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Abstract

We consider a di�erential equation describing the mass balance in a soil
hydrology model with noninvertible Preisach-type hysteresis. We approximate
the singular Preisach operator by regular ones and show, as main result, that the
solutions of the regularized problem converge to a solution of the original one as
the regularization parameter tends to zero. For monotone right hand sides, we
prove that the solution is unique. If in addition the external water sources are
time periodic, then we �nd su�cient conditions for the existence, uniqueness,
and asymptotic stability of periodic solutions.

Introduction
Large highly structured systems often admit a large number of locally stable equi-
librium con�gurations. This is in particular the case of solid mechanics, where dis-
locations at the crystal level lead to a multitude of di�erent equilibria for the same
stress distribution. The instantaneous state at some time t0 > 0 thus may depend on
the previous history t ≤ t0 of the process. Similar phenomena occur in the complex
dynamics of electro-magneto-mechanical processes in ferromagnetic, piezoelectric, and
magnetostrictive materials.
In engineering applications, the goal of modelling is to predict the behaviour of a
system at the macroscopic level, where the knowledge of the exact complex time
and space distribution of the microstates is of minor importance with respect to the
necessity of having a reliable and robust numerical method for a global simulation.
The mathematical theory of hysteresis operators, introduced by M.A. Krasnosel'skii
and his collaborators in the 1970', see [4], seems to provide an e�cient tool for such
a macroscopic description of internal microstructure evolution in the situation, where
the structure changes are much faster than the observer's time scale. Then the process
can be considered as rate-independent which is, besides causality, the main feature of
hysteresis. Among more recent publications devoted to di�erent aspects of modelling
and analysis of systems with hysteresis we may cite e. g. [1, 6, 13, 14, 15, 17, 18].
We focus here on a model of soil hydrology proposed in [2, 10, 9]. It is based on the
same idea of describing the complicated mass exchange dynamics in the soil, where
the microstructure is due to solid grains, pores, plant roots, animal activity etc., by an
input-output hysteresis system. The spatial dependence is neglected, and the dynamics
is driven by the mass balance between the soil water potential and the volumetric
moisture content. The experiments described in [2] show that the hysteresis relation
between the potential u and the moisture content w exhibits the so-called return
point memory (or wiping-out property), that is, every minor loop returns back to its

1



starting point, see Fig. 1. Furthermore, it is expected from experiments that periodic
processes on the same potential level may take place with di�erent amounts of the
water content. Assuming that the mass balance is given by Eq. (0.1) below, this
observation leads to the conclusion that all possible responses w corresponding to the
same process u(t) di�er only by an additive constant independent of t . In the (u,w)
phase plane, this means that all single closed loops with endpoints (u1, w1), (u2, w2)
and (u1, w

′
1), (u2, w

′
2) have the same shape, see Fig. 1. This property is called the

congruency and a classical result by Mayergoyz in [14] states that every hysteresis
relation with return point memory and congruent loops can be represented by the
Preisach model.

�
u∗ u1 u2 u∗ u

w

Figure 1: Return point memory and congruency.

A detailed discussion about the technical aspects of the model as well as the parameter
identi�cation is done in [2, 10]. The resulting equation governing the process is of the
form

ẇ(t) = f(t, u(t))
w(t) = F [λ, u](t)
u(0) = u0



 (0.1)

for t ≥ 0 , where u0 ∈ R is a given initial condition, f : [0,∞)×R→ R is a given func-
tion, and F [λ, ·] is a Preisach hysteresis operator with initial memory con�guration
λ , see Section 1 below.
Equation (0.1) is not autonomous, as the water-soil system is not physically closed.
Water is coming in and out. The t-dependence in the right-hand side describes the
external water exchange (rain, evaporation, drainage, etc.).
A derivation of Eq. (0.1) and constructive methods for its solutions can be found in
[11]. Here, we pursue these investigations and develop a general existence and stability
theory for this problem. In Section 3, we show that solutions u to (0.1) can be locally
uniformly approximated as ε→ 0+ by solutions uε to the regularized problem

ẇε(t) = fε(t, uε(t))
wε(t) = εuε(t) + Fε[λ

ε, uε](t)
uε(0) = u0

ε ,



 (0.2)

where fε,Fε, λ
ε, u0

ε are suitable approximations of f,F , λ, u0 , respectively.
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This is indeed a regularization. The mappings F∗
ε : u 7→ εu + Fε[λ

