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Abstract

We introduce and analyze discontinuous Galerkin time discretizations coupled with continuous finite element
methods based on equal-order interpolation in space for velocity and pressure in transient Stokes problems.
Spatial stability of the pressure is ensured by adding a stabilization term based on local projection. We
present error estimates for the semi-discrete problem after discretization in space only and for the fully
discrete problem. The fully discrete pressure shows an instability in the limit of small time step length.
Numerical tests are presented which confirm our theoretical results including the pressure instability.

1. Introduction

The use of equal-order interpolation for velocity and pressure in incompressible flow problems does not
satisfy the inf-sup stability condition and may produce oscillations in the pressure. In order to overcome
this difficulty, several stabilization methods have been proposed in the literature. The streamline-upwind
Petrov–Galerkin (SUPG) [1–3] and the pressure stabilized Petrov–Galerkin (PSPG) [4] methods are popular
tools for the approximation of incompressible flow problems using equal-order interpolation. The common
point in the stabilized methods is the addition of extra terms to the discrete formulation in order to enhance
the stability of the numerical scheme. The SUPG method combined with the PSPG method has been used
to cope the instability of dominating advection due to high Reynolds numbers and the violation of the
discrete inf-sup condition of the Navier–Stokes equations. Concerning steady incompressible flow problems,
this class of residual based stabilization techniques is still very popular due to its robustness. However, a
fundamental drawback of the SUPG is that several terms need to be added to the variational form to ensure
the strong consistency of the method. Furthermore, the strong coupling between velocity and pressure in
the stabilization terms makes the analysis difficult. In order to relax the strong consistency in SUPG and
PSPG type methods, several stabilization techniques have been developed. In particular, we mention edge
stabilization methods [5, 6], local projection stabilization (LPS) methods as two-level approach [7, 8] or as
one-level enrichment method [9], and variational multiscale method [10].

In the discretization of time-dependent problems, one often uses the methods of lines. In this approach,
the problem is discretized in space first whereas the time remains continuous. This methodology leads to
a large system of ordinary differential equations which can be solved by a suitable ODE solver. Numerical
studies of the SUPG method in space combined with implicit/explicit transient algorithms can be found
in [11]. The extension to transient Stokes problems of different stabilization methods including Galerkin/least



squares (GLS) methods in small time step limit are studied in [12–14]. In [13], it has been shown for the
small time step limit that even the first order backward difference methods perturbs the stability of the
numerical scheme. This behavior is caused by the finite difference operator included in the stabilization
terms of SUPG to guarantee consistency. Furthermore, the appearing non-symmetric term is difficult to
handle. Nevertheless, by using a different analysis, optimal error estimates for time-dependent convection-
diffusion-reaction problems with time-independent coefficients on uniform grids were proven for the standard
choice of the stabilization parameter independent of the time step length, see [15].

The case of symmetric stabilization methods was investigated in [16] and the PSPG stabilization method
was considered in [17] for the transient Stokes problem. It was shown that the small time step instability
can be circumvented if the initial data is chosen as Ritz projection onto a space of discretely divergence-free
functions. Furthermore, the convergence of velocities and pressure can be obtained without any coupling of
mesh width and time step length. To prevent oscillation in the pressure approximation in the case where
the discrete initial condition is chosen as some interpolant of the continuous initial data, mesh width and
time step length have to fulfill a coupling condition similar to that in [13].

We consider discontinuous Galerkin (dG) methods to discretize the problem in time. Discontinuous
Galerkin methods were first introduced for neutron transport problems in [18] and then analyzed in [19].
The theoretical analysis of dG methods for scalar hyperbolic equations can be found in [20] and for space-
time dG methods applied to convection-diffusion-reaction problems in [21]. The dG finite element techniques
were developed for the numerical solution of elliptic problems [22] and compressible and incompressible flow
problems, see e.g. [23, 24] and the references therein. The dG time discretization was introduced and
analyzed in [25] for the solution of ordinary differential equations, see also [26]. Space-time discontinuous
Galerkin finite element methods have been applied to solve transient advection-diffusion problems [27] and
flow problems [28]. The combination of LPS in space and dG in time for transient convection-diffusion-
reaction equations has been studied in [29].

In this paper, we consider the stabilized finite element method for the transient Stokes problem which
is based on a one-level local projection stabilization method. Our main focus is the higher order time
discretization using discontinuous Galerkin methods. We derive error estimates for the semi-discrete problem
in space. For the fully discrete scheme, we prove the stability of the method and error estimates.

The remainder of the paper is organized as follows. Section 2 introduces the model problem under
consideration and some basic notation. The stabilized finite element semi-discretization in space is presented
in Section 3. Furthermore, an optimal error estimate of velocity and pressure for the semi-discrete problem
will be given. In Section 4, we address the full discretization of the problem by considering discontinuous
Galerkin methods in time. We derive the unconditional stability of velocity. However, the L2-norm bound
of the pressure shows an instability for small time step length. Furthermore, we present the error analysis
of the fully discrete problem. Finally, numerical results illustrating the theoretical predictions are reported
in Section 5. Some conclusion will be given in Section 6.

2. Model problem and basic notation

Let Ω be a Lipschitz domain in Rd (d = 2, 3) with polyhedral boundary ∂Ω and T > 0. We consider the
following time-dependent Stokes problem:

Find u : Ω× (0, T )→ R and p : Ω× (0, T )→ R such that

u′ −∆u+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω,

(1)

where u is the velocity field, p the pressure, f the external force, and u0 the initial velocity. For the sake of
simplicity, homogeneous Dirichlet boundary conditions will be considered.
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Throughout this paper, standard notation and conventions will be used. For a measurable set G ⊂ Rd,
the inner product in L2(G) will be denoted by (·, ·)G. The norm and semi-norm in Wm,p(G) are given by
‖ · ‖m,p,G and | · |m,p,G, respectively. In the case p = 2, we write Hm(G), ‖ · ‖m,G, and | · |m,G instead of
Wm,2(G), ‖ · ‖m,2,G, and | · |m,2,G. If G = Ω, the index G in inner products, norms, and semi-norms will
be omitted. The subspace of functions from H1(Ω) having zero boundary trace is denoted by H1

0 (Ω). The
above definition apply component-wise to vector-valued and tensor-valued cases. Furthermore, let L2

0(Ω)
denote the subspace of functions from L2(Ω) with vanishing integral mean.

We will denote by C a generic constant which is always independent of the mesh size defined in Section 3.
We will write shortly α ∼ β if there exist two positive constants C1 and C2 being independent of the mesh
size such that α ≤ C1β and β ≤ C2α hold true.

Let X be a Banach space with norm ‖ · ‖X and I := [0, T ]. We consider the Bochner spaces

C
(
I;X

)
:=
{
v : I → X, v continuous

}
,

Cs
(
I;X

)
:=
{
v : I → X, v is s times continuously differentiable

}
,

L2(I;X) :=

{
v : I → X,

∫ T

0

‖v(t)‖2X dt <∞
}
,

Hm(I;X) :=
{
v ∈ L2(I;X) :

∂jv

∂tj
∈ L2(I;X), 1 ≤ j ≤ m

}
,

where the derivatives ∂jv/∂tj , j = 1, . . . ,m, are understood in the sense of distributions on I. We use in
the following the short notation Y (X) := Y (I;X). The norms in the above defined spaces are given by

‖v‖C(X) := sup
t∈I
‖v(t)‖X , ‖v‖Cs(X) := max

j=0,...,s
sup
t∈I
‖v(j)(t)‖X ,

‖v‖L2(X) :=

(∫ T

0

‖v(t)‖2X dt

)1/2

, ‖v‖Hm(X) :=

 m∑
j=0

∥∥∥∥∂jv∂tj
∥∥∥∥2
L2(X)

1/2

,

where we denote by v′, v′′, and v(k) the first, second, and kth order time derivative of v, respectively.
Let V := H1

0 (Ω)d, Q := L2
0(Ω), and W :=

{
v ∈ L2(V ) : v′ ∈ L2(V ′)

}
where V ′ = H−1(Ω)d denotes the

dual space of V . Note that v ∈W ensures the continuity of the mapping v : [0, T ]→ L2(Ω).
We assume in the remainder of this paper that f ∈ L2(L2). Hence, a variational form of (1) reads as

follows:

Find u ∈W , p ∈ L2(Q) such that u(0) = u0 and for almost all t ∈ (0, T )

(u′(t), v) + (∇u(t),∇v)− (p(t),∇ · v) + (q,∇ · u(t)) = (f(t), v) ∀(v, q) ∈ V ×Q. (2)

Note that the initial condition u(0) = u0 is well defined since u belongs to W .

3. Space discretization

For finite element discretizations of (2), let {Th} denote a family of shape regular triangulations of Ω
into d-simplices, quadrilaterals, or hexahedra. The diameter of K ∈ Th will be denoted by hK and the mesh
size h is defined by h := max

K∈Th
hK . Let Yh be a space of continuous, piecewise polynomial functions of order

r over Th.
We consider in this paper the case of equal-order interpolation. Thus, we define Vh := Y dh ∩ V and

Qh := Yh ∩Q. Now, the standard Galerkin discretization of (2) reads:

Find uh ∈ H1(Vh) and ph ∈ L2(Qh) such that uh(0) = u0,h and for almost every t ∈ (0, T )(
u′h(t), vh

)
+A

(
(uh(t), ph(t)); (vh, qh)

)
=
(
f(t), vh

)
∀(vh, qh) ∈ Vh ×Qh (3)
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where u0,h ∈ Vh is a suitable approximation of u0 which will be specified later. The bilinear form A is given
by

A
(
(v, q); (w, r)

)
= (∇v,∇w)− (q,∇ · w) + (r,∇ · v).

In general, the pairs (Vh, Qh) do not satisfy the discrete Babuška–Brezzi condition

∃β0 > 0 : inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖qh‖0 ‖vh‖1
≥ β0 ∀h. (4)

Hence, inaccurate pressure approximations have to be expected. In order to overcome this instability,
we will add to (3) a stabilizing term based on local projection. We concentrate on the one-level local
projection stabilization method where approximation space and projection space are defined on the same
mesh. Let D(K), K ∈ Th, denote finite dimensional function spaces with the associated local L2-projections
πK : L2(K) → D(K) and the fluctuation operators κK : L2(K) → L2(K) with κKϕ := ϕ − πKϕ. The
stabilization term Sh is defined by

Sh(ph, qh) =
∑
K∈Th

µK(κK∇ph, κK∇qh)K (5)

where µK , K ∈ Th, are user chosen non-negative constants and the fluctuation operators κK are applied
component-wise. The local projection stabilization term Sh gives additional control on the fluctuation of
the pressure gradient.

The stabilized semi-discrete scheme reads:

Find (uh, ph) ∈ H1(Vh)× L2(Qh) with uh(0) = u0,h such that for almost every t ∈ (0, T )(
u′h(t), vh

)
+Ah

(
(uh(t), ph(t)); (vh, qh)

)
=
(
f(t), vh

)
∀(vh, qh) ∈ Vh ×Qh (6)

where the bilinear form Ah is defined by

Ah
(
(v, q); (w, r)

)
:= A

(
(v, q); (w, r)

)
+ Sh(q, r). (7)

Let us introduce the mesh-dependent semi-norm on the product space V ×Q

|||(v, q)||| :=
(
|v|21 +

∑
K∈Th

µK‖κK∇q‖20,K

)1/2

. (8)

Note that ||| · ||| is just a semi-norm on V × Q since there are non-zero pressure functions with vanishing
pressure part inside ||| · |||. An immediate consequence of definition (7) of the bilinear form Ah is given in
the following lemma.

Lemma 1. The stabilized bilinear form Ah fulfills

Ah
(
(vh, qh); (vh, qh)

)
= |||(vh, qh)|||2 ∀(vh, qh) ∈ Vh ×Qh, (9)

i.e., Ah is coercive on Vh ×Qh with respect to ||| · |||.

Stability and convergence properties of the local projection stabilization method (6) are based on the
following assumptions, see [8]:

Assumption 1. Let the fluctuation operator satisfy the following approximation property

‖κKq‖0,K ≤ ChlK |q|l,K ∀K ∈ Th, ∀q ∈ H l(K), 0 ≤ l ≤ r. (10)
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Assumption 2. There exists an interpolation operator jh : H1(Ω)→ Yh with jhv ∈ H1
0 (Ω) for all v ∈ H1

0 (Ω)
that satisfies on all K ∈ Th the orthogonality property

(w − jhw, qh)K = 0 ∀qh ∈ D(K), ∀w ∈ H1(Ω), (11)

and the approximation property

‖w − jhw‖0,K + hK |w − jhw|1,K ≤ ChlK‖w‖l,ω(K) ∀w ∈ H l
(
ω(K)

)
, 1 ≤ l ≤ r + 1, (12)

where ω(K) denotes a certain local neighborhood of K ∈ Th which appears in the definition of interpolation
operators for non-smooth functions, see [30] for details.

The following modified inf-sup condition shows the stability of the discrete pressure.

Lemma 2. Suppose Assumptions 1, 2, and h2K/µK ≤ C for all K ∈ Th. Then, there exist positive constants
β and C independent of h such that

β‖q‖0 ≤ sup
vh∈Vh

(q,∇ · vh)

|vh|1
+ CSh(q, q)1/2 ∀q ∈ Q ∩H1(Ω) (13)

holds true.

Proof. The continuous inf-sup condition ensures that there exists for any q ∈ Q∩H1(Ω) an element vq ∈ V
satisfying

(∇ · vq, q) = ‖q‖20, ‖vq‖1 ≤ β0‖q‖0. (14)

Hence, we have
‖q‖20 = (q,∇ · vq) =

(
q,∇ · (jhvq)

)
+
(
q,∇ · (vq − jhvq)

)
. (15)

Integrating the second term on the right-hand side of (15) by parts and using the orthogonality condition (11)
and the approximation property (12), one gets∣∣∣(q,∇ · (vq − jhvq))∣∣∣ =

∣∣∣(∇q, vq − jhvq)∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

(
κK∇q, vq − jhvq

)
K

∣∣∣∣∣
≤
( ∑
K∈Th

h2K‖κK∇q‖20,K

)1/2( ∑
K∈Th

h−2K ‖vq − jhvq‖20,K

)1/2

≤ C
( ∑
K∈Th

h2K‖κK∇q‖20,K

)1/2

‖vq‖1

≤ CSh(q, q)1/2 ‖q‖0

where we have used the shape-regularity of Th, the assumption on the choice of the parameters µK , K ∈ Th,
and the second condition of (14). Combining the above inequality with (15) leads to

‖q‖20 ≤ (q,∇ · (jhvq)) + CSh(q, q)1/2 ‖q‖0. (16)

We conclude the proof by dividing (16) by ‖q‖0 and using

‖jhvq‖1 ≤ C‖vq‖1 ≤ C‖q‖0

where the first inequality follows from (12).
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In contrast to residual-based stabilization methods, see [31] for several examples, we do not have strong
consistency which is also known as Galerkin orthogonality. Consequently, we have to investigate the consis-
tency error.

Lemma 3. Let (u, p) ∈ W × L2(Q) and (uh, ph) ∈ H1(Vh) × L2(Qh) be the solutions of (2) and (6),
respectively. Then, the relation(
u′(t)− u′h(t), vh

)
+A

(
(u(t)− uh(t), p(t)− ph(t)); (vh, qh)

)
= Sh

(
ph(t), qh

)
∀(vh, qh) ∈ Vh ×Qh (17)

holds true for almost all t ∈ (0, T ).

Proof. The statement follows by subtracting (6) from (2).

3.1. Velocity and pressure estimates

This section studies the error analysis of the semi-discrete problem (6). In particular, we prove conver-
gence of velocity and pressure. The next theorem states the main result of this section.

Theorem 4. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let (u, p) ∈W×L2(Q) be the solution
of the continuous problem (2) and (uh, ph) ∈ H1(Vh)×L2(Qh) be the solution of the stabilized semi-discrete
problem (6) with u0,h = jhu0. Furthermore, we assume that u ∈ H1

(
Hr+1(Ω)d

)
and p ∈ L2

(
Hr(Ω)

)
. Then,

there exists a positive constant C independent of h such that∫ T

0

|||(u− uh, p− ph)|||2 ≤ Ch2r
∫ T

0

[
h2‖u′‖2r+1 + ‖u‖2r+1 + ‖p‖2r

]
, (18)

and

‖u(T )− uh(T )‖20 +

∫ T

0

|||(u− uh, p− ph)|||2

≤ Ch2r
∫ T

0

[
h2‖u′‖2r+1 + ‖u‖2r+1 + ‖p‖2r

]
+ Ch2(r+1)‖u(T )‖2r+1

(19)

hold true.

Proof. The proof starts by decomposing the error into an interpolation error and the difference of the
interpolant and the solution of the semi-discrete problem (6)

u− uh = (u− jhu) + (jhu− uh) , p− ph = (p− jhp) + (jhp− ph) .

The interpolation error can be estimated using (12). We denote ξh := jhu − uh, ϑh := jhp − ph, and
skip indicating their time-dependence for brevity. A straightforward calculation yields the following error
equation

(ξ′h, ξh) +Ah
(
(ξh, ϑh); (ξh, ϑh)

)
=
(
(jhu)′ − u′, ξh

)
+A

(
(jhu− u, jhp− p); (ξh, ϑh)

)
+ Sh(jhp, ϑh)

where (2) and (6) have been applied. Using (ξ′h, ξh) = 1
2
d
dt (ξh, ξh), the coercivity (9) of the bilinear form Ah

with respect to ||| · |||, and the fact that the spatial interpolation jh commutes with the time derivative, one
obtains

1

2

d

dt
‖ξh‖20 + |||(ξh, ϑh)|||2

= (jhu
′ − u′, ξh) +

(
∇(jhu− u),∇ξh

)
− (jhp− p,∇ · ξh) +

(
ϑh,∇ · (jhu− u)

)
+ Sh(jhp, ϑh). (20)
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The arising terms on the right-hand side of (20) will be bounded by the norms of u and p from the
continuous problem (2). Applying the Cauchy–Schwarz inequality, the approximation properties (12), and
Young’s inequality yields∣∣(jhu′ − u′, ξh)

∣∣ ≤ ‖jhu′ − u′‖0‖ξh‖0 ≤ C hr+1‖u′‖r+1‖ξh‖0 ≤ Ch2r+2‖u′‖2r+1 +
1

10
|||(ξh, ϑh)|||2,∣∣ (∇(jhu− u),∇ξh)

∣∣ ≤ |jhu− u|1 |ξh|1 ≤ Chr‖u‖r+1 |||(ξh, ϑh)||| ≤ Ch2r‖u‖2r+1 +
1

10
|||(ξh, ϑh)|||2,∣∣ (jhp− p,∇ · ξh)

∣∣ ≤ ‖jhp− p‖0|ξh|1 ≤ C hr‖p‖r|||(ξh, ϑh)||| ≤ Ch2r‖p‖2r +
1

10
|||(ξh, ϑh)|||2,

where the Friedrichs’ inequality was used for the first estimate.
For estimating the fourth term on the right-hand side of (20), the orthogonality property (11) will be

used. Integration by parts, the approximation properties (12), and the parameter choice µK ∼ h2K give

∣∣(ϑh,∇ · (jhu− u))
∣∣ =

∣∣(∇ϑh, jhu− u)
∣∣ =

∣∣∣∣∣ ∑
K∈Th

(κK∇ϑh, jhu− u)K

∣∣∣∣∣
≤
( ∑
K∈Th

µK‖κK∇ϑh‖20,K

)1/2( ∑
K∈Th

µ−1K ‖jhu− u‖20,K

)1/2

≤ Chr‖u‖r+1|||(ξh, ϑh)||| ≤ Ch2r‖u‖2r+1 +
1

10
|||(ξh, ϑh)|||2.

The stabilizing term in (20) is estimated by using the Cauchy–Schwarz inequality, the L2-stability and the
approximation properties (10) of the fluctuation operators κK , the approximation properties of jh, and
µK ∼ h2K . We get

Sh(jhp, ϑh) = Sh(jhp− p, ϑh) + Sh(p, ϑh)

≤
(
Sh(jhp− p, jhp− p)1/2 + Sh(p, p)1/2

)
Sh(ϑh, ϑh)1/2

≤


( ∑
K∈Th

µK‖κK∇(jhp− p)‖20,K

)1/2

+

( ∑
K∈Th

µK‖κK∇p‖20,K

)1/2
 |||(ξh, ϑh)|||

≤ Chr‖p‖r|||(ξh, ϑh)||| ≤ Ch2r‖p‖2r +
1

10
|||(ξh, ϑh)|||2.

Inserting all the estimates into (20) and absorbing the |||(ξh, ϑh)|||-contributions on the left-hand side give
after an integration over (0, T ) the estimate

‖ξh(T )‖20 +

∫ T

0

|||(ξh, ϑh)|||2 ≤ ‖ξh(0)‖20 + Ch2r
∫ T

0

[
h2‖u′‖2r+1 + ‖u‖2r+1 + ‖p‖2r

]
.

Using ξh(0) = 0, the estimates (18) and (19) follow from the triangle inequality and the interpolation error
estimates. The last term in (19) arises from estimating ‖u(T )− jhu(T )‖20.

The next lemma gives an estimate for the L2(L2)-norm of the time derivative of the velocity which will
be used later to derive an error bound for the pressure error.

Lemma 5. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let (u, p) ∈W ×L2(Q) be the solution
of the continuous problem (2) and (uh, ph) ∈ H1(Vh)×L2(Qh) be the solution of the stabilized semi-discrete
problem (6) with u0,h = jhu0. Let u ∈ H2

(
Hr+1(Ω)d

)
and p ∈ H1

(
Hr(Ω)

)
. Then, there exists a positive

constant C independent of h such that∫ T

0

‖u′ − u′h‖20 ≤ ‖jhu′(0)− u′h(0+)‖20 + Ch2r
∫ T

0

[
h2‖u′′‖2r+1 + ‖u′‖2r+1 + ‖p′‖2r

]
.
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Proof. Differentiating (2) and (6) with respect to time and subtracting one from the other gives the following
error equation

(ξ′′h , vh) +Ah
(
(ξ′h, ϑ

′
h); (vh, qh)

)
= (jhu

′′ − u′′, vh) +A
(
(jhu

′ − u′, jhp′ − p′); (vh, qh)
)

+ Sh(jhp
′, qh)

with ξh := jhu− uh and ϑh := jhp− ph. Setting vh = ξ′h and qh = ϑ′h, one gets

1

2

d

dt
‖ξ′h‖20 + |ξ′h|21 + Sh(ϑ′h, ϑ

′
h) = (jhu

′′ − u′′, ξ′h) +
(
∇(jhu

′ − u′),∇ξ′h
)
−
(
jhp
′ − p′,∇ · ξ′h

)
+
(
ϑ′h,∇ · (jhu′ − u′)

)
+ Sh(jhp

′, ϑ′h).

Using the Cauchy–Schwarz inequality, the interpolation error estimates, and Young’s inequality, the first
three term can be bounded. The last term is estimated similar to the term Sh(jhp, ϑh) in the proof of Thm. 4.
In order to get an estimate for the fourth term, we integrate by parts and exploit the orthogonality (11).
Altogether, we obtain

1

2

d

dt
‖ξ′h‖20 +

1

2
|ξ′h|21 +

1

2
Sh(ϑ′h, ϑ

′
h)

≤ C
[
‖jhu′′ − u′′‖20 + ‖jhu′ − u′‖21 + ‖jhp′ − p′‖20

+ Sh(jhp
′ − p′, jhp′ − p′) + Sh(p′, p′) +

∑
K∈Th

µ−1K ‖jhu′ − u′‖20,K
]

≤ Ch2r
[
h2‖u′′‖2r+1 + ‖u′‖2r+1 + ‖p′‖2r

]
.

The final estimate follows from the triangle inequality, Friedrichs’ inequality, interpolation error estimates,
and integrating over 0 to T . Note that the homogeneous Dirichlet boundary conditions also ensure u′ = 0
on ∂Ω× (0, T ).

Now, we are able to provide a bound for the pressure error in the L2(L2)-norm.

Theorem 6. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let (u, p) ∈ W × L2(Q) be the
solution of the continuous problem (2) and (uh, ph) ∈ H1(Vh) × L2(Qh) be the solution of the stabilized
semi-discrete problem (6) with u0,h = jhu0. Let u ∈ H2

(
Hr+1(Ω)d

)
and p ∈ H1

(
Hr(Ω)

)
. Then, there exists

a positive constant C independent of h such that∫ T

0

‖p− ph‖20 ≤ ‖jhu′(0)− u′h(0+)‖20 + Ch2r
∫ T

0

[
‖u‖2r+1 + ‖u′‖2r+1 + h2‖u′′‖2r+1 + ‖p‖2r + ‖p′‖2r

]
.

holds true.

Proof. Setting qh = 0 in (17), one gets

(p− ph,∇ · vh) = (u′ − u′h, vh) + (∇(u− uh),∇vh) .

The Cauchy–Schwarz and the Friedrichs’ inequalities give

(p− ph,∇ · vh) ≤ ‖u′ − u′h‖0‖vh‖0 + |u− uh|1|vh|1 ≤
[
CF‖u′ − u′h‖0 + |u− uh|1

]
|vh|1.

Hence, by using the inf-sup condition (13), one obtains

‖p− ph‖20 ≤ C
[
‖u′ − u′h‖20 + |u− uh|21 + Sh(p− ph, p− ph)

]
.

The statement follows by integrating over 0 to T and the application of Theorem 4 and Lemma 5.

8



4. Time discretization by discontinuous Galerkin method

We discretize in this section the semi-discrete problem (6) in time by using discontinuous Galerkin (dG)
methods to obtain the fully discrete LPS/dG formulation of (2). To this end, we consider a partition
0 = t0 < t1 < · · · < tN = T of the time interval I := [0, T ] and set In := (tn−1, tn], τn := tn − tn−1,
n = 1, . . . , N , and

τ := max
1≤n≤N

τn, τmin := min
1≤n≤N

τn. (21)

For a given non-negative integer k, we define the fully discrete time-discontinuous velocity and pressure
spaces as follows:

Xk :=
{
v ∈ L2(I, Vh) : v|In ∈ Pk(In, Vh), n = 1, . . . , N

}
,

Yk :=
{
q ∈ L2(I,Qh) : q|In ∈ Pk(In, Qh), n = 1, . . . , N

}
,

where

Pk(In,Wh) :=

w : In →Wh : w(t) =

k∑
j=0

W jtj , W j ∈Wh, j = 0, . . . , k


denotes the Wh-valued polynomials of degree less than or equal to k in time. For a piecewise smooth function
w, we define the left-sided values w−n , the right-sided values w+

n , and the jumps [w]n as

w−n := lim
t→tn−0

w(t), w+
n := lim

t→tn+0
w(t), [w]n = w+

n − w−n .

The discontinuous Galerkin method applied to (6) leads to the following fully discrete problem

Find (uh,τ , ph,τ ) ∈ Xk × Yk such that

N∑
n=1

∫
In

(u′h,τ , vh,τ ) +Ah ((uh,τ , ph,τ ); (vh,τ , qh,τ )) dt+

N−1∑
n=1

(
[uh,τ ]n, v

+
n

)
+ (u+0 , v

+
0 )

= (u0,h, v
+
0 ) +

∫ T

0

(f, vh,τ )dt (22)

for all vh,τ ∈ Xk and all qh,τ ∈ Yk.

In order to evaluate the time integrals in (22) numerically, the right-sided Gauß–Radau quadrature with
(k+ 1) points will be applied. Let −1 < t̂1 < · · · < t̂k+1 = 1 and ω̂j , j = 1, . . . , k+ 1, denote the points and
weights of this quadrature formula on the reference time interval [−1, 1]. We define on In, n = 1, . . . , N , the
transformed quadrature formula Qn by

Qn [φ] :=
τn
2

k+1∑
j=1

ω̂jφ(tn,j), tn,j := Tn(t̂j),

where
Tn : [−1, 1]→ In, t̂ 7→ tn−1 +

τn
2

(t̂+ 1) (23)

is an affine mapping, see [32]. Note that Qn integrates polynomials of degree less than or equal to 2k exactly.
Furthermore, we set

Q [φ] :=

N∑
n=1

Qn [φ]

as abbreviation.
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Let us introduce the bilinear forms B and Bh as

B
(
(v, q); (w, r)

)
:= Q

[
(v′, w) +A

(
(v, q); (w, r)

)]
+

N−1∑
n=1

(
[v]n, w

+
n

)
+ (v+0 , w

+
0 )

and

Bh
(
(v, q); (w, r)

)
:= Q

[
(v′, w) +Ah

(
(v, q); (w, r)

)]
+

N−1∑
n=1

(
[v]n, w

+
n

)
+ (v+0 , w

+
0 ).

If the solution (u, p) of (2) belongs to C1(V )× C(Q), we have

B
(
(u, p); (v, q)

)
= (u0, v

+
0 ) +Q [(f, v)] ∀(v, q) ∈ L2(V )× L2(Q). (24)

The numerically integrated, fully discrete problem reads:

Find (uh,τ , ph,τ ) ∈ Xk × Yk such that

Bh
(
(uh,τ , ph,τ ); (vh,τ , qh,τ )

)
= (jhu0, v

+
0 ) +Q [(f, vh,τ )] ∀(vh,τ , qh,τ ) ∈ Xk × Yk. (25)

Note the jhu0 ∈ Vh acts as discrete initial condition.

Lemma 7. The bilinear form Bh associated with the LPS/dG method satisfies

Bh
(
(vh,τ , qh,τ ); (vh,τ , qh,τ )

)
= ‖(vh,τ , qh,τ )‖2S ∀(vh,τ , qh,τ ) ∈ Xk × Yk (26)

with

‖(v, q)‖S :=

(∫ T

0

|||(v, q)|||2 +
1

2
‖v+0 ‖20 +

1

2

N−1∑
n=1

‖[v]n‖20 +
1

2
‖v−N‖20

)1/2

(27)

as corresponding semi-norm.

Proof. Since

Qn
[
(v′h,τ , wh,τ ) +Ah

(
(vh,τ , qh,τ ); (wh,τ , rh,τ )

)]
=

∫
In

[
(v′h,τ , wh,τ ) +Ah

(
(vh,τ , qh,τ ); (wh,τ , rh,τ )

)]
for n = 1, . . . , N and wh,τ ∈ Xk, rh,τ ∈ Yk, we have

Bh
(
(vh,τ , ph,τ ); (wh,τ , qh,τ )

)
=

∫ T

0

[
(v′h,τ , wh,τ ) +Ah

(
(vh,τ , ph,τ ); (wh,τ , qh,τ )

)]
(28)

+

N−1∑
n=1

(
[vh,τ ]n, wh,τ (t+n )

)
+
(
vh,τ (t+0 ), wh,τ (t+0 )

)
.

The integration by parts ∫
In

(v′, w) = (v−n , w
−
n )− (v+n−1, w

+
n−1)−

∫
In

(v, w′)

leads to the representation

Bh
(
(vh,τ , qh,τ ); (wh,τ , rh,τ )

)
=

∫ T

0

[
− (vh,τ , w

′
h,τ ) +Ah

(
(vh,τ , qh,τ ); (wh,τ , rh,τ )

)]
(29)

−
N−1∑
n=1

(
vh,τ (t−n ), [wh,τ ]n

)
+
(
vh,τ (t−N ), wh,τ (t−N )

)
.

The statement of this Lemma follows by adding the representations (28) and (29) of Bh, setting (wh,τ , rh,τ ) =
(vh,τ , qh,τ ), and using the coercivity (9) of the bilinear form Ah with respect to the spatial semi-norm
||| · |||.
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The consistency error is estimated by the following lemma.

Lemma 8. Let (uh,τ , ph,τ ) ∈ Xk × Yk be the solution of the fully discrete problem (25) and (u, p) ∈
C1(V )× C(Q) be the solution of the continuous problem (2). Then, we have

B
(
(u− uh,τ , p− ph,τ ); (vh,τ , qh,τ )

)
= (u0 − u0,h, v+0 ) +Q [Sh(ph,τ , qh,τ )] (30)

for all (vh,τ , qh,τ ) ∈ Xk × Yk.

Proof. The statement follows by subtracting (24) from (25) and using the definitions of A and Ah.

4.1. Representation of the fully discrete problem

Since the test functions are allowed to be discontinuous at the discrete time points tn, n = 1, . . . , N − 1,
we can choose test functions vh,τ and qh,τ which are zero on I \ In. Hence, the solution of the LPS/dG(k)-
method can be determined by successively solving one local problem on each time interval In. The fully
discrete In-problem associated to (25) reads as follows

Given u−n with u−0 = jhu0, find uh,τ
∣∣
In
∈ Pk(In, Vh) and ph,τ

∣∣
In
∈ Pk(In, Qh) such that

Qn
[
(u′h,τ , vh,τ ) +Ah

(
(uh,τ , ph,τ ); (vh,τ , qh,τ )

)]
+
(
[uh,τ ]n−1, v

+
n−1
)

= Qn [(f, vh,τ )] (31)

for all vh,τ ∈ Pk(In, Vh) and all qh,τ ∈ Pk(In, Qh).

In order to get an algebraic formulation of (31), let φ̂1, . . . , φ̂k+1 denote the Lagrange basis functions
with respect to the Gauß–Radau points t̂1, . . . , t̂k+1 on [−1, 1]. Following [32], we define

φn,j(t) := φ̂j
(
T−1n (t)

)
(32)

on In, n = 1, . . . , N , with Tn from (23). Since uh,τ and ph,τ restricted to the interval In are Vh-valued and
Qh-valued polynomials of degree less than or equal to k, they can be represented as

uh,τ
∣∣
In

(t) :=

k+1∑
j=1

U jn,hφn,j(t), ph,τ
∣∣
In

(t) :=

k+1∑
j=1

P jn,hφn,j(t) (33)

with (U jn,h, P
j
n,h) ∈ Vh ×Qh, j = 1, . . . , k + 1. The choice of the ansatz basis guarantees

uh,τ (tn,j) = U jn,h, ph,τ (tn,j) = P jn,h, j = 1, . . . , k + 1,

with tn,j = Tn(t̂j), j = 1, . . . , k + 1. Taking into consideration that the Gauß–Radau formula Qn is exact
for polynomials up to degree 2k, the particular choices

qh,τ = 0, vh,τ =
1

ω̂j
φn,j(t)vh with arbitrary vh ∈ Vh,

and

vh,τ = 0, qh,τ =
1

ω̂j
φn,j(t)qh with arbitrary qh ∈ Qh,

for the test functions lead to the following system of linear equations:

Find the coefficients (U jn,h, P
j
n,h) ∈ Vh ×Qh, j = 1, . . . k + 1, such that

k+1∑
j=1

αij
(
U jn,h, vh

)
+
τn
2
Ah
(
(U in,h, P

i
n,h); (vh, qh)

)
= βi

(
U0
n,h, vh

)
+
τn
2

(
f(tn,i), vh

)
(34)
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for i = 1, . . . , k + 1 and for all (vh, qh) ∈ Vh ×Qh where

αij := φ̂′j(t̂i) + βiφ̂j(−1), βi :=
1

ω̂i
φ̂i(−1),

see [32]. The initial condition U0
n,h on In is given by

U0
n,h :=

{
jhu0, n = 1,

Uk+1
n−1,h, n > 1.

Note that no initial pressure is required.

4.2. Stability of the method

In this section, we study the stability properties of the fully discrete scheme (25). The following result
provides the unconditional stability of velocity and pressure in the ‖ · ‖S-norm. However, the L2-bound of
the pressure solution depends on the inverse of the time step length.

Theorem 9. The solution (uh,τ , ph,τ ) ∈ Xk × Yk of the fully discrete scheme (25) is uniquely determined
and satisfies the stability estimates

‖(uh,τ , ph,τ )‖2S ≤ C
(
‖jhu0‖20 +Q

[
‖f‖20

] )
, (35)∫ T

0

‖ph,τ‖20 ≤ C
(
Q
[
‖f‖20

]
+ max{1, τ−2min}‖(uh,τ , ph,τ )‖2S + τ−11 ‖jhu0‖20

)
(36)

where C is a constant independent of h and τmin defined in (21).

Proof. Setting (vh,τ , qh,τ ) = (uh,τ , ph,τ ) in (25) and using the coercivity (26) of the bilinear form Bh, the
first statement of the lemma follows by means of the Cauchy–Schwarz inequality, the Friedrichs’ inequality,
Young’s inequality, and the fact that the Gauß–Radau quadrature is exact for |uh,τ |21.

We shall use the representation∫ T

0

‖ph,τ‖20 =

N∑
n=1

Qn
[
‖ph,τ‖20

]
=

N∑
n=1

τn
2

k+1∑
i=1

ω̂i‖ph,τ (tn,i)‖20 =

N∑
n=1

τn
2

k+1∑
i=1

ω̂i‖P in,h‖20

to prove the second estimate. It follows from (13) that for each P in,h ∈ Qh ⊂ Q ∩ H1(Ω) there exists a

discrete velocity field W i
n,h ∈ Vh such that

β‖P in,h‖0 ≤
(P in,h,∇ ·W i

n,h)

|W i
n,h|1

+ CSh(P in,h, P
i
n,h)1/2. (37)

In order to get a bound for the first term on the right-hand side of (37), we use (vh, qh) = (W i
n,h, 0) as a

test function in the i-th equation of (34) and rearrange the terms to get

(
P in,h,∇ ·W i

n,h

)
= − 2

τn
βi(U

0
n,h,W

i
n,h) +

2

τn

k+1∑
j=1

αij(U
j
n,h,W

i
n,h)− (f(tn,i),W

i
n,h) + (∇U in,h,∇W i

n,h). (38)

In the following, we will bound all terms on the right-hand side of (38) separately. The bounds for the third
and fourth terms on the right-hand side of (38) follow by using the Cauchy–Schwarz inequality. We obtain∣∣(f(tn,i),W

i
n,h)

∣∣ ≤ ‖f(tn,i)‖0 ‖W i
n,h‖0 ≤ ‖f(tn,i)‖0 ‖W i

n,h‖1,∣∣(∇U in,h,∇W i
n,h)

∣∣ ≤ ‖∇U in,h‖0 ‖∇W i
n,h‖0 ≤ |U in,h|1 ‖W i

n,h‖1.
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Using the properties of Lagrange interpolation and the representation (33) of uh,τ , one obtains

k+1∑
j=1

αijU
j
n,h =

τn
2
u′h,τ (tn,i) + βiuh,τ (t+n−1).

This implies for the first two terms on the right-hand side of (38)∣∣∣∣∣∣ 2

τn

βi (U0
n,h,W

i
n,h

)
−
k+1∑
j=1

αij

(
U jn,h,W

i
n,h

)∣∣∣∣∣∣ ≤ ∣∣(u′h,τ (tn,i),W
i
n,h

)∣∣+

∣∣∣∣2βiτn ([uh,τ ]n−1,W
i
n,h

)∣∣∣∣
≤
[
‖u′h,τ (tn,i)‖0 +

2βi
τn
‖[uh,τ ]n−1‖0

]
‖W i

n,h‖0.

Inserting these bounds into (38), we get

(P in,h,∇ ·W i
n,h) ≤

[
‖u′h,τ (tn,i)‖0 +

2βi
τn
‖[uh,τ ]n−1‖0 + |U in,h|1 + ‖f(tn,i)‖0

]
‖W i

n,h‖1.

Together with (37) and Friedrichs’ inequality, we obtain

‖P in,h‖20 ≤ C
[
‖u′h,τ (tn,i)‖20 +

β2
i

τ2n
‖[uh,τ ]n−1‖20 + |U in,h|21 + ‖f(tn,i)‖20 + Sh(P in,h, P

i
n,h)

]
.

After multiplication by ω̂iτn/2 and summing over i = 1, . . . , k + 1, we get∫
In

‖ph,τ‖20 =
τn
2

k+1∑
i=1

ω̂i‖P in,h‖20

≤ C
k+1∑
i=1

ω̂i

[
τn
2
‖u′h,τ (tn,i)‖20 +

β2
i

2τn
‖[uh,τ ]n−1‖20 +

τn
2
|U in,h|21 +

τn
2
‖f(tn,i)‖20 +

τn
2
Sh(P in,h, P

i
n,h)

]

≤ C
∫
In

[
‖u′h,τ‖20 + |uh,τ |21 + Sh(ph,τ , ph,τ )

]
+Qn

[
‖f‖20

]
+ C

k+1∑
i=1

β2
i

τn
‖[uh,τ ]n−1‖20 (39)

where ω̂1 + · · ·+ ω̂k+1 = 2 and the exactness of the Gauß–Radau quadrature were used. Applying an inverse
inequality in time and Friedrichs’ inequality, the estimate∫

In

‖u′h,τ‖20 ≤
C

τ2n

∫
In

‖uh,τ‖20 ≤
C

τ2min

∫
In

|||(uh,τ , ph,τ )|||2

is obtained. Inserting this into (39) and summing over n proves the second statement of this Lemma. Note
that the last term in (39) can not be bounded by τ−1min‖(uh,τ , ph,τ )‖2S for n = 1. Here one uses

‖[uh,τ ]0‖20 ≤ 2‖uh,τ (0+)‖20 + 2‖uh,τ (0−)‖20 ≤ 4|||(uh,τ , ph,τ )|||2S + 2‖jhu0‖20
where the triangle inequality yields the first inequality.

4.3. Error analysis

This section presents the error analysis of the fully discrete LPS/dG method (25). Let w̃ denote the
Gauß–Radau interpolant of a time-continuous function w, i.e., we have

w̃|In(t) :=

k+1∑
j=1

w(tn,j)φn,j(t),
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with φn,j defined in (32). Moreover, we set w̃−0 := w−0 . Note that ũ and p̃ will be on each time interval In,
n = 1, . . . , N , polynomials of degree less than or equal to k with values in V andQ, respectively. Furthermore,
we define uI on each In as the Lagrange interpolant of u with respect to the nodes tn−1, tn,1, . . . , tn,k+1.
Hence, uI is a time continuous, piecewise polynomial of degree less than or equal to k+ 1 with values in V .

Using the identity of the interpolants w̃ and wI in tn,j , an integration by parts, and the exactness of the
quadrature rule for polynomials of degree 2k multiple times, shows that

Qn
[(

(wI − w̃)′, vh,τ
)]

=

∫
In

(
(wI − w̃)′, vh,τ

)
dt

= −
∫
In

(wI − w̃, v′h,τ ) dt+
(
(wI − w̃)(t−n ), v−n

)
−
(
(wI − w̃)(t+n−1), v+n−1

)
= −Qn

[(
wI − w̃, v′h,τ

)]
−
(
w̃(t−n−1)− w̃(t+n−1), v+n−1

)
=
(
[w̃]n−1, v

+
n−1
)

(40)

for all vh,τ ∈ Xk.
The standard interpolation theory leads to the error estimates

sup
0≤t≤T

|w(i)(t)− w̃(i)(t)|j ≤ Cτk+1−i sup
0≤t≤T

|w(k+1)(t)|j , (41)∫
In

|w(i)(t)− w̃(i)(t)|2j dt ≤ Cτ2(k+1−i)
n

∫
In

|w(k+1)(t)|2j dt, (42)

sup
0≤t≤T

|u(t)− uI(t)|j ≤ Cτk+2 sup
0≤t≤T

|u(k+2)(t)|j (43)

with i, j = 0, 1.
The following lemma presents an estimate for the difference of the fully discrete solution and the space-

time interpolation of the solution of the continuous problem.

Lemma 10. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let (uh,τ , ph,τ ) and (u, p) be
the solutions of the fully discrete problem (25) and the continuous problem (2), respectively. Moreover, let
u ∈ C1(Hr+1(Ω)d) ∩ Ck+2(H1(Ω)d) and p ∈ C(Hr(Ω)). Then, the estimate∥∥(uh,τ − jhũ, ph,τ − jhp̃)

∥∥
S
≤ Chr

[
h‖u‖C1(Hr+1) + ‖u‖C(Hr+1) + ‖p‖C(Hr)

]
+ Cτk+1‖u‖Ck+2(H1) (44)

holds true where C is a constant independent of h and τ .

Proof. For ξh,τ := uh,τ − jhũ ∈ Xk and ϑh,τ := ph,τ − jhp̃ ∈ Yk, we have from (26)

‖(ξh,τ , ϑh,τ )‖2S = Bh
(
(ξh,τ , ϑh,τ ); (ξh,τ , ϑh,τ )

)
= Bh

(
(uh,τ − jhu, ph,τ − jhp); (ξh,τ , ϑh,τ )

)
+Bh

(
(jh(u− ũ), jh(p− p̃)); (ξh,τ , ϑh,τ )

)
. (45)

We will bound the two terms on the right-hand side of (45) separately. For the first term, we have from (24)
and (25)

Bh
(
(uh,τ − jhu, ph,τ − jhp); (ξh,τ , ϑh,τ )

)
= Q

[
(u′ − jhu′, ξh,τ ) + (∇(u− jhu),∇ξh,τ )− (p− jhp,∇ · ξh,τ )

+ (ϑh,τ ,∇ · (u− jhu))− Sh(jhp, ϑh,τ )
]
. (46)

Note that no jump terms and no initial term occur since u and jhu are continuous in time. Adapting the
techniques used to bound the terms on the right-hand side of (20), we obtain

Q [(u′ − jhu′, ξh,τ ) + (∇(u− jhu),∇ξh,τ )− (p− jhp,∇ · ξh,τ ) + (ϑh,τ ,∇ · (u− jhu))− Sh (jhp, ϑh,τ )]

≤ ChrQ
[
h2‖u′‖2r+1 + ‖u‖2r+1 + ‖p‖2r

]1/2
Q
[
|||(ξh,τ , ϑh,τ )|||2

]1/2
≤ ChrQ

[
h2‖u′‖2r+1 + ‖u‖2r+1 + ‖p‖2r

]1/2 ‖(ξh,τ , ϑh,τ )‖S.
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Taking into consideration that (u, p) and (ũ, p̃) coincide in all quadrature points, we obtain for the second
term in (45)

Bh
(
(jh(u− ũ), jh(p− p̃)); (ξh,τ , ϑh,τ )

)
= Q [(jh(u− ũ)′, ξh,τ )] +

N−1∑
n=1

(
[jh(u− ũ)]n, ξ

+
n

)
+ (jh(u− ũ)(t+0 ), ξ+0 )

= Q
[
(jh(u− uI)′, ξh,τ )

]
thanks to (40) for w = jhu and the fact that the interpolation operators in time and space commute. Hence,
we get ∣∣∣Bh((jh(u− ũ), jh(p− p̃)); (ξh,τ , ϑh,τ )

)∣∣∣ ≤ Cτk+1Q
[
‖u(k+2)‖21

]1/2
‖(ξh,τ , ϑh,τ )‖S

by exploiting the stability of jh and (43). We conclude with the statement of this Lemma by collecting the
above estimates.

Some error estimates for the interpolations in space and time are given in the next lemma.

Lemma 11. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let u ∈ H1
(
Hr+1(Ω)d

)
∩

Hk+1
(
H1(Ω)d

)
and p ∈ L2

(
Hr(Ω)

)
∩ Hk+1

(
H1(Ω)

)
be the solution of problem (2) with u0 ∈ Hr+1(Ω)d.

Then, the estimates∥∥(jh(ũ− u), jh(p̃− p)
)∥∥

S
≤ Cτk+1/2

{
‖u‖Hk+1(H1) + hτ1/2‖p‖Hk+1(H1)

}
,∥∥(jhu− u, jhp− p)∥∥S ≤ Chr{h‖u‖H1(Hr+1) + ‖u‖L2(Hr+1) + ‖p‖L2(Hr)

}
hold true.

Proof. Using the definition of ‖ · ‖S and the property ũ(t−n ) = u(t−n ), n = 1, . . . , N , we get

∥∥(jh(ũ− u), jh(p̃− p))‖2S =

∫ T

0

{
|jh(ũ− u)|21 + Sh

(
jh(p̃− p), jh(p̃− p)

)}
+

1

2

N−1∑
n=0

‖jh(ũ− u)(t+n )‖20

≤ C
∫ T

0

{
‖ũ− u‖21 + h2‖p̃− p‖21

}
+ C

N−1∑
n=0

‖(ũ− u)(t+n )‖21

where µK ≤ Ch2K and the stability properties of jh and κk were exploited. The interpolation error esti-
mate (42) is used to bound the first two terms. Using

N−1∑
n=0

‖(ũ− u)(t+n )‖21 = −
N∑
n=1

∫
In

d

dt
‖ũ− u‖21 = −2

N∑
n=1

∫
In

(ũ− u, ũ′ − u′) + (∇(ũ− u),∇(ũ′ − u′))

and the Cauchy–Schwarz inequality, the estimate for the last term is obtained. Putting these estimates
together, the first statement of this Lemma follows.

In order to prove the second statement, we start with

∥∥(jhu− u, jhp− p)
∥∥2
S

=

∫ T

0

{
|jhu− u|21 + Sh(jhp− p, jhp− p)

}
+

1

2
‖(jhu− u)(t+0 )‖20 +

1

2
‖(jhu− u)(t−N )‖20

which follows from the fact that u and jhu are continuous in time. With the interpolation error estimate (12),
one gets ∥∥(jhu− u, jhp− p)

∥∥2
S
≤ Ch2r

{
‖u‖2L2(Hr+1) + ‖p‖2L2(Hr) + h2‖u0‖2r+1 + h2‖u−N‖2r+1

}
and the second estimate of this Lemma follows from the embedding H1

(
Hr+1(Ω)d

)
⊂ C

(
Hr+1(Ω)d

)
.
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The next theorem provides the final error estimate as the main result of this section.

Theorem 12. Suppose Assumptions 1, 2, and µK ∼ h2K for all K ∈ Th. Let (uh,τ , ph,τ ) and (u, p) be the
solutions of the fully discrete problem (25) and of the continuous problem (2), respectively. Moreover, let
u ∈ C1

(
Hr+1(Ω)d

)
∩ Ck+2

(
H1(Ω)d

)
∩Hk+1

(
H1(Ω)d

)
and p ∈ C

(
Hr(Ω)

)
∩Hk+1

(
H1(Ω)

)
. Then, there is

a positive constant C independent of h and τ such that the error estimates∥∥(uh,τ − u, ph,τ − p)
∥∥
S
≤ Chr

{
h‖u‖C1(Hr+1) + ‖u‖C(Hr+1) + ‖p‖C(Hr)

}
+ Cτk+1/2

{
τ1/2‖u‖Ck+2(H1) + ‖u‖Hk+1(H1) + hτ1/2‖p‖Hk+1(H1)

}
,∥∥ph,τ − p∥∥L2(L2)

≤ C max
{

1, τ−1min

}∥∥(uh,τ − u, ph,τ − p)
∥∥
S

+ Cτk‖u‖Ck+1(L2) + Cτk+1
{
‖u‖Ck+1(H1) + ‖u‖Hk+1(H1)

}
+ C

hr+1

√
τ1
‖u0‖r+1

hold true.

Proof. The first statement of this Theorem follows from the triangle inequality applied to the splittings

uh,τ − u = uh,τ − jhũ+ jhũ− jhu+ jhu− u,
ph,τ − p = ph,τ − jhp̃+ jhp̃− jhp+ jhp− p, (47)

and the estimates from Lemma 10 and Lemma 11.
In the second step, an estimate for the pressure error is derived. Consider ϑh,τ := ph,τ − jhp̃ ∈ Yk with

ϑh,τ |In(t) =

k+1∑
i=1

Qin,hφn,i(t).

Using (13), we have the existence of W i
n,h ∈ Vh, i = 1, . . . , k + 1, such that

β‖Qin,h‖0 ≤
(Qin,h,∇ ·W i

n,h)

|W i
n,h|1

+ CSh(Qin,h, Q
i
n,h)1/2. (48)

We obtain
Qin,h = P in,h − jhp̃(tn,i) = P in,h − p(tn,i) + p(tn,i)− jhp(tn,i) (49)

with the help of p̃(tn,i) = p(tn,i). Hence, we have∣∣(Qin,h,∇ ·W i
n,h

)∣∣ ≤ ∣∣(P in,h − p(tn,i),∇ ·W i
n,h

)∣∣+
∣∣(p(tn,i)− jhp(tn,i),∇ ·W i

n,h

)∣∣.
Using (2) and (34), we get

(p(tn,i)− P in,h,∇ ·W i
n,h)

=
2

τn
βi
(
[u− uh,τ ]n−1,W

i
n,h

)
+
(
u′(tn,i)− u′h,τ (tn,i),W

i
n,h

)
+
(
∇(u(tn,i)− U in,h),∇W i

n,h

)
and∣∣(P in,h − p(tn,i),∇ ·W i

n,h)
∣∣

≤ C
(

2

τn
βi
∥∥[u− uh,τ ]n−1

∥∥
0

+ ‖u′(tn,i)− u′h,τ (tn,i)‖0 + |u(tn,i)− uh,τ (tn,i)|1
)
|W i

n,h|1
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where Friedrichs’ inequality was used. Putting this into (48) leads together with (49) to

‖Qin,h‖0 ≤ C
(
‖p(tn,i)− jhp(tn,i)‖0 +

2

τn
βi
∥∥[u− uh,τ ]n−1

∥∥
0

+ ‖u′(tn,i)− u′h,τ (tn,i)‖0 + |u(tn,i)− uh,τ (tn,i)|1 + Sh(Qin,h, Q
i
n,h)1/2

)
.

After squaring, multiplying by ω̂jτn/2, and summing over j = 1, . . . , k + 1, we obtain∫
In

‖ϑh,τ‖20 ≤ C
(
Qn
[
‖p− jhp‖20 + |u− uh,τ |21 + ‖u′ − u′h,τ‖20 + Sh(ϑh,τ , ϑh,τ )

]
+

1

τn

∥∥[u− uh,τ ]n−1
∥∥2
0

)
. (50)

The first term in (50) can be estimated using the interpolation properties (12) of jh. Since ph,τ − jhp̃ =
ϑh,τ ∈ Yk, the quadrature formula Qn is exact. Hence, the fourth term in (50) can be written as an
integral contained in ‖(uh,τ − jhũ, ph,τ − jhp̃)‖S which has been already bounded in Lemma 10. The last
term in (50) can be estimated using the first statement of this Theorem since the jump term is included in
‖(uh,τ − u, ph,τ − p)‖S when n 6= 1. We have to bound for n = 1 additionally the term ‖(u − uh,τ )(0−)‖0.
The choice of the initial condition and (12) yield

‖(u− uh,τ )(0−)‖0 = ‖u0 − jhu0‖0 ≤ Chr+1‖u0‖r+1 ≤ Chr+1‖u‖C(Hr+1).

In order to estimate the second term in (50), we proceed as follows

Qn
[
|u− uh,τ |21

]
≤ 2Qn

[
|u− ũ|21

]
+ 2Qn

[
|ũ− uh,τ |21

]
= 2Qn

[
|u− ũ|21

]
+ 2

∫
In

|ũ− uh,τ |21

≤ 2Qn
[
|u− ũ|21

]
+ 4

∫
In

|ũ− u|21 + 4

∫
In

|u− uh,τ |21.

The first two terms can be estimated using the interpolation properties (41) and (42) while the last term is
bounded by the first statement of this Theorem. Using the same ideas combined with an inverse inequality
in time, the third term in (50) is handled. We obtain

Qn
[
‖u′ − u′h,τ‖20

]
≤ 2Qn

[
‖u′ − ũ′‖20

]
+ 2Qn

[
‖ũ′ − u′h,τ‖20

]
≤ 2Qn

[
‖u′ − ũ′‖20

]
+

2C2
inv

τ2n

∫
In

‖ũ− uh,τ‖20

≤ 2Qn
[
‖u′ − ũ′‖20

]
+

4C2
inv

τ2n

∫
In

‖ũ− u‖20 +
4C2

inv

τ2n

∫
In

‖u− uh,τ‖20

and, after applying Friedrichs’ inequality, the appearing terms can be bounded by the interpolation proper-
ties (41), (42), and the first statement of this Theorem.

Finally, to prove the second statement of this Theorem, we use the splitting (47) and the triangle
inequality. We have already estimated the first difference. By using the stability of jh, the interpolation
property (42), and the approximation property (12) to estimate the two remaining differences, the proof is
completed.

Remark 1. The estimate of the pressure shows an instability in the limit of small time step length since
the error bound in Thm. 12 is proportional to τ−1min. The effect is less pronounced for higher order methods
in space. Our numerical results are in agreement with these theoretical observations, see Section 5.3.

Choosing the discrete initial condition for the velocity as a Stokes projection allows to improve the
pressure estimate in Thm. 12 since the negative powers of the time step length can be prevented, see [33].
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4.4. Algebraic formulation and post processing

We will present at the beginning of this section the algebraic formulation of the fully discrete problem.
For simplicity, we restrict ourselves to the two-dimensional case since the three-dimensional case is obtained
in a straightforward manner.

Let {φ1, . . . , φmh
} be a finite element basis of Yh∩H1

0 (Ω) and ξjn,1, ξ
j
n,2 ∈ Rmh denote the nodal vectors

associated with the components of the finite element function U jn,h ∈ Vh =
(
Yh ∩H1

0 (Ω)
)2

, i.e.,

U jn,h(x) =

2∑
l=1

(
mh∑
ν=1

(
ξjn,l
)
ν
φν(x)

)
el, x ∈ Ω,

where e1, e2 ∈ R2 are the canonical unit vectors. Similarly for the pressure, let {ψ1, . . . , ψnh
} denote a finite

element basis functions of the space Qh = Yh ∩ L2
0(Ω) and ηjn ∈ Rnh the nodal vector of P jn,h ∈ Qh such

that

P jn,h(x) =

nh∑
ν=1

(
ηjn
)
ν
ψν(x), x ∈ Ω.

Furthermore, we define by

Ms,ν := (φν , φs), As,ν :=
(
∇φν ,∇φs

)
, Cs,ν := −Sh(ψν , ψs),

(Bi)s,ν := −
(
ψs,∇ · (ψνei)

)
, (F jn,i)ν :=

(
f(tn,j), φνe

i
)
, i = 1, 2,

the mass matrix M ∈ Rmh×mh , the stiffness matrix A ∈ Rmh×mh , the pressure stabilization matrix C ∈
Rnh×nh , the velocity-pressure coupling matrices Bi ∈ Rnh×mh , and the right-hand side vectors F jn,i, i = 1, 2.

Using the block matrices and the block vectors

M =

M 0 0
0 M 0
0 0 0

 , A =

 A 0 BT1
0 A BT2
B1 B2 C

 , F jn =

F jn,1F jn,2
0

 , ζjn =

ξjn,1ξjn,2
ηjn

 ,
the fully discrete In-problem (34) results in the following (k + 1)× (k + 1)-block system:

Find ζjn ∈ R2mh+nh for j = 1, . . . , k + 1 such that

k+1∑
j=1

αijMζjn +
τn
2
Aζin = βiMζ0

n +
τn
2
F in, i = 1, . . . , k + 1.

Although ζ0
n contains a pressure part, no initial pressure is needed sinceM has a last column of zero matrix

blocks. After solving this system, we enter the next time interval and set the initial value of the time interval
In+1 to ζ0

n+1 := ζk+1
n . In the following, we present the schemes for the cases k = 0 and k = 1.

The dG(0)-method. The 1-point Gauß–Radau formula with point tn,1 = tn and weight ω̂1 = 2 gives the
well-known implicit Euler method, i.e., the In-problem is the following one-block equation for ζ1

n ∈ R2mh+nh :(
M+ τnA

)
ζ1
n =Mζ0

n + τnF
1
n .

The dG(1)-method. The 2-point Gauß–Radau formula with points tn,1 = tn−1 + τn/3, tn,2 = tn and
weights ω̂1 = 3/2, ω̂2 = 1/2 yields on the time interval In the following coupled (2 × 2)-block system for
ζ1
n, ζ

2
n ∈ R2mh+nh : [

3
4M+ τn

2 A 1
4M

− 9
4M 5

4M+ τn
2 A

][
ζ1
n

ζ2
n

]
=

[
Mζ0

n + τn
2 F

1
n

−Mζ0
n + τn

2 F
2
n

]
.

In [32], a simple post-processing for systems of ordinary differential equations was presented which allows
to construct numerical approximations being in the integral-based norms ‖ · ‖dG and ‖ · ‖L2(L2) at least one
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order better than the originally obtained numerical solution provided the exact solution is sufficiently smooth
in time.

We will here generalize the idea to the Stokes problem. Define

ϑn(t) =
τn
2
ϑ̂(t̂), t̂ := T−1n (t), t ∈ In,

with Tn from (23). The polynomial ϑ̂ ∈ Pk+1 is uniquely defined by ϑ̂(t̂j) = 0 for all Gauß–Radau points

t̂j , j = 1, . . . , k + 1, and ϑ̂′(1) = 1. Let (uh,τ , ph,τ ) denote the solution of (31). The post-processed solution
(Πuh,τ ,Πph,τ ) on the time interval In is given by

(Πuh,τ )(t) = uh,τ (t) + gnϑn(t), (Πph,τ )(t) = ph,τ (t) + dnϑ
′
n(t), t ∈ In,

with finite element functions gn ∈ Vh and dn ∈ Qh. The corresponding coefficient vectors γn = (γn,1,γn,2)T ∈
R2mh and δn ∈ Rnh are the solution of the saddle-point problemM 0 BT1

0 M BT2
B1 B2 C

γn,1γn,2
δn

 =

F k+1
n,1

F k+1
n,2

0

−
 A 0 BT1

0 A BT2
B1 B2 C

ξk+1
n,1

ξk+1
n,2

ηk+1
n

−
M 0 0

0 M 0
0 0 0

χk+1
n,1

χk+1
n,2

0


where χk+1

n =
(
χk+1
n,1 ,χ

k+1
n,2

)T ∈ R2mh denotes the nodal representation of u′h,τ (tn) ∈ Vh. Note that the
post-processing can be easily generalized to the three-dimensional case.

5. Numerical studies

We present in this section some numerical experiments to verify the theoretical results from the previous
sections. All computations were performed with the finite element code MooNMD [34].

We shall consider three different examples of time-dependent Stokes problems defined in the domain
Ω = (0, 1)2. The first two example taken from [35] and [16] possess smooth solutions. To observe the
behavior in the small time step limit, a steady Stokes problem taken from [16] is considered as third example.

Our calculations were carried out on uniform quadrilateral grids where the coarsest grid (level 1) is
obtained by dividing the unit square into four congruent squares. We used in our numerical computations
mapped finite element spaces [36] where the enriched spaces on the reference cell K̂ = (−1, 1)2 are given by

Qbubble
s (K̂) := Qs(K̂) + span

{
b̂�x̂

s−1
i , i = 1, 2

}
with the biquadratic bubble function b̂� = (1 − x̂21)(1 − x̂22) on the reference square K̂. Together with the
choice D(K) = Pr−1(K), these spaces are suited for local projection methods, see [8].

In addition to the ‖ · ‖S-norm, convergence results in the integrated L2-norm, the integrated H1-semi-
norm, and the discrete `∞-norm which are defined by

‖v‖L2(L2) :=

{∫ T

0

‖v(t)‖20 dt
}1/2

, ‖v‖L2(H1) :=

{∫ T

0

|v(t)|21 dt
}1/2

, ‖v‖∞ := max
1≤n≤N

‖v(t−n )‖0

will be shown. Let
eu := u− uh,τ , ep := p− ph,τ

denote the velocity and pressure errors between the solutions of the continuous problem (2) and the fully
discrete problem (25).
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5.1. Test example 1

Our first example is to test the predicted rates of convergence in time. The right-hand side f and the
initial condition u0 are chosen such that

u1(x, y, t) = x2(1− x)2
(
2y(1− y)2 − 2y2(1− y)

)
sin(10πt),

u2(x, y, t) = −
(
2x(1− x)2 − 2x2(1− x)

)
y2(1− y)2 sin(10πt),

p(x, y, t) = −
(
x3 + y3 − 0.5

)(
1.5 + 0.5 sin(10πt)

)
is the solution of problem (1) with homogeneous Dirichlet boundary conditions.

In order to illustrate the convergence order in time, we excluded the error in space. To this end, the
numerical tests are performed with Yh = Qbubble

4 and D(K) = P3(K) for all K ∈ Th, the stabilization
parameters µK = 0.1h2K , and a mesh which consists of 8× 8 squares. The calculations were done for dG(1)
and dG(2) with time step lengths τ = 0.1× 10i, i = 0, . . . 6.
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Figure 1: Example 1 with smooth pressure. Simulations for dG(1) (top row) and dG(2) (bottom row). Convergence orders for
different errors of the solution (left column) and the post-processed solution (right column).

The results of the numerical studies are presented in Figure 1 where the errors in the different norms
are plotted against the different refinement levels in time. It is expected from Thm. 12 that the error in the
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‖·‖S-norm is of order k+1/2. This expectation can be well observed in the numerical simulations. It can also
be seen that the dG(k) methods are accurate of order k+ 1 in the L2(L2)-norm of the velocity. It is known
from [37] that the dG(k) methods applied to scalar problems are super-convergent of order 2k + 1 at the
discrete time points tn, n = 1, . . . N . Comparing the errors in the discrete `∞-norm of velocity and pressure,
it can be seen that the dG(k) methods are accurate of order 2k+1. Furthermore, the post-processing allows
to get solutions which provide the convergence order k + 2 in the integral-based norms. One can see the
improved accuracy by comparing the convergence results in the L2(L2)-norm and the ‖ · ‖S-norm shown in
the plots of Figure 1. Note that the mapping of line style and convergence order may differ from plot to
plot.

Table 1: Example 1 with rough pressure: errors of the post-processed solution and convergence orders for dG(1) and dG(2)
methods in the L2(L2)-norm of velocity and pressure.

dG(1) dG(2)

‖u−Πuh,τ‖L2(L2) ‖p−Πph,τ‖L2(L2)

∥∥u−Πuh,τ
∥∥
L2(L2)

‖p−Πph,τ‖L2(L2)

τ error order error order error order error order

1/10 3.465-3 9.979-4 3.916-4 6.278-4
1/20 7.717-4 3.27 4.580-4 1.12 1.024-4 1.94 6.847-5 3.20
1/40 2.016-4 1.94 9.312-5 2.98 1.294-5 2.98 2.149-5 1.67
1/80 5.125-5 1.98 3.163-5 1.56 1.623-6 3.00 8.927-6 1.27
1/160 1.288-5 1.99 1.294-5 1.29 2.030-7 3.00 3.752-6 1.25
1/320 3.224-6 2.00 5.426-6 1.25 2.539-8 3.00 1.578-6 1.25
1/640 8.062-7 2.00 2.281-6 1.25 3.173-9 3.00 6.633-7 1.25
1/1280 2.016-7 2.00 9.589-7 1.25 3.967-10 3.00 2.789-7 1.25

theory 2 1 3 1

The convergence order for the pressure in the L2(L2)-norm is one order better than predicted by our
theory, see Thm. 12. This is caused by the smoothness of the exact pressure. If we consider the current
problem where the pressure is replaced by the rough function

p(x, y, t) = −
(
x3 + y3 − 0.5

) (
1.5 + 0.5 t3/4

)
then the convergence order for the pressure is limited by its smoothness, see Tab. 1. However, the convergence
order of the velocity is not influenced by the smoothness of the pressure.

5.2. Test example 2

Our next numerical example is to study the influence of the parameters µK in the stabilization term.
The right-hand side f and the initial condition u0 are chosen such that

u1(x, y, t) = g(t) sin(πx− 0.7) sin(πy + 0.2),

u2(x, y, t) = g(t) cos(πx− 0.7) cos(πy + 0.2),

p(x, y, t) = g(t)
(

sin(x) cos(y) +
(

cos(1)− 1
)

sin(1)
)
,

with g(t) = 1 + t5 + exp(−0.1t) + sin(t), is the exact solution of the problem (1) with non-homogeneous
boundary conditions.

We restrict ourselves to dG(1) in time and Yh = Qbubble
r with DK = Pr−1(K), r = 1, 2, for all K ∈ Th

as spatial discretization. The computations were carried out on the refinement levels 3–6 (corresponding to
16 × 16 up to 128 × 128 mesh cells) and with a time step length τ = 1/180. To see the influence of the
stabilization parameters, we set µK = µ0h

2
K where the constant µ0 varies from 10−6 to 106. Let

‖q‖2L2(S) =

∫ T

0

Sh(q, q)
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a semi-norm measuring the pressure error in the stabilization term.
Our calculations showed that the velocity errors were almost constant in the investigated range of µ0.

However, we plot the error in the integrated H1-semi-norm in order to illustrate its influence on ‖(eu, ep)‖S.
We start with the consideration of Qbubble

1 finite elements and projection onto P0. Figure 2 plots the
errors in the norms ‖ep‖L2(L2), ‖ep‖L2(S), ‖eu‖L2(H1), and ‖(eu, ep)‖S versus the constant µ0 inside the
definition µK = µ0h

2
K of the stabilization parameters. We observe that the pressure error measured in the

L2(L2)-norm is large for both very small and very large values of µ0. This is caused by under-stabilization
and over-stabilization, respectively. Since the L2(S)-semi-norm includes µ0 as a factor, the corresponding
error rises with increasing µ0. The error in the semi-norm ‖ · ‖S is dominated by the L2(H1)-error. Hence,
it is almost constant for small and moderate values of µ0. In contrast, the increasing pressure stabilization
term affects ‖(eu, ep)‖S for larger µ0.
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Figure 2: Example 2 with Qbubble
1 and D(K) = P0(K). Errors ‖ep‖L2(L2) (upper left), ‖ep‖L2(S) (upper right), ‖eu‖L2(H1)

(lower left), and ‖(eu, ep)‖S (lower right) versus the constant µ0 in µK = µ0h2K .

We consider now the influence of the constant µ0 on the errors for Qbubble
2 finite elements and projection

onto P1. Results for the error norms under consideration are presented in Figure 3. One can see that
the pressure errors in the ‖ · ‖L2(L2)-norm is almost independent of µ0 in a wide range. However, the
corresponding error increases for small values of µ0 due to under-stabilization. As for first order elements,
the pressure error in the ‖ ·‖L2(S)-norm gets larger with µ0. Also the error in the ‖ ·‖S-norm behaves similar

as for Qbubble
1 .
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Figure 3: Example 2 with Qbubble
2 and D(K) = P1(K). Errors ‖ep‖L2(L2) (upper left), ‖ep‖L2(S) (upper right), ‖eu‖L2(H1)

(lower left), and ‖(eu, ep)‖S (lower right) versus the constant µ0 in µK = µ0h2K .

5.3. Test example 3

We consider the problem where the source term f , the initial condition u0, and the boundary condition
are generated by the time-independent solution

u1(x, y, t) = sin(πx− 0.7) sin(πy + 0.2),

u2(x, y, t) = cos(πx− 0.7) cos(πy + 0.2),

p(x, y, t) =
(

sin(x) cos(y) +
(

cos(1)− 1
)

sin(1)
)
.

This problem has been already studied numerically for finite element discretizations in [16].
The aim of this example is to study the behavior of stabilized finite element methods in combination

with discontinuous Galerkin method scheme in time applied to transient Stokes problems in the limit of
small time step length. To this end, the numerical tests are performed using the methods dG(k), k = 0, 1, 2,
with time step lengths τ = 10−1 and τ = 10−6. A uniform grid consisting of 32×32 squares was used in the
simulations. The numerical tests have used Yh = Qbubble

r with D(K) = Pr−1(K) for all K ∈ Th, r = 1, 2, 3,
and stabilization parameters µK = 0.1h2K .

The approximate pressure ph,τ is plotted in Fig. 4 for r = 1 after a single time step of dG(0), dG(1),
and dG(2), respectively. Fig. 4a–4c show almost no substantial variation in the approximated solution ph,τ
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(a) dG(0), τ = 10−1 (b) dG(1), τ = 10−1 (c) dG(2), τ = 10−1

(d) dG(0), τ = 10−6 (e) dG(1), τ = 10−6 (f) dG(2), τ = 10−6

Figure 4: Example 3 with Qbubble
1 and D(K) = P0(K). Pressure approximations after a single time step with τ = 10−1 (top

row) and τ = 10−6 (bottom row).

(a) dG(0), τ = 10−1 (b) dG(1), τ = 10−1 (c) dG(2), τ = 10−1

(d) dG(0), τ = 10−6 (e) dG(1), τ = 10−6 (f) dG(2), τ = 10−6

Figure 5: Example 3 with Qbubble
2 and D(K) = P1(K). Pressure approximations after a single time step with τ = 10−1 (top

row) and τ = 10−6 (bottom row).

for the time step length τ = 10−1. However, reducing the time step length to τ = 10−6, the pressure
approximation converge to a solution that is not an approximation of the exact solution.

The approximated pressure for r = 2 and r = 3 is plotted in Fig. 5 and 6, respectively. Using the large
time step length τ = 10−1 gives also for the higher order spatial discretizations discrete pressure solutions
which show almost no deviations. Moreover, one step of dG(0), dG(1), and dG(2) with the small time step
length τ = 10−6 leaves the fully discrete pressure solution ph,τ essentially unchanged. However, a small
deviation can be seen for dG(2) with τ = 10−6, see Fig. 5f.

Hence, we conclude that the pressure approximation ph,τ obtained for the first order spatial approxima-
tion starts to deviate from the exact solution for small time step lengths. However, the numerical solutions
for the higher order approximations (r = 2, 3) in space remain remarkably stable even in the case of small
time step lengths.

The obtained numerical results are in agreement with the theoretical predictions given in Thm. 12 since
the upper bound in the pressure estimates is proportional to hr/τmin. This means that the effect of the
instability in the limit of small time step length is reduced for higher order elements in space.

24



(a) dG(0), τ = 10−1 (b) dG(1), τ = 10−1 (c) dG(2), τ = 10−1

(d) dG(0), τ = 10−6 (e) dG(1), τ = 10−6 (f) dG(2), τ = 10−6

Figure 6: Example 3 with Qbubble
3 and D(K) = P2(K). Pressure approximations after a single time step with τ = 10−1 (top

row) and τ = 10−6 (bottom row).

6. Conclusion

We have considered discontinuous Galerkin time discretizations applied to transient Stokes problems
where finite element approximations based on equal-order interpolation were used. Optimal error estimates
have been proven for the semi-discretization in space. For the fully discrete problem, the unconditional
stability of the discrete velocity solution was shown. The stability bound for the L2-norm of the pressure
depends on the inverse time step length but is independent of the spatial mesh size h. For the velocity,
an optimal error estimate in space and time was given. The obtained error bound for the pressure shows
an instability in the limit of small time step length. However, the impact is reduced when higher order
approximation in space is used. This theoretical behavior is also observed in Example 3.

Acknowledgment: This work was supported by the “Deutsche Forschungsgemeinschaft” DFG under
the grant MA 4713/2-1.

[1] J. Douglas, Jr., J. P. Wang, An absolutely stabilized finite element method for the Stokes problem, Math. Comp. 52 (186)
(1989) 495–508.

[2] L. Tobiska, R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations,
SIAM J. Numer. Anal. 33 (1) (1996) 107–127.

[3] C. Johnson, J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math.
Comp. 47 (175) (1986) 1–18.

[4] T. J. R. Hughes, L. P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics. V.
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