
Weierstra�-Institutf�ur Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 { 8633A jump-di�usion Libor model and its robustalibrationDenis Belomestny 1 and John Shoenmakers 2submitted: 31st Marh 20061 Weierstrass Institutefor Applied Analysis and Stohastis,Mohrenstr. 39, 10117Berlin, GermanyE-Mail: belomest�wias-berlin.de 2 Weierstrass Institutefor Applied Analysis and Stohastis,Mohrenstr. 39, 10117Berlin, GermanyE-Mail: shoenma�wias-berlin.deNo. 1113Berlin 2006
W I A S2000 Mathematis Subjet Classi�ation. 60G51, 62G20, 60H05, 60H10, 90A09, 91B28.Key words and phrases. jump-di�usion Libor models, alibration, stability, orrelation stru-ture.



Edited byWeierstra�-Institut f�ur Angewandte Analysis und Stohastik (WIAS)Mohrenstra�e 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstratIn this paper we propose a jump-di�usion Libor model with jumps ina high-dimensional spae (Rm) and test a stable non-parametri alibrationalgorithm whih takes into aount a given loal ovariane struture. Thealgorithm returns smooth and simply strutured L�evy densities, and penalizesthe deviation from the Libor market model. In pratie, the proedure is FFTbased, thus fast, easy to implement, and yields good results, partiularly inview of the severe ill-posedness of the underlying inverse problem.1 IntrodutionThe alibration of �nanial models has beome an important topi in �nanial en-gineering beause of the need to prie inreasingly omplex options onsistent withpries of standard instruments liquidly traded in the market. The hoie of an un-derlying model is ruial with respet to its statistial relevane on the one hand,and the possibility of alibrating it with ease on the other. In order to over stylizedfats in �nanial data suh as implied volatility smiles, more omplex models, i.e.models beyond Blak-Sholes, are alled for.During the last deade L�evy-based models have drawn muh attention, as thesemodels are apable to desribe omplex but realisti behavior of �nanial time series.In partiular, these models may over jumps, heavy tails, and are prinipally ableto math implied volatility surfaes observed in stok and interest rate markets. Formodelling stok pries, pure jump L�evy proesses were already proposed in Eberlein,Keller and Prause (1998). In Cont & Tankov (2003) regularized approahes foralibrating jump-di�usion stok prie models were onsidered.In the interest rate world the Libor market model developed by Brae, Gatarek,Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann, Sondermann (1997),has beome one of the most popular and advaned tools for modelling interest ratesand interest rate derivatives. This in spite of a main drawbak; the Libor marketmodel annot explain implied volatility surfaes typially observed in the ap mar-kets. In order to handel this issue di�erent extensions of the Libor market modelusing proesses with jumps have been proposed. Glasserman and Kou (2003) de-veloped a jump di�usion Libor model and gave some useful expliit spei�ations.The most general framework for Libor models driven by jump measures is providedin Jamshidian (2001).The entral theme in this paper is a well strutured jump-di�usion Libor modelwhih allows for robust and eÆient alibration. Our starting point will be a given1



Libor market model with known deterministi volatility struture. For instane,this market model might be obtained from a alibration proedure involving at themoney (ATM) aps, ATM swaptions, and/or a historially identi�ed forward rateorrelation struture. Meanwhile, alibration proedures for Libor market modelsare well studied in the literature (e.g. Shoenmakers (2005), or Brigo & Merurio(2001)). Yet, our main goal is the development of a spei� jump-di�usion Libormodel whih an be alibrated to the ap-strike matrix in a robust way and whihis, in a sense, as near as possible to the given market model. In partiular, thismodel will be furnished in suh a way that the (loal) ovariane struture of thejump-di�usion model oinides with the (loal) ovariane struture of the marketmodel. We have three main reasons for doing so: (1) The prie of a ap in a Libormarket model does not depend on the (loal) orrelation struture of the forwardLibors. However, this orrelation struture may ontain important information suhas, for instane, pries of ATM swaptions. We therefore do not want to destroythis orrelation struture as given by the input market model when alibratingthe extended model to the ap(let)-strike volatility matrix. (2) The lak of smilebehavior of the input market model, whih is regarded as a rough intermediateapproximation of a smile explaining jump-di�usion model, is onsidered to be aonsequene of Gaussianity of the driving random fores (Wiener proesses). So,loosely speaking, we want to perturb these fores to non-Gaussian ones by usingjumps, while maintaining the (loal) ovariane struture of the given market model,hene the orrelation struture impliitly. (3) Last but not least, by preserving theovariane struture we obtain a very robust alibration proedure.The literature on alibration methods for asset models based on L�evy proesses hasmainly foused on ertain parametrization of the underlying L�evy proess. Sinethe harateristi triplet of a L�evy proess is a priori an in�nite-dimensional objet,the parametri approah is always exposed to the problem of misspei�ation, inpartiular when there is no inherent eonomi foundation of the parameters and theyare only used to generate di�erent shapes of possible jump distributions. Therefore,we employ a nonparametri approah of Belomestny & Reiss (2004) whih utilizesexpliit inversion of a Fourier based priing formula and a regularization in thespetral domain.The outline of the paper is as follows. We reall in Setion 2 the general arbitrage-freeLibor framework developed in Jamshidian (2001). It will serve as the baseplate ofthis artile. The ovariane preserving jump-di�usion extension of the Libor marketmodel is onstruted in Setion 3. In Setion 4 we reap Fourier-based representa-tions for Caplet pries in the spirit of Car & Madan (1999), see also Glasserman &Merener (2003), Eberlein & �Ozkan (2005). The algorithm for alibrating to a fullap-strike matrix is developed in Setion 5, and a real life alibration is arried outin Setion 6. Tehnial details and derivations are given in the Appendix-setion.2



2 General framework for Libor models with jumpsConsider a �xed sequene of tenor dates 0 =: T0 < T1 < T2 < : : : Tn, alled atenor struture, together with a sequene of so alled day-ount frations Æi :=Ti+1 � Ti; i = 1; : : : ; n � 1. With respet to this tenor struture we onsider zerobond proesses Bi; i = 1; : : : ; n; where eah Bi lives on the interval [0; Ti℄ and endsup with its fae value Bi(Ti) = 1. With respet to this bond system we dedue asystem of forward rates, alled Libor rates, whih are de�ned byLi(t) := 1Æi � Bi(t)Bi+1(t) � 1� ; 0 � Ti; 1 � i � n� 1:Note that Li is the annualized e�etive forward rate to be ontrated for at the datet, for a loan over a forward period [Ti; Ti+1℄. Based on this rate one has to pay atTi+1 an interest amount of $ÆiLi(Ti) on a $1 notional.2.1 Arbitrage free dynamisOn a �ltered measurable spae (
;F ;Ft) we onsider a Libor model under theterminal measure Pn within the following framework (Jamshidian (2001)),dLiLi� = � n�1Xj=i+1 ÆjLj�1 + ÆjLj� �>i �jdt+ �>i dW (n)�ZE �(n)(dt; du) i(t; u) n�1Yj=i+1�1 + ÆjLj� j(t; u)1 + ÆjLj� � � 1!+ZE  i(t; u)(�� �(n))(dt; du); i = 1; :::; n� 1; (1)with ! ! �(dt; du; !); being a random point measures on R+ � E; where E isan abstrat Lusin spae, and �(n)(dt; du; !) is the (Pn;F)-ompensator on R+� Eof �: In (1), W (n) is a d-dimensional standard Brownian motion under Pn; and the�ltration (Ft)t�0 is assumed to ontain the natural �ltrations generated byW (n) and�; respetively. Further, (!; t) !  i(t; �; !) are preditable proesses of funtionson E and �i are d-dimensional preditable olumn vetor proesses. The randommeasure � is assumed to be of the form� =Xn�1 1Tn(!)=tÆ(t;�t(!))(dt; du); (2)where � is in general an optional proess and Tn; n = 1; 2; :: is a sequene of stoppingtimes with disjoint graphs, i.e. Tn(!) 6= Tm(!) for n 6= m:The framework (1) may be asted into a somewhat di�erent form. Let us onsidera partition E := mSk=1Ek; where E1; :::; Em are Lusin spaes with Ek \ El = ? for3



k 6= l; and de�ne �k := �jEk ;  ik :=  ijEk; �(n)k := �(n)jEk ; for k = 1; :::;m: Then (1)beomes dLiLi� = � n�1Xj=i+1 ÆjLj�1 + ÆjLj� �>i �jdt+ �>i dW (n)� mXk=1 ZEk �(n)k (dt; duk) ik(t; uk) n�1Yj=i+1�1 + ÆjLj� jk(t; uk)1 + ÆjLj� �� 1!+ mXk=1 ZEk  ik(t; uk)(�k � �(n)k )(dt; duk); i = 1; :::; n� 1: (3)In partiular, it easily follows that �(n)k is the Pn-ompensator of �k with respet toF : Note that in general EF(k)t �(n)k (!; dt; du) is the ompensator of �k with respet tothe restrited �ltration F (k)t := Ft \ �f�([0; s℄�C) : s � t; C 2 B(Ek)g; t � 0 (thusnot �(n)k ). As shown in Appendix 7.1, the representation (3) is in fat equivalentto (1), but somewhat more natural as it suggest the use of a system of m pointproesses with phase spae R+ � R as in the papers of Glasserman & Kou (2001)and Glasserman & Merener (2003).Heneforth we onsider in (1) only random point measures with �nite ativity, i.e., �is of the form (2) and for eah t > 0; �([0; t℄�E) <1: In order to guarantee that theLibor proesses Li are nonnegative we further require that  i > �1 in (1), and thenset 'i := ln( i+1): Let (sl; ul); l = 1; :::; Nt; denote the jumps of � up to time t for an! 2 
: Using the fat that at a jump time sl; �Li(sl; !) = Li(sl�; !) i(sl; ul; !) =Li(sl�; !)(e'i(sl;ul;!) � 1); and hene Li(sl; !) = Li(sl�; !)e'i(sl;ul;!), we obtain bythe Ito-substitution rule for jump proesses (with ! suppressed),d lnLi = 1Li� dLi � 12 j�ij2dt+ d NtXl=1 ('i(sl; ul)�  i(sl; ul))= �12 j�ij2dt� n�1Xj=i+1 ÆjLj�1 + ÆjLj� �>i �jdt+ �>i dW (n)� ZE �(n)(dt; du)(e'i(s;u) � 1) n�1Yj=i+11 + ÆjLj�e'j(s;u)1 + ÆjLj� + d NtXl=1 'i(sl; ul): (4)4



The logarithmi analogue of (3) diretly follows from (4),d lnLi = �12 j�ij2dt � n�1Xj=i+1 ÆjLj�1 + ÆjLj� �>i �jdt+ �>i dW (n) (5)� mXk=1 ZEk �(n)k (dt; duk)(e'ik(s;uk) � 1) n�1Yj=i+11 + ÆjLj�e'jk(s;uk)1 + ÆjLj�+ d mXk=1 N (k)tXl=1 'ik(s(k)l ; u(k)l );with 'ik := ln( ik + 1) and (s(k)l ; u(k)l ); l = 1; :::; N (k)t ; denoting the jumps of �k upto time t: The logarithmi representation (4) (or equivalently (5)) will be the basiframework for our purposes.3 Jump di�usion extension of a Libor market modelWe �rst speialize to a jump-di�usion Libor model whih is driven by a Poissonrandom measure with marks in some multi-dimensional spae.3.1 Poisson driven multi-dimensional jumpsConsider the Lusin produt spae E := E1��� ��Em; with Ek Lusin for k = 1; :::;m(e.g. Ek = R). Suppose that on a ommon probability spae, equipped with someprobability measure Pn, we are given random measures �k on R+ � Ek. We thenonsider the produt Lusin spae E := E1� : : :�Em (e.g. E = Rm), and on R+�Ethe randommeasure �(dt; du; !) suh that for any t � 0; �(ftg; �; !) := �1(ftg; �; !)
: : : 
 �m(ftg; �; !): We assume that the random measures �k are suh that almostsurely for eah t � 0 either �k(ftg; Ek; !) = 1 for all k, or �k(ftg; Ek; !) = 0 forall k. Thus, all random measures �k throw a point in Ek at the same time. Theneah �k(ftg; �; !) an be seen as the image of �(ftg; �; !) under the projetion of Eonto Ek: In addition, we assume that given �k(ftg; Ek; !) = 1 for all k; the Dirameasures �k =: Æ(t;uk) are mutually independent for k = 1; :::;m; independent oft; and uk is distributed on Ek with probability pk(duk): The (simultaneous) jump-times, i.e. times t at whih �k(ftg; Ek; !) = 1 for all k; are assumed to be Poissondistributed with loally �nite intensity measure �(t)dt: We then onsider (4) (or(1)) for the thus onstruted jump measure � with respet to the �ltration (Ft)t�0whih is generated by � and W (n); where the Pn standard Brownian motion W (n) isindependent of �: Under these assumptions it follows that the (Pn;F)-ompensatorof � is deterministi and is given by�(n)(dt; du1; :::; dum) := �(t)p1(du1) � � � pm(dum)dt =: �(t)p(du)dt:5



3.2 Extending the Libor market modelWithin the partiular framework onstruted above we now introdue a jump-di�usion Libor model whih in a sense an be seen as an extension or perturbation ofa (given) Libor market model. Let i(t) 2 Rd be the (given) deterministi volatilitystruture of the market model, resulting for instane from some standard alibrationproedure to ATM aps and ATM swaptions or historial data. To exlude loal re-dundanies we assume that the matrix (i;l(t))1�i<n;1�l�d has full rank d for all t. LetE := Rm for some integer m and onsider deterministi vetor funtions �i(t) 2 Rm;i = 1; :::; n� 1: We then take a sequene of onstants ri with �1 < ri < 1; and set�i :=q1 � r2i i; 'i(t; u) := ri u>�i(t) (6)in (4) to yield,d lnLi = �12(1� r2i )jij2dt� n�1Xj=i+1 ÆjLj�1 + ÆjLj�q(1 � r2i )(1� r2j )>i jdt+q1� r2i >i dW (n) + rid NtXl=1 u>l �i(sl) (7)��(t)dtZRm �exp(ri u>�i)� 1� p(du) n�1Yj=i+11 + ÆjLj� exp(rj u>�j)1 + ÆjLj� :Note that in (7) the market model is retrieved by taking ri � 0; and so, for smallri; (7) may be seen as a jump di�usion perturbation of the Libor market model.3.3 The jump drift of lnLi under PnLet us onsider the third term in (7), i.e. the \log jump drift" of lnLi under theterminal measure Pn. The omputation of this term is of partiular importane,for example, in a Monte Carlo simulation of the model. For a �xed time t > 0 weonsider the expression(�) := ZRm p(du) �exp(riu>�i(t)� 1� n�1Yj=i+1 �1 + ÆjLj�(t) exp(rju>�j(t))� : (8)Using the abbreviation xj := ÆjLj�(t) exp(rju>�j(t)), the produt in (8) my beexpanded as n�1Yj=i+1 (1 + xj) = 1 + Xi<j<n xj + Xi<j1<j2<n xj1xj2+ Xi<j1<j2<j3<n xj1xj2xj3 + :::+ xi+1 � � � xn�1:6



Let us take a generi term of degree 1 � d < n � i (with t suppressed),xj1 � � � xjd = Æj1Lj1� � � � ÆjdLjd� exp(rj1u>�j1) � � � exp(rjdu>�jd);for i < j1 < j2 < � � � < jd < n; and observe thatZRm p(du)eriu>�i exp(rj1u>�j1) � � � exp(rjdu>�jd)= ZRm p(du) exp �u>(ri�i + rj1�j1 + � � � + rjd�jd)�= mYl=1 ZRpl(dul) exp [ul(ri�il + rj1�j1l + � � �+ rjd�jdl)℄= mYl=1�pl(�iri�il � irj1�j1l � � � �irjd�jdl);with �pl being the harateristi funtion of pl. Note that the existene of �pl(z) insome ball fz 2 C : jzj < Ag has to be assumed. By analogue omputations andolleting terms we thus obtain(�) = �1 + mYl=1�pl(�iri�il)+n�1�iXd=1 Xi<j1<j2<���<jd<n Æj1Lj1� � � � ÆjdLjd���" mYl=1�pl(�iri�il � irj1�j1l � � � �irjd�jdl)� mYl=1�pl(�irj1�j1l � � � � irjd�jdl)#=: %p;r;�i + n�1�iXd=1 Xi<j1<j2<���<jd<n Æj1Lj1� � � � ÆjdLjd�%p;r;�i;j1;:::;jd:One the model inputs ri, jump loadings t ! �i(t) for 1 � i < n; and jumpomponent measures pl with harateristi funtions �pl for 1 � l � m; are alibratedor simply given, the real valued funtions t! %p;r;�i (t); t ! %p;r;�i;j1;:::;jd(t); 1 � i < n;i < j1 < j2 < � � � < jd < n; an be omputed in losed form and, in priniple, even bestored outside the Monte Carlo simulator. Thus onsidering these funtions as given,the simulation of lnLi in the terminal measure may be arried out straightforwardly7



via the formulad lnLi = �12(1� r2i )jij2dt� n�1Xj=i+1 ÆjLj�1 + ÆjLj�q(1 � r2i )(1� r2j )>i jdt+q1� r2i >i dW (n) + rid NtXl=1 u>l �i(sl) (9)� n�1Yj=i+1 (1 + ÆjLj�)�1 �(t)dt h%p;r;�i (t)++ n�1�iXd=1 Xi<j1<j2<���<jd<n Æj1Lj1� � � � ÆjdLjd�%p;r;�i;j1;:::;jd(t)# :We underline that the struture of the dynamis (9), hene the feasibility of stan-dard Monte Carlo simulation of every forward Libor in the terminal measure, is aonsequene of our model design in Setions 3.1 and 3.2. In partiular it is due tothe speial produt struture of the prinipally high dimensional jump measure pand the linear struture of the log-Libor fator loadings (6).Remark 1 Based on (9) we may onsider di�erent Libor model approximations.For example we may freeze Lj� at zero (see Glasserman & Merener (2003)), henereplae Lj� with Lj(0) in (9). As an alternative, if the ri are small enough and themagnitudes of ÆjLj are small enough as well, one ould drop in (9) the terms oforder (ÆjLj)2 and higher. Of ourse, any suh attempt needs areful investigationwhih is onsidered beyond the sope of this artile. For related approximations inthe ontext of the standard Libor market model, see for instane Kurbanmuradov,Sabelfeld and Shoenmakers (2002).3.4 Dynamis of Li under Pi+1We now onsider for i = 1; :::; n� 1 the dynamis of Li under Pi+1: From (7) we seethat the logarithm of the last Libor rate Ln�1 has the following simple dynamis inthe Pn measure,d lnLn�1 = �12(1 � r2n�1)jn�1j2dt+q1 � r2n�1>n�1dW (n)+rn�1d NtXl=1 u>l �n�1(sl)� �(t)dtZRm �exp(rn�1 u>�n�1)� 1� p(du) (10)and thus belongs to the lass of additive models, i.e., the proess Xn�1(t) :=lnLn�1(t) � lnLn�1(0) has independent inrements. By using Lemma 2 below for8



instane, we an derive straightforwardly the harateristi funtion of Xn�1(t),�n(z; t) :=EPn exp[izXn�1(t)℄ = exp [ n(z; t)℄ with (11) n(z; t) := �z22 (1 � r2n�1)Z t0 jn�1(s)j2ds � iz Z t0 h12(1 � r2n�1)jn�1(s)j2ds+�(s)dsZRm � exp(rn�1 u>�n�1(s))� 1� p(du)i+ Z t0 �(s)dsZRm(eiz rn�1u>�n�1(s) � 1)p(du): (12)For 1 � i < n� 1 the dynamis of Li under Pi+1 is more ompliated. By the fatthat Li is a martingale under Pi+1 we observe from the general framework (1) thatdLiLi� =: �>i dW (i+1) + ZE  i(t; u) ��� �(i+1)� (dt; du); (13)where dW (i+1) = � n�1Xj=i+1 ÆjLj�1 + ÆjLj� �jdt+ dW (n)is a standard Brownian motion under Pi+1, and�(i+1)(dt; du) = �(n)(dt; du) n�1Yj=i+1�1 + ÆjLj� j(t; u)1 + ÆjLj� � (14)is the ompensator proess of � under the measure Pi+1: For the more speializedsetup introdued in this setion, whih is based on (6), (14) reads�(i+1)(dt; du) = �(t)p(du)dt n�1Yj=i+11 + ÆjLj� exp(rj u>�j)1 + ÆjLj� ; (15)and (13) readsdLiLi� =q1� r2i >i dW (i+1) + ZRm �eri u>�i(t) � 1� ��� �(i+1)� (dt; du); (16)i = 1; :::; n� 1: The logarithmi version of (16) is seen from (7) to bed lnLi = �12(1� r2i )jij2dt+q1� r2i >i dW (i+1) (17)+rid NtXl=1 u>l �i(sl)� ZRm �exp(ri u>�i)� 1� �(i+1)(dt; du):In partiular, for i < n� 1 the ompensator (15) is non-deterministi in the presentsetup and, as a onsequene, lnLi is generally not additive under Pi+1 for i < n� 1.However, by freezing in (15) the Libor terms, i.e. replaing Li� by Li�(0), we mayget a deterministi approximative ompensator and so an additive approximation oflnLi under Pi+1: 9



3.5 Preserving the loal ovariane strutureWe reall the following standard lemma whih is proved in Appendix 7.2.Lemma 2 If J(t) =PNtl=1 '(sl; ul) is a ompound Poisson proess in Rq with jumpintensity �(t)dt, independent jumps in a measurable spae E with probability measurep(du); and ' : R+�E ! Rq is deterministi, then (i) the harateristi funtion ofJ(t) is given byEeiz>J(t) = exp �Z t0 �(s)dsZE(eiz>'(s;u) � 1)p(du)� ; z 2 Rq:and (ii) for the expetation and ovariane struture of J(t) we haveEJl(t) = Z t0 �(s)dsZE 'l(s; u)p(du);Cov(Jl(t); Jl0(t)) = Z t0 �(s)dsZE 'l(s; u)'l0(s; u)p(du); 1 � l; l0 � q:Let us now write the integrated random term in (7) as�i(t) :=q1 � r2i Z t0 >i dW (n) + ri NtXl=1 u>l �i(sl)=:q1 � r2i �Di (t) + ri�Ji (t): (18)By Lemma 2 the harateristi funtion of the jump proess �J is then given byEeiz>�J(t) = exp"Z t0 �(s)ds �p n�1Xj=1 zj�j(s)! � 1!# ;with �p(y) := R p(du) exp �iu>y� ; y 2 Rm being the harateristi funtion of p: Forthe ovariane matrix Lemma 2 yieldsCov(�Ji (t); �Jj (t)) = Z t0 �(s)dsZRm �>i (s)uu>�j(s)p(du)=: Z t0 �(s)ds�>i (s)��j(s)with �kl := R ukulp(du) being the ross moments of jump omponents uk and ul:Sine the Brownian motion and the jumps are assumed to be independent, we havefor the loal ovariane of the random term in (7),Cov(d�i(t); d�j(t))=dt =q(1 � r2i )(1� r2j )>i (t)j(t) + rirj�(t)�>i (t)��j(t): (19)10



Our main idea is to onsider jump di�usion extensions of a (given) pure Libor marketmodel whih preserve the (given) loal ovariane struture of the market model.To this aim we onsider in (7) the ase where r :� ri for all i: Then (19) yieldsCov(d�i; d�j)=dt = (1� r2)>i j + r2��>i ��j:We then assume �j = Aj for some m� d matrix A whih givesCov(d�i; d�j)=dt = >i (I � r2I + r2�A>�A)j:Now the requirement that the loal ovarianes (19) oinide with the loal ovari-anes of the market model leads to the ondition�A>�A = Id;and in partiular m � d: Sine � is (time independent) positive de�nite there isa unique positive symmetri m � m matrix C suh that � = C2: Then for anyolumn-orthogonal m� d matrix Q we have a solutionA = ��1=2C�1Q:Note that in general Q and � may depend on t. Without loss of generality (i.e.without a�eting the input Libor market model) we may assume that the (n�1)�dmatrix (j;r) is an upper triangular matrix in the sensen�j;l = 0 for 1 � l < d � j + 1; j = 1; :::; d:We assume (for tehnial reasons in fat) that the (n� 1) �m matrix (�j;r) is alsoan upper triangular matrix,�n�j;l = dXr=1 Al;rn�j;r = 0; for 1 � l < m� j + 1; j = 1; :::;m: (20)In partiular this entails that the jumps of Ln�1 are driven by a single jump measure.We will ahieve (20) by the additional requirement m = d (dimension of the jumpspae equal to the number of Brownian motions) and by taking the orthogonalmatrix Q suh that C�1Q, hene A, is a lower triangular (square) matrix withpositive diagonal elements. Thus, A is uniquely determined byAA> = ��1��1; A is lower triangular with positive diagonal. (21)As a further speialization we take � to be time independent. Note that u>�i =(Du)>D�1�i for any regular diagonal matrix D. So, multipliation of all jumprandom variables with an arbitrary fator and respetive omponents of �i withthis fators inverse yields the same model. We thus need to standardize the jumpomponents in a suitable way. Without any restrition wemay �x the jump varianes�k de�ned as �k := Z u2kpk(duk)� �2k where�k := Z ukpk(duk)11



is the mean of the kth jump omponent, as we like. As a onvenient hoie wetake them all equal, i.e. we set �k �: �, k = 1; : : : ;m: We will hoose � suh thatjjAjjF :=qPmk;l=1 jAklj2 = pm = jjImjjF ; whih is equivalent tojjC�1jj2F = mXk=1 1��k = �m; (22)where ��k ; k = 1; :::;m; denote the eigenvalues of �: Then by the result of Ap-pendix 7.3 it follows that (22) is equivalent to�� = � + m�1m mXp=1�2p� + mXp=1�2p :It is easy to show that this quadrati equation in � has one positive and one negativesolution, and that for large m the positive solution �+ � 1=�. We therefore set� := 1� � �k; k = 1; : : : ;m:For all k; l = 1; :::;m; >k l = e>k C2el = �kl = �kÆkl + �k�l: We so have in partiular�n�1;l(s) � 0 for 1 � l < m, and�n�1;m(s) = Am;mn�1;m(s) = ��1=2(e>mC2em)�1n�1;m(s)= n�1;m(s)p�(�+ �2m) = n�1;m(s)p1 + ��2m : (23)Hene the dynamis of lnLn�1 is driven by a single jump variable um under a jumpdistribution with density pm with mean �m and variane ��1:4 Priing apletsA aplet for the period [Tj; Tj+1℄ with strike K is an option whih pays (Lj(Tj) �K)+Æj at time Tj+1, where 1 � j < n. It is well-known that under the Tj+1 - forwardmeasure the aplet prie has the following simple representation. Writing Ej+1 forthe expetation under this measure, we haveCj(K) = Bj+1(0)Ej+1[(Lj(Tj)�K)+Æj℄for prie of the j-th aplet at time zero. Thus the j-th aplet prie is determinedby the dynamis of Lj under Pj+1 only. We now reall the FFT priing method of12



Carr & Madan, whih basially goes as follows. It turns out natural to transformfor a �xed j the strike variable into a log-forward moneyness variable de�ned byv := ln KLj(0) :In terms of log-forward moneyness the j-th aplet prie is then given byCj(v) := ÆjBj+1(0)Lj(0)Ej+1[(eXj(Tj) � ev)+℄;where Xj(t) := lnLj(t)� lnLj(0). We further introdue an auxiliary funtionOj(v) := Æ�1j B�1j+1(0)L�1j (0)Cj(v)� (1� ev)+= Ej+1(eXj(Tj) � ev)+ � (1� ev)+= 1v�0Ej+1(eXj(Tj) � ev)+ + 1v�0Ej+1(ev � eXj(Tj))+;where the third expression is basially due to the put-all parity and follows fromthe identity (a� b)+ = a� b+ (b� a)+ and the fat Ej+1eXj(Tj) = 1: In Appendixwe derive further harateristi properties of the funtion Oj. In partiular, it holds(for a proof see Appendix 7.4)FfOjg(z) = Z 1�1Oj(v)eivzdv = 1 � �j+1(z � i;Tj)z(z � i) : (24)Most importantly, if the harateristi funtion of Xj(Tj) is expliitly given, forexample by (11), and (12) in the ase j = n � 1, we obtain an analytial apletpriing formula via Fourier inversion,Cj(K) = ÆjBj+1(0)(Lj(0) �K)+ +ÆjBj+1(0)Lj(0)2� Z 1�1 1� �j+1(z � i;Tj)z(z � i) e�iz ln KLj (0)dz: (25)For a �xed j; j < n � 1, let now lnLj be given by (17). As noted at the end ofSetion 3, we may then obtain an additive approximation eXj(Tj) of Xj(Tj) via (17)by replaing �(j+1) with the approximative ompensatore�(j+1)(dt; du) := �(t)dt p(du) n�1Yl=j+11 + ÆlLl(0) exp(rl u>�l)1 + ÆlLl(0) : (26)Hene, approximative aplet pries eCj(K) are obtained from (25), using an ap-proximation e�j+1 of the harateristi funtion �j+1; whih in turn is obtained byreplaing in (11)-(12), n � 1; n; and �(n)(dt; du) = �(dt)p(du), respetively withj; j + 1; and e�(j+1)(dt; du) from (26). 13



5 CalibrationLet us �rst onsider the alibration to a panel of aplets orresponding to maturityTn�1 and di�erent strikesK�N < � � � < K�1 < K0 := Ln�1(0) < K1 < � � � < KN . So,suppose that aplet pries Cn�1;j orresponding to Kj , �N � j � N , are available.We �rst transform the observations Cn�1;j and strikes Kj toOn�1;j := Æ�1n�1;B�1n (0)L�1n�1(0)Cn�1;j � (1� evj)+; (27)vj := ln KjLj(0) ; �N � j � N: (28)Our alibration proedure relies essentially upon the next formula whih followsfrom (11), (12), (24), and taking the assumptions of Setion 3.5 into aount. n(z;Tn�1) = Ln(�n(z;Tn�1)) = Ln�1� z(z + i)FfOn�1g(z + i)�= ��2n�1z22 � i{n�1z � �n�1 + �n�1Ff�n�1g(z); (29)with abbreviations�2n�1 := (1� r2n�1)Z Tn�10 jn�1(s)j2ds;{n�1 := �Tn�1 ZR� exp(rn�1 u�n�1;m(s))� 1� pm(u) du (30)+ 12 Z Tn�10 (1 � r2n�1)jn�1(s)j2ds�n�1 := �Tn�1; (31)�n�1(�) := T�1n�1 Z Tn�10 r�1n�1��1n�1;m(s) pm(r�1n�1��1n�1;m(s) �) ds; (32)with Ln(w) := ln jwj + iArgw, �� < Argw � � denoting the main branh of thelogarithm, and pm being the density of pm whih we now assume to exist.In priniple, the onstants �2n�1, {n�1, �n�1, and the mixed density �n�1 an bereovered via (29) from omplete knowledge of funtion On�1, hene a ompletesystem of model onsistent aplet pries Cn�1(K); 0 < K < 1. Indeed, sineFf�n�1g(z) tends to zero as jzj ! 1 due to the Riemann-Lebesgue lemma, we have�2n�1 = �2 limz!+1 z�2 n(z;Tn�1){n�1 = � limz!+1 z�1 Im n(z;Tn�1); and next;�n�1 = limz!+1�� n(z;Tn�1)� �2n�1z22 � i{n�1z� ;and then the funtion Ff�n�1g(z) an be found from (29). In pratie this approahbreaks down due to inomplete knowledge of On�1 and lak of numerial stabilityhowever. 14



In Belomestny and Reiss (2004) a more stable proedure is developed whih esti-mates all spot harateristis �2n�1;{n�1; �n�1, and �n�1(�), for a given set of noisyobservations (27) due to a disrete set of strikes (28). This proedure onsists ba-sially of four steps: (i) �rst, a ontinuous piee-wise linear approximation eOn�1of On�1 is built from the data; (ii) from eOn�1 an approximation e n of  n is ob-tained; (iii) next the oeÆients of the quadrati polynomial on the right-hand sidein (29) are estimated from e n, under the presene of the nonparametri nuisanepart Ff�n�1g (whih vanishes at in�nity) using appropriate weighting shemes; (iv)�nally an estimator for �n�1 is obtained via FFT inversion of the remainder. Thesteps (i){(iv) are spelled out in detail below.(i) In view of Appendix 7.5, we onstrut a ontinuous piee-wise linear funtionv ! eOn�1(v) on a grid vj, �N � 1 � j � N + 1, with v�N�1 � v�N < � � �< v�1 < v0 := 0 < v1 < � � � < vN � vN+1, , suh that eOn�1(v) �ts the dataat vj; j 6= 0; eOn�1(v�N�1) := eOn�1(vN+1) := 0, and eO0n�1(0�) � eO0n�1(0+) =1. The boundary strikes v�N�1; vN+1 are inluded to reet the fat thatlimv!�1 On�1(v) = 0.(ii) By straightforward FFT we ompute Ff eOn�1g(z + i) and so obtaine n(z) := Ln�1� z(z + i)Ff eOn�1g(z + i)�; z 2 R: (33)(iii) With an estimate e n of  n at hand, we obtain estimators for the parametripart (�2n�1;{n�1; �n�1) by an averaging proedure using the polynomial stru-ture in (29) and the deay property of Ff�n�1g. For suitable weight funtionsw�; w{, and w� onstruted in Setion 5.1, whih have bounded support U :=[�U;U ℄ with U > 0, and satisfyZ w�du = 0; Z u2w�(u)du = �2; Z uw{(u)du = 1; (34)Z u2w�(u)du = 0; Z w�(u)du = �1;we ompute the estimatese�2n�1 :=Z Re(e n(u))w�(u)du; (35)e{n�1 :=Z Im( e n(u))w{(u)du;e�n�1 :=Z Re(e n(u))w�(u)du;for the parameters �2n�1;{n�1; and �n�1, respetively.15



(iv) The estimate for �n�1 is obtained via the inverse Fourier transform,e�n�1 := e��1n�1F�1(�e n(�) + e�2n�12 (�)2 � ie{n�1(�) + e�n�1�1U) ; (36)where u 2 R and 1U is the indiator funtion of the set U .The omputational omplexity of this estimation proedure is very low. The onlytime onsuming steps are the three integrations in step (iii) and the inverse Fouriertransform (inverse FFT) in step (iv).5.1 Determination of the weights w�; w{; and w�Let us assume that for some natural number p and C > 0,max0�q�p k�(q)n�1kL2(R) � C (37)and onsider for some U > 0 the following weight funtions,wU;p� (u) := p + 3(1 � 2�2=(p+1))Up+3 jujp(1ju=U j�1 � 2 � 12�1=(p+1)�ju=U j�1); (38)wU;p{ (u) := p+ 22Up+2 jujpsign(u)1ju=U j�1;wU;p� (u) := p+ 12 (22=(p+3) � 1)Up+1 jujp(2 � 12�1=(p+3)�ju=U j�1 � 1ju=U j�1);whih satisfy the onditions (34) by straightforwardly heking.Following Belomestny and Reiss (2005), we an estimateje�2n�1 � �2n�1j � ����Z Re( e n(u)�  n(u))wU;p� (u)du����+ ����Z Re(Ff�n�1g(u))wU;p� (u)du����= (1) + (2): (39)The seond term an be estimated using the identity (iu)pFf�n�1g(u) = Ff�(p)n�1g(u);two times Parseval's isometry, and (38),(2) � ����Z Ff�n�1g(u)wU;p� (u)du���� = ������Z (iu)pFf�n�1g(u) wU;p� (u)(iu)p !du������= ������Z Ff�(p)n�1g(u) wU;p� (u)(iu)p !du������ = 12� ������Z �(p)n�1(s)F�1(wU;p� (�)(i�)p )(s)ds������� Cp2� wU;p� (�)(�)p L2(R) = C(p+ 3)p� (1� 2�2=(p+1))Up+5=2 � C1 (p+ 1)(p + 3)Up+5=2 ;16



for some C1 > 0; whih explains the onstrution of wU;p� : for �xed p and U large,(2) falls with O(U�(p+5=2)). The �rst term (1) is due to the noise and lak of data.It an be estimated by(1) � jje n �  njjL1(U)jjwU;p� jjL1(U) = jje n �  njjL1(U) 2(p + 3)(p + 1) (1 � 2�2=(p+1))U2� C2jje n �  njjL1(U)p + 3U2 ;for some C2 > 0: So we have,je�2n�1 � �2n�1j � C2jje n �  njjL1(U)p+ 3U2 + C1 (p + 1)(p + 3)Up+5=2 : (40)In a similar way we obtain for {n�1; and �n�1,je{n�1 � {n�1j � C3jje n �  njjL1(U) p+ 2U(p + 1) + C4 (p+ 2)Up+3=2 ; (41)je�n�1 � �n�1j � C5jje n �  njjL1(U)(p+ 3) + C6 (p + 1)(p + 3)Up+1=2 ; (42)for some C3; C4; C5; C6 > 0: Note that even when k�(q)n�1kL2(R) is �nite for very large qit is not wise in view of (42) to take p too large. In pratie one needs to aomplishthat jje n� njjL1(U) is small for a large enough U and then p = 1 or 2 turns out tobe a proper hoie.Corretion of e�n�1Due to numerial as well as statistial errors the estimated e�n�1 may not be aprobability density and thus needs to be orreted. Besides that we also want thevariane of Xn�1 to be equal to the Blak variane Tn�1(Bn�1)2, whereBn�1 :=s 1Tn�1 Z Tn�10 jn�1j2(s)ds:In order to aomplish all these requirements we onstrut a new estimate e�+n�1 asa solution of the following optimization problem,ke�+n�1 � e�n�1k2L2(R)! min; infx2Re�+n�1(x) � 0 (43)subjeted toZ e�+n�1(v)dv = 1; Z v2e�+n�1(v)dv = Tn�1�Bn�1�2 � e�2n�1e�n�1 : (44)The solution has a rather simple form and is given bye�+n�1(x; �; �) := maxf0; e�n�1(x)� � � �x2g; x 2 R;where � and � need to be determined suh that (44) is satis�ed. Note that byrepresenting e�+ as a mixture of given densities, (43)-(44) boils down to a �nitedimensional quadrati optimization problem.17



5.2 Proedure for alibration against terminal apletsFor U > 0 we denote the estimates (35) obtained using the weight funtions (38) by�n�1(U); {n�1(U); �n�1(U), and the orreted L�evy density is denoted by �+n�1(�;U).From (30) and (31) we an diretly infer estimates rn�1(U) and �(U), respetively.We further have to identify a jump density pm from �+n�1(�;U) via (32), while takinginto aount (23). Sine the funtion � is usually not onstant this might be noteasy in general. We therefore go the following pragmati way. Let us de�ne in thespirit of (23) �Bn�1 := Bn�1=p1 + ��2m: We then onsider as andidate jump densitybpm(u;U) := rn�1(U)�Bn�1�+n�1�rn�1(U)�Bn�1u;U�= rn�1(U)Bn�1p1 + �(U)�2m�+n�1 rn�1(U)Bn�1p1 + �(U)�2mu;U! : (45)Due to the very onstrution�Ff�+n�1(�; U)g00(0) = Z v2�+n�1(v;U)dv = r2n�1(U)�Bn�1�2�(U) ; (46)and so by (45) it holds R u2bpm(u;U) du = ��1(U) + �2m: By next requiring that the�rst moment of the r.h.s. in (45) is equal to �m, we simply obtain�m(U) := ��+p�(U)��+ ; (47)with ��+ and ��+ denoting the expetation and the variane, respetively, of arandom variable with density �+n�1(�;U). Substituting (47) in (45) then yieldsbpm(u;U) = rn�1(U)Bn�1q1 + �2�+=��+ �+n�10� rn�1(U)Bn�1q1 + �2�+=��+ u;U1A : (48)Finally we onsider in view of (32)b�+n�1(�;U) := 1Tn�1 Z Tn�10 q1 + �2�+=��+rn�1(U)n�1;m(s) �� bpm0� q1 + �2�+=��+rn�1(U)n�1;m(s) �;U1A ds: (49)Note that the seond moments of b�+n�1 and �+n�1 oinide and are given by the r.h.s.of (46) (the �rst moments oinide approximately).18



Choie of UWe �nd U� as a solution of the following minimization problemU� = arginfU NXi=�N j bCn�1(Ki;U)� Cn�1;ij2; (50)where bCn�1(�;U) are pries omputed from the model due to �n�1(U); {n�1(U);�n�1(U), and b�+n�1(�;U).5.3 Calibration to other apletsWith U� is determined via (50) and pm := pm(U�), we introdue the shifted densitiespj(u) := pm(u� �j + �m);hene �j = ZRubpj(u)du; j = 1; : : : ;m: (51)Beause we want to preserve the input loal ovariane struture we set rj = rm(U�);j = 1; : : : ;m � 1: Let U be the upper triangular m � m matrix with positivediagonal elements suh that � = UU>: This deomposition exists beause � isinvertible. From (21) we then have A = ��1=2U�>: Let us de�ne �(k)rr0 ; k � r; r0 � m;k = 1; :::;m: Sine U is an upper triangular we have �(k) = U (k)(U (k))> and A(k) =��1=2(U (k))�> with A(k) and U (k) de�ned analogously to �(k): Thus, for knowing A(k)it is suÆient to know �(k):Now let us suppose that m = n� 1: We determine �j, j = 1; : : : ; n� 1; reursivelyin the following way. For j = n � 1, �n�1 is determined from (47), then �n�1;n�1from (23), and �(n�1)n�1;n�1 = �+ �2n�1: Suppose �l;k is determined for l = j; :::; n� 1;k = l; :::; n�1;where j > 1: For j = m = n�1 we are in the situation of Setion 5.2.We then onsider the matrix�(j�1)(�j�1) := � �+ �2j�1 �j�1a>�j�1a �(j) � ; (52)with a := [�j; � � �; �n�1℄>; and where the (n � j) � (n � j) matrix �(j)rr0 is assumedto be already determined. Note that � = ��1(U�) is the ommon jump variane.In fat the only unknown parameter to be determined in (52) is �j�1. Further, iteasily follows that,U (j�1)(�j�1) = " �� + �2j�1 �1 � a>(�(j))�1a��1=2 �j�1a>(U (j))�>U (j) #19



and so F (j�1)(�j�1) := �U (j�1)��> (�j�1) =" �� + �2j�1 �1 � a>(�(j))�1a���1=2� �� + �2j�1 �1 � a>(�(j))�1a���1=2 �j�1a �U (j)��> #Next, set aording to (20)�j�1;k(�j�1) = ��1=2 kXr=j�1F (j�1)k;r (�j�1)j�1;r; k = j � 1; :::; n� 1;�j�1;k(�j�1) = 0; 1 � k < j � 1:By a simple trial and error searh we then determine �j�1 suh that the least squares�t error of the Tj�1 aplet panel is as small as possible. For eah guess of �j�1 themodel aplet pries may be omputed by Monte Carlo simulation of the model, oras an alternative by approximating aplet pries as proposed at the end of Setion 4.6 Calibration to real dataIn this setion we alibrate the model (7) to market data given on 11.01.2004. Theaplet-strike volatility matrix is partially shown in Table 1. The orrespondingimplied volatility surfae is shown in Figure 1.
Ten

or
s

5

10

15
Strikes

0.02

0.04

0.06

0.08

0.10

0.15

0.20

0.25

0.30

0.35

Caplets Implied Volatilities

Figure 1: Smoothed aplet implied volatility surfae �KT .20



K/T 0.150 0.200 0.225 0.250 0.300 0.400 0.500 0.6000.50 0.2604 0.1735 0.1819 0.1969 0.2453 0.2708 0.3197 0.34070.75 0.2678 0.2036 0.2052 0.2136 0.2401 0.2598 0.3052 0.32581.75 0.2832 0.2587 0.2475 0.2365 0.2227 0.2246 0.2539 0.27332.50 0.2850 0.2651 0.2513 0.2334 0.2125 0.2051 0.2234 0.24123.50 0.2804 0.2581 0.2432 0.2233 0.2016 0.1856 0.1924 0.20714.50 0.2720 0.2474 0.2319 0.2142 0.1934 0.1720 0.1711 0.18215.50 0.2625 0.2381 0.2219 0.2079 0.1872 0.1625 0.1566 0.16406.50 0.2531 0.2314 0.2144 0.2039 0.1824 0.1557 0.1470 0.15107.50 0.2447 0.2270 0.2092 0.2016 0.1788 0.1510 0.1407 0.14188.50 0.2375 0.2241 0.2058 0.2002 0.1761 0.1477 0.1367 0.13559.50 0.2315 0.2224 0.2036 0.1995 0.1740 0.1454 0.1342 0.131111.50 0.2212 0.2206 0.2011 0.1988 0.1707 0.1424 0.1312 0.125314.50 0.2149 0.2201 0.2003 0.1987 0.1689 0.1410 0.1302 0.122819.50 0.2111 0.2200 0.2001 0.1987 0.1678 0.1404 0.1300 0.1219Table 1: Caplet volatilities �KT for di�erent strikes and di�erent tenor dates (inyears).Pronouned smiles are learly observable. Due to the struture of the given datawe are going to alibrate the jump di�usion model based on semi-annual tenors, i.e.Æj � 0:5; with n = 41; and where the initial alibration date 01.11.04 is identi�edwith T0 = 0.In a pre-alibration a standard market model is alibrated to ATM aps and ATMswaptions using Shoenmakers (2005). However, we emphasize that the method bywhih this input market model is obtained is not essential nor a disussion point forthis paper. For the pre-alibration we have used a volatility struture of the formi(t) = ig(Ti � t)ei; 0 � t � min(Ti; Tj); 1 � i; j < n;where g is a simple parametri funtion and ei are unit vetors. The alibrationroutine returned ei 2 R40 withe>i ej = �ij = exp[�0:005ji� jj℄ 1 � i; j < 41;suh that the matrix (ei;k) is upper triangular, andg(s) = 0:8 + 0:2e�2:0s:The i an be readily omputed from(�ATMTi )2Ti = 2i Z Ti0 g2(s) ds; i = 1; : : : ; n� 1;21



using the initial Libor urve, whih is obtained by a standard stripping proedurefrom the yield urve at 11.01.04, and is given in Table 2.Ti Li(0) Ti Li(0) Ti Li(0) Ti Li(0)0.5 0.0238176 5.5 0.0451931 10.5 0.0509249 15.5 0.05396961 0.0264201 6 0.0465074 11 0.0512114 16 0.05405211.5 0.0292798 6.5 0.0475881 11.5 0.0515804 16.5 0.05409312 0.0320656 7 0.0484201 12 0.0520317 17 0.05409332.5 0.0345508 7.5 0.0490942 12.5 0.0524639 17.5 0.0540533 0.0366693 8 0.0496402 13 0.0528456 18 0.05397283.5 0.0385821 8.5 0.0500331 13.5 0.0531757 18.5 0.05385334 0.040381 9 0.0502848 14 0.0534529 19 0.0536954.5 0.0420863 9.5 0.0504889 14.5 0.0536757 19.5 0.05349845 0.0437079 10 0.0506932 15 0.0538451 20 0.053268Table 2: Initial Libor urve.The further steps are as follows1. The model for Ln�1 is alibrated as desribed in Setion 5.2 and the alibratedparameters are shown in Table 3. The alibrated density pm(x) is plotted inr � �m0.7 0.1 -0.005Table 3: Parameters alibrated using terminal aplet volas �KTn�1.Figure 2. Note that the variane of the distribution orresponding to pm isequal to 1=� = 10:0 in order to ensure (22).2. Remaining parameters �j ; j = 1; : : : ; 39; are alibrated sequentially as de-sribed in Setion 5.3 with approximation formula (26) being used for priingaplets. It turned out experimentally that �j an be taken on the line�j = �40 � 0:0751 � (40 � j); j = 40; : : : ; 1:The quality of the alibration an be seen in Figure 3, where alibrated volatil-ity urves are shown for several aplet maturities together with original apletvolas and ATM aplet volas. The overall root-mean-square �t we have reahedshows to be 0.5%-5%, when the number of aplet panels ranges from 2 to 20.Fitting all the 40 aplet panels with an aeptable auray (e.g. �5%), wouldrequire a more exible struture for pj, j < m, however.22
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Figure 2: Density pm(x) alibrated using terminal aplet volas �KTn�17 Appendix7.1 Equivalene of (1) and (3)Suppose on (
;F ;Ft; Pn) we are given � and W (n) as in (3), and for k = 1; :::;m weare given a random measure �k on R+�Ek; with Ek Lusin, of the form (2)�k =Xn�1 1T (k)n (!)=tÆ(t;�(k)t (!))(dt; du);where the stopping times (T (k)n )k=1;:::;m;n�1 satisfy T (k)n (!) 6= T (l)m (!) for n 6= m ork 6= l: Further let for i = 1; :::; n� 1; k = 1; :::;m; the Ek-valued funtion proesses ik be preditable. By treating Ek and El for k 6= l as ompletely di�erent spaes,i.e.Ek \ El = ? (whih may be ahieved by giving them di�erent olors if needbe), we may onstrut straightforwardly the Lusin spae E := mSk=1Ek and de�ne arandom measure � :=Pmk=1 �k on R+�E: Let now �(n)k be the (Pn;F)-ompensatorof �k (whih is onentrated on Ek), then it easily follows that �(n) :=Pmk=1 �(n)k isthe (Pn;F)-ompensator of �; and by de�ning  i(t; u; !) :=  ik(t; u; !) if u 2 Ek;(3) may be written as (1). 23
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asFigure 3: Caplet volas from the alibrated model (solid lines), original aplets volas�KT (points) and ATM aplet volas �ATMT (dashed lines) for di�erent aplet maturitiesT .7.2 Proof of Lemma 2Proof of (i):Eeiz>J(t) = E E heiz>PNtl=1 '(sl;ul)jNti = E " NtYl=1eiz>'(sl;ul)jNt#= E  Z t0 �(s)dsR t0 �(� )d� ZE eiz>'(s;u)p(du)!Nt= 1Xk=0 �R t0 �(� )d��kk! e� R t0 �(�)d�  Z t0 �(s)dsR t0 �(� )d� ZE eiz>'(s;u)p(du)!k= expZ t0 �(s)dsZE(eiz>'(s;u) � 1)p(du):Proof of (ii): By di�erentiating the harateristi funtion with respet to zl and z0lwe obtain ��zlEeiz>J(t) = iZ t0 �(s)dsZE eiz>'(s;u)'l(s; u)p(du)�� expZ t0 �(s)dsZE(eiz>'(s;u) � 1)p(du);24



�2�zl�zl0Eeiz>J(t) = �Z t0 �(s)dsZE eiz>'(s;u)'l0(s; u)p(du)��Z t0 �(s)dsZE eiz>'(s;u)'l(s; u)p(du) expZ t0 �(s)dsZE(eiz>'(s;u) � 1)p(du)�Z t0 �(s)dsZE eiz>'(s;u)'l(s; u)'l0(s; u)p(du)� expZ t0 �(s)dsZE(eiz>'(s;u) � 1)p(du):Hene EJl(t) = Z t0 �(s)dsZE 'l(s; u)p(du);and EJl(t)Jl0(t) = Z t0 �(s)dsZE 'l0(s; u)p(du) � Z t0 �(s)dsZE 'l(s; u)p(du)+ Z t0 �(s)dsZE 'l(s; u)'l0(s; u)p(du);and then note that Cov(Jl(t); Jl0(t)) = EJl(t)Jl0(t)� EJl(t)EJl0(t):7.3 Summed reiproal eigenvalues of �Consider the determinantDm := �������������� �1 + �21 �1�2 �1�3 �1�m�1 �1�m�2�1 �2 + �22 �2�3 �2�m�3�1 �3�2 �3 + �23�m�1�1 �m�1�2 �m�1 + �2m�1 �m�1�m�m�1 �m�2 �m�m�1 �m + �2m ��������������= �������������� �1 + �21 �1�2 �1�3 �1�m�1 �1�m�2�1 �2 + �22 �2�3 �2�m�3�1 �3�2 �3 + �23�m�1�1 �m�1�2 �m�1 + �2m�1 �m�1�m��m�1 �1 0 0 �m ���������������mDm�1 � �m�1 �1(�1)m�1 ������������ �1�2 �1�3 �1�m�1 �1�m�2 + �22 �2�3 �2�m�3�2 �3 + �23�m�1�2 �m�1�3 �m�1 + �2m�1 �m�1�m ������������ :25