ε, u] are Lipschitz
continuous and admit Lipschitz continuous inverses for all ε > 0 in the Banach space
C[0, T ] of all continuous functions on [0, T ] for every T > 0 ; hence, the existence and
uniqueness of solutions to (0.2) follows from the contraction principle for every ε > 0 .
The convergence result is based on the observation that small amplitude Preisach hys-
teresis loops are convex. We prove here in Proposition 2.3 a re�ned form of an integral
inequality (called convexity inequality , or second order energy inequality), which has
been originally established in [5] in connection with hysteresis wave propagation and
then used in [8] for solving a singular oscillation problem.
The solutions to (0.1) may in general be nonunique (see Example 3.3 (ii)). On the
other hand, we show that the solution u to (0.1) is unique as long as u(t) does not
leave an interval [u∗, u∗] , where f is nonincreasing. If the interval [u∗, u∗] contains 0 ,
then the solution remains in this interval for all times. If moreover f is periodic in
t and decreasing in u , then every solution trajectory converges to a unique periodic
solution of the problem. The argument is based in a substantial way on the Hilpert
inequality established in [3].
In the hydrological context, a nonincreasing function f is relevant to a common situa-
tion where water �ows into the system are driven by negative feedback loops. Examples
include in�ltration of rain, drainage of water under a slab of soil, transpiration from
plants leaves for vegetated soil and combinations of such �ows [9, 10]. The results
below guarantee the global stability of the corresponding models (0.1). However, a
positive feedback loop can destabilize real soil-water systems. For instance, a destabi-
lizing e�ect of the runo� �ow from the soil surface, leading to a bifurcation, which has
strong implications for the environment, has been shown in [12]. Equations (0.1) re-
sulting from modelling hydrological systems with both negative and positive feedbacks
can have non-monotone functions f .
The following text is divided into four sections. Section 1 is a survey of mathematical
properties of the Preisach operator. For our purposes, it is convenient to use the alter-
native description of the Preisach model as a nonlinear one-parametric combination
of continuous play operators, which goes back to [5], instead of the traditional one
proposed in [16] and further developed in [4, 14], which de�nes the model as a linear
superposition of two-parametric discontinuous relay operators. The equivalence of the
two de�nitions was proved in [5, Section 1], see also [1, Section 2.4] or [6, Section
II.3]. The variational approach based on the system of play operators makes in our
situation the analysis simpler and more transparent. A detailed proof of the convexity
inequality for the Preisach operator is carried out in Section 2. Solutions to Problem
(0.2) for ε > 0 are investigated in Section 3. On a �xed time interval [0, T ] , we derive
a uniform bound for uε in W 1,2q(0, T ) for some q > 1 independent of ε , which enables
us to prove the convergence along a subsequence to a solution of (0.1) as ε → 0+ .
Global existence, uniqueness, periodicity, and asymptotic stability of solutions to (0.1)
are discussed in Section 4.
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1 Preisach operator
Let us denote by R+ the interval [0,∞) . We work in the space C(R+) of continuous
functions u : R+ → R endowed with a system of seminorms

‖u‖[0,t] = max{|u(τ)| ; τ ∈ [0, t]} for t ≥ 0 . (1.1)
The metric

d(u, v) = sup
t≥0

(
‖u− v‖[0,t]

1 + ‖u− v‖[0,t]

)
(1.2)

transforms C(R+) into a Fréchet space. We similarly denote by AC(R+) the set of
absolutely continuous functions u : R+ → R endowed with a system of seminorms

‖u‖AC[0,t] = |u(0)|+
∫ t

0

|u̇(τ)| dτ for t ≥ 0 (1.3)

and a metric analogous to (1.2).
We �rst introduce the Preisach state space Λ as the set of all functions λ : R+ → R
such that

|λ(r1)− λ(r2)| ≤ |r1 − r2| ∀r1, r2 ∈ R+ , (1.4)

∃R > 0 : λ(r) = 0 ∀r ≥ R . (1.5)
The set of all λ ∈ Λ satisfying (1.5) will be denoted ΛR in the sequel. Note that this
set is compact with respect to the sup-norm.
For each given r > 0 we de�ne the play operator pr : Λ × AC(R+) → AC(R+) :
(λ, u) 7→ ξr , which with each λ ∈ Λ and u ∈ AC(R+) associates the unique solution
ξr of the variational inequality

|u(t)− ξr(t)| ≤ r ∀t ∈ R+ , (1.6)

ξ̇r(t)
(
u(t)− ξr(t)− z

) ≥ 0 a. e. ∀z ∈ [−r, r] , (1.7)

ξr(0) = min {u(0) + r,max{u(0)− r, λ(r)}} , (1.8)
see Figs. 2, 3.
More about the relationship between the variational de�nition of the play and a con-
structive approach in [1, 4] can be found e. g. in [6, 17].
As an immediate consequence of the de�nition, we �rst note that for all h > 0 su�-
ciently small we have ξ̇r(t)

(
u(t)− u(t± h)− ξr(t) + ξr(t± h)

) ≥ 0 a. e., hence

ξ̇r(t) u̇(t) = ξ̇2
r (t) a. e. (1.9)

In other words, we have the implication

ξ̇r(t) 6= 0 ⇒ ξ̇r(t) = u̇(t) =
1

r
|ξ̇r(t)| (u(t)− ξ(t)) . (1.10)

We now recall an important inequality established originally by Hilpert in [3]. For the
reader's convenience, we give an elementary proof.
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Figure 2: Time evolution of the play operator.
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Figure 3: A phase diagram of the play and the initial memory curve v = ξr(0) .

Lemma 1.1 For u1, u2 ∈ AC(R+) and λ1, λ2 ∈ Λ put ξi
r(t) = pr[λi, ui](t) , i = 1, 2 .

Then for every locally Lipschitz continuous non-decreasing function g : R → R we
have

d

dt

(
g(ξ1

r )− g(ξ2
r )

)+
(t) ≤ H(u1(t)− u2(t))

d

dt

(
g(ξ1

r )− g(ξ2
r )

)
(t) a. e., (1.11)

where x+ = max{x, 0} for x ∈ R , and H is the left continuous Heaviside function

H(x) =

{
0 for x ≤ 0 ,
1 for x > 0 .

Proof. From (1.6) � (1.7) it follows that (we omit the argument t for simplicity)

g′(ξ1
r ) ξ̇

1
r

(
(u1 − ξ1

r )− (u2 − ξ2
r )

) ≥ 0 a. e. ,

−g′(ξ2
r ) ξ̇

2
r

(
(u1 − ξ1

r )− (u2 − ξ2
r )

) ≥ 0 a. e. ,

hence
d

dt

(
g(ξ1

r )− g(ξ2
r )

) (
(u1 − ξ1

r )− (u2 − ξ2
r )

) ≥ 0 a. e. (1.12)
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Using the implication c(a− b) ≥ 0 ⇒ c(H(a)−H(b)) ≥ 0 for a, b, c ∈ R , we obtain
from (1.12) that

H(ξ1
r − ξ2

r )
d

dt

(
g(ξ1

r )− g(ξ2
r )

) ≤ H(u1 − u2)
d

dt

(
g(ξ1

r )− g(ξ2
r )

)
a. e. (1.13)

For a. e. t > 0 we have

g(ξ1
r (t)) = g(ξ2

r (t)) ⇒ d

dt

(
g(ξ1

r )− g(ξ2
r )

)+
(t) =

d

dt
(g(ξ1

r )− g(ξ2
r ))(t) = 0 ,

g(ξ1
r (t)) 6= g(ξ2

r (t)) ⇒ H(ξ1
r (t)− ξ2

r (t)) = H(g(ξ1
r (t))− g(ξ2

r (t))) ,

and (1.11) follows from the identity d
dt
x+(t) = H(x(t))ẋ(t) a. e. for each x ∈ AC(R+) .

¥

For completeness, we summarize the classical continuity properties of the play pr . For
a proof, see [1, Sect. 2.3] or [6, Proposition II.1.1].

Lemma 1.2 Under the hypotheses of Lemma 1.1 we have
∣∣∣ξ̇1

r − ξ̇2
r

∣∣∣ (t) +
d

dt

∣∣(u1 − u2)− (ξ1
r − ξ2

r )
∣∣ (t) ≤ |u̇1 − u̇2| (t) a. e. , (1.14)

∣∣ξ1
r − ξ2

r

∣∣ (t) ≤ max{|λ1(r)− λ2(r)| , ‖u1 − u2‖[0,t]} ∀t ∈ R+ . (1.15)

Lemma 1.2 states that pr : Λ × AC(R+) → AC(R+) is continuous and admits a
continuous extension to Λ × C(R+) → C(R+) , and its restriction to any bounded
interval [0, T ] is Lipschitz continuous in both cases.
We now continue with some �ner memory properties of the play. Their proofs can be
found e. g. in [1, Sect. 2.3] or [6, Sect. II.2].

Lemma 1.3 For given R > 0 , u ∈ C(R+) , λ ∈ ΛR , and t ≥ 0 put

λt(r) = pr[λ, u](t) for r > 0 , λt(0) = u(t) . (1.16)

Then

(i) λt ∈ ΛR(t) , where R(t) = max{R, ‖u‖[0,t]} ;
(ii) the semigroup property

pr[λ, u](s+ t) = pr[λs, u(s+ ·)](t) (1.17)

holds for all s, t ∈ R+ .

The play operator thus generates for every t ≥ 0 a continuous state mapping Πt :
Λ × C(R+) