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Abstract

A typical phase field approach for describing phase separation and coarsening phenomena
in alloys is the Cahn-Hilliard model. This model has been generalized to the so-called
Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation
phenomena, which occurs during phase separation and coarsening processes in the material.
Evolving microstructures such as phase separation and coarsening processes have a strong
influence on damage initiation and propagation in alloys. In order to account for damage
effects we develop the existing framework of Cahn-Hilliard and Cahn-Larché systems by
incorporating an internal damage variable of local character in the sense that damage of a
material point is influenced by its local surrounding. The damage process is described by a
unidirectional evolution inclusion for the internal variable.

For Cahn-Hilliard and Cahn-Larché systems coupled with rate-dependent damage pro-
cesses, we establish a suitable notion of weak solutions. We prove existence of weak solutions
of the introduced systems. The result is based on a time-incremental minimization problem
for a regularized model with constraints due to the unidirectionality of the damage. By
passing to the limit in the regularized version we show existence of weak solutions of the
introduced Cahn-Hilliard and Cahn-Larché systems coupled with damage.

1 Introduction
Due to the ongoing miniaturization in the area of micro-electronics the demands on strength
and lifetime of the materials used is considerably rising, while the structural size is continuously
being reduced. Materials, which enable the functionality of technical products, change the mi-
crostructure over time. Phase separation and coarsening phenomena take place and the complete
failure of electronic devices like motherboards or mobile phones often results from micro–cracks
in solder joints.

Solder joints, for instance, are essential components in electronic devices since they form
the electrical and the mechanical bond between electronic components like micro–chips and the
circuit–board. The Figures 1 and 2 illustrate the typical morphology in the interior of solder
materials. At high temperatures, one homogeneous phase consisting of different components of
the alloy is energetically favourable. If the temperature is decreased below a critical value a fine
microstructure of two or more phases (different compositions of the components of the material)
arises on a very short time scale. The formation of microstructures, also called phase separation
or spinodal decomposition, take place to reduce the bulk chemical free energy. Then coarsening
phenomena occur, which are mainly driven by decreasing interfacial energy. Due to the misfit of
the crystal lattices, the different heat expansion coefficients and the different elastic moduli of
the components, very high mechanical stresses occur preferably at the interfaces of the phases.
These stress concentrations initiate the nucleation of micro–cracks, whose propagation finally
can lead to the failure of the whole electronic device.

The knowledge of the mechanisms inducing phase separation, coarsening and damage phe-
nomena is of great importance for technological applications. A uniform distribution of the
original materials is aimed to guarantee evenly distributed material properties of the sample.
For instance, mechanical properties, such as the strength and the stability of the material, de-
pend on how finely regions of the original materials are mixed. The control of the evolution of
the microstructure and therefore of the lifetime of materials relies on the ability to understand
phase separation, coarsening and damage processes. This shows the importance of developing
reliable mathematical models to describe such effects.
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Figure 1: Left: Solder ball and micro–structural coarsening in eutectic Sn–Pb; Right: a) directly
after solidification, b) after 3 hours, and c) after 300 hours [HCW91];

Figure 2: Initiation and propagation along the phase boundary [FBFD06].

In the mathematical literature, coarsening and damage processes are treated in general sepa-
rated. Phase separation and coarsening phenomena are usually described by phase–field models
of Cahn-Hilliard type. The evolution is modeled by a parabolic diffusion equation for the phase
fractions. To include elastic effects, resulting from stresses caused by different elastic proper-
ties of the phases, Cahn-Hilliard systems are coupled with an elliptic equation, describing the
quasi-static balance of forces. Such coupled Cahn-Hilliard systems with elasticity are also called
Cahn-Larché systems. Since in general the mobility, stiffness and surface tension coefficients
depend on the phases (see for instance [BDM07] and [BDDM07] for the explicite structure de-
duced by the embedded atom method), the mathematical analysis of the coupled problem is very
complex. Existence results were derived for special cases in [Gar00, CMP00, BP05] (constant
mobility, stiffness and surface tension coefficients), in [BCD+02] (concentration dependent mo-
bility, two space dimensions) and in [PZ08] in an abstract measure-valued setting (concentration
dependent mobility and surface tension tensor). For numerical results and simulations we refer
[Wei01, Mer05, BM10].

The mathematical investigation of models for damage evolution in elastic materials has started
in the last ten years. In the simplest case, the damage variable is a scalar function and describes
the local accumulation of damage in the body. The damage process is typically modeled as a
unidirectional evolution, which means that damage can increase, but not decrease. Based on the
model developed in [FN96], the damage evolution is described by the balance of force equation
which is coupled with a unidirectional parabolic [BSS05, FK09, Gia05] or rate–independent
[MR06, MRZ10] evolution inclusion for the damage variable. The models studied in [FK09,
MR06, Gia05] also include the effect that the applied forces have to pass over a threshold before
the damage starts to increase.

In this work we introduce a mathematical model describing both phenomena, phase separa-
tion/coarsening and damage processes, in a unifying model. We focus on the analytical modeling
on the meso– and macroscale. To this end we couple phase–field models of Cahn-Larché type
with damage models. The evolution system consists of a balance of force equation which is
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coupled with a parabolic evolution equation for the phase fractions and a unidirectional evolu-
tion inclusion for the damage variable. The evolution inclusion includes the phenomenon that a
threshold for the loads has to be passed before the damage increases.

The main aim of the present work is to show existence of weak solutions of the introduced
model for rate-dependent damage processes. To this end we first study the model with regu-
larization terms. A crucial step has been to establish a suitable notion of weak solutions. The
existence result is based on a time–incremental minimization problem for the regularized model
with constraints due to the unidirectionality of the damage. The major task has been to prove
convergence of the time incremental solutions for the regularized model when the discretization
fineness tends to zero. In this context, several approximation results have been established to
handle the damage evolution inclusion. The main results are stated in Sections 5.1 and 5.2, see
Theorems 5.4 and 5.6.

To the best of our knowledge, phase separation processes coupled with damage are not studied
yet in the mathematical literature. However, promising simulations were carried out in the
context of phase field models of Cahn-Hilliard and Cahn-Larché type, see [USG07, GUaMM+07].

The paper is organized as follows: We start with introducing a phase field model of Cahn-
Larché type coupled with damage, cf. Section 2. Then we state some assumptions and prelim-
inary results for this model, see Section 3 and Section 4. In Section 5, we establish a suitable
notation for weak formulations of solutions for the introduced model and a regularized version
of the model and state the main results. Section 6.1 is devoted to the existence proof for the
regularized Cahn-Larché system coupled with damage. Finally, we pass to the limit in the reg-
ularized version, which shows the existence of weak solutions of the original model, see Section
6.2.

2 Model
We consider a material of two components occupying a bounded domain Ω ⊆ R3. The state
of the system at a fixed time point is specified by a triple q = (u, c, z). The displacement
field u : Ω → R3 determines the current position x + u(x) of an undeformed material point x.
Throughout this paper we will work with the linearized strain tensor e(u) = 1

2 (∇u + (∇u)T ),
which is an adequate assumption only when small strains occur in the material.

However, this assumption is justified for phase-separation processes in alloys since the defor-
mation usually has a small gradient. The function c : Ω → R is a phase-field variable where c
indicates a scaled concentration difference of the two components. To account for damage effects,
we choose an isotropic damage parameter z : Ω → R. This parameter can be considered as the
reduction of the effective volume of the material due to void nucleation, growth, and coalescence.
No damage at a material point x ∈ Ω is described by z(x) = 1, whereas z(x) = 0 stands for a
completely damaged material point x ∈ Ω. We require that even a damaged material can store
a small amount of elastic energy. Plastic effects are not considered in our model. One mathe-
matical challenge is located in the unidirectionality of damage processes. In other words, z is
monotonically decreasing and allowed to jump with respect to the time variable for any material
point. This restriction forbids self-healing processes in the material.

2.1 Energies and evolutionary equations
Here we qualify our model formally and postpone a rigorous treatment to Section 5. The pre-
sented model is based on two functionals, i.e. a generalized Ginzburg-Landau free energy func-
tional E and a damage dissipation potential R. The free energy density ϕ of the system is given
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by

ϕ(e, c,∇c, z,∇z) :=
γ

2
|∇c|2 +

δ

p
|∇z|p + Wch(c) + Wel(e, c, z), γ, δ > 0, (1)

where the gradient terms penalize spatial changes of the variables c and z, Wch denotes the
chemical energy density and Wel is the elastically stored energy density accounting for elastic
deformations and damage effects. For simplicity of notation we set γ = δ = 1.

The chemical free energy density Wch has usually the form of a double well potential for a
two phase system. For a rigorous treatment we only need the assumption (GC6), see Section
3.1. Hence, in particular, classical ansatzes such as

Wch = (1− c2)2

fit in our framework.
The elastically stored energy density Ŵel due to stresses and strains, which occur in the

material, is typically of quadratic form, i.e.

Ŵel(c, e) =
1
2
(
e− e∗(c)

)
: C(c)

(
e− e∗(c)

)
. (2)

Here, e∗(c) denotes the eigenstrain, which is usually linear in c and C(c) is the elasticity ten-
sor, which is symmetric and positive definite. If the elasticity tensor does not depend on the
concentration, i. e. C(c) = C, we refer to homogeneous elasticity.

To incorporate the effect of damage on the elastic response of the material, Ŵel is replaced
by

Wel = (Φ(z) + η̃) Ŵel, (3)

where Φ : [0, 1] → R+ is a continuous and monotonically increasing function with Φ(0) = 0 and
η̃ > 0 is a small value. The small value η̃ > 0 in (3) is introduced for analytical reasons, see for
instance (GC1).

Rigorous results in the present work are obtained under certain growth conditions for the
elastic energy density Wel, see Section 3.1. These conditions are, however, only satisfied for Wel

as in (3) in the case of homogeneous elasticity or if e∗(c) does not depend linearly on c.
The overall stored energy E of Ginzburg-Landau type has the following structure:

E(u, c, z) := Ẽ(u, c, z) +
∫

Ω

ι[0,∞)(z) dx,

Ẽ(u, c, z) :=
∫

Ω

ϕ(e(u), c,∇c, z,∇z) dx.

(4)

Here, ι[0,∞) signifies the indicator function on the set [0,∞). We assume that the energy dissi-
pation for the damage process is triggered by a dissipation potential R of the form

R(ż) := R̃(ż) +
∫

Ω

ι(−∞,0](ż) dx,

R̃(ż) :=
∫

Ω

−αż +
1
2
βż2 dx for α > 0 and β ≥ 0.

(5)

If β > 0 then the damage process is referred to as rate-dependent while in the case β = 0 the
process is called rate-independent. We refer for rate-independent processes to [EM06, MT99,
MR06, MRZ10, Rou10] and in particular to [Mie05] for a survey.
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The governing evolutionary equations for a system state q = (u, c, z) can be expressed by
virtue of the functionals (4) and (5). The evolution is driven by the following elliptic-parabolic
system of differential equations and differential inclusion:

Diffusion : ∂tc = −div(J(u, c, z)), (6a)
Mechanical equilibrium : div(σ(e(u), c, z)) = 0, (6b)
Damage evolution : 0 ∈ dzE(u, c, z) + dżR(∂tz), (6c)

where σ(e, c, z) := ∂eWel(e, c, z) denotes the elastic stress tensor and J(u, c, z) designates the
diffusion flux given by −∇µ with the chemical potential µ := dcE(u, c, z). Equation (6a) is
a fourth order quasi-linear parabolic equation of Cahn-Hilliard type and describes the phase
separation process for the concentration c while the elliptic equation (6b) constitutes a quasi-
static equilibrium for u. This means physically that we neglect kinetic energies and instead
assume that mechanical equilibrium is attained at any time. The doubly nonlinear differential
inclusion (6c) specifies the flow rule of the damage profile z according to the constraints 0 ≤ z ≤ 1
and ∂tz ≤ 0 (in space and time). The inclusion (6c) has to be read in terms of generalized sub-
differentials (Clarke sub-differentials).

We choose Dirichlet conditions for the displacements u on a subset Γ of the boundary ∂Ω
with Hn−1(Γ) > 0. Let b : [0, T ]×Γ → Rn be a function which defines the displacements on Γ on
a fixed chosen time interval [0, T ]. The imposed boundary and initial conditions and constraints
are as follows:

Boundary displacements : u(t) = b(t) on Γ for all t ∈ [0, T ], (BC1)

Initial concentration : c(0) = c0 in Ω, (BC2)

Initial damage : z(0) = z0 ≤ 1 in Ω, (BC3)

Mass conservation :
∫

Ω

c(t)− c0 dx = 0 for all t ∈ [0, T ]. (BC4)

Moreover, we use Neumann boundary conditions for the remaining variables on (parts of) the
boundary:

σ · ν = 0 on ∂Ω \ Γ, (BC5)
∇µ(t) · ν = 0 on ∂Ω, (BC6)
∇c(t) · ν = 0 on ∂Ω, (BC7)
∇z(t) · ν = 0 on ∂Ω, (BC8)

where ν stands for the outer unit normal to ∂Ω.
We like to mention that the mass conservation follows already from the diffusion equation

(6a) and (BC7).

3 Assumptions and Notation

3.1 General assumptions
In this section we collect all assumptions and constants which are used for a rigorous analysis in
the subsequent sections:

(i) General assumptions. Let Ω ⊆ Rn be a bounded domain with Lipschitz boundary where
the space dimension n is not greater than 3. The exponent p in equation (1) has to be
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strictly greater than n and the factor β greater than 0. The functions Wel : Rn×n×R×R →
R+ and Wch : R → R+ are assumed to be continuously differentiable and Wel satisfies the
symmetric condition Wel(e, c, z) = Wel(et, c, z) for all e ∈ Rn×n and c, z ∈ R. The value
T ∈ (0,∞) specifies the time interval [0, T ] of interest. Further, C > 0 always denotes a
constant, which may vary from estimate to estimate.

(ii) Convexity and growth assumptions. The function Wel is assumed to satisfy the following
estimates:

η|e1 − e2|2 ≤ (∂eWel(e1, c, z)− ∂eWel(e2, c, z)) : (e1 − e2), (GC1)

Wel(e, c, z) ≤ C(|e|2 + |c|2 + 1), (GC2)
|∂eWel(e1 + e2, c, z)| ≤ C(Wel(e1, c, z) + |e2|+ 1), (GC3)

|∂cWel(e, c, z)| ≤ C(|e|+ |c|2 + 1), (GC4)

|∂zWel(e, c, z)| ≤ C(|e|2 + |c|2 + 1) (GC5)

for arbitrary c ∈ R and z ∈ [0, 1], symmetric e, e1, e2 ∈ Rn×n and fixed constants η, C > 0.
The chemical energy density function Wch is of the type

|∂cWch(c)| ≤ Ĉ(|c|2?/2 + 1) (GC6)

for some constant Ĉ > 0. For dimension n = 3 the constant 2? denotes the Sobolev critical
exponent given by 2n

n−2 . In the lower dimensional cases n < 3, the constant 2? can be an
arbitrary large number in this context.

(iii) Boundary displacements. Let Γ be a subset of ∂Ω with Hn−1(Γ) > 0.
For further considerations, we assume that the boundary displacement b : [0, T ]× Γ → Rn

may be extended by b̂ ∈ W 1,1([0, T ];W 1,∞ (Ω; Rn)) such that b(t)|Γ = b̂(t)|Γ in the sense
of traces for a.e. t ∈ [0, T ]. We will also write b instead of b̂.

Remark 3.1 Conditions (GC1), (GC2) and (GC3) imply the following estimates

|∂eWel(e, c, z)| ≤ C(|e|+ |c|2 + 1), (11a)

η|e|2 − C(|c|4 + 1) ≤ Wel(e, c, z) (11b)

for some appropriate constants η > 0 and C > 0, cf. [Gar00, Section 3.2] for (11b).

3.2 Solution spaces
In this section we define the spaces where the solution curves of our evolutionary problem will be
constructed. First of all, we define the space Q fulfilling certain regularity requirements which
will be used for the limit problem:

Q :=





u ∈ L∞([0, T ];H1(Ω; Rn)),

c ∈ L∞([0, T ];H1(Ω)),

z ∈ L∞([0, T ];W 1,p(Ω))

∩AC2([0, T ];L2(Ω))

with
u(t)|Γ = b(t)|Γ as traces for a.e. t ∈ [0, T ],
0 ≤ z(t) ≤ 1 a.e. in Ω for all t ∈ [0, T ],
z monotonically decreasing with respect to t





.

Based on Q, the set of admissible solutions of the viscous problem (see Section 5) is

Qv :=
{
q = (u, c, z) ∈ Q | c ∈ AC2([0, T ];L2(Ω)) and ∇u ∈ L∞([0, T ];L4(Ω))

}
,
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where AC2 designates the space of absolutely continuous functions with quadratically integrable
derivatives.

It will be convenient for the variational formulation to define Sobolev spaces with functions
taking only non-negative and non-positive values, respectively, and Sobolev spaces consisting of
functions with vanishing traces on the boundary Γ:

W 1,r
+ (Ω) :=

{
ζ ∈ W 1,r(Ω)

∣∣ ζ ≥ 0 a.e. in Ω
}
,

W 1,r
− (Ω) :=

{
ζ ∈ W 1,r(Ω)

∣∣ ζ ≤ 0 a.e. in Ω
}
,

W 1,r
Γ (Ω; Rn) :=

{
ζ ∈ W 1,r(Ω; Rn)

∣∣ ζ|Γ = 0 in the sense of traces
}

for r ∈ [1,∞].
In Cahn-Hilliard systems, the integral mean value of the concentration variable c is conserved

and its time derivative still has (H1(Ω))∗-regularity. In this context we will work in the following
spaces:

H0 :=
{

ζ ∈ H1(Ω)
∣∣

∫

Ω

ζ dx = 0
}

,

H̃0 :=
{

ζ ∈ (H1(Ω))∗
∣∣ 〈ζ,1〉(H1)∗×H1 = 0

}
.

This permits us to define the operator (−∆)−1 : H̃0 → H0 as the inverse of the operator
−∆ : H0 → H̃0, u 7→ 〈∇u,∇·〉L2(Ω). The space H̃0 will be endowed with the scalar product
〈u, v〉H̃0

:= 〈∇(−∆)−1u,∇(−∆)−1v〉L2(Ω).

4 Preliminaries
This section is devoted to some frequently used approximation features in this paper. The
expression BR(K) designates the open neighborhood with width R > 0 of a subset K ⊆ Rn.
Whenever we consider the zero set of a function ζ ∈ W 1,p(Ω) for p > n denoted in the following
by {ζ = 0} we mean {x ∈ Ω | ζ(x) = 0} by taking the embedding W 1,p(Ω) ↪→ C0(Ω) into
account. We adapt the convention that for two given functions ζ, ξ ∈ L1([0, T ];W 1,p(Ω)) the
inclusion {ζ = 0} ⊇ {ξ = 0} is an abbreviation for {ζ(t) = 0} ⊇ {ξ(t) = 0} for a.e. t ∈ [0, T ].

Lemma 4.1 (Approximation Ia) Let p > n and f, ζ ∈ W 1,p
+ (Ω) with {ζ = 0} ⊇ {f = 0}.

Furthermore, let {fM}M∈N ⊆ W 1,p
+ (Ω) be a sequence with fM ⇀ f in W 1,p(Ω) as M → ∞.

Then there exist sequences {ζM}M∈N ⊆ W 1,p
+ (Ω) and constants νM > 0 such that

(i) ζM → ζ in W 1,p(Ω) as M →∞,

(ii) ζM ≤ ζ a.e. in Ω for all M ∈ N,

(iii) νMζM ≤ fM a.e. in Ω for all M ∈ N.

Proof. Without loss of generality we may assume ζ 6≡ 0 on Ω.
Let {δk} be a sequence with δk ↘ 0 as k → ∞ and δk > 0. Define for every k ∈ N the

approximation function ζ̃k ∈ W 1,p
+ (Ω) as

ζ̃k := [ζ − δk]+,
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where [·]+ stands for max{0, ·}. Let 0 < α < 1− n
p be a fixed constant. Then ζ̃k ∈ C0,α(Ω) due

to W 1,p(Ω) ↪→ C0,α(Ω). Furthermore, set the constant Rk, k ∈ N, to

Rk :=
(
δk/‖ζ‖C0,α(Ω)

)1/α

> 0.

It follows {ζ̃k = 0} ⊇ Ω ∩ BRk
({ζ = 0}) ⊇ Ω ∩ BRk

({f = 0}). Without loss of generality we
may assume Ω \BRk

({f = 0}) 6= ∅ for all k ∈ N. Furthermore, there exists a strictly increasing
sequence {Mk} ⊆ N such that we find for all k ∈ N:

fM ≥ ηk/2 a.e. on Ω \BRk
({f = 0}) for all M ≥ Mk

with ηk := inf{f(x) |x ∈ Ω \ BRk
({f = 0})} > 0, k ∈ N, (note that fM → f in C0,α(Ω) as

M →∞). This implies ν̃k ζ̃k ≤ fM a.e. on Ω for all M ≥ Mk by setting ν̃k := ηk/(2‖ζ‖L∞(Ω)) >

0. The claim follows with ζM := 0 and νk := 1 for M ∈ {1, . . . , M1 − 1} and ζM := ζ̃δk
and

νM := ν̃k for each M ∈ {Mk, . . . , Mk+1 − 1}, k ∈ N. ¥

Lemma 4.2 (Approximation Ib) Let p > n and q ≥ 1 and f, ζ ∈ Lq([0, T ];W 1,p
+ (Ω)) with

{ζ = 0} ⊇ {f = 0}. Furthermore, let {fM}M∈N ⊆ Lq([0, T ];W 1,p
+ (Ω)) be a sequence with

fM (t) ⇀ f(t) in W 1,p(Ω) as M →∞ for a.e. t ∈ [0, T ]. Then there exists a sequence {ζM}M∈N ⊆
Lq([0, T ]; W 1,p

+ (Ω)) and constants νM,t > 0 such that

(i) ζM → ζ in Lq([0, T ]; W 1,p(Ω)) as M →∞,

(ii) ζM ≤ ζ a.e. in ΩT for all M ∈ N (in particular {ζM = 0} ⊇ {ζ = 0}),
(iii) νM,tζM (t) ≤ fM (t) a.e. in Ω for a.e. t ∈ [0, T ] and for all M ∈ N.

If, in addition, ζ ≤ f a.e. in ΩT then condition (iii) can be refined to

(iii)’ ζM ≤ fM a.e. in ΩT for all M ∈ N.

Proof. Let {δk} with δk ↘ 0 as k →∞ and δk > 0 be a sequence and 0 < α < 1− n
p be a fixed

constant. We construct the approximations {ζM} ⊆ Lq([0, T ];W 1,p
+ (Ω)) as follows:

ζM (t) :=
M∑

k=1

χAk
M

(t)[ζ(t)− δk]+, (12)

where χAk
M

: [0, T ] → {0, 1} is defined as the characteristic function on the measurable set Ak
M

given by

Ak
M :=

{
P k

M \
(⋃M

i=k+1 P i
M

)
, if k < M,

PM
M , if k = M,

with

P k
M :=

{
t ∈ [0, T ]

∣∣ Ω \BRk(t)({f(t) = 0}) 6= ∅

and fM (t) ≥ ηk(t)/2 a.e. on Ω \BRk(t)({f(t) = 0})
}

, (13)
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where the functions Rk, ηk : [0, T ] → R+ are defined by

Rk(t) =
(
δk/‖ζ(t)‖C0,α(Ω)

)1/α

,

ηk(t) = inf{f(t, x) |x ∈ Ω \BRk(t)({f(t) = 0})}.

Here we use the convention Rk(t) := ∞ for ζ(t) ≡ 0. Note that {Ak
M}, 1 ≤ k ≤ M , are by

construction, pairwise disjoint.
Consider a t ∈ [0, T ] with fM (t) ⇀ f(t) in W 1,p(Ω) and ζ(t) 6≡ 0 with {ζ(t) = 0} ⊇ {f(t) =

0}. Let K ∈ N be arbitrary but large enough such that Ω \ BRK(t)({f(t) = 0}) 6= ∅ holds. It
follows the existence of an M̃ ≥ K with t ∈ PK

M for all M ≥ M̃ . Therefore, for each M ≥ M̃
exists a k ≥ K such that t ∈ Ak

M , i.e. ζM (t) = [ζ(t) − δk]+. Thus ζM (t) → ζ(t) in W 1,p(Ω) as
K →∞. Lebesgue’s convergence theorem shows (i).
Property (ii) follows immediately from (12). It remains to show (iii). Let M ∈ N be arbitrary.
If ζM (t) ≡ 0 we set νM,t = 1. Otherwise we find a unique 1 ≤ k ≤ M with t ∈ Ak

M and
ζM (t) = [ζ(t) − δk]+. This, in turn, implies the existence of a νM,t > 0 with νM,tζM ≤ fM (see
proof of Lemma 4.1).

In the case ζ ≤ f we use instead of (13) the sets:

P k
M :=

{
t ∈ [0, T ]

∣∣ ‖fM (t)− f(t)‖C0(Ω) ≤ δk

}
.

With a similar argumentation {ζM} fulfills (i), (ii) and (iii)’. ¥

Lemma 4.3 (Approximation II) Let p > n and f ∈ L1([0, T ]; W 1,p(Ω)). Then

Ln+1
({

(t, x) ∈ ΩT

∣∣ x ∈ Bδ({f(t) = 0}) \ {f(t) = 0}}) → 0 as δ ↘ 0.

Proof. Define the sets

Nδ,t := ΩT ∩ (Bδ({f(t) = 0}) \ {f(t) = 0})
and

Nδ := {(t, x) ∈ ΩT |x ∈ Nδ,t}.

We first show the statement

Ln(Nδ,t) → 0 as δ ↘ 0 for t ∈ [0, T ]\S, (14)

where S ⊂ [0, T ] is a Lebesgue set of measure zero.
Assume limδ↘0 Ln(Nδ,t) > 0 as δ ↘ 0 for some t ∈ [0, T ]\S. From the monotonicity of the sets

Nδ,t, i.e. Nδ1,t ⊆ Nδ2,t whenever δ1 ≤ δ2, we get Ln
(⋂

δ>0 Nδ,t

)
= limδ↘0 Ln(Nδ,t) > 0 as δ ↘ 0.

Let x ∈ ⋂
δ>0 Nδ,t. Then dist(x, {f(t) = 0}) = 0 and the closeness of {f(t) = 0} in Ω (due to

f(t) ∈ C0(Ω)) implies the contradiction x ∈ {f(t) = 0}.
Now we show the claim. Assume limδ↘0 Ln+1(Nδ) > 0 as δ ↘ 0. Then limδ↘0 Ln+1(Nδ) =

Ln+1
(⋂

δ>0 Nδ

)
> 0. Therefore, we find a t ∈ [0, T ]\S with Ln

(
(
⋂

δ>0 Nδ,t)
)

> 0. This contra-
dicts (14). ¥
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5 Weak formulation and existence theorems
On the one hand, existence results for multi-phase Cahn-Larché systems without considering
damage phase fields are shown in [Gar00] provided that the chemical energy density Wch can
be decomposed into W 1

ch + W 2
ch with convex W 1

ch and linear growth behavior of ∂cW
2
ch ([Gar00,

Section 3.2] provides a detailed explanation). See also [Gar05a] for a survey. Logarithmic free
energies are also studied in [Gar00] as well as in [Gar05b]. Further variants are investigated in
[CMP00], [BP05] and [BCD+02].

Purely mechanical systems with rate-independent damage processes, on the other hand, are
analytically considered and reviewed for instance in [MR06] and [MRZ10]. The rate-independence
enables the concept of the so-called global energetic solutions (see Remark 5.2 (i)) to such systems.

Coupling rate-independent systems with other (rate-dependent) processes (such as with in-
ertial or thermal effects) can bring, however, serious mathematical difficulties as pointed out in
[Rou10].

In our situation where the Cahn-Larché system is coupled with rate-dependent damage, we
will treat our model problem analytically by a regularization method that gives better regularity
property for c and integrability for u in the first instance. A passage to the limit will finally
give us solutions to the original problem. In doing so, the notion of a weak solution consists of
variational equalities and inequalities as well as an energy estimate, inspired by the concept of
energetic solutions in the framework of rate-independent systems.

5.1 Regularization
The regularization we want to consider here is achieved by adding the term ε∆∂tc to the Cahn-
Hilliard equations (such regularization also occurs in [BP05]) and the 4-Laplacian εdiv(|∇u|2∇u)
to the quasi-static equilibrium equation of the model problem. The formulation of the regularized
problem for ε > 0 now reads as

∂tc = ∆(−∆c + ∂cWch(c) + ∂cWel(e(u), c, z) + ε∂tc), (15a)

div(σ(e(u), c, z)) + εdiv(|∇u|2∇u) = 0, (15b)
0 ∈ dzEε(u, c, z) + dżR(∂tz) (15c)

with viscous energy

Eε(u, c, z) := E(u, c, z) + ε

∫

Ω

1
4
|∇u|4 dx,

Ẽε(u, c, z) := Ẽ(u, c, z) + ε

∫

Ω

1
4
|∇u|4 dx.

In the following we consider q ∈ Qv. For every t ∈ [0, T ] the equations (15a)-(15c) can be
translated in a weak formulation as follows:∫

Ω

(∂tc(t))ζ dx = −
∫

Ω

∇µ(t) · ∇ζ dx (16)

for all ζ ∈ H1(Ω) and
∫

Ω

µ(t)ζ dx =
∫

Ω

∇c(t) · ∇ζ + ∂cWch(c(t))ζ + ∂cWel(e(u(t)), c(t), z(t))ζ + ε(∂tc(t))ζ dx (17)

for all ζ ∈ H1(Ω). In the same spirit we translate (15b) as
∫

Ω

∂eWel(e(u(t)), c(t), z(t)) : e(ζ) + ε|∇u(t)|2∇u(t) : ∇ζ dx = 0 (18)

10



for all ζ ∈ W 1,4
Γ (Ω; Rn). The differential inclusion (15c) is equivalent to the variational inequality

ιW 1,p
− (Ω)(∂tz(t))−

〈
dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ζ − ∂tz(t)

〉
≤ ιW 1,p

− (Ω)(ζ) (19)

for all ζ ∈ W 1,p(Ω) (see (5) for the definition of R̃) and an r(t) lying in the Fréchet normal cone
NF(W 1,p

+ (Ω); z(t)) ⊆ (W 1,p(Ω))∗, i.e. r(t) satisfies

ιW 1,p
+ (Ω)(z(t)) + 〈r(t), ζ − z(t)〉 ≤ ιW 1,p

+ (Ω)(ζ) (20)

for all ζ ∈ W 1,p(Ω).
Since q ∈ Qv, property (19) is for test-functions ζ ∈ W 1,p

− (Ω) equivalent to the following
inequality system

0 ≤
〈
dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ζ

〉
, (21a)

0 ≤ −
〈
dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ∂tz(t)

〉
. (21b)

In general, due to the lack of regularity of q, (21b) cannot be justified rigorously. To overcome
this difficulty, we use a formal calculation coming from energetic formulations introduced in
[MT99].

Proposition 5.1 (Energetic characterization) Let q ∈ Qv∩C2(ΩT ; Rn×R×R) be a smooth
solution of (16)-(18). Furthermore, let r(t) ∈ NF(W 1,p

+ (Ω); z(t)) for every t ∈ [0, T ]. Then

(i) 〈r(t), ∂tz(t)〉 = 0 for all t ∈ [0, T ]

and the following two conditions are equivalent:

(ii) (21b) for all t ∈ [0, T ],

(iii) for all 0 ≤ t1 ≤ t2 ≤ T :

Eε(q(t2)) +
∫ t2

t1

〈dżR̃(∂tz), ∂tz〉ds +
∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|2 dxds− Eε(q(t1))

≤
∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tbdxds (22)

Proof.

(i) The inequality 0 ≤ 〈r(t), ∂tz(t)〉 follows directly from (20) by putting ζ = z(t) − ∂tz(t).
The ’≥’ - part can be shown by an approximation argument. Applying Lemma 4.1 with
fM = z(t) and f = z(t) and ζ = −∂tz(t). We obtain a sequence {ζM} ⊆ W 1,p

+ (Ω) and
constants νM > 0 such that

(a) −ζM → ∂tz(t) in W 1,p(Ω) as M →∞,

(b) 0 ≤ z(t)− νMζM a.e. in Ω for all M ∈ N.

Testing (20) with ζ = z(t) − νMζM shows 〈r(t),−ζM 〉 ≤ 0. Passing to M → ∞ gives
〈r(t), ∂tz(t)〉 ≤ 0.

11



To (iii) ⇒ (ii) : We remark that (17) and (18) can be written in the following form:
∫

Ω

µ(t)ζ1 − ε(∂tc(t))ζ1 dx = 〈dcẼε(q(t)), ζ1〉, (23a)

〈duẼε(q(t)), ζ2〉 = 0, (23b)

for all t ∈ [0, T ], all ζ1 ∈ H1(Ω) and all ζ2 ∈ W 1,4
Γ (Ω; Rn).

Let t0 ∈ [0, T ). It follows

Eε(q(t0 + h))− Eε(q(t0))
h

+−
∫ t0+h

t0

〈dżR̃(∂tz), ∂tz〉dt +−
∫ t0+h

t0

∫

Ω

|∇µ|2 + ε|∂tc|2 dxdt

≤ −
∫ t0+h

t0

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxdt + ε−
∫ t0+h

t0

∫

Ω

|∇u|2∇u : ∇∂tb dxdt.

Letting h ↘ 0 gives

d
dt
Ẽε(q(t0)) + 〈dżR̃(∂tz(t0)), ∂tz(t0)〉+

∫

Ω

|∇µ(t0)|2 + ε|∂tc(t0)|2 dx

≤
∫

Ω

∂eWel(e(u(t0)), c(t0), z(t0)) : e(∂tb(t0))dx + ε

∫

Ω

|∇u(t0)|2∇u(t0) : ∇∂tb(t0) dx

= 〈duẼε(q(t0)), ∂tb(t0)〉.
Using the chain rule and (16)-(18) yield

d
dt
Ẽε(q(t0)) = 〈duẼε(q(t0)), ∂tu(t0)〉︸ ︷︷ ︸

apply (23b)

+ 〈dcẼε(q(t0)), ∂tc(t0)〉︸ ︷︷ ︸
apply (23a) and (16)

+〈dzẼε(q(t0)), ∂tz(t0)〉

= 〈duẼε(q(t0)), ∂tb(t0)〉+
∫

Ω

−|∇µ(t0)|2 − ε|∂tc(t0)|2 dx + 〈dzẼε(q(t0)), ∂tz(t0)〉.

In consequence, property (ii) follows with (i). The case t0 = T can be derived similarly by
considering the difference quotient between t0 and t0 − h.

To (ii) ⇒ (iii) : Follows from the relation Eε(q(t2))−Eε(q(t1)) =
∫ t2

t1
d
dt Ẽε(q(t)) dt as well as

the equations (16)-(18) and (i). ¥

Remark 5.2

(i) In the rate-independent case β = 0 and for convex Eε with respect to z, condition (21a) can
be characterized by a stability condition which reads as

Eε(u(t), c(t), z(t)) ≤ Eε(u(t), c(t), ζ) +R(ζ − z(t)) (24)

for all t ∈ [0, T ] and all test-functions ζ ∈ W 1,p
+ (Ω). Thereby, (22) and (24) give an

equivalent description of the differential inclusion (15c) for smooth solutions. This concept
of solutions are referred to as global energetic solutions and was introduced in [MT99]. We
emphasize that the damage variable z in the rate-independent case β = 0 is a function of
bounded variation and is allowed to exhibit jumps. For a comprehensive introduction we
refer to [AFP00]. To tackle rate-dependent systems and non-convexity of Eε with respect
to z, we can not use formulation (24) (cf. [MRS09]).
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(ii) For smooth solutions q, satisfying (16)-(18), the energy inequality (22) and the variational
inequality (21a), one can even show energy balance:

Eε(q(t2)) +
∫ t2

t1

〈dżR̃(∂tz), ∂tz〉ds +
∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|2 dxds

= Eε(q(t1)) +
∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tb dxds

for all 0 ≤ t1 ≤ t2 ≤ T .

(iii) In the case β = 0 we only know that ∂tz is a L1(Ω)-valued Radon measure and the term∫ t2
t1
〈dżR̃(∂tz(t)), ∂tz(t)〉L2(Ω) dt =

∫ t2
t1

∫
Ω
−α∂tz dxdt in (22) should be read as

∫
Ω

αz(t1)) dx−∫
Ω

αz(t2) dx.

This motivates the definition of a solution in the following sense:

Definition 5.3 (Weak solution - viscous problem) A triple q = (u, c, z) ∈ Qv with c(0) =
c0 and z(0) = z0 is called a weak solution of the viscous system (15a)-(15c) with initial-boundary
data and constraints (BC1)-(BC8) if it satisfies the following conditions:

(i) integral equality ∫

ΩT

(∂tc)ζ dxdt = −
∫

ΩT

∇µ · ∇ζ dxdt

for all ζ ∈ L2([0, T ]; H1(Ω)) where µ ∈ L2([0, T ];H1(Ω)) is given by the integral equality
∫

ΩT

µζ dxdt =
∫

ΩT

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ + ε(∂tc)ζ dxdt

for all ζ ∈ L2([0, T ]; H1(Ω));

(ii) integral equality
∫

ΩT

∂eWel(e(u), c, z) : e(ζ) + ε|∇u|2∇u : ∇ζ dxdt = 0

for all ζ ∈ L4([0, T ]; W 1,4
Γ (Ω; Rn));

(iii) integral inequality

0 ≤
∫

ΩT

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ − αζ + β(∂tz)ζ dxdt +
∫ T

0

〈r(t), ζ(t)〉dt,

for all ζ ∈ Lp([0, T ];W 1,p
− (Ω)) ∩ L∞(ΩT ) where r ∈ L1(ΩT ) ⊂ L1

(
[0, T ]; (W 1,p(Ω))∗

)
satisfies

〈r(t), ζ − z(t)〉 ≤ 0

for a.e. t ∈ [0, T ] and for all ζ ∈ W 1,p
+ (Ω);
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(iv) energy inequality

Eε(q(t2)) +
∫

Ω

α(z(t1)− z(t2)) dx +
∫ t2

t1

∫

Ω

β|∂tz|2 dxds +
∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|2 dxds

≤ Eε(q(t1)) +
∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tb dxds

for a.e. 0 ≤ t1 ≤ t2 ≤ T .

Theorem 5.4 (Existence theorem - viscous problem) Let the assumptions in Section 3.1
be satisfied and let c0 ∈ H1(Ω), z0 ∈ W 1,p(Ω) with 0 ≤ z0 ≤ 1 a.e. in Ω and a viscosity factor
ε ∈ (0, 1] be given. Then there exists a weak solution q ∈ Qv of the viscous system (15a)-(15c)
in the sense of Definition 5.3. In addition:

r = −χNz
[∂zWel(e(u), c, z)]+,

where χNz
denotes the characteristic function of the level set Nz := {z = 0} and [·]+ := max{0, ·}.

5.2 Limit problem
Our main objective in this work is an existence result for the system (15a)-(15c) with vanishing
ε-terms, i.e. with ε = 0. In the same fashion as in Section 5.1 we introduce a weak notion of
(6a)-(6c) as follows.

Definition 5.5 (Weak solution - limit problem) A triple q = (u, c, z) ∈ Q with z(0) = z0 is
called a weak solution of the system (6a)-(6c) with boundary and initial conditions (BC1)-(BC8)
if it satisfies the following conditions:

(i) integral equality ∫

ΩT

(c− c0)∂tζ dxdt =
∫

ΩT

∇µ · ∇ζ dxdt

for all ζ ∈ L2([0, T ]; H1(Ω)) with ∂tζ ∈ L2(ΩT ) and ζ(T ) = 0 where µ ∈ L2([0, T ];H1(Ω))
is given by the integral equality

∫

ΩT

µζ dxdt =
∫

ΩT

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ dxdt

for all ζ ∈ L2([0, T ]; H1(Ω));

(ii) integral equality ∫

ΩT

∂eWel(e(u), c, z) : e(ζ) dxdt = 0,

for all ζ ∈ L2([0, T ]; H1
Γ(Ω; Rn));

(iii) integral inequality

0 ≤
∫

ΩT

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ − αζ + β(∂tz)ζ dxdt +
∫ T

0

〈r(t), ζ(t)〉dt,

for all ζ ∈ Lp([0, T ];W 1,p
− (Ω)) ∩ L∞(ΩT ) where r ∈ L1(ΩT ) satisfies

〈r(t), ζ − z(t)〉 ≤ 0

for a.e. t ∈ [0, T ] and for all ζ ∈ W 1,p
+ (Ω);
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(iv) energy inequality

E(q(t2)) +
∫

Ω

α(z(t1)− z(t2)) dx +
∫ t2

t1

∫

Ω

β|∂tz|2 dxds +
∫ t2

t1

∫

Ω

|∇µ|2 dxds

≤ E(q(t1)) +
∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb)dxds

for a.e. 0 ≤ t1 ≤ t2 ≤ T .

Theorem 5.6 (Existence theorem - limit problem) Let the assumptions in Section 3.1 be
satisfied and let c0 ∈ H1(Ω), z0 ∈ W 1,p(Ω) with 0 ≤ z0 ≤ 1 a.e. in Ω be given. Then there exists
a weak solution q ∈ Q of the system (6a)-(6c) in the sense of Definition 5.5.

Remark 5.7 We want to emphasize that z obtained in Theorem 5.4 as well as in Theorem 5.6
is monotonically decreasing with respect to t and 0 ≤ z ≤ 1. See the definition of Q in Section
3.2.

6 Proof of the existence theorems

6.1 Viscous case
The proof of Theorem 5.4 is based on recursive functional minimization that comes from an
implicit Euler scheme of system (15a)-(15c).

We first consider the initial values. The initial displacement u0
ε is chosen to be a minimizer

of the functional u 7→ Eε(u, c0, z0) defined on the space W 1,4(Ω) with the constraint u|Γ = b(0)|Γ
(the existence proof is based on direct methods in the calculus of variations - see the proof of
Lemma 6.1 below). The discretization fineness is given by τ := T

M , where M ∈ N. We set
q0
M,ε := (u0

M,ε, c
0
M,ε, z

0
M,ε) := (u0

ε, c
0, z0) and construct qm

M,ε for m ∈ {1, . . . , M} recursively by
considering the functional

Em
M,ε(u, c, z) := Ẽε(u, c, z) + R̃

(
z − zm−1

M,ε

τ

)
τ +

1
2τ
‖c− cm−1

M,ε ‖2H̃0
+

ε

2τ
‖c− cm−1

M,ε ‖2L2(Ω).

The set of admissible states for Em
M,ε is set to

Qm
M,ε :=

{
q = (u, c, z) ∈ W 1,4(Ω; Rn)×H1(Ω)×W 1,p(Ω)

with u|Γ = b(mτ)|Γ,
∫

Ω

c− c0 dx = 0 and 0 ≤ z ≤ zm−1
M,ε a.e. in Ω

}
.

A minimization problem with the weighted (H1(Ω, Rn))?-scalar product 〈·, ·〉H̃0
has been consid-

ered for Em
M,ε(u, c, z) = Em

M,ε(u, c) =
∫
Ω

1
2 |∇c|2 + Wch(c) + Wel(e(u), c) dx + 1

2τ ‖c − cm−1
M,ε ‖2H̃0

in
[Gar00]. However, due to the additional internal variable z, our minimization procedure becomes
much more involved.

In the following, we will omit the ε-dependence in the notation since ε ∈ (0, 1] is fixed until
Section 6.2.

Lemma 6.1 The functional Em
M has a minimizer qm

M = (um
M , cm

M , zm
M ) ∈ Qm

M .
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Proof. The existence is shown by direct methods in calculus of variations. We can immediately
see that Qm

M is closed with respect to the weak topology in W 1,4(Ω; Rn) × H1(Ω) × W 1,p(Ω).
Furthermore, we need to show coercivity and sequentially weakly lower semi-continuity of Em

M

defined on Qm
M .

(i) Coercivity. We have the estimate

Em
M (q) ≥ 1

2
‖∇c‖2L2(Ω) +

1
p
‖∇z‖p

Lp(Ω) +
ε

4
‖∇u‖4L4(Ω).

Therefore, given a sequence {qk}k∈N in Qm
M with the boundedness property Em

M (qk) < C
for all k ∈ N, we obtain the boundedness of uk in W 1,4(Ω) by Korn’s inequality and the
continuous embedding H1(Ω) ↪→ L4(Ω), the boundedness of ck in H1(Ω) by Poincaré’s
inequality (

∫
Ω

ck dx is conserved) and the boundedness of zk in W 1,p(Ω) by the restriction
0 ≤ zk ≤ 1 a.e. in Ω.

(ii) Sequentially weakly lower semi-continuity. All terms in Em
M except

∫
Ω

Wch(c) dx and∫
Ω

Wel(e(u), c, z) dx are convex and continuous and therefore sequentially weakly l.s.c..
Now let (uk, ck, zk) ⇀ (u, c, z) be a weakly converging sequence in Qm

M . In particular,
zk → z in Lp(Ω), zk → z a.e. in Ω and ck → c in Lr(Ω) as k → ∞ for all 1 ≤ r < 2?

and ck → c a.e. in Ω for a subsequence. Lebesgue’s generalized convergence theorem
yields

∫
Ω

Wch(ck) dx → ∫
Ω

Wch(c) dx using (GC6). The remaining term can be treated by
employing the uniform convexity of Wel(·, c, z) (see (GC1)):
∫

Ω

Wel(e(uk), ck, zk)−Wel(e(u), c, z) dx

=
∫

Ω

Wel(e(u), ck, zk)−Wel(e(u), c, z) dx +
∫

Ω

Wel(e(uk), ck, zk)−Wel(e(u), ck, zk) dx

≥
∫

Ω

Wel(e(u), ck, zk)−Wel(e(u), c, z) dx

︸ ︷︷ ︸
→0 by Lebesgue’s gen. conv. theorem and (GC2)

+
∫

Ω

∂eWel(e(u), ck, zk)(e(uk)− e(u)) dx

The second term also converges to 0 because of ∂eWel(e(u), ck, zk) → ∂eWel(e(u), c, z) in
L2(Ω) (by Lebesgue’s generalized convergence theorem and (11a)) and e(uk)− e(u) ⇀ 0 in
L2(Ω).

Thus there exists qm
M = (um

M , cm
M , zm

M ) ∈ Qm
M such that Em

M (qm
M ) = infq∈Qm

M
Em

M (q). ¥

The minimizers qm
M for m ∈ {0, . . . , M} are used to construct approximate solutions qM and

q̂M to our viscous problem by a piecewise constant and linear interpolation in time, respectively.
More precisely,

qM (t) := qm
M ,

q̂M (t) := βqm
M + (1− β)qm−1

M

with t ∈ ((m− 1)τ,mτ ] and β = t−(m−1)τ
τ . The retarded function q−M is set to

q−M (t) :=

{
qM (t− τ), if t ∈ [τ, T ],
q0
ε , if t ∈ [0, τ).
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The functions bM and b−M are analogously defined adapting the notation bm
M := b(mτ). Further-

more, the discrete chemical potential is given by (note that ∂tĉM (t) ∈ H0)

µM (t) := −(−∆)−1 (∂tĉM (t)) + λM (t) (25)

with the Lagrange multiplier λM originating from mass conservation:

λM (t) := −
∫

Ω

∂cWch(cM (t)) + ∂cWel(e(uM (t)), cM (t), zM (t)) dx. (26)

The discretization of the time variable t will be expressed by the functions

dM (t) := min{mτ |m ∈ N0 and mτ ≥ t},
d−M (t) := min{(m− 1)τ |m ∈ N0 and mτ ≥ t}.

The following lemma clarifies why the functions qM , q−M and q̂M are approximate solutions to
our problem.

Lemma 6.2 (Euler-Lagrange equations) The functions qM , q−M and q̂M satisfy the following
properties:

(i) for all t ∈ (0, T ) and all ζ ∈ H1(Ω):
∫

Ω

(∂tĉM (t))ζ dx = −
∫

Ω

∇µM (t) · ∇ζ dx (27)

(ii) for all t ∈ (0, T ) and all ζ ∈ H1(Ω):
∫

Ω

µM (t)ζ dx =
∫

Ω

∇cM (t) · ∇ζ + ∂cWch(cM (t))ζ dx

+
∫

Ω

∂cWel(e(uM (t)), cM (t), zM (t))ζ + ε(∂tĉM (t))ζ dx (28)

(iii) for all t ∈ [0, T ] and for all ζ ∈ W 1,4
Γ (Ω; Rn):

0 =
∫

Ω

∂eWel(e(uM (t)), cM (t), zM (t)) : e(ζ) + ε|∇uM (t)|2∇uM (t) : ∇ζ dx (29)

(iv) for all t ∈ (0, T ) and all ζ ∈ W 1,p(Ω) such that there exists a constant ν > 0 with 0 ≤
νζ + zM (t) ≤ z−M (t) a.e. in Ω:

0 ≤
∫

Ω

|∇zM (t)|p−2∇zM (t) · ∇ζ + ∂zWel(e(uM (t)), cM (t), zM (t))ζ − αζ + β(∂tẑM (t))ζ dx

(30)

(v) for all t ∈ [0, T ]:

Eε(qM (t)) +
∫ dM (t)

0

R(∂tẑM ) ds +
∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM |2 +

1
2
|∇µM |2 dxds

≤ Eε(q0
ε) +

∫ dM (t)

0

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ dM (t)

0

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tb dxds (31)

17



Proof. Using Lebesgue’s generalized convergence theorem, the mean value theorem of differen-
tiability and growth conditions (11a), (GC4)-(GC6) we obtain the variational derivatives of Ẽε

with respect to u, c and z:

〈duẼε(q), ζ〉 =
∫

Ω

∂eWel(e(u), c, z) : e(ζ) + ε|∇u|2∇u : ∇ζ dx for ζ ∈ W 1,4(Ω; Rn), (32a)

〈dcẼε(q), ζ〉 =
∫

Ω

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ dx for ζ ∈ H1(Ω), (32b)

〈dzẼε(q), ζ〉 =
∫

Ω

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ dx for ζ ∈ W 1,p(Ω). (32c)

To (i)-(v):

(i) This follows from (25).

(ii) qm
M fulfills 〈dcEm

M (qm
M ), ζ1〉 = 0 for all ζ1 ∈ H0 and all m ∈ {1, . . . , M}. Therefore,

0 = 〈dcẼε(qM (t)), ζ1〉+ 〈∂tĉM (t), ζ1〉H̃0
+ ε〈∂tĉM (t), ζ1〉L2(Ω).

On the one hand definition (25) implies

〈∂tĉM (t), ζ1〉H̃0
= 〈(−∆)−1 (∂tĉM (t)) , ζ1〉L2(Ω)

= 〈−µM (t) + λM (t), ζ1〉L2(Ω)

= −〈µM (t), ζ1〉L2(Ω)

and consequently

0 = 〈dcẼε(qM (t)), ζ1〉 − 〈µM (t), ζ1〉L2(Ω) + ε〈∂tĉM (t), ζ1〉L2(Ω) for all ζ1 ∈ H0. (33)

On the other hand definitions (25) and (26) yield for ζ2 ≡ C with C ∈ R:

〈dcẼε(qM (t)), ζ2〉 − 〈µM (t), ζ2〉L2(Ω) + ε〈∂tĉM (t), ζ2〉L2(Ω)

= CLn(Ω)λM (t) + 〈(−∆)−1 (∂tĉM (t)) , ζ2〉L2(Ω)︸ ︷︷ ︸
=0

−〈λM (t), ζ2〉L2(Ω)︸ ︷︷ ︸
CLn(Ω)λM (t)

+0

= 0. (34)

Setting ζ1 = ζ − −
∫

ζ and ζ2 = −
∫

ζ, inserting (32b) into (33) and (34), and adding (33) to
(34) shows finally (ii) (cf. [Gar00, Lemma 3.2]).

(iii) This property follows from (32a) and 0 = 〈duEm
M (qm

M ), ζ〉 = 〈duẼε(qm
M ), ζ〉 for all ζ ∈

W 1,4
Γ (Ω; Rn).

(iv) By construction, zm
M minimizes Em

M (um
M , cm

M , ·) with the constraints 0 ≤ z and z−zm−1
M ≤ 0

a.e. in Ω. This implies

−〈dzẼε(qm
M ), ζ − zm

M 〉 − 〈dżR̃
(

zm
M − zm−1

M

τ

)
, ζ − zm

M 〉L2(Ω) ≤ 0 (35)

for all ζ ∈ W 1,p(Ω) with 0 ≤ ζ ≤ zm−1
M a.e. in Ω. Now, let the functions ζ ∈ W 1,p(Ω) and

ν > 0 with 0 ≤ νζ + zM (t) ≤ z−M (t) a.e. in Ω be given. Since ν > 0, we obtain from (35):

−〈dzẼε(qM (t)), ζ(t)〉 − 〈dżR̃ (∂tẑM (t)) , ζ(t)〉L2(Ω) ≤ 0

This and (32c) gives (iv).
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(v) Testing Em
M with q = (um−1

M + bm
M − bm−1

M , cm−1
M , zm−1

M ) and using the chain rule yields:

Eε(qm
M ) +R

(
zm
M − zm−1

M

τ

)
τ +

1
2τ
‖cm

M − cm−1
M ‖2

H̃0
+

ε

2τ
‖cm

M − cm−1
M ‖2L2(Ω)

≤ Eε(um−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M )

= Eε(qm−1
M ) + Eε(um−1

M + bm
M − bm−1

M , cm−1
M , zm−1

M )− Eε(qm−1
M )

= Eε(qm−1
M ) +

∫ mτ

(m−1)τ

d
ds
Eε(um−1

M + b(s)− bm−1
M , cm−1

M , zm−1
M ) ds

= Eε(qm−1
M )

+
∫ mτ

(m−1)τ

∫

Ω

∂eWel(e(um−1
M + b(s)− bm−1

M ), cm−1
M , zm−1

M ) : e(∂tb) dxds

+ ε

∫ mτ

(m−1)τ

∫

Ω

|∇um−1
M +∇b(s)−∇bm−1

M |2∇(um−1
M + b(s)− bm−1

M ) : ∇∂tbdxds

Summing this inequality for k = 1, . . . , m one gets:

Eε(qm
M ) +

m∑

k=1

τ


R

(
zk
M − zk−1

M

τ

)
+

1
2

∥∥∥∥∥
ck
M − ck−1

M

τ

∥∥∥∥∥

2

H̃0

+
ε

2

∥∥∥∥∥
ck
M − ck−1

M

τ

∥∥∥∥∥

2

L2(Ω)




≤ Eε(q0
ε) +

∫ mτ

0

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ mτ

0

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tbdxds

Because of
∥∥∥ ck

M−ck−1
M

τ

∥∥∥
2

H̃0

= ‖∇µk
M‖2L2(Ω) by (25), above estimate shows (v). ¥

The discrete energy inequality (31) gives rise to a-priori estimates for the approximate solutions:

Lemma 6.3 (Energy boundedness) There exists a constant C > 0 independent of M , t and
ε such that

Eε(qM (t)) +
∫ dM (t)

0

R(∂tẑM ) ds +
∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM |2 +

1
2
|∇µM |2 dxds ≤ C(Eε(q0

ε) + 1).

Proof. Exploiting (GC3) yields the estimate (C > 0 denotes a context-dependent constant
independent of M , t and ε):

∫

Ω

∂eWel(e(u−M (s) + b(s)− b−M (s)), c−M (s), z−M (s)) : e(∂tb(s)) dx

≤ C‖∇∂tb(s)‖L∞(Ω)

∫

Ω

Wel(e(u−M (s)), c−M (s), z−M (s)) + |e(b(s)− b−M (s))|+ 1dx. (36)

In addition,
∫

Ω

|∇u−M (s) +∇b(s)−∇b−M (s)|2∇(u−M (s) + b(s)− b−M (s)) : ∇∂tb(s) dx

≤ C‖∇∂tb(s)‖L∞(Ω)

∫

Ω

|∇u−M (s)|3 + |∇(b(s)− b−M (s))|3 dx. (37)
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To simplify notation we define the function:

γ(t) :=

{
Eε(qM (t)) +

∫ dM (t)

0
R(∂tẑM ) ds +

∫ dM (t)

0

∫
Ω

ε
2 |∂tĉM |2 + 1

2 |∇µM |2 dxds, if t ∈ [0, T ],
Eε(q0

ε), if t ∈ [−τ, 0).

Using (36) and (37) the discrete energy inequality (31) can be estimated as follows:

γ(t) ≤ Eε(q0
ε) + C

∫ dM (t)

0

‖∇∂tb(s)‖L∞(Ω)Eε(q−M (s)) ds

+ C
∥∥∇∂tb

∥∥
L1([0,T ];L∞(Ω))

∥∥|∇(b− b−M )|3 + |e(b− b−M )|+ 1
∥∥

L∞([0,T ];L1(Ω))

≤ Eε(q0
ε) + C

∫ d−M (t)

−τ

‖∇∂tb(s + τ)‖L∞(Ω)Eε(qM (s)) ds + C

≤ Eε(q0
ε) + C

∫ t

−τ

‖∇∂tb(s + τ)‖L∞(Ω)γ(s) ds + C.

Gronwall’s inequality shows γ(t) ≤ C(Eε(q0
ε) + 1) for all t ∈ [0, T ]. ¥

Corollary 6.4 (A-priori estimates) There exists a constant C > 0 independent of M such
that

(i) ‖uM‖L∞([0,T ];W 1,4(Ω;Rn)) ≤ C

(ii) ‖cM‖L∞([0,T ];H1(Ω)) ≤ C

(iii) ‖zM‖L∞([0,T ];W 1,p(Ω)) ≤ C

(iv) ‖∂tĉM‖L2(ΩT ) ≤ C

(v) ‖∂tẑM‖L2(ΩT ) ≤ C

(vi) ‖µM‖L2([0,T ];H1(Ω)) ≤ C

for all M ∈ N.

Proof. We use Lemma 6.3. The boundedness of {∇uM (t)} in L4(Ω; Rn) and Korn’s inequality
yield (i). The boundedness of {∇cM (t)} in L2(Ω) and mass conservation imply (ii) by Poincaré’s
inequality. The boundedness of {∇zM (t)} in Lp(Ω) and 0 ≤ zM (t) ≤ 1 a.e. in Ω for all M and
all t ∈ [0, T ] show (iii). The properties (iv) and (v) follow immediately. The boundedness of
{∇µM} in L2(ΩT ) and {∫

Ω
µM (t) dx} with respect to M and t show (vi) by Poincaré’s inequality.

Indeed, {∫
Ω

µM (t) dx} is bounded with respect to M and t because of (28) and (27) tested with
ζ ≡ 1. ¥

Due to the a-priori estimates we can select weakly (weakly-?) convergent subsequences (see
Lemma 6.5). Furthermore, exploiting the Euler-Lagrange equations of the approximate solu-
tions we even attain strong convergence properties (see Lemma 6.6 and Lemma 6.8).

Lemma 6.5 (Weak convergence of the approximate solutions) There exists a subse-
quence {Mk} and an element (u, c, z) = q ∈ Qv with c(0) = c0 and z(0) = z0 such that the
following properties are satisfied:
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(i) zMk
, z−Mk

?
⇀ z in L∞([0, T ];W 1,p(Ω)),

zMk
(t), z−Mk

(t) ⇀ z(t) in W 1,p(Ω) for a.e. t ∈ [0, T ],
zMk

, z−Mk
→ z a.e. in ΩT and

ẑMk
⇀ z in H1([0, T ]; L2(Ω))

(ii) cMk
, c−Mk

?
⇀ c in L∞([0, T ];H1(Ω)),

cMk
(t), c−Mk

(t) ⇀ c(t) in H1(Ω) for a.e. t ∈ [0, T ],
cMk

, c−Mk
→ c a.e. in ΩT and

ĉMk
⇀ c in H1([0, T ];L2(Ω))

(iii) uMk

?
⇀ u in L∞([0, T ]; W 1,4(Ω))

(iv) µMk
⇀ µ in L2([0, T ]; H1(Ω))

as k →∞.

Proof. To simplify notation we omit the index k in the proof.

(ii) Since ĉM is bounded in L2([0, T ]; H1(Ω)) and ∂tĉM is bounded in L2(ΩT ), we obtain ĉM → ĉ
in L2(ΩT ) as M → ∞ for a subsequence by a compactness result from Aubin and Lions
(see [Sim86]). Therefore we can extract a subsequence such that ĉM (t) → ĉ(t) in L2(Ω)
for a.e. t ∈ [0, T ] and ĉM → ĉ a.e. on ΩT . We denote this subsequence also with {ĉM}.
The boundedness of {ĉM (t)}M∈N in H1(Ω) even shows ĉM (t) ⇀ ĉ(t) in H1(Ω) for a.e.
t ∈ [0, T ]. In addition, the boundedness of {ĉM} in L∞([0, T ];H1(Ω)) shows ĉM

?
⇀ ĉ in

L∞([0, T ]; H1(Ω)). Furthermore, we obtain from the boundedness of {∂tĉM} in L2(ΩT ) for
every t ∈ [0, T ]:

‖cM (t)− ĉM (t)‖L1(Ω) = ‖ĉM (dM (t))− ĉM (t)‖L1(Ω)

≤
∫ dM (t)

t

‖∂tĉM (s)‖L1(Ω) ds

≤ C(dM (t)− t)1/2‖∂tĉM‖L2(ΩT ) → 0 as M →∞

Lebesgue’s convergence theorem yields ‖cM − ĉM‖L1(ΩT ) → 0 as M →∞. Analogously we
obtain ‖cM − c−M‖L1(ΩT ) → 0 as M → ∞. Thus the convergence properties for ĉM also
holds for cM and c−M with the same limit c = c− = ĉ a.e. . The boundedness of {ĉM} in
H1([0, T ]; L2(Ω)) shows ĉM ⇀ c in H1([0, T ]; L2(Ω)) for a subsequence.

(i) We obtain the convergence properties for {zM} with the same argumentation. Note that
the limit function is monotonically decreasing with respect to t.

(iii) This property follows from the boundedness of {uM} in L∞([0, T ];H1(Ω; Rn)).

(iv) This property follows from the boundedness of {µM} in L2([0, T ];H1(Ω)). ¥

Lemma 6.6 There exists a subsequence {Mk} such that uMk
, u−Mk

→ u in L4([0, T ];W 1,4(Ω; Rn))
as k →∞.
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Proof. We omit the index k in the proof.
Applying (GC1), Lemma A.1 with p = 4, and considering (29) with the test-function ζ =
uM (t)− u(t)− bM (t) + b(t) we get

η‖e(uM )− e(u)‖2L2(ΩT ;Rn×n) + εC−1
ineq‖∇uM −∇u‖4L4(ΩT ;Rn×n)

≤
∫

ΩT

(∂eWel(e(uM ), cM , zM )− ∂eWel(e(u), cM , zM )) : (e(uM )− e(u)) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u|2∇u) : (∇uM −∇u) dxdt

=
∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt

︸ ︷︷ ︸
=0 by (29)

+
∫

ΩT

∂eWel(e(uM ), cM , zM ) : (e(bM )− e(b)) dxdt

︸ ︷︷ ︸
(?)

+ε

∫

ΩT

|∇uM |2∇uM : (∇bM −∇b) dxdt

︸ ︷︷ ︸
(??)

−
∫

ΩT

(∂eWel(e(u), cM , zM ) : (e(uM )− e(u)) dxdt

︸ ︷︷ ︸
(???)

−ε

∫

ΩT

|∇u|2∇u : (∇uM −∇u) dxdt

︸ ︷︷ ︸
(????)

.

(38)

Since ∂eWel(e(uM ), cM , zM ) is bounded in L2(ΩT ; Rn×n) (by (11a) and Corollary 6.4) as well as
e(bM ) → e(b) in L2(ΩT ; Rn×n), we obtain (?) → 0 as M →∞. The boundedness of |∇uM |2∇uM

in L4/3(ΩT ; Rn×n) by Corollary 6.4 and ∇bM → ∇b in L4(ΩT ; Rn×n) lead to (??) → 0. We
also have ∂eWel(e(u), cM , zM ) → ∂eWel(e(u), c, z) in L2(ΩT ; Rn×n) by (11a) and Lebesgue’s
generalized convergence theorem. Furthermore, e(uM ) ⇀ e(u) in L2(ΩT ; Rn × Rn) by Lemma
6.5. This gives (? ? ?) → 0. Since ∇uM ⇀ ∇u in L4(ΩT ; Rn) by Lemma 6.5, we obtain
(? ? ??) → 0. Therefore, (38) implies e(uM ) → e(u) in L2(ΩT ; Rn×n) and ∇uM → ∇u in
L4(ΩT ; Rn×n) as M → ∞. Korn’s inequality finally shows uM → u in L4([0, T ];W 1,4(Ω; Rn)).
Now, we choose a subsequence such that uM (t) → u(t) in W 1,4(Ω; Rn) for a.e. t ∈ [0, T ] and
uM → u a.e. in ΩT . We also denote this subsequence with {uM}.

Analogously we obtain a u− ∈ L4([0, T ];W 1,4(Ω)) satisfying u−M → u− with the same con-
vergence properties. We will show u = u− a.e. . Consider (29) for qM (t) and for q−M (t):

0 =
∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt, (39a)

0 =
∫

ΩT

∂eWel(e(u−M ), c−M , z−M ) : e(ζ) + ε|∇u−M |2∇u−M : ∇ζ dxdt (39b)

We choose the test-function ζ(t) = uM (t) − u−M (t) − bM (t) + b−M (t) ∈ W 1,4
Γ (Ω). An estimate

similar to (38) gives:

η‖e(uM )− e(u−M )‖2L2(ΩT ) + εC−1
ineq‖∇uM −∇u−M‖4L4(ΩT )

≤
∫

ΩT

(∂eWel(e(uM ), cM , zM )− ∂eWel(e(u−M ), cM , zM )) : (e(uM )− e(u−M )) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u−M |2∇u−M ) : (∇uM −∇u−M ) dxdt
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=
∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt

︸ ︷︷ ︸
=0 by (39a)

−
∫

ΩT

∂eWel(e(u−M ), c−M , z−M ) : e(ζ) + ε|∇u−M |2∇u−M : ∇ζ dxdt

︸ ︷︷ ︸
=0 by (39b)

+
∫

ΩT

(∂eWel(e(u−M ), c−M , z−M )− ∂eWel(e(u−M ), cM , zM )) : (e(uM )− e(u−M )) dxdt

+
∫

ΩT

(∂eWel(e(uM ), cM , zM )− ∂eWel(e(u−M ), c−M , z−M )) : (e(bM )− e(b−M )) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u−M |2∇u−M ) : (∇bM −∇b−M ) dxdt

Observe that ∂eWel(e(u−M ), c−M , z−M )− ∂eWel(e(u−M ), cM , zM ) → 0 in L2(ΩT ) by Lebesgue’s gen-
eralized convergence theorem (using growth condition (11a), Lemma 6.5 and convergence prop-
erties of uM and u−M ) as well as e(bM ) − e(b−M ) → 0 in L2(ΩT ; Rn×n) and ∇bM −∇b−M → 0 in
L4(ΩT ; Rn×n). So each term on the right hand side converges to 0 as M →∞ ¥

Lemma 6.7 There exists a subsequence {Mk} such that cMk
, c−Mk

→ c in L2([0, T ];H1(Ω)) as
k →∞.

Proof. We omit the index k in the proof.
Lemma 6.5 implies cM (t) → c(t) in L2?/2+1(Ω) for a.e. t ∈ [0, T ]. Using Corollary 6.4 and
Lebesgue’s convergence theorem, we get cM → c in L2?/2+1(ΩT ). Testing (28) with ζ = cM (t)
and integrate from t = 0 to t = T and using Lebesgue’s generalized convergence theorem, growth
conditions (GC4) and (GC6) and Lemma 6.5:

∫

ΩT

|∇cM |2 dxdt → −
∫

ΩT

∂cWch(c)c + ∂cWel(e(u), c, z)c + ε(∂tc)c− µc dxdt

as M → ∞. On the other hand testing (28) with c(t) and integrate from t = 0 to t = T (note
that c ∈ L2?

(ΩT ) and using ∂cWch(cM ) → ∂cWch(c) in L2?/(2?−1)(ΩT ) as M →∞ by Lebesgue’s
generalized convergence theorem) we obtain by passing to M →∞ on each side:

∫

ΩT

|∇c|2 dxdt = −
∫

ΩT

∂cWch(c)c + ∂cWel(e(u), c, z)c + ε(∂tc)c− µc dxdt

Therefore cM → c in L2([0, T ];H1(Ω)) as M → ∞. The convergence ‖cM‖L2([0,T ];H1(Ω)) →
‖c‖L2([0,T ];H1(Ω)) implies ‖c−M‖L2([0,T ];H1(Ω)) → ‖c‖L2([0,T ];H1(Ω)). We also have c−M ⇀ c in
L2([0, T ]; H1(Ω)) (by Lemma 6.5 (ii)) and consequently c−M → c in L2([0, T ];H1(Ω)) as M →∞.

¥
Note that in connection with Corollary 6.4 we even get for each q ∈ N

cM , c−M → c in Lq([0, T ];H1(Ω))

for a subsequence as M →∞.

Lemma 6.8 There exists a subsequence {Mk} such that zMk
, z−Mk

→ z in Lp([0, T ];W 1,p(Ω)) as
k →∞.
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Proof. To simplify notation we omit the index k in the proof.
Applying Lemma 4.2 with f = ζ = z and fM = z−M gives a sequence of approximations
{ζM}M∈N ⊆ Lp([0, T ];W 1,p

+ (Ω)) ∩ L∞(ΩT ) with the properties (note that we have z−M (t) ⇀ z(t)
in W 1,p(Ω) for a.e. t ∈ [0, T ] by Lemma 6.5):

ζM → z in Lp([0, T ];W 1,p(Ω)) as M →∞ (40a)

0 ≤ ζM ≤ z−M a.e. on ΩT for all M ∈ N (40b)

Testing (30) with ζ = ζM (t)− zM (t) for ν = 1 (possible due to (40b)) integrating from t = 0 to
t = T , and using the elementary inequality in Lemma A.1 yields:

C−1
ineq

∫

ΩT

|∇zM −∇z|p dxdt

≤
∫

ΩT

(|∇zM |p−2∇zM − |∇z|p−2∇z) · ∇(zM − z) dxdt

≤
∫

ΩT

|∇zM |p−2∇zM · ∇(zM − ζM ) dxdt

+
∫

ΩT

|∇zM |p−2∇zM · ∇(ζM − z)− |∇z|p−2∇z · ∇(zM − z) dxdt

≤
∫

ΩT

(∂zWel(e(uM ), cM , zM )− α + β∂tẑM )(ζM − zM ) dxdt

+
∫

ΩT

|∇zM |p−2∇zM · ∇(ζM − z)− |∇z|p−2∇z · ∇(zM − z) dxdt

≤ ‖∂zWel(e(uM ), cM , zM )− α + β∂tẑM‖L2(ΩT )︸ ︷︷ ︸
bounded by (GC5) and Cor. 6.4

‖ζM − zM‖L2(ΩT )

+ ‖∇zM‖p−1
Lp(ΩT )︸ ︷︷ ︸

bounded by Cor. 6.4

‖∇ζM −∇z‖Lp(ΩT ) −
∫

ΩT

|∇z|p−2∇z · ∇(zM − z) dxdt

Observe that ∇ζM −∇z → 0 in Lp(ΩT ; Rn) and ζM −zM → 0 in L2(ΩT ) (by property (40a) and
by Lemma 6.5) as well as ∇zM −∇z ⇀ 0 in Lp(ΩT ; Rn) by Lemma 6.5. Using these properties,
each term on the right hand side converges to 0 as M →∞.

We also obtain ‖z−M‖Lp([0,T ];W 1,p(Ω)) → ‖z‖Lp([0,T ];W 1,p(Ω)) from ‖zM‖Lp([0,T ];W 1,p(Ω)) →
‖z‖Lp([0,T ];W 1,p(Ω)). Because of z−M ⇀ z in Lp([0, T ];W 1,p(Ω)) (by Lemma 6.5 (i)) we even
have z−M → z in Lp([0, T ];W 1,p(Ω)) as M →∞. ¥

In conclusion, Corollary 6.4, Lemma 6.5, Lemma 6.6, Lemma 6.7 and Lemma 6.8 imply the
following convergence properties:

Corollary 6.9 There exists subsequence {Mk} and an element (u, c, z) = q ∈ Qv with c(0) = c0

and z(0) = z0 such that

(i) zMk
, z−Mk

→ z in Lp([0, T ]; W 1,p(Ω)),
zMk

(t), z−Mk
(t) → z(t) in W 1,p(Ω) for a.e. t ∈ [0, T ],

zMk
, z−Mk

→ z a.e. in ΩT and
ẑMk

⇀ z in H1([0, T ]; L2(Ω))

(ii) cMk
, c−Mk

→ c in L2?

([0, T ];H1(Ω)),
cMk

(t), c−Mk
(t) → c(t) in H1(Ω) for a.e. t ∈ [0, T ],
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cMk
, c−Mk

→ c a.e. in ΩT and
ĉMk

⇀ c in H1([0, T ];L2(Ω))

(iii) uMk
, u−Mk

→ u in L4([0, T ];W 1,4(Ω; Rn)),
uMk

(t), u−Mk
(t) → u(t) in W 1,4(Ω; Rn) for a.e. t ∈ [0, T ],

uMk
, u−Mk

→ u a.e. in ΩT

(iv) µMk
⇀ µ in L2([0, T ]; H1(Ω))

(v) ∂cWch(cMk
) → ∂cWch(c) in L2(ΩT )

as k →∞.

The above convergence properties allow us to establish an energy estimate, which is in an asymp-
totic sense stronger than the one in Lemma 6.2 (v). We emphasize that (31) has in comparison
with (41) no factor 1/2 in front of the terms β|∂tẑM |2, ε|∂tĉM |2 and |∇µM |2.
Lemma 6.10 (Precise energy inequality) For every 0 ≤ t1 < t2 ≤ T :

Eε(qM (t2)) +
∫ dM (t2)

d−M (t1)

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxds− Eε(q−M (t1))

≤
∫ dM (t2)

d−M (t1)

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ dM (t2)

d−M (t1)

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tbdxds + κM (41)

with κM → 0 as M →∞.

Proof. We know Em
M (qm

M ) ≤ Em
M (um−1

M + bm
M − bm−1

M , cm
M , zm

M ). The regularity properties of the
functions b, ĉM and ẑM ensure that the chain rule can be applied and the following integral terms
are well defined:

Eε(um
M , cm

M , zm
M )

≤ Eε(um−1
M + bm

M − bm−1
M , cm

M , zm
M )

= Eε(um−1
M , cm−1

M , zm−1
M )

+ Eε(um−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M )− Eε(um−1

M , cm−1
M , zm−1

M )

+ Eε(um−1
M + bm

M − bm−1
M , cm

M , zm−1
M )− Eε(um−1

M + bm
M − bm−1

M , cm−1
M , zm−1

M )

+ Eε(um−1
M + bm

M − bm−1
M , cm

M , zm
M )− Eε(um−1

M + bm
M − bm−1

M , cm
M , zm−1

M )

= Eε(um−1
M , cm−1

M , zm−1
M )

+
∫ mτ

(m−1)τ

〈duẼε(um−1
M + b(s)− bm−1

M , cm−1
M , zm−1

M ), ∂tb(s)〉(H1)∗×H1 ds

+
∫ mτ

(m−1)τ

〈dcẼε(um−1
M + bm

M − bm−1
M , ĉM (s), zm−1

M ), ∂tĉM (s)〉(H1)∗×H1 ds

+
∫ mτ

(m−1)τ

〈dzẼε(um−1
M + bm

M − bm−1
M , cm

M , ẑM (s)), ∂tẑM (s)〉(W 1,p)∗×W 1,p ds

25



Summing from m = d−M (t1)

τ + 1 to dM (t2)
τ yields:

Eε(qM (t2))− Eε(q−M (t1))

≤ ε

∫ dM (t2)

d−M (t1)

∫

Ω

|∇(u−M + b− b−M )|2∇(u−M + b− b−M ) : ∇∂tbdxds

+
∫ dM (t2)

d−M (t1)

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , z−M ) : e(∂tb) dxds

+
∫ dM (t2)

d−M (t1)

∫

Ω

∂cWel(e(u−M + bM − b−M ), ĉM , z−M )∂tĉM dxds

︸ ︷︷ ︸
(?)

+
∫ dM (t2)

d−M (t1)

∫

Ω

∇ĉM · ∇∂tĉM + ∂cWch(ĉM )∂tĉM dxds

︸ ︷︷ ︸
(??)

+
∫ dM (t2)

d−M (t1)

∫

Ω

∂zWel(e(u−M + bM − b−M ), cM , ẑM ) ∂tẑM + |∇ẑM |p−2∇ẑM · ∇∂tẑM dxds

︸ ︷︷ ︸
(???)

(42)

Putting a := ∇z−M (t, x) and b := ∇zM (t, x) in Lemma A.2 we obtain the following elementary
inequality

(|∇ẑM (t, x)|p−2∇ẑM (t, x)− |∇zM (t, x)|p−2∇zM (t, x)) · ∇∂tẑM (t, x) ≤ 0.

This and (30) tested with ζ = −∂tẑM (t) for ν = τ and integrated from t = 0 to t = T leads to
the estimate:

(? ? ?) ≤ −
∫ dM (t2)

d−M (t1)

∫

Ω

−α∂tẑM + β|∂tẑM |2 dxds

+
∫ dM (t2)

d−M (t1)

∫

Ω

(∂zWel(e(u−M + bM − b−M ), cM , ẑM )− ∂zWel(e(uM ), cM , zM ))∂tẑM dxds

︸ ︷︷ ︸
=:κ3

M

Furthermore

(?) ≤
∫ dM (t2)

d−M (t1)

∫

Ω

∂cWel(e(uM ), cM , zM )∂tĉM dxds

+
∫ dM (t2)

d−M (t1)

∫

Ω

(∂cWel(e(u−M + bM − b−M ), ĉM , z−M )− ∂cWel(e(uM ), cM , zM ))∂tĉM dxds

︸ ︷︷ ︸
=:κ1

M

.
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Using the elementary estimate (∇ĉM −∇cM )∇∂tĉM ≤ 0:

(??) ≤
∫ dM (t2)

d−M (t1)

∫

Ω

∇cM · ∇∂tĉM + ∂cWch(cM )∂tĉM dxds

+
∫ dM (t2)

d−M (t1)

∫

Ω

(∂cWch(ĉM )− ∂cWch(cM ))∂tĉM dxds

︸ ︷︷ ︸
=:κ2

M

Hence, applying equations (28) and (27) shows
∫ dM (t2)

d−M (t1)

〈dcẼε(qM ), ∂tĉM 〉(H1)∗×H1 ds =
∫ dM (t2)

d−M (t1)

∫

Ω

µM∂tĉM − ε|∂tĉM |2 dxds

=
∫ dM (t2)

d−M (t1)

∫

Ω

−|∇µM |2 − ε|∂tĉM |2 dxds.

Thus

(?) + (??) ≤
∫ dM (t2)

d−M (t1)

∫

Ω

−|∇µM |2 − ε|∂tĉM |2 dxds + κ1
M + κ2

M .

Lebesgue’s generalized convergence theorem, the growth conditions (GC4), (GC5), (GC6) and
Corollary 6.9 ensure that κ1

M , κ2
M and κ3

M converges to 0 as M →∞. Here we want to emphasize
that we need boundedness of ∂tĉM and ∂tẑM in L2(ΩT ) and the convergence e(uM ) → e(u) in
L4(ΩT ) which we have only due to the regularization for every fixed ε > 0 as M → ∞ (see
Corollary 6.9). To finish the proof, set κM := κ1

M + κ2
M + κ3

M . ¥

We are now in the position to prove the existence theorem for viscous systems.

Proof of Theorem 5.4. The proof is divided into several steps:

(i) Using growth conditions (GC4), (GC6), (11a), Corollary 6.9 and Lebesgue’s generalized
convergence theorem, we can pass to M →∞ in the time integrated version of the integral
equations (27), (28) and (29). This shows (i) and (ii) of Definition 5.3.

(ii) Let 0 ≤ t1 < t2 ≤ T be arbitrary. Because of d−M (t1) ≤ t1 < t2 ≤ dM (t2), Lemma 6.10
particularly implies

Eε(qM (t2)) +
∫ t2

t1

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxdt− Eε(q−M (t1))

≤
∫ dM (t2)

d−M (t1)

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , zM ) : e(∂tb) dxdt

+ ε

∫ dM (t2)

d−M (t1)

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tb dxdt + κM (43)

with κM → 0 as M →∞. Growth conditions (GC2), (GC6), Corollary 6.9 and Lebesgue’s
generalized convergence theorem yield:

Eε(qM (t)) → Eε(q(t)) and Eε(q−M (t)) → Eε(q(t)) (44)
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as M →∞ for a.e. t ∈ [0, T ]. A sequentially weakly lower semi-continuity argument based
on Corollary 6.9 shows:

lim inf
M→∞

∫ t2

t1

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxdt

≥
∫

Ω

α(z(t1)− z(t2)) dx +
∫ t2

t1

∫

Ω

β|∂tz|2 + ε|∂tc|2 + |∇µ|2 dxdt (45)

Growth condition (11a), Corollary 6.9 and Lebesgue’s generalized convergence theorem
show:

∂eWel(e(u−M + b− b−M ), c−M , zM ) ?
⇀ ∂eWel(e(u), c, z) in L∞([0, T ];L2(Ω)),

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) ?
⇀ |∇u|2∇u in L∞([0, T ];L4/3(Ω))

Since e(∂tb) ∈ L1([0, T ];L2(Ω)) and ∇∂tb ∈ L1([0, T ]; L4(Ω)), we get:
∫ dM (t2)

d−M (t1)

∫

Ω

∂eWel(e(u−M + b− b−M ), c−M , zM ) : e(∂tb) dxdt

→
∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxdt,

∫ dM (t2)

d−M (t1)

∫

Ω

|∇u−M +∇b−∇b−M |2∇(u−M + b− b−M ) : ∇∂tbdxdt

→
∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tb dxdt (46)

Now, using (44), (45) and (46) gives (iv) of Definition 5.3 by passing to M → ∞ in (43)
for a subsequence.

(iii) Let ζ̃ ∈ Lp([0, T ];W 1,p
− (Ω))∩L∞(ΩT ) be a test-function with {ζ̃ = 0} ⊇ {z = 0}. Applying

Lemma 4.2 with f = z and fM = zM and ζ = −ζ̃ gives a sequence of approximations
{ζM}M∈N ⊆ Lp([0, T ];W 1,p

+ (Ω)) ∩ L∞(ΩT ) with the properties:

ζM → −ζ̃ in Lp([0, T ]; W 1,p(Ω)) as M →∞, (47a)
0 ≤ νM,tζM (t) ≤ zM (t) a.e. in Ω for a.e. t ∈ [0, T ] and all M ∈ N. (47b)

Let ζ̃M denote the function −ζM . Then (47b) in particular implies 0 ≤ νM,tζ̃M (t)+zM (t) ≤
z−M (t) a.e. in Ω for a.e. t ∈ [0, T ]. Now (30) holds for ζ = ζ̃M (t). Integration from t = 0
to t = T and using growth condition (GC5), Corollary 6.9 and Lebesgue’s generalized
convergence theorem, as well as the strong convergence (47a) yield for M →∞:

−
∫

ΩT

|∇z|p−2∇z · ∇ζ̃ + ∂zWel(e(u), c, z)ζ̃ − αζ̃ + β(∂tz)ζ̃ dxdt ≤ 0. (48)

(iv) Define the function
r := −χ{z=0}[∂zWel(e(u), c, z)]+.

It follows directly for any ζ ∈ W 1,p
+ (Ω) and a.e. t ∈ [0, T ]:

〈r(t), ζ − z(t)〉 = −
∫

{z(t)=0}
[∂zWel(e(u(t)), c(t), z(t))]+(ζ − z(t)) dx ≤ 0
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Let ζ ∈ Lp([0, T ]; W 1,p
− (Ω)) ∩ L∞(ΩT ) be a test-function. We define the subset Tδ ⊆ [0, T ]

as

Tδ := {t ∈ [0, T ] |Ω \Bδ({z(t) = 0}) 6= ∅}, δ > 0,

which is measurable. To proceed, we construct a sequence of approximations {ζδ}δ∈(0,1] ⊆
Lp([0, T ];W 1,p

− (Ω)) ∩ L∞(ΩT ) in the following way:

ζδ(t) :=

{
max

{
ζ(t),−z(t)‖ζ(t)‖L∞(Ω)

Cδ,t

}
if t ∈ Tδ,

0 else.

with the constant Cδ,t := inf{z(t, x) |x ∈ Ω \ Bδ({z(t) = 0})}, t ∈ Tδ. Note that for every
δ ∈ (0, 1] and every t ∈ Tδ the constant Cδ,t is greater than 0 since z(t) is continuous on
Ω. For each t ∈ Tδ and each δ ∈ (0, 1] we construct a partition of Ω of the form

Ω = Aδ,t ∪B≤
δ,t ∪B>

δ,t ∪ {z(t) = 0},
where

Aδ,t := Ω \Bδ({z(t) = 0}),
Bδ,t := (Ω ∩Bδ({z(t) = 0})) \ {z(t) = 0},

B≤
δ,t := Bδ,t ∩

{
ζ(t) ≤ −z(t)

‖ζ(t)‖L∞(Ω)

Cδ,t

}
,

B>
δ,t := Bδ,t ∩

{
ζ(t) > −z(t)

‖ζ(t)‖L∞(Ω)

Cδ,t

}
.

We obtain the following properties for the sequence {ζδ}δ∈(0,1]:

ζδ = 0 on {z = 0}, (49a)

ζδ = 0 on ([0, T ] \ Tδ)× Ω, (49b)

ζδ = ζ on {(t, x) ∈ ΩT |x ∈ Aδ,t}, (49c)

ζδ = ζ on {(t, x) ∈ ΩT | t ∈ Tδ and x ∈ B>
δ,t}, (49d)

ζδ = −z
‖ζ(t)‖L∞(Ω)

Cδ,t
on {(t, x) ∈ ΩT | t ∈ Tδ and x ∈ B≤

δ,t}, (49e)

ζδ
?
⇀ ζ in L∞({z > 0}) as δ ↘ 0. (49f)

The last property follows from ζδ → ζ a.e. in {z > 0} (because of (49c) and since Lemma
4.3 implies Ln+1

({z > 0} \ {(t, x) ∈ ΩT |x ∈ Aδ,t}
) → 0 as δ ↘ 0) and the boundedness

of {ζδ} in the space L∞(ΩT ) with respect to δ ∈ (0, 1]. Since ζ(t) and z(t) are functions in
W 1,p(Ω), property (49d) and (49e) imply for almost every t ∈ Tδ and every δ ∈ (0, 1] (cf.
[Zie89]):

∇ζδ(t) = ∇ζ(t) a.e. in B>
δ,t, (50a)

∇ζδ(t) = −∇z(t)
‖ζ(t)‖L∞(Ω)

Cδ,t
a.e. in B≤

δ,t. (50b)

and (49c) implies for a.e. t ∈ [0, T ] and every δ ∈ (0, 1]:

∇ζδ(t) = ∇ζ(t) a.e. in Aδ,t. (51)
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We get the estimates:

−
∫

ΩT

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ − αζ + β∂tzζ dxdt−
∫ T

0

〈r(t), ζ(t)〉dt

≤ −
∫

ΩT

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt−
∫

ΩT

|∇z|p−2∇z · ∇ζδ dxdt

−
∫

ΩT

(∂zWel(e(u), c, z)− α + β∂tz)(ζ − ζδ) dxdt +
∫

{z=0}
[∂zWel(e(u), c, z)]+ζ dxdt

︸ ︷︷ ︸
≤− R{z>0}(∂zWel(e(u),c,z)−α+β∂tz)(ζ−ζδ) dxdt by (49a)

−
∫

ΩT

(∂zWel(e(u), c, z)− α + β∂tz)ζδ dxdt

≤ −
∫

{z>0}
|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

−
∫

{z>0}
(∂zWel(e(u), c, z)− α + β∂tz)(ζ − ζδ) dxdt

−
∫

ΩT

|∇z|p−2∇z · ∇ζδ dxdt−
∫

ΩT

(∂zWel(e(u), c, z)− α + β∂tz)ζδ dxdt

︸ ︷︷ ︸
≤0 by (48) with ζδ

≤ −
∫

{z>0}
|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

−
∫

{z>0}
(∂zWel(e(u), c, z)− α + β∂tz)(ζ − ζδ) dxdt (52)

The second term on the right hand side converges to 0 as δ goes to 0 because of (49f). The
first term can be estimated in the following way:

−
∫

{z>0}
|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

= −
∫ T

0

∫

Aδ,t

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

︸ ︷︷ ︸
=0 by (51)

−
∫ T

0

∫

Bδ,t

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

= −
∫

Tδ

∫

Bδ,t

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

−
∫

[0,T ]\Tδ

∫

Bδ,t

|∇z|p−2∇z · ∇ζ dxdt +
∫

[0,T ]\Tδ

∫

Bδ,t

|∇z|p−2∇z · ∇ζδ dxdt

︸ ︷︷ ︸
=0 by (49b)

= −
∫

Tδ

∫

B
≤
δ,t

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt−
∫

Tδ

∫

B>
δ,t

|∇z|p−2∇z · ∇(ζ − ζδ) dxdt

︸ ︷︷ ︸
=0 by (50a)

−
∫

[0,T ]\Tδ

∫

Bδ,t

|∇z|p−2∇z · ∇ζ dxdt
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= −
∫

Tδ

∫

B
≤
δ,t

|∇z|p−2∇z · ∇ζ dxdt

︸ ︷︷ ︸
(?)

+
∫

Tδ

∫

B
≤
δ,t

|∇z|p−2∇z · ∇ζδ dxdt

︸ ︷︷ ︸
=
R

Tδ

R
B
≤
δ,t

|∇z|p−2∇z·
„
−∇z

‖ζ(t)‖L∞(Ω)
Cδ,t

«
dxdt≤0 by (50b)

−
∫

[0,T ]\Tδ

∫

Bδ,t

|∇z|p−2∇z · ∇ζ dxdt

︸ ︷︷ ︸
(??)

Both, (?) as well as (??) can be estimated above by
∫ T

0

∫
Bδ,t

|∇z|p−1|∇ζ|dxdt which
converges to 0 as δ ↘ 0 by Vitali’s convergence theorem. Indeed, Lemma 4.3 shows
Ln+1({(t, x) ∈ ΩT |x ∈ Bδ,t}) → 0 as δ ↘ 0. Hence, passing to δ ↘ 0 in (52) shows (iii) of
Definition 5.3. ¥

6.2 Vanishing viscosity: ε ↘ 0

For each ε ∈ (0, 1] we denote with qε = (uε, cε, zε) ∈ Qv a viscous solution according to Theorem
5.4. By the use of Lemma 6.12, Lemma 6.13 and Lemma 6.14 below we identify a suitable
subsequence where we can pass to the limit. Let us first summarize the equalities and inequalities
which hold for qε.

Summary 6.11 For qε = (uε, cε, zε) ∈ Qv, ε ∈ (0, 1], the following properties are satisfied:

(i) for all ζ ∈ L2([0, T ]; H1(Ω)):
∫

ΩT

(∂tcε)ζ dxdt = −
∫

ΩT

∇µε · ∇ζ dxdt (53)

(ii) for all ζ ∈ L2([0, T ]; H1(Ω)):
∫

ΩT

µεζ dxdt =
∫

ΩT

∇cε · ∇ζ + (∂cWch(cε) + ∂cWel(e(uε), cε, zε) + ε(∂tcε))ζ dxdt (54)

(iii) for all ζ ∈ L4([0, T ]; W 1,4
Γ (Ω; Rn)):

∫

ΩT

∂eWel(e(uε), cε, zε) : e(ζ) + ε|∇uε|2∇uε : ∇ζ dxdt = 0 (55)

(iv) for all ζ ∈ Lp([0, T ];W 1,p
− (Ω)) ∩ L∞(ΩT ):

0 ≤
∫

ΩT

|∇zε|p−2∇zε · ∇ζ + (∂zWel(e(uε), cε, zε)− α + β∂tzε + rε)ζ dxdt (56)

with

rε = −χ{zε=0}[∂zWel(e(uε), cε, zε)]+ (57)
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(v) for a.e. t ∈ [0, T ] and for all ζ ∈ W 1,p
+ (Ω):

∫

Ω

rε(t)(ζ − zε(t)) dx ≤ 0 (58)

(vi) for a.e. 0 ≤ t1 ≤ t2 ≤ T :

Eε(qε(t2)) +
∫

Ω

α(zε(t1)− zε(t2)) dx +
∫ t2

t1

∫

Ω

β|∂tzε|2 + |∇µε|2 + ε|∂tcε|2 dxdt− Eε(qε(t1))

≤
∫ t2

t1

∫

Ω

∂eWel(e(uε), cε, zε) : e(∂tb) dxdt + ε

∫ t2

t1

∫

Ω

|∇uε|2∇uε : ∇∂tbdxdt (59)

Lemma 6.12 (A-priori estimates) The following estimates hold (C > 0 is independent of
ε > 0):

(i) ‖uε‖L∞([0,T ];H1(Ω;Rn)) ≤ C

(ii) ε1/4‖uε‖L∞([0,T ];W 1,4(Ω;Rn)) ≤ C

(iii) ‖cε‖L∞([0,T ];H1(Ω)) ≤ C

(iv) ‖zε‖L∞([0,T ];W 1,p(Ω)) ≤ C

(v) ε1/2‖∂tcε‖L2(ΩT ) ≤ C

(vi) ‖∂tzε‖L2(ΩT ) ≤ C

(vii) ‖µε‖L2([0,T ];H1(Ω)) ≤ C

for all ε ∈ (0, 1].

Proof. According to Lemma 6.3 the discretization qM,ε of qε fulfills

Eε(qM,ε(t)) +
∫ dM (t)

0

R(∂tẑM,ε) ds +
∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM,ε|2 +

1
2
|∇µM,ε|2 dxds ≤ C(Eε(q0

ε) + 1).

(60)

where C is independent of M, t, ε. By the minimizing property of q0
ε we also obtain Eε(q0

ε) ≤
Eε(q0

1) ≤ E1(q0
1) for all ε ∈ (0, 1]. Therefore, the left hand side of (60) is bounded with respect

to M ∈ N, t ∈ [0, T ] and ε ∈ (0, 1]. This leads to the boundedness of

Eε(qε(t)) +
∫ t

0

R(∂tzε) ds +
∫ t

0

∫

Ω

ε

2
|∂tcε|2 +

1
2
|∇µε|2 dxds ≤ C (61)

for a.e. t ∈ [0, T ] and for all ε ∈ (0, 1]. We immediately obtain (iv), (v) and (vi). Due to∫
cε(t) dx = const and the boundedness of ‖∇cε(t)‖L2(Ω), Poincaré’s inequality yields (iii). Now

using (61), growth conditions (11b) and Korn’s inequality we attain the desired a-priori estimates
(i) and (ii). Using (54) and (53) show boundedness of

∫
Ω

µε(t) dx. Since ‖∇µε(t)‖L2(ΩT ) is also
bounded, Poincaré’s inequality yields (vii). ¥

Lemma 6.13 (Weak convergence of the viscous solutions) There exists a subsequence of
{qε} (which is also denoted by {qε}) and an element (u, c, z) = q ∈ Q with z(0) = z0 such that:
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(i) zε
?
⇀ z in L∞([0, T ];W 1,p(Ω)),

zε(t) ⇀ z(t) in W 1,p(Ω) for a.e. t ∈ [0, T ],
zε → z a.e. in ΩT and
zε ⇀ z in H1([0, T ];L2(Ω))

(ii) cε
?
⇀ c in L∞([0, T ];H1(Ω)),

cε(t) ⇀ c(t) in H1(Ω) for a.e. t ∈ [0, T ] and
cε → c a.e. in ΩT

(iii) uε
?
⇀ u in L∞([0, T ];H1(Ω; Rn))

(iv) µε ⇀ µ in L2([0, T ];H1(Ω))

as ε ↘ 0.

Proof.

(i) This property follows from the boundedness of {zε} in L∞([0, T ];W 1,p(Ω)) and in
H1([0, T ]; L2(Ω)) (see proof of Lemma 6.12). The function z obtained in this way is mono-
tonically decreasing with respect to t.

(ii) We know from the boundedness of {∇µε} in L2(ΩT ) that {∂tcε} is also bounded in
L2([0, T ]; (H1(Ω))∗) with respect to ε by using equation (53). This and the boundedness of
{cε} in L2([0, T ];H1(Ω)) (see Lemma 6.12) shows that cε converges strongly to an element
c in L2(ΩT ) as ε ↘ 0 for a subsequence by a compactness results from J. P. Aubin and J.
L. Lions (see [Sim86]). Thus we can extract a subsequence such that cε(t) ⇀ c(t) in H1(Ω)
for a.e. t ∈ [0, T ] and cε → c a.e. in ΩT as well as cε

?
⇀ c in L∞([0, T ];H1(Ω)) by the

boundedness of {cε} in L∞([0, T ]; H1(Ω)).

(iii) This property follows from the boundedness of {uε} in L∞([0, T ];H1(Ω; Rn)).

(iv) This property follows from the boundedness of {µε} in L2([0, T ];H1(Ω)). ¥

Lemma 6.14 (Strong convergence of the viscous solutions) The following convergence
properties are satisfied:

(i) uε → u in L2([0, T ];H1(Ω; Rn))

(ii) cε → c in L2([0, T ];H1(Ω))

(iii) zε → z in Lp([0, T ]; W 1,p(Ω))

as ε ↘ 0 for a subsequence of {qε}.
Proof.

(i) We consider an approximation sequence {ũδ}δ∈(0,1] ⊆ L4([0, T ];W 1,4(Ω)) with

ũδ → u in L2([0, T ];H1(Ω)) as δ ↘ 0, (62a)

ũδ − b ∈ L4([0, T ];W 1,4
Γ (Ω)) for all δ > 0. (62b)
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Since ε and δ are independent, we consider a sequence {δε}ε∈(0,1] with

ε1/4‖∇ũδε
‖L4(ΩT ) → 0 and δε ↘ 0 as ε ↘ 0. (63)

Testing (55) with ζ = uε − ũδε
(possible due to (62b)) and applying uniform monotonicity

of ∂eWel (assumption (GC1)) and Lemma A.1 (compare with (38)):

η

2
‖e(uε)− e(u)‖2L2(ΩT )

≤ η‖e(u)− e(ũδε)‖2L2(ΩT ) + η‖e(uε)− e(ũδε)‖2L2(ΩT ) + εC−1
ineq‖∇uε −∇ũδε‖4L4(ΩT )

≤ η‖e(u)− e(ũδε
)‖2L2(ΩT )

+
∫

ΩT

(∂eWel(e(uε), cε, zε)− ∂eWel(e(ũδε), cε, zε)) : (e(uε)− e(ũδε)) dxdt

+ ε

∫

ΩT

(|∇uε|2∇uε − |∇ũδε
|2∇ũδε

) : (∇uε −∇ũδε
) dxdt

= η‖e(u)− e(ũδε)‖2L2(ΩT )

+
∫

ΩT

∂eWel(e(uε), cε, zε) : (e(uε)− e(ũδε)) + ε|∇uε|2∇uε : (∇uε −∇ũδε) dxdt

︸ ︷︷ ︸
=0 by (55)

−
∫

ΩT

∂eWel(e(ũδε), cε, zε) : (e(uε)− e(ũδε)) dxdt

− ε

∫

ΩT

|∇ũδε |2∇ũδε : (∇uε −∇ũδε) dxdt

︸ ︷︷ ︸
(?)

. (64)

Finally

(?) ≤ ε‖∇ũδε‖3L4(ΩT )‖∇uε −∇ũδε‖L4(ΩT )

≤
(

ε1/4‖∇ũδε‖L4(ΩT )︸ ︷︷ ︸
→0 as ε↘0 by (63)

)3(
ε1/4‖∇uε‖L4(ΩT )︸ ︷︷ ︸
≤C by Lemma 6.12

+ ε1/4‖∇ũδε‖L4(ΩT )︸ ︷︷ ︸
→0 as ε↘0 by (63)

)
.

From growth condition (11a), Lemma 6.13 and Lebesgue’s generalized convergence theo-
rem, we obtain

∂eWel(e(ũδε), cε, zε) → ∂eWel(e(u), c, z) in L2(ΩT )

for a subsequence ε ↘ 0. By uε
?
⇀ u in L∞([0, T ];H1(Ω; Rn)) for a subsequence ε ↘ 0

(Lemma 6.13 (iii)) as well as (62a) we also have

e(uε)− e(ũδε) ⇀ 0 in L2(ΩT )

as ε ↘ 0 for a subsequence. Therefore every term on the right hand side of (64) converges
to 0 as ε ↘ 0 for a subsequence. This shows uε → u in L2([0, T ];H1(Ω; Rn)) as ε ↘ 0 for
a subsequence.

(ii) Testing (54) with cε and c and passing to ε ↘ 0 for a subsequence eventually shows strong
convergence cε → c in L2([0, T ];H1(Ω)) (see the argumentation in Lemma 6.7 and notice
that

∫
ΩT

ε(∂tcε)cε dxdt ≤ ε‖∂tcε‖L2(ΩT )‖cε‖L2(ΩT ) → 0 as ε ↘ 0).
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(iii) According to Lemma 4.2 with f = ζ = z and fM = zεM
(here we choose εM = 1/M) we

find an approximation sequence {ζεk
} ⊆ Lp([0, T ]; W 1,p

+ (Ω)) ∩ L∞(ΩT ) with εk ↘ 0 and
the properties:

ζεk
→ z in Lp([0, T ];W 1,p(Ω)) as k →∞, (65a)

0 ≤ ζεk
≤ zεk

a.e. in ΩT for all k ∈ N. (65b)

We denote the subsequences also with {zε} and {ζε}, respectively. The desired property
zε → z in Lp([0, T ]; W 1,p(Ω)) as ε ↘ 0 follows with the same estimate as in the proof of
Lemma 6.8 by using Lemma A.1 and the integral inequality (56) with ζ := ζε − zε (note
that 〈rε, ζε − zε〉 = 0 holds by (57) and (65b)). Indeed, we obtain

C−1
ineq

∫

ΩT

|∇zε −∇z|p dxdt

≤ ‖∂zWel(e(uε), cε, zε)− α + β∂tzε‖L2([0,T ];L1(Ω))︸ ︷︷ ︸
bounded

‖ζε − zε‖L2([0,T ];L∞(Ω))︸ ︷︷ ︸
→0

+ ‖∇zε‖p−1
Lp(ΩT )︸ ︷︷ ︸

bounded

‖∇ζε −∇z‖Lp(ΩT )︸ ︷︷ ︸
→0

−
∫

ΩT

|∇z|p−2∇z · ∇(zε − z) dxdt

︸ ︷︷ ︸
→0

.

as ε ↘ 0 for a subsequence. We used here zε → z and ζε → z in L2([0, T ]; L∞(Ω)) as ε ↘ 0
for a subsequence due to Lemma 6.13 and the compact embedding W 1,p(Ω) ↪→ L∞(Ω). ¥

Corollary 6.15 The following convergence properties are fulfilled:

(i) zε → z in Lp([0, T ]; W 1,p(Ω)),
zε(t) → z(t) in W 1,p(Ω) for a.e. t ∈ [0, T ],
zε → z a.e. in ΩT and
zε ⇀ z in H1([0, T ];L2(Ω))

(ii) cε → c in L2?

([0, T ];H1(Ω)),
cε(t) → c(t) in H1(Ω) for a.e. t ∈ [0, T ] and
cε → c a.e. in ΩT

(iii) uε → u in L2([0, T ];H1(Ω; Rn)),
uε(t) → u(t) in H1(Ω; Rn) for a.e. t ∈ [0, T ] and
uε → u a.e. in ΩT

(iv) µε ⇀ µ in L2([0, T ];H1(Ω))

(v) ∂cWch(cε) → ∂cWch(c) in L2(ΩT )

as ε ↘ 0 for a subsequence of {qε}.
Now we are well prepared to prove the main result of this work.

Proof of Theorem 5.6. We can pass to ε ↘ 0 in (54) and (55) by the already known conver-
gence features (see Corollary 6.15) noticing that

∫
ΩT

ε|∇uε|2∇uε : ∇ζ dxdt and
∫
ΩT

ε(∂tcε)ζ dxdt
converge to 0 as ε ↘ 0. We get

∫

ΩT

∂eWel(e(u), c, z) : e(ζ) dxdt = 0 (66)

35



for all ζ ∈ L4([0, T ];W 1,4
Γ (Ω; Rn)). A density argument shows that (66) also holds for all ζ ∈

L2([0, T ]; H1
Γ(Ω; Rn)). Writing (53) in the form

∫

ΩT

(cε − c0)∂tζ dxdt =
∫

ΩT

∇µε · ∇ζ dxdt,

by only allowing test-functions ζ ∈ L2([0, T ]; H1(Ω)) with ∂tζ ∈ L2(ΩT ) and ζ(T ) = 0, we can
also pass to ε ↘ 0 by using Corollary 6.15.

To obtain a limit equation in (56) and (58), observe that

[∂zWel(e(uε), cε, zε)]+ → [∂zWel(e(u), c, z)]+ in L1(ΩT ),

χ{zε=0}
?
⇀ χ, in L∞(ΩT )

for a subsequence ε ↘ 0 and an element χ ∈ L∞(ΩT ). Set r := −χ[∂zWel(e(u), c, z)]+. Keeping
(57) into account we find for all ζ ∈ L∞(ΩT ):

∫

ΩT

rεζ dxdt →
∫

ΩT

rζ dxdt (67)

for a subsequence ε ↘ 0. Thus we can also pass to ε ↘ 0 for a subsequence in (56) by using
Lebesgue’s generalized convergence theorem, growth condition (GC5) and Corollary 6.15 and
(67). Let ξ ∈ L∞([0, T ]) with ξ ≥ 0 a.e. on [0, T ] be a further test-function. Then (58) and (57)
imply

0 ≥
∫ T

0

(∫

Ω

rε(t)(ζ − zε(t)) dx

)
ξ(t) dt =

∫

ΩT

rε(ζ − zε)ξ dxdt

→
∫

ΩT

r(ζ − z)ξ dxdt =
∫ T

0

(∫

Ω

r(t)(ζ − z(t)) dx

)
ξ(t) dt.

This shows
∫
Ω

r(t)(ζ − z(t)) dx ≤ 0 for a.e. t ∈ [0, T ].
It remains to show that (59) also yields to a limit inequality. First observe, that (59) implies:

Eε(qε(t2)) +
∫

Ω

α(zε(t1)− zε(t2)) dx +
∫ t2

t1

∫

Ω

β|∂tzε|2 + |∇µε|2 dxdt− Eε(qε(t1))

≤
∫ t2

t1

∫

Ω

∂eWel(e(uε), cε, zε) : e(∂tb) dxdt + ε

∫ t2

t1

∫

Ω

|∇uε|2∇uε : ∇∂tb dxdt. (68)

To proceed, we need to prove ε
∫
Ω
|∇uε(t)|4 dx → 0 as ε ↘ 0 for a.e. t ∈ [0, T ]. Indeed, testing

(55) with ζ := uε − b:

ε

∫

ΩT

|∇uε|4 dxdt = ε

∫

ΩT

|∇uε|2∇uε : ∇bdxdt−
∫

ΩT

∂eWel(e(uε), cε, zε) : e(uε − b) dxdt

We immediately see that the first term converges to 0 as ε ↘ 0. The second term also converges
to 0 because of

∫
ΩT

∂eWel(e(u), c, z) : e(u − b) dxdt = 0 (equation (66)). This, together with
Corollary 6.15, proves Eε(qε(t)) → E(q(t)) for a.e. t ∈ [0, T ]. In conclusion, we can pass to ε ↘ 0
in (68) for a.e. 0 ≤ t1 < t2 ≤ T by using Corollary 6.15 together with Lebesgue’s generalized
convergence theorem and growth condition (GC2), (11a) and (GC6) as well as by using a se-
quentially weakly lower semi-continuity argument for

∫
Ω

β|∂tzε|2 dx and for
∫
Ω
|∇µε|2 dx. ¥
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7 Discussion
The existence results in this paper can also be generalized to multi-phase systems. For instance,
instead of (6a)-(6c) we may consider the system

∂tc = div(M∇w),
w = P(−div(Γ∇c) + ∂cWch(c) + ∂cWel(e(u), c, z)),
div(σ(e(u), c, z)) = 0,

0 ∈ dzE(u, c, z) + dżR(∂tz),

describing an alloy of N -components, i.e. c : [0, T ] × Ω → RN , with a gradient energy tensor Γ
(constant, symmetric and positive mapping from RN×n into itself) as well as a mobility matrix
M (constant, symmetric, positive definite on T := {x ∈ RN | ∑N

k=1 xk = 0}) with ∑N
l=1 Mkl = 0

for all k = 1, . . . , n. The mapping P is the orthogonal projection from RN to the subspace T .
Additionally, the constraint

∑N
k=1 ck = 1 is imposed to this system.

The existence proofs in this work, however, cannot directly be generalized to the physically
important exponent case p = 2 due to the lack of the compact embedding W 1,p(Ω) ↪→ C0,α(Ω)
for 0 ≤ α < 1− n

p and n > 1, which is an essential feature in Lemma 4.2 and Lemma 4.3.

A Appendix
Lemma A.1 (Uniform convexity) Let n, p ∈ N with p ≥ 2. Then there exists a constant
Cineq > 0 such that

|x− y|p ≤ Cineq(|x|p−2x− |y|p−2y) · (x− y) for all x, y ∈ Rn

and (matrix-version)

|x− y|p ≤ Cineq(|x|p−2x− |y|p−2y) : (x− y) for all x, y ∈ Rn×n.

Proof. Substitution y = x + h leads to the claim:

|h|p ≤ Cineqh · (|x + h|p−2(x + h)− |x|p−2x) for all x, h ∈ Rn (69)

Moreover, it suffices to prove (69) only for x, h ∈ Rn with |h| = 1. Then (69) is equivalent to

1
Cineq

≤ |x + h|p−2 + (h · x)(|x + h|p−2 − |x|p−2) for all x, h ∈ Rn with |h| = 1. (70)

Now the implications |x + h| ≤ |x| ⇒ x · h ≤ − 1
2 |h|2 as well as |x + h| ≥ |x| ⇒ x · h ≥ − 1

2 |h|2
give the estimate:

|x + h|p−2 + (h · x)(|x + h|p−2 − |x|p−2) ≥ |x + h|p−2 +
1
2
|h|2(|x|p−2 − |x + h|p−2)

=
1
2
|x + h|p−2 +

1
2
|x|p−2

Since |h| = 1, the right hand side is bounded from below by a positive constant and therefore
(70) follows. ¥

37



Lemma A.2 Let n, p ∈ N with p ≥ 2. It holds for every a, b ∈ Rn and every λ ∈ [0, 1]:

(|λb + (1− λ)a|p−2(λb + (1− λ)a)− |b|p−2b) · (b− a) ≤ 0.

Proof. This can be derived from the convexity of the map x 7→ |x|p. Alternatively, putting
x := λb + (1− λ)a and y := b in Lemma A.1 gives

(1− λ)Cineq(|λb + (1− λ)a|p−2(λb + (1− λ)a)− |b|p−2b) · (b− a) ≤ −|λb + (1− λ)a− b|p,

and hence the claim follows. ¥
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