud base. This kind of averaging probably also leads to an
underestimation of the aerosol effect (as mentioned, most clearly visible only in the lowest cloud part).

By assuming that scenario (a) provides optimum conditions for the ACI quantification, we see that the other
three scenarios (b)–(d) differ significantly (35%–100%) from the optimum value of 0.56 in this case study.
In agreement with Kim et al. [2008], we may conclude that downdrafts and turbulent mixing immediately
begin to reduce any clear aerosol impact on cloud microphysical properties on the way up through the
cloud layer. This hypothesis is already mentioned in earlier publications and corroborated by the review
of McComiskey and Feingold [2008]. The authors summarize different ACI studies performed since 1993
and found a wide spread of ACIN from close to 0.1–1.0. McComiskey et al. [2009] then presented a study of
ground-based aerosol characterization and remote sensing of column-integrated cloud properties (effective
radius, CDNC) of coastal stratocumulus over California and found a mean value of ACIN=0.48 when consider-
ing only values within a physically plausible range of 0–1.0. However, they found also many values between
−2 and 2. On average, they observed the strongest ACI values during updraft times (mean value of 0.58 for
updraft >0.5 m/s and of 0.69 for updrafts >1 m/s).

The smallest ACIN values (global means) of 0.08 over land and 0.25 over the oceans are finally obtained
in the case of satellite remote sensing [Quaas et al., 2009] in which horizontally averaged aerosol optical
depths (for ambient conditions) are set into context with cloud column properties which are also averaged
over large areas and which are furthermore dominated by the radiative information from cloud top regions.
Horizontal averaging not only smooth out the updraft effects on ACIN but also inhomogeneities in the

SCHMIDT ET AL. ©2014. The Authors. 5524



Journal of Geophysical Research: Atmospheres 10.1002/2013JD020424

aerosol distribution and cloud LWP variability. For completeness, the strong variability in all of the published
ACIN numbers also reflects the influence of uncertainties in the measurements, in the selected observation
strategies, and mismatched sampling of aerosol and cloud properties in space and time.

The limitations of lidar were already mentioned in section 1. With focus on the uncertainties in the ACIN

determination, Figure 14 indicates the large uncertainties in the CDNC values. The aerosol parameter used in
Figure 14 is the particle extinction coefficient. As mentioned above, this is the most robust aerosol quantity
we can measure with lidar. The best aerosol parameter would be APNC (see the second x axis in Figure 14).
The relationship between 𝛼p and APNC is however not straightforward. For the same 𝛼p, APNC can vary by
a factor of 2–3 or even more as a result of a varying aerosol size distribution (and absorption and scatter-
ing conditions). This must be considered as an important source of uncertainty in the ACIN estimation. We
checked the Ångström exponents (describing the spectral slopes of 𝛼p) of the backscatter and extinction
coefficients. The Ångström exponent sensitively changes with a change in the aerosol particle size distribu-
tion. We found similar Ångström exponents for 15 and 29 August 2011 so that we assume that 𝛼p was well
correlated with APNC for these two cases so that our ACIN estimates in Figure 14 are quite accurate. After
the evaluation of all data (of 20–30 cloud cases) we may draw more solid conclusions concerning ACI over
polluted continents and the role of updraft knowledge.

4. Conclusions and Outlook

A new lidar technique was introduced that allows simultaneous profiling of aerosol and warm-cloud opti-
cal and microphysical properties. An unambiguous cloud base detection is now possible by using the
multiple-scattering channel of the new dual-FOV Raman lidar. In combination with a Doppler lidar for
vertical-wind observations, the dual-FOV lidar was used to investigate the influence of aerosol particles
on cloud properties of layered, purely liquid clouds in the lower free troposphere over a polluted, central
European site.

In three case studies the key findings of our 3 year observational period were discussed. The potential to
determine relationships between CDNC and APNC (particles with diameters > 100 nm) at ambient humid-
ity conditions solely from the dual-FOV Raman lidar observations was illuminated. The impact of updraft
and downdraft motion on the parameter ACIN describing the relationship between CDNC and aerosol load
below cloud base was highlighted. The combined lidar observations corroborate that ACI values are high-
est at cloud base, and the use of cloud-mean properties blurs and reduces the measurable effect on cloud
properties. Vertical mixing and dry-air entrainment cause significant reduction of a clear and direct aerosol
effect on cloud microphysical properties with increasing height above cloud base. In a follow-up paper we
will present the statistics of our 3 year observations of layered clouds.
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