Sine ������������ �1�2 �1�3 �1�m�1 �1�m�2 + �22 �2�3 �2�m�3�2 �3 + �23 �3�m�m�1�2 �m�1 + �2m�1 �m�1�m ������������= ::: = �1�m(�1)m�2 ���������� �2 0 00 �30 00 0 �m�1 ���������� = �1�m(�1)m�2�2 � � � �m�1;we obtain Dm = �mDm�1 � �m�1 �1(�1)m�1�1�m(�1)m�2�2 � � � �m�1= �mDm�1 + �2m�1�2 � � � �m�1 = :::=  1 + mXp=1 �2p�p! mYq=1�p:Hene, Dm(�) = j� � �Imj =  1 + mXp=1 �2p�p � �! mYq=1(�q � �)= mYq=1(�q � �) + mXp=1�2p mYq=1;q 6=p(�q � �) =: � � �+K� + j�j;where the oeÆient of � is given byK := � mXp=1 mYq=1;q 6=p�q � mXp=1 mXr=1;r 6=p�2p mYq=1;q 6=p;q 6=r�q:26



We �nally obtain mXp=1 1�i = � Kj�j = mXp=1 mYq=1;q 6=p�q + mXp=1 mXr=1;r 6=p�2p mYq=1;q 6=p;q 6=r�qmYq=1�q + mXp=1�2p mYq=1;q 6=p�q= mXp=1 1�p + mXp=1 mXr=1;r 6=p �2p�p�r1 + mXp=1 �2p�p :7.4 Derivation of (24)On the one hand we have,Z 10 Oj(v)eivzdv = Z 10 eivzEj+1(eXj(Tj) � ev)+dv (53)= Z 10 eivz Z 1v Pj+1(Xj(Tj) 2 dx)(ex � ev)dv= Z 10 Pj+1(Xj(Tj) 2 dx)Z x0 eivz(ex � ev)dv= Z 10 Pj+1(Xj(Tj) 2 dx) �e(iz+1)x� 1iz � 1iz + 1�+ 1iz + 1 � eixziz �and on the other hand,Z 0�1Oj(v)eivzdv = Z 0�1 eivzEj+1(ev � eXTj )+dv (54)= Z 0�1 eivzdv Z v�1 Pj+1(Xj(Tj) 2 dx)(ev � ex)= Z 0�1 Pj+1(Xj(Tj) 2 dx)Z 0x (ev � ex)eivzdz= Z 0�1 Pj+1(Xj(Tj) 2 dx)�e(iz+1)x� 1iz � 1iz + 1�+ 1iz + 1 � exiz�Note that the harateristi funtion �j+1(z;Tj) of Xj(Tj) exist in the strip fz =x+ iy 2 C : �1 < x <1; �1 � y � 0g sine Ej+1Lj(Tj) = Lj(0) exists. Hene, byombining (53), (54), and using the martingale property of Xj(Tj) again, we obtain(24). 27



7.5 Charateristi properties of OjBy denoting the density of Lj(Tj) with �Lj(Tj) we may writeCj(K) = Bj+1(0)Ej+1[(Lj(Tj)�K)+Æj℄= Bj+1(0)Æj Z 1K (y �K)�Lj(Tj)(y)dy;and then by di�erentiating two times with respet to K we obtainC 00j (K) = Bj+1(0)Æj�Lj(Tj)(K):The density ofXj := lnLj(Tj)�lnLj(0) is obviously given by �Xj(v) := �Lj(Tj)(Lj(0)ev)Lj(0)ev,so �Xj(v) = B�1j+1(0)Æ�1j C 00j (Lj(0)ev)Lj(0)ev= B�1j+1(0)Æ�1j L�1j (0) �C 00j (v)� C 0j(v)� e�v= �O00j (v)�O0j(v)� e�v; v 6= 0;where O00j �O0j extends ontinuously at v = 0: In partiular, Oj satis�esO00j (v)�O0j(v) > 0 and O0(0�)�O0(0+) = 1: (55)On the grid vj; �N � 1 � j � N + 1 we onsider a ontinuous pieewise linearapproximation eOn�1 of On�1; eOn�1(v) :=N+1Xj=�N 1vj � vj�1 (On�1;j�1vj � vj�1On�1;j + v(On�1;j �On�1;j�1))1[vj�1 ;vj)(v)with vj and On�1;j�1 given by (27) and (28), extended with On�1;�N�1 = ON+1;n�1 =0 (note that v0 := 0). Then it follows that (with suppressed subsript n� 1)ddv distr eO(v) = N+1Xj=�N Oj �Oj�1vj � vj�1 1[vj�1 ;vj)(v) (56)in (Shwartz) distribution sense. Di�erentiating in distribution again yieldsd2dv2 distr eO(v) = O�Nv�N � v�N�1 Æv�N�1 + ONvN+1 � vN ÆvN+1+ NXj=�N �Oj+1 �Ojvj+1 � vj � Oj �Oj�1vj � vj�1 � Ævj : (57)28



Beause O satis�esO00(v)�O0(v) = d2dv2 distrO � ddv distrO; v 6= 0;we onsider for v 6= 0; d2dv2 distr eO � ddv distr eO! e�v = �O1 �O0v1 1[0;v1)(v)e�v + ONvN+1 � vN ÆvN+1e�vN+1O�Nv�N � v�N�1 Æv�N�1e�v�N�1 � O�Nv�N � v�N�11[v�N�1 ;v�N )(v)e�v (58)+ NXj=�Nj 6=0 ��Oj+1 �Ojvj+1 � vj � Oj �Oj�1vj � vj�1 � Ævje�vj � Oj+1 �Ojvj+1 � vj 1[vj;vj+1)(v)e�v� ;whih follows from (56) and (57) and some rearranging of terms. Sine the general-ized funtion (58) should be an approximation of the density �Xn�1 ; integrals overeah interval [vj�1; vj); j = �N; ::N + 1; should be non-negative. This leads to0 � �Oj+1 �Ojvj+1 � vj � Oj �Oj�1vj � vj�1 � e�vj � Oj+1 �Ojvj+1 � vj Z 1[vj ;vj+1)(v)e�vdv= Oj+1 �Ojvj+1 � vj e�vj+1 � Oj �Oj�1vj � vj�1 e�vj ; j = �N; :::;�N; j 6= 0: (59)Note that (59) holds if the input data are onsistent with a funtion O whih isonvex on both v < 0 and v > 0; and if the grid vj is �ne enough. Further, the totalmass of (58) should be one. This leads straightforwardly to the requirement,O0 �O�1�v�1 � O1 �O0v1 = 1;whih is a disretisation of the boundary ondition (55) in fat.Referenes[1℄ Belomestny, D. and Rei�, M. (2005). Optimal alibration of exponential L�evymodels,Preprint 1017, Weierstra� Institute (WIAS) Berlin.[2℄ Brigo, D. and Merurio, F. (2001) Interest rate models|theory and pratie.Springer Finane. Springer-Verlag, Berlin.[3℄ Brae, A., Gatarek, D. and Musiela, M. (1997). The Market Model of InterestRate Dynamis. Mathematial Finane, 7 (2), 127-155.[4℄ Carr, P. and Madan, D. (1999). Option Valuation Using the Fast Fourier Trans-form, Journal of Computational Finane, 2, 6174.29
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