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Abstract

In this paper we propose a jump-diffusion Libor model with jumps in
a high-dimensional space (R™) and test a stable non-parametric calibration
algorithm which takes into account a given local covariance structure. The
algorithm returns smooth and simply structured Lévy densities, and penalizes
the deviation from the Libor market model. In practice, the procedure is FFT
based, thus fast, easy to implement, and yields good results, particularly in
view of the severe ill-posedness of the underlying inverse problem.

1 Introduction

The calibration of financial models has become an important topic in financial en-
gineering because of the need to price increasingly complex options consistent with
prices of standard instruments liquidly traded in the market. The choice of an un-
derlying model is crucial with respect to its statistical relevance on the one hand,
and the possibility of calibrating it with ease on the other. In order to cover stylized
facts in financial data such as implied volatility smiles, more complex models, i.e.
models beyond Black-Scholes, are called for.

During the last decade Lévy-based models have drawn much attention, as these
models are capable to describe complex but realistic behavior of financial time series.
In particular, these models may cover jumps, heavy tails, and are principally able
to match implied volatility surfaces observed in stock and interest rate markets. For
modelling stock prices, pure jump Lévy processes were already proposed in Eberlein,
Keller and Prause (1998). In Cont & Tankov (2003) regularized approaches for

calibrating jump-diffusion stock price models were considered.

In the interest rate world the Libor market model developed by Brace, Gatarek,
Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann, Sondermann (1997),
has become one of the most popular and advanced tools for modelling interest rates
and interest rate derivatives. This in spite of a main drawback; the Libor market
model cannot explain implied volatility surfaces typically observed in the cap mar-
kets. In order to handel this issue different extensions of the Libor market model
using processes with jumps have been proposed. Glasserman and Kou (2003) de-
veloped a jump diffusion Libor model and gave some useful explicit specifications.
The most general framework for Libor models driven by jump measures is provided

in Jamshidian (2001).

The central theme in this paper is a well structured jump-diffusion Libor model
which allows for robust and efficient calibration. Our starting point will be a given



Libor market model with known deterministic volatility structure. For instance,
this market model might be obtained from a calibration procedure involving at the
money (ATM) caps, ATM swaptions, and/or a historically identified forward rate
correlation structure. Meanwhile, calibration procedures for Libor market models
are well studied in the literature (e.g. Schoenmakers (2005), or Brigo & Mercurio
(2001)). Yet, our main goal is the development of a specific jump-diffusion Libor
model which can be calibrated to the cap-strike matrix in a robust way and which
is, in a sense, as near as possible to the given market model. In particular, this
model will be furnished in such a way that the (local) covariance structure of the
Jump-diffusion model coincides with the (local) covariance structure of the market
model. We have three main reasons for doing so: (1) The price of a cap in a Libor
market model does not depend on the (local) correlation structure of the forward
Libors. However, this correlation structure may contain important information such
as, for instance, prices of ATM swaptions. We therefore do not want to destroy
this correlation structure as given by the input market model when calibrating
the extended model to the cap(let)-strike volatility matrix. (2) The lack of smile
behavior of the input market model, which is regarded as a rough intermediate
approximation of a smile explaining jump-diffusion model, is considered to be a
consequence of Gaussianity of the driving random forces (Wiener processes). So,
loosely speaking, we want to perturb these forces to non-Gaussian ones by using
jumps, while maintaining the (local) covariance structure of the given market model,
hence the correlation structure implicitly. (3) Last but not least, by preserving the
covariance structure we obtain a very robust calibration procedure.

The literature on calibration methods for asset models based on Lévy processes has
mainly focused on certain parametrization of the underlying Lévy process. Since
the characteristic triplet of a L.évy process is a priori an infinite-dimensional object,
the parametric approach is always exposed to the problem of misspecification, in
particular when there is no inherent economic foundation of the parameters and they
are only used to generate different shapes of possible jump distributions. Therefore,
we employ a nonparametric approach of Belomestny & Reiss (2004) which utilizes
explicit inversion of a Fourier based pricing formula and a regularization in the
spectral domain.

The outline of the paper is as follows. We recall in Section 2 the general arbitrage-free
Libor framework developed in Jamshidian (2001). It will serve as the baseplate of
this article. The covariance preserving jump-diffusion extension of the Libor market
model is constructed in Section 3. In Section 4 we recap Fourier-based representa-
tions for Caplet prices in the spirit of Car & Madan (1999), see also Glasserman &
Merener (2003), Eberlein & Ozkan (2005). The algorithm for calibrating to a full
cap-strike matrix is developed in Section 5, and a real life calibration is carried out
in Section 6. Technical details and derivations are given in the Appendix-section.



2 General framework for Libor models with jumps

Consider a fixed sequence of tenor dates 0 =: Top < Ty < Ty, < ...T,, called a
tenor structure, together with a sequence of so called day-count fractions §; :=
Tivs —T;, 2=1,...,n — 1. With respect to this tenor structure we consider zero
bond processes B;, 1 = 1,...,n, where each B; lives on the interval [0, T;] and ends
up with its face value B;(T;) = 1. With respect to this bond system we deduce a
system of forward rates, called Libor rates, which are defined by

Li(t)::l Blt) , 0<T,1<:i<n—1.
6 \ Biy1(t)

Note that L, is the annualized effective forward rate to be contracted for at the date
t, for a loan over a forward period [T}, T;1]. Based on this rate one has to pay at
T:1+1 an interest amount of $4;L;(T;) on a $1 notional.

2.1 Arbitrage free dynamics

On a filtered measurable space (2, F,F;) we consider a Libor model under the
terminal measure P, within the following framework (Jamshidian (2001)),
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with w — p(dt,du,w), being a random point measures on Ry x F, where E is
an abstract Lusin space, and v (dt, du,w) is the (P,, F)-compensator on R, x E
of w. In (1), W is a d-dimensional standard Brownian motion under P,, and the
filtration (Ft)t>0 is assumed to contain the natural filtrations generated by W™ and
w, respectively. Further, (w,t) — ;(¢,-,w) are predictable processes of functions
on F and 7; are d-dimensional predictable column vector processes. The random
measure u is assumed to be of the form

p= Z L7, (w)=t8(t,8.(w)) (A2, du), (2)

n>1

where (3 is in general an optional process and T,,, n = 1,2, .. is a sequence of stopping
times with disjoint graphs, i.e. Tn(w) # Tm(w) for n # m.
The framework (1) may be casted into a somewhat different form. Let us consider

a partition E := |J Ex, where Fy,..., E,, are Lusin spaces with E; N E; = & for
k=1



k # 1, and define pg := ylg,, Y = ¥ilg,, y,(c") =g  for k=1,...,m. Then (1)

becomes
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In particular, it easily follows that ;" is the P,-compensator of pu; with respect to

. (k) (n . .
F. Note that in general ER y,(c )(w, dt, du) is the compensator of u; with respect to

the restricted filtration ft(k) =F:No{u([0,s]xC):s<t,C € B(E)}, t >0 (thus
not y,(c")). As shown in Appendix 7.1, the representation (3) is in fact equivalent
to (1), but somewhat more natural as it suggest the use of a system of m point
processes with phase space R, X R as in the papers of Glasserman & Kou (2001)

and Glasserman & Merener (2003).

Henceforth we consider in (1) only random point measures with finite activity, i.e., u
is of the form (2) and for each ¢t > 0, u([0,¢] x E) < co. In order to guarantee that the
Libor processes L, are nonnegative we further require that 1; > —1 in (1), and then
set ; := In(;+1). Let (s;,w),l = 1,..., Ni, denote the jumps of u up to time ¢ for an
w € ). Using the fact that at a jump time s;, AL;(s;,w) = L;(s1—,w)vi(s;, u,w) =
Li(s;—,w)(e®lvme) — 1) and hence L;(s;,w) = Li(s;—,w)e?50%)  we obtain by
the Tto-substitution rule for jump processes (with w suppressed),

N
1
dlnL; = Iml dt+d§ wi(s,ur) — Yi(s1,w))
' =1
n—1
1, ., 5L,
— — —|m|?dt — E:Ji dt +n; dW ™)
2|?7| 2 5., " + 7
j=1+1
n—1
, 14 6;L; e®ilsm)
_ (n) L(S;U‘)i 7
[ ot (e DI +d§j% sow). (4)



The logarithmic analogue of (3) directly follows from (4),

n—1
1 S L.
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with @ := In(¢u + 1) and (sl(k),ul(k)), I=1,.., Nt(k), denoting the jumps of ui up
to time t. The logarithmic representation (4) (or equivalently (5)) will be the basic
framework for our purposes.

3 Jump diffusion extension of a Libor market model

We first specialize to a jump-diffusion Libor model which is driven by a Poisson
random measure with marks in some multi-dimensional space.

3.1 Poisson driven multi-dimensional jumps

Consider the Lusin product space E := E; x --- x E,,, with Ey Lusinfork=1,...,m
(e.g. Exr = R). Suppose that on a common probability space, equipped with some
probability measure P,, we are given random measures pr on Ry x K. We then
consider the product Lusin space E := E; X... X E,, (e.g. E=R™),;andon R, x E
the random measure u(dt, du,w) such that for any ¢t > 0, u({t},-,w) := w1 ({t},-,w)®
.. ® um({t},-,w). We assume that the random measures u are such that almost
surely for each ¢ > 0 either ug({t}, Ex,w) = 1 for all k, or ux({t}, Ex,w) = 0 for
all k. Thus, all random measures u; throw a point in Ej at the same time. Then
each u({t},-,w) can be seen as the image of u({t},-,w) under the projection of E
onto FEj. In addition, we assume that given ux({t}, Ex,w) = 1 for all k, the Dirac
measures fir =: d(,) are mutually independent for k = 1,...,m, independent of
t, and uy is distributed on Ej with probability pg(dug). The (simultaneous) jump-
times, i.e. times ¢t at which px({t}, Ex,w) = 1 for all k, are assumed to be Poisson
distributed with locally finite intensity measure A(t)dt. We then consider (4) (or
(1)) for the thus constructed jump measure p with respect to the filtration (F;):>o
which is generated by u and W (™) where the P, standard Brownian motion W™ is
independent of u. Under these assumptions it follows that the (P,, F)-compensator
of p is deterministic and is given by

v (dt, duy, ..., dig) = ANE)p1 (dur) - - - o (At )dt =2 A(2)p(dus)dit.



3.2 Extending the Libor market model

Within the particular framework constructed above we now introduce a jump-
diffusion Libor model which in a sense can be seen as an extension or perturbation of
a (given) Libor market model. Let ;(¢) € R be the (given) deterministic volatility
structure of the market model, resulting for instance from some standard calibration
procedure to ATM caps and ATM swaptions or historical data. To exclude local re-
dundancies we assume that the matrix (7;(¢))1<i<n,1<i<d has full rank d for all ¢. Let
E := R™ for some integer m and consider deterministic vector functions G;(¢) € R™,
1=1,...,n — 1. We then take a sequence of constants r; with —1 < r; < 1, and set

mii= /1 =iy, ei(tu) = rul Bit) (6)

in (4) to yield,

1 2 2 = 5ijf T
dlnL; = — (1 —r)lyl"dt — Z 1360, (1= r2) (1 = r7)yi vsdt
7=1+1
N
4+4/1 — r?’y;rdW(") + ridZul—rﬁi(sl) (7)
=1

T T L+ 8L exp(rju’B;)
)\(t)dt/m (exp(riu Gi) — 1) p(du) H T 5;1)_1]_ i

=141

Note that in (7) the market model is retrieved by taking r; = 0, and so, for small
r;, (7) may be seen as a jump diffusion perturbation of the Libor market model.

3.3 The jump drift of In L; under P,

Let us consider the third term in (7), i.e. the “log jump drift” of In L; under the
terminal measure P,. The computation of this term is of particular importance,
for example, in a Monte Carlo simulation of the model. For a fixed time ¢ > 0 we

consider the expression

n—1

() = / pldu) (exp(ran6:(t) 1) T] [1+ 655 (exp(rsu™ 6] . (8)

7=1+1
Using the abbreviation z; := &;L; (¢)exp(r;u'B;(t)), the product in (8) my be
expanded as

n—1

ITa+z)=1+> 2+ > =s,

7=1+1 1<j<n 1<f1<ga<n
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Let us take a generic term of degree 1 < d < mn — 1 (with ¢ suppressed),

T T
L -~ Tjy — 5j1 le* e 5jdLjd* eXp(leu le) e eXp(Tjd'u’ Bjd)’

for 2 < 71 < g2 < --- < 74 < n, and observe that
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—
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with ¢,, being the characteristic function of p;. Note that the existence of ¢,,(2) in
some ball {z € C : |z| < A} has to be assumed. By analogue computations and
collecting terms we thus obtain

(+) = =1+ [ [¢n(—iriBa)+
=1

n—1—

Z 5j1 le* e 5jdLjd* X

d=1 1<31<Ja<-<Ja<n

m m
< [ [¢e(iriBa — ir Bt - -+ —ir;uBia) — [ [ o iriiBi-- - — ir.85)
=1 =1

n—1—

LAY 8Ly -+ 83, L, 055"

40551 ,edar
d=1 1<j1 <Jp<--<Fg<n

Once the model inputs 7;, jump loadings ¢ — G;(t) for 1 < 72 < n, and jump
component measures p; with characteristic functions ¢,, for 1 <[ < m, are calibrated
or simply given, the real valued functions ¢t — gf”"ﬂ(t), t— gﬁi’?__,jd(t), 1 <172 <n,
1< 71 < Jg < --- < jq < mn,can be computed in closed form and, in principle, even be
stored outside the Monte Carlo simulator. Thus considering these functions as given,

the simulation of In ; in the terminal measure may be carried out straightforwardly

7



via the formula

n—1
1 6;L;
dinLi= (1 — )t — 3 5 1 2)(1 )yt
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We underline that the structure of the dynamics (9), hence the feasibility of stan-
dard Monte Carlo simulation of every forward Libor in the terminal measure, is a
consequence of our model design in Sections 3.1 and 3.2. In particular it is due to
the special product structure of the principally high dimensional jump measure p
and the linear structure of the log-Libor factor loadings (6).

Remark 1 Based on (9) we may consider different Libor model approximations.
For example we may freeze L,  at zero (see Glasserman & Merener (2003)), hence
replace L;  with L;(0) in (9). As an alternative, if the r; are small enough and the
magnitudes of §;L; are small enough as well, one could drop in (9) the terms of
order (6;L;)? and higher. Of course, any such attempt needs careful investigation
which is considered beyond the scope of this article. For related approximations in
the context of the standard Libor market model, see for instance Kurbanmuradov,

Sabelfeld and Schoenmakers (2002).

3.4 Dynamics of L; under P,

We now consider for 2 = 1,...,n — 1 the dynamics of L; under P,;;. From (7) we see
that the logarithm of the last Libor rate L, ; has the following simple dynamics in
the P, measure,

1
din Ly = *5(1 - rifl)|’yn,1|2dt +4/1 - ?“ifnlldW(")Jr

rn,leul—rﬁn,l(sl) — )\(t)dt/ (exp(r,,r1 uTﬁnq) _ 1) p(du) (10)

Rm™

and thus belongs to the class of additive models, i.e., the process X, 1(¢) :=
In L, 1(¢) — In L, 1(0) has independent increments. By using Lemma 2 below for

8



instance, we can derive straightforwardly the characteristic function of X, 1(%),

P, (2;t) :=Fp, exp[izXn_1(t)] = exp [¢n(z;t)] with (11)
unzit) =~ 502 [ a@Pds iz [ [0 Dl (s

A(s)ds /m (exp(rn,l uTﬁn,l(s)) — 1) p(du)]
+ /Ot A(s)ds /m(ei”"luTﬂ"l(s) — 1)p(du). (12)

For 1 <2 < n — 1 the dynamics of L; under P,;; is more complicated. By the fact
that L, is a martingale under P;;; we observe from the general framework (1) that

dL; : ;
Tl [ ) (- ) (a, du), (13)
17— E
where
. = 5L (n)
dW ) — T pdt 4+ dW
Z 146,L,- it
7=1+1

is a standard Brownian motion under P;,, and

n—1
: §; L, it u)
1) (dt du) = ™ (dt. d g i A ek B4 14
Dt ) = ot ) [T (14 220 (14)
7=1+1
is the compensator process of yu under the measure P;; ;. For the more specialized
setup introduced in this section, which is based on (6), (14) reads

n—1
, 1+8.L: u' B
VDt du) = A(t)p(du)dt [ —2o3 exp(rj v fs) (15)

and (13) reads

sz - T .
L _ /1 o T?’Y,L-TdW(H—l) ‘I’ / (e'f‘iu ﬂi(t) . 1) (,U' _ U(H’l)) (dt’ dru’)’ (16)

1=1,...,n — 1. The logarithmic version of (16) is seen from (7) to be

1 .
din L; = —5(1 — ) |yi[Pdt + 4 /1 — r2 dWEHD (17)
N
—I—ndZul—rﬁz(sl) — / (eXp('r,L- 'U:TB,L) — 1) y('i-l—l)(dt, du)
=1 ™

In particular, for 2 < n — 1 the compensator (15) is non-deterministic in the present
setup and, as a consequence, In L, is generally not additive under P,y forz < n — 1.
However, by freezing in (15) the Libor terms, i.e. replacing L; by L; (0), we may
get a deterministic approximative compensator and so an additive approximation of
In L; under P, ;.



3.5 Preserving the local covariance structure

We recall the following standard lemma which is proved in Appendix 7.2.

Lemma 2 If J(t) = Z;\gl (s, u1) 1s a compound Poisson process in R? with jump
intensity A(t)dt, independent jumps in @ measurable space E with probability measure
p(du), and ¢ : Ry x E — R is deterministic, then (1) the characteristic function of
J(t) is given by

t
EeizTJ(t) — eXp |:/ )\(S)ds / (eiZTlP(S,U) o l)p(du) R VA E Rq.
0 E

and (ii) for the expectation and covariance structure of J(t) we have

Balt) = [ 36 [ ils, )

Cov(Jy(t), Ju(t)) = /Ot )\(s)ds/Egol(s,u)gol:(s,u)p(du), 1<l <gq.

Let us now write the integrated random term in (7) as

t Ny
)= \L 12 [ AT S i)
0 =1
— 12 eP) gl (). (18)

By Lemma, 2 the characteristic function of the jump process ¢” is then given by
t n—1
Ee® ¢ = exp [/ A(s)ds <¢p (Z Zjﬂj(5)> - 1)] ,
0 =

with ¢,(y) := [ p(du)exp [iuTy] , ¥y € R™ being the characteristic function of p. For
the covariance matrix Lemma 2 yields

Cov(€!(8),¢](1) = [ A(s)ds [ B (s)un” (s plaw
= [ M6)asBT (5178505

with Y = fukulp(du) being the cross moments of jump components ug and wu;.
Since the Brownian motion and the jumps are assumed to be independent, we have
for the local covariance of the random term in (7),

Cov(dé; (1), dé;(t))/db = \/(1 =)L = ) (8)vi(8) + e AM(R)BT (1) %65(1). (19)

10



Our main idea is to consider jump diffusion extensions of a (given) pure Libor market
model which preserve the (given) local covariance structure of the market model.
To this aim we consider in (7) the case where r := r; for all 2. Then (19) yields

Cov(dg;, dé;)/dt = (1 — r*)y vy + r* A8 £B;.
We then assume (; = A~, for some m x d matrix A which gives
Cov(dg;, dE;)/dt = (I — T+ r*XATN A)y,.

Now the requirement that the local covariances (19) coincide with the local covari-
ances of the market model leads to the condition

MATYA = 1,

and in particular m > d. Since ¥ is (time independent) positive definite there is
a unique positive symmetric m X m matrix C such that ¥ = C?. Then for any
column-orthogonal m x d matrix ) we have a solution

A=)12071Q.

Note that in general @ and A may depend on t. Without loss of generality (i.e.
without affecting the input Libor market model) we may assume that the (n—1) xd
matrix (;,) is an upper triangular matrix in the sense

’Yn*j,l:O for 1§l<d*_7+17 .7:177d

We assume (for technical reasons in fact) that the (n — 1) x m matrix (8,,) is also
an upper triangular matrix,

d
Bn*j,l = ZAI,T’YTL*J',T — 07 for 1 < I<m 7.7+ 17 .7 = 17 SRIRLLE (20)
r=1

In particular this entails that the jumps of L,, ; are driven by a single jump measure.
We will achieve (20) by the additional requirement m = d (dimension of the jump
space equal to the number of Brownian motions) and by taking the orthogonal
matrix @ such that C '@, hence A, is a lower triangular (square) matrix with
positive diagonal elements. Thus, A is uniquely determined by

AAT = Xxtn Y A is lower triangular with positive diagonal. (21)

As a further specialization we take X to be time independent. Note that u'f; =
(Du)"D7'3; for any regular diagonal matrix D. So, multiplication of all jump
random variables with an arbitrary factor and respective components of §; with
this factors inverse yields the same model. We thus need to standardize the jump
components in a suitable way. Without any restriction we may fix the jump variances
oy, defined as

o = /uipk(duk)nz where
Kk = /ukpk(duk)

11



is the mean of the kth jump component, as we like. As a convenient choice we

take them all equal, i.e. we set ap =: a, k = 1,...,m. We will choose a such that
A|lF = /> piei |Aki|?> = /m = || La||F, which is equivalent to
—1)12 1
lc ||F:ZE:)‘m7 (22)
k=1

where A\, k = 1,...,m, denote the eigenvalues of 3. Then by the result of Ap-
pendix 7.3 it follows that (22) is equivalent to

It is easy to show that this quadratic equation in & has one positive and one negative
solution, and that for large m the positive solution a; = 1/X. We therefore set

For all k, 1 =1,...,m, c,—crcl = e,—chQel = Yu = b + KiK. We so have in particular
Brn-11(s) =0 for 1 <l < m,and

anl,m(s) — Am,mﬁnfl,m(s) — )\71/2(6;;026“1)71’}/”,1,”1(5)

_ Yn1,m(5) _ Yn1,m(5) (23)

AMa+ &2) w/l—l-)\lﬂ?n.

Hence the dynamics of In L,, 1 is driven by a single jump variable u,, under a jump

distribution with density p,, with mean k,, and variance A '.

4 Pricing caplets

A caplet for the period [T}, T;+1] with strike K is an option which pays (L;(T;) —
K)*§; at time T} 41, where 1 < j < n. Tt is well-known that under the T}, - forward
measure the caplet price has the following simple representation. Writing E;,; for
the expectation under this measure, we have

Ci(K) = Bit1(0) Ejia [(Li(T5) — K)45]

for price of the j-th caplet at time zero. Thus the j-th caplet price is determined
by the dynamics of L; under P;;; only. We now recall the FFT pricing method of

12



Carr & Madan, which basically goes as follows. It turns out natural to transform
for a fixed j the strike variable into a log-forward moneyness variable defined by

K
" Ti0)

In terms of log-forward moneyness the j-th caplet price is then given by
Cj(v) = 8;B;11(0) L;(0) Eji1[(e ) e’)"],
where X,(t) := In L;(¢) — In L;(0). We further introduce an auxiliary function

Oj(v) =6, B; 5 (0)L; (0)C;(v) — (1 — €)*

7
= By (5T eyt (1 e

= IUZOEJ+1(6XJ(TJ) - e'u)—l— ‘I‘ l,usoEj_l_l(elu — eXJ(TJ))'l"

where the third expression is basically due to the put-call parity and follows from
the identity (¢ — )T = a — b+ (b — a)* and the fact E,; ;%7 = 1. In Appendix
we derive further characteristic properties of the function O;. In particular, it holds
(for a proof see Appendix 7.4)

${0;}(z) = /oo O;(v)e"?dv = L= (I)Z;(z 1*) 5 T5)

(o]

(24)

Most importantly, if the characteristic function of X,(7;) is explicitly given, for
example by (11), and (12) in the case j = n — 1, we obtain an analytical caplet
pricing formula via Fourier inversion,

Ci(K) = §;Bj1(0)(L;(0) — K)© + )
5,B J+12(7r) L,(0) / mlq’;g(zi)“Tj)e”lnﬁdz. (25)

For a fixed 7, 7 < n — 1, let now In L; be given by (17). As noted at the end of
Section 3, we may then obtain an additive approximation X,;(7;) of X;(T;) via (17)
by replacing v+") with the approximative compensator

n—1
L 14 6 L;(0) exp(ryu’ By)
G (dt du) := \(t)dt p(d
v ( ) 'u,) () p( 'u,) H 1+51Ll(0)

l:]—l—l

(26)

Hence, approximative caplet prices 6J(K) are obtained from (25), using an ap-

proximation $j+1 of the characteristic function ®;,;, which in turn is obtained by
replacing in (11)-(12), n — 1,n, and v(™(dt,du) = A(dt)p(du), respectively with
7,7 + 1, and DU (dt, du) from (26).

13



5 Calibration

Let us first consider the calibration to a panel of caplets corresponding to maturity
T, 1 and different strikes K y <+ < K ; < Kg:= L, 1(0) < K1 < --- < Ky. So,
suppose that caplet prices C,_1 ; corresponding to K;, —N < 7 < N, are available.
We first transform the observations C,,_; ; and strikes K; to

On 15 := 6,01 B, (0) [, 1, (0)Cn 15 — (1 — )7, (27)
K.
=In—L1_ —N<j<N. 2
v] nLJ(0)7 7_7 = ( 8)

Our calibration procedure relies essentially upon the next formula which follows
from (11), (12), (24), and taking the assumptions of Section 3.5 into account.

(2 Ta 1) = 1n(@n(2 T 1)) = L (1= 2(2 + DF{On 1}z +1))

6’,217122 )
- 9 — Wty 12 — Cnfl + Cnflg{:u’nfl}(z)a (29)
with abbreviations
T'n.fl
0 = (1) [ o),
0
My = )\Tnl/ (exp(’rn,l uﬁn,l,m(s))—l) P (1) du (30)
R
1 [Tn
s g [ o)
0
Cnfl = )‘Tnfly (31)
T'n.fl
,Umfl(') = Tnll/ T;il gil,m(s)pm(’r;il gil,m(s)')d‘% (32)
0

with Ln(w) := In |w| + iArgw, —7 < Argw < 7 denoting the main branch of the
logarithm, and p,, being the density of p,, which we now assume to exist.

2
n—17

recovered via (29) from complete knowledge of function O, 1, hence a complete

In principle, the constants 6 3, 1, (o1, and the mixed density u, ; can be

system of model consistent caplet prices C,, 1(K), 0 < K < oco. Indeed, since
${pn-1}(2) tends to zero as |z| — oo due to the Riemann-Lebesgue lemma, we have

072171 = 7222?00 272¢H(Z;Tn,1)
s, 1 = — lim 2z 'Im,(2;T, 1), and next,
z—4oc0
62 2
oo =t () - e z),
z—+o00 2

and then the function §{un, 1}(2) can be found from (29). In practice this approach
breaks down due to incomplete knowledge of O, 1 and lack of numerical stability
however.

14



In Belomestny and Reiss (2004) a more stable procedure is developed which esti-
mates all spot characteristics 82 |, 3¢, 1, (a1, and u, 1(-), for a given set of noisy
observations (27) due to a discrete set of strikes (28). This procedure consists ba-
sically of four steps: (i) first, a continuous piece-wise linear approximation Ons
of O, 1 is built from the data; (77) from (5,1,1 an approximation ,lZn of 1, is ob-
tained; (7i1) next the coefficients of the quadratic polynomial on the right-hand side
in (29) are estimated from QZH, under the presence of the nonparametric nuisance
part §{pn_1} (which vanishes at infinity) using appropriate weighting schemes; (v)
finally an estimator for u, ; is obtained via FFT inversion of the remainder. The
steps (1)-(iv) are spelled out in detail below.

(1) In view of Appendix 7.5, we construct a continuous piece-wise linear function
v — (5,1,1(1)) onagridvj, N-1<j< N4+, withoy,<Kvy<---
<v 1<y =0<wv <--- <wvy <L vng1,, such that (5,1,1(1)) fits the data
at v;,7 £ 0, On 1(v-n_1) = Op_1(vn41) := 0, and O (0—) — O._,(0+) =
1. The boundary strikes v_x 1,vnyy1 are included to reflect the fact that
limy 400 On-1(v) = 0.

(1) By straightforward FFT we compute S{@n,l}(z + 1) and so obtain

Fn(z) = In(1 - 2(z +)F{0, Hz+1)), z€R. (33)

(173) With an estimate ,lZn of 1, at hand, we obtain estimators for the parametric
part (62

2 1y%n-1,(n 1) by an averaging procedure using the polynomial struc-

ture in (29) and the decay property of §{un 1}. For suitable weight functions
Wy, W,., and w¢ constructed in Section 5.1, which have bounded support U :=

[ U,U] with U > 0, and satisfy

/wgdu — 0, /u2w9(u)du _— /uwx(u)du —1, (34)
[wwctuydn =0, [ wew)du =1,

we compute the estimates

~,2171 :—/Re(qzn(u))wg(u)du, (35)

2

for the parameters 62 s, 1, and (, 1, respectively.
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(1v) The estimate for u, 1 is obtained via the inverse Fourier transform,

_ PRI B .~ -
,Ll,n,1 = anlg ! { (,lpn() + 2 ! ()2 — 1}{,171(-) + Cnfl) lu} 9 (36)
where u € R and 1; is the indicator function of the set /.

The computational complexity of this estimation procedure is very low. The only
time consuming steps are the three integrations in step (%) and the inverse Fourier
transform (inverse FFT) in step ().

5.1 Determination of the weights wy, w,,, and w,

Let us assume that for some natural number p and C > 0,

max [, || zar) < C (37)

0<g<p

and consider for some U > 0 the following weight functions,

U, p+3
we (1) = g ey gara U (T = 2 Lo gumn)s - (38)
p+2 .
wZ’p(u) = Spiere lu[Psign(u)l . ui<i,
U, p+1
weP(u) = [ulP(2 - To1/t049) <ujir<r — Hujwri<)s

2 (2243 1)y

which satisfy the conditions (34) by straightforwardly checking.
Following Belomestny and Reiss (2005), we can estimate

n ‘ / Re(§{tn 1 } ()l (u)du
(39)

P < \ [ Re(intu) — )t ()
(1) + (2).

The second term can be estimated using the identity (iu)?F{pn_1}(u) = S{/Lfﬁl Hu),
two times Parseval’s isometry, and (38),

= | st 3 (“’?’“”) du
()

_ ORVRY A2 O W IS I i e Yy £ L0} PR
- |52 )( o )d | [ 55 { & }( )d

wg " ()

O

(2)

IN

/ {1 )l () du

C

V2T

Cp+3) <o Pt)P+3)

T (2 ey g SO e
12(R)
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for some (; > 0, which explains the construction of wg’p: for fixed p and U large,
(2) falls with O(U~(P+5/2)) The first term (1) is due to the noise and lack of data.
It can be estimated by

2(p +3)
(p+1)(1 — 272/E+)) 2

_ " _
(1) < N[¥n — Ynllzeo@llwg Pl @y = |[dn — ¥nllLe@y

-~ p+3
< Cylltpn — ¢n||L°"(Zl)W;

for some Cy > 0. So we have,

5 - p+3 (p+1)(p+3)
|6’l21.71 o 6’121.71| S C2||¢TL o ¢"||Lm(u) U2 + Cl Up+5/2 (40)
In a similar way we obtain for 3¢, ;, and (,_1,
~ ~ p+2 p+2
|J{n*1 - J‘fn71| S C3||¢n — ¢’I’L||L°°(u) U(p + 1) + 04 (l.].p+3/2)7 (41)
- ~ p+1)(p+3
1Ca1 — o1l < Cslton — Ynllpe@y(p + 3) + CG(U'P)%’ (42)

for some C3, C4, Cs, Cs > 0. Note that even when ||/1,,(qu)1 || £, (%) is finite for very large q
it is not wise in view of (42) to take p too large. In practice one needs to accomplish

that |[¢, — Yn||Le@) is small for a large enough U and then p = 1 or 2 turns out to
be a proper choice.

Correction of u,

Due to numerical as well as statistical errors the estimated @, ; may not be a
probability density and thus needs to be corrected. Besides that we also want the
variance of X,, ; to be equal to the Black variance T,,L,l(’y,]ffl)2 where

B 1 Tt
= m_1|2(s)ds.
Y1 Tnl/o [Vn-1[%(s)ds

In order to accomplish all these requirements we construct a new estimate g} ; as

a solution of the following optimization problem,
[ /71171”?:2@2{) — min, ig%; fg 1 (z) >0 (43)
subjected to

T, +(+B ) — @2
[E o =1, [ VR @i 1(”"51) (44)
n—1

The solution has a rather simple form and is given by

ﬁi—fl(m; 5777) = maX{O)ﬁﬂfl(m) - 5 - 77312}7 S R)
where ¢ and 7 need to be determined such that (44) is satisfied. Note that by

representing u* as a mixture of given densities, (43)-(44) boils down to a finite
dimensional quadratic optimization problem.
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5.2 Procedure for calibration against terminal caplets

For U > 0 we denote the estimates (35) obtained using the weight functions (38) by
0 1(U), 320 1(U), (n1(U), and the corrected Lévy density is denoted by ut ,(-; U).
From (30) and (31) we can directly infer estimates r,, 1 (U) and A(U), respectively.
We further have to identify a jump density p,, from p} | (-; U) via (32), while taking
into account (23). Since the function § is usually not constant this might be not
easy in general. We therefore go the following pragmatic way. Let us define in the

spirit of (23) B2 | :=~2 | //1 + Ak2,. We then consider as candidate jump density

Em(ui U) = Tnfl(U)BfA/f’:fl (Tnfl(U)Bffl"L; U)

Tﬂfl(U)’Yffl + Tﬂfl(U)’Yffl u U (45)
T+ A2, "\ 1+ AO)k2,
Due to the very construction
7 7'7217 (U) ’Yff ’
G0 = [ e =) )

and so by (45) it holds [u2p,(u;U)du = A"1(U) + &2,. By next requiring that the

first moment of the r.h.s. in (45) is equal to k,,, we simply obtain

km(U) := L, (47)

ut

with k,+ and «a,+ denoting the expectation and the variance, respectively, of a
random variable with density u, ,(-;U). Substituting (47) in (45) then yields

~ rn_1(U)YE rn_1(U)YE
i) = e (e O
1/1—|—KZZ+/OL”+ 1/1+”i+/au+

Finally we consider in view of (32)

w; U | . (48)

o (5U) = x

1 Tn_1 1 + K/i+ /a”+
Tn,1 _/0 Tnfl(U)ryﬂfl,m(s)

R \/1 +”i+/au+
U | ds. (49)

X Pm ;
P e (U ()

Note that the second moments of it ; and u! ; coincide and are given by the r.h.s.
of (46) (the first moments coincide approximately).
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Choice of U

We find U* as a solution of the following minimization problem

N
U* = arginfU Z |é\n71(Ki; U) - C’nfl,i|27 (50)

1=—N

where é\n,l(-; U) are prices computed from the model due to 8, 1(U), 36, 1(U),
Cnfl(U)a and ﬁi—fl('; U)

5.3 Calibration to other caplets

With U* is determined via (50) and P, := pm(U*), we introduce the shifted densities

pi(w) = pm(u — 55 + Fm),

hence

Kj = /ugj(u)du, j=1,...,m. (51)
R

Because we want to preserve the input local covariance structure we set r; = r,,,(U*),
7 =1,...,m — 1. Let U be the upper triangular m x m matrix with positive
diagonal elements such that ¥ = UUT. This decomposition exists because ¥ is
invertible. From (21) we then have A = A~Y/2/~ 7. Let us define 25‘]2, E<rr <m,
kE=1,...,m. Since U is an upper triangular we have %% = /=) (f(E)T and Ak —
A2 T with A) and U®) defined analogously to %(*). Thus, for knowing A*)
it is sufficient to know %(*),

Now let us suppose that m =n — 1. We determine k;, 7 =1,...,n — 1, recursively
in the following way. For 7 = n — 1, k, 1 is determined from (47), then Bn 101
from (23), and 21(::24 = a+ k2 _,. Suppose B is determined for [ = 3,....n — 1,
k=1,...,n—1,where 7 > 1. For j = m = n—1 we are in the situation of Section 5.2.

We then consider the matrix

. o+ 52-7 Kiqa @
YO (ki ) = [ nj,laj ! le(j) ] ; (52)
with a := [k;,- - *,kn_1]', and where the (n — j) x (n — 7) matrix Eg), is assumed

to be already determined. Note that @ = A '(U*) is the common jump variance.
In fact the only unknown parameter to be determined in (52) is k; 1. Further, it
easily follows that,

U (kj1) =




and so

(a + ”?71 (1 — aT(E(j))*la
— (a + K2, (1 —a' (NW)~

_ N—_— TN

2 ~—
s,
—-
~
)

Next, set according to (20)

k
Bj*l,k(ﬁ"jfl) = )‘71/2 Z F]c(fril)(ﬁjfl)’}/jfl,ry k= .7 - 17 TN (e 17

r—=7—1

ijl,k(ﬁjfl) = 0, 1<k< _] — 1.

By a simple trial and error search we then determine x;_; such that the least squares
fit error of the T;_; caplet panel is as small as possible. For each guess of x;_; the
model caplet prices may be computed by Monte Carlo simulation of the model, or
as an alternative by approximating caplet prices as proposed at the end of Section 4.

6 Calibration to real data

In this section we calibrate the model (7) to market data given on 11.01.2004. The
caplet-strike volatility matrix is partially shown in Table 1. The corresponding
implied volatility surface is shown in Figure 1.

Caplets Implied Volatilities

Figure 1: Smoothed caplet implied volatility surface o .
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K/T | 0.150  0.200 0.225 0.250 0.300 0.400 0.500 0.600

0.50 | 0.2604 0.1735 0.1819 0.1969 0.2453 0.2708 0.3197 0.3407
0.75 ] 0.2678 0.2036 0.2052 0.2136 0.2401 0.2598 0.3052 0.3258
1.75 | 0.2832 0.2587 0.2475 0.2365 0.2227 0.2246 0.2539 0.2733
2.50 | 0.2850 0.2651 0.2513 0.2334 0.2125 0.2051 0.2234 0.2412
3.50 | 0.2804 0.2581 0.2432 0.2233 0.2016 0.1856 0.1924 0.2071
4.50 | 0.2720 0.2474 0.2319 0.2142 0.1934 0.1720 0.1711 0.1821
5.50 | 0.2625 0.2381 0.2219 0.2079 0.1872 0.1625 0.1566 0.1640
6.50 | 0.2531 0.2314 0.2144 0.2039 0.1824 0.1557 0.1470 0.1510
7.50 | 0.2447 0.2270 0.2092 0.2016 0.1788 0.1510 0.1407 0.1418
8.50 | 0.2375 0.2241 0.2058 0.2002 0.1761 0.1477 0.1367 0.1355
9.50 | 0.2315 0.2224 0.2036 0.1995 0.1740 0.1454 0.1342 0.1311
11.50 | 0.2212 0.2206 0.2011 0.1988 0.1707 0.1424 0.1312 0.1253
14.50 | 0.2149 0.2201 0.2003 0.1987 0.1689 0.1410 0.1302 0.1228
19.50 | 0.2111 0.2200 0.2001 0.1987 0.1678 0.1404 0.1300 0.1219

Table 1: Caplet volatilities oX for different strikes and different tenor dates (in

years).

Pronounced smiles are clearly observable. Due to the structure of the given data
we are going to calibrate the jump diffusion model based on semi-annual tenors, i.e.
d; = 0.5, with n = 41, and where the initial calibration date 01.11.04 is identified
with Ty = 0.

In a pre-calibration a standard market model is calibrated to ATM caps and ATM
swaptions using Schoenmakers (2005). However, we emphasize that the method by
which this input market model is obtained is not essential nor a discussion point for
this paper. For the pre-calibration we have used a volatility structure of the form

vi(t) = cg(T; — t)e;, 0<t<min(T;,T;), 1<1,7<mn,

where g is a simple parametric function and e; are unit vectors. The calibration
routine returned e; € R* with

e, e; = pi; = exp[—0.005)s — 5]] 1<4,5 <41,
such that the matrix (e; ;) is upper triangular, and

g(s) =08+ 0.2¢ 208,

The ¢; can be readily computed from

T;
(U%TM)QTZ- = cf/ g*(s)ds, i=1,...,n 1,
0
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using the initial Libor curve, which is obtained by a standard stripping procedure
from the yield curve at 11.01.04, and is given in Table 2.

T; L;(0) | T; L;(0) T; L;(0) T; L;(0)
0.5 | 0.0238176 | 5.5 | 0.0451931 | 10.5 | 0.0509249 | 15.5 | 0.0539696
11 0.0264201 6 | 0.0465074 11 | 0.0512114 16 | 0.0540521
1.5 1 0.0292798 | 6.5 | 0.0475881 | 11.5 | 0.0515804 | 16.5 | 0.0540931
21 0.0320656 7 | 0.0484201 12 | 0.0520317 17 | 0.0540933
2.5 | 0.0345508 | 7.5 | 0.0490942 | 12.5 | 0.0524639 | 17.5 | 0.054053
3 | 0.0366693 8 | 0.0496402 13 | 0.0528456 18 | 0.0539728
3.5 | 0.0385821 | 8.5 | 0.0500331 | 13.5 | 0.0531757 | 18.5 | 0.0538533
4| 0.040381 9 | 0.0502848 14 | 0.0534529 19 | 0.053695
4.5 | 0.0420863 | 9.5 | 0.0504889 | 14.5 | 0.0536757 | 19.5 | 0.0534984
51 0.0437079 | 10 | 0.0506932 15 | 0.0538451 20 | 0.053268

Table 2: Initial Libor curve.

The further steps are as follows

1. The model for L,,_; is calibrated as described in Section 5.2 and the calibrated
parameters are shown in Table 3. The calibrated density pm,(z) is plotted in

r A K

0.7 | 0.1 | -0.005

Table 3: Parameters calibrated using terminal caplet volas U%Hl.

Figure 2. Note that the variance of the distribution corresponding to p,, is
equal to 1/A = 10.0 in order to ensure (22).

2. Remaining parameters s;, 7 = 1,...,39, are calibrated sequentially as de-
scribed in Section 5.3 with approximation formula (26) being used for pricing
caplets. It turned out experimentally that «; can be taken on the line

K; = Kao — 0.0751 % (40 — 7), 7 =40,...,1.

The quality of the calibration can be seen in Figure 3, where calibrated volatil-
ity curves are shown for several caplet maturities together with original caplet
volas and ATM caplet volas. The overall root-mean-square fit we have reached
shows to be 0.5%-5%, when the number of caplet panels ranges from 2 to 20.
Fitting all the 40 caplet panels with an acceptable accuracy (e.g. <5%), would
require a more flexible structure for p;, 7 < m, however.
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Figure 2: Density pm(z) calibrated using terminal caplet volas UTI{HI

7 Appendix

7.1 Equivalence of (1) and (3)

Suppose on (9, F, F;, P,) we are given 7 and W(™ as in (3), and for k = 1,...,m we
are given a random measure ug on Ry X Ei, with Ej Lusin, of the form (2)

Ur = Z 1T,,(Lk)(w):t5(t,,5£k)(w))(dt7 du),

n>1

mn>1 satisfy Tik)(w) + T,Sp(w) for n #+# m or
k # 1. Further let for2 =1,....n — 1, k = 1,...,m, the Ep-valued function processes

where the stopping times (T,Sk))kzl _____
1, be predictable. By treating Ej and E; for k # | as completely different spaces,
i.e.Ery N E; = & (which may be achieved by giving them different colors if need
be), we may construct straightforwardly the Lusin space £ := |J Fj and define a
k=1
random measure 4 := y ., p on Ry x E. Let now y,(c") be the (P,, F)-compensator
of ux (which is concentrated on Ey), then it easily follows that v(™ := Y7 y,(c") is
the (P,, F)-compensator of u, and by defining ¥;(¢,u,w) 1= Yu(t,u,w) if u € Ey,
(3) may be written as (1).
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Figure 3: Caplet volas from the calibrated model (solid lines), original caplets volas

oX (points) and ATM caplet volas 7™ (dashed lines) for different caplet maturities
T.

7.2 Proof of Lemma 2

Proof of (i):

EeizTJ(t) _ E E [eizT Z;\Q—l ¢(sl,ul)|Nt] — El

N
Heilep(sl,ul) |Nt]

=1

= *ffﬁzi;/Ews’%<du>>m
_i(fo k! ) ek (/ Y / “"(é"“)irJ(fiu))]c

— exp /0 t)\(s)ds /E ("%l — 1)p(du).

Proof of (ii): By differentiating the characteristic function with respect to z; and z;
we obtain

) ' =T
__Ee* ) = i/ A(s)ds/ e “C (s, u)p(du):
0z 0 E

t
-exp/ )\(s)ds/(eizT‘p(s’“) — 1)p(du),
0 B
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62
62[62[:

t
Eeiz™ () — / A(s)ds / e oy (s, u)p(du)-
0 E

./otA(S)ds/EeizT‘p(s’u)@l(S,u)P(du) exp /OtA(S)ds /E(eizT¢(s,u) — 1)p(du)
N /ot A(s)ds /E e el oy (s, u)pu (s, u)p(du)
. exp /0 t)\(s)ds /E (=7 ¢0%) — 1)p(du).

Hence

Ba(e) = [ A6)ds [ ils,p(d)

and

B0 = [ Nds [ oulsulplan)- [ 3s)ds [ s, pla

+ [ s [ s, (s, uplin),
and then note that Cov(Ji(¢), Ju(t)) = EJi(t)Jy(t) — EJi(t)EJy(t).

7.3 Summed reciprocal eigenvalues of ¥

Consider the determinant

2
Q) + K] Ki1Kg K1K3
2
Kok1 Qy + Ky  KoK3
2
K3K1 K3Ko a3 + K3
D, —
Em-1K1  KEm-1K2
KEmki1 KmK2
2
ay + K] Ki1Kg K1K3
2
KoK1 Qy + Ky  KaKa
2
K3K1 K3Ko a3 + K3
Em-1K1  KEm-1K2
K1
Ki1K2
2
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Km, K3k
m—1 32
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KoKm

KEm—1E5m

Ki1Km—1

2
Om—1 ‘I’ K1

K1KEm

KoKm

KEm—185m




Since

Ki1K2 K1K3 K1Km-—1 K1KEm
2
Qy + Ky KoKj KoK
2
K3Ko asz + K3 K3Km
2
Km—1K2 Qm—1 + K1 Km—18m
(6] 0 0
0 Q3
m—2 m—2
= .. = K1km(—1) 0 = K1Em(—1)™ g -
0
0 0 1
we obtain
D _ D Km 1 m—1 1 m—2
m = Oml/m_1 — _al(i ) K/lK/m(i ) (07 IR & 2 |
K1
2
= 0mDm_ 1 + K, 0100 - Q1 = ...
(1 + E ‘o ) I Iap
P ) 4=1
Hence,

Dn(X) = |2 — M|<1+Z A>H%A)

:H(aq*)‘)‘FZ”i (g —A) =1+ + KA+ [X],
g=1 p=1 q

S

"3~

q

where the coefficient of A is given by

3 3230 T o

p=1qg=1, p=1r=1,
q¢p r¢p q¢pq¢r
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We finally obtain

) ICED R H o

m p=1qg=1, p=1r=1,
Zl _ K _ atp r#p q¢pq¢r
e [Loa+> w2 ]]e
q o q
g=1 p=1 q¢=1,
qFp
m m m
1 Ky
Dot D o
p=1 p=1r=1,
r#p

7.4 Derivation of (24)

On the one hand we have,
l/moxwa“d /mem i1 (¥ e) T du (53)
0
/ / Pi1(X;(Ty) € dz)(e” — €”)dv
- [ pax edm/ (e )
0

e 1 1 el”z
— P d lz+1 o
/0 5+1(X5(T5) € do) [ (iz 1z—|—1)+iz—|—1 iz]

and on the other hand,

0 0
/ O,;(v)e"*dv = / e"* Fiyq(e” — eXTJ')+dv (54)

(o] — 00

0 v
= / ei”dv/ P; 1 (X;(T;) € dz)(e” — e”)

— 00

0 0
= / P (X;(T;) € dm)/ (e’ — e")e*dz

0 A 1 1 1 e”
— [ P (X,(Ty) € da) (=07 (= o
/m i+ (X5(T5) € m)<e iz izt1) izl iz

Note that the characteristic function ®,,4(z;7T;) of X,;(T;) exist in the strip {z =
z4+iy€e C: oo <z <oo, 1<y<0}since E;11L;(T;) = L;(0) exists. Hence, by
combining (53), (54), and using the martingale property of X,(7}) again, we obtain
(24).
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7.5 Characteristic properties of O,
By denoting the density of I;(T}) with py,(r,) we may write
Ci(K) = Bjs1(0) B [(L(T5) — K)" 65
- J+1 5 / y— PL )( )dy,
and then by differentiating two times with respect to K we obtain
C(K) = Bjs1(0)d;pr,(r,) (K).

The density of X; := In L;(T;)—In L;(0) is obviously given by px.(v) := pr,(r;)(L;(0)e”) L;(0)e",

SO

PXJ-(”) = B;+1(0) 1C”(LJ( ) ) ( ) ’
= B;,(0)8; ' L;(0) (Cf(v) — Cj(v)) e
= (0%(v) — O(v))e”,v%O

where 07 — O} extends continuously at v = 0. In particular, O; satisfies

O'w) — O4(v) >0 and O'(0-)— O'(0+) = 1. (55)

On the grid v;, —N —1 < 7 < N + 1 we consider a continuous piecewise linear

approximation O, 1 of O, 1,

Op_1(v) =
N+1 1
Z m(onfl,jfﬂ’j —0j-10n-1,; + 0(On-1,; — O"*Ljfl))l[ﬂjfly’uj)(v)
j:*N 7 71—

with v; and O, ; 1 given by (27) and (28), extended with O,, 1 ny -1 = Oni1pn 1 =
0 (note that vy := 0). Then it follows that (with suppressed subscript n — 1)

d distr N+1 OJ . Oj,1

_ — — 1, )

o OW= Y =D (56
I=—

in (Schwartz) distribution sense. Differentiating in distribution again yields

d2 distr _ O, O
12 O(v) = —N(S'Ufol + 7N5”N+1
dv N*’UNl UN+1 — UN
+ Z ( i1 O O”'O“)a.. (57)
- Vj+1 — Y5 Ui Ui N
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Because @ satisfies
d2 distr d distr

O”(’U) — OI(’U) = m O - %

O, v#0,

we consider for v # 0,

d2 distr _ d distr _ . 01 B OO . ON .
(55 O-— O)er=-T—py(v)e” + ——d,, e

U1 UN41 — UN
O,N O,N
—51] —U_N-1 S — | . Y —v 58
V_N — V_N_1 v € VN -V N1 [von_1, 7N)(,U)e ( )
N
Ojor—0; 0;—0; Oiii O,
+ Z {( J.+1 — J B J.i J 1) 51,1.6*111' o #1[%,%“)(”)3”} ,
=N 'U_7+1 ’UJ ,UJ v]*l v]+1 ,U]
7#0

which follows from (56) and (57) and some rearranging of terms. Since the general-
ized function (58) should be an approximation of the density px, ,, integrals over

each interval [v,; 1,v;), 7 = —N,..N + 1, should be non-negative. This leads to

0 < <0j+1 ~0; 0;- Ojl) v Qinn —0;

/ Lo mi40) (v)e “dv

Uj+1 — Uj Uj — Vi1 Uj+1 — Uj
O...— 0. 0. — 0.
Jj+1 1 _—v; F] -1 . .
= ettt - e, j= N, N, j#0. (59)
J+1 Yy i Y1

Note that (59) holds if the input data are consistent with a function O which is

convex on both v < 0 and v > 0, and if the grid v; is fine enough. Further, the total

mass of (58) should be one. This leads straightforwardly to the requirement,
00*071 01*00_1

—VU_1q U1

b

which is a discretisation of the boundary condition (55) in fact.
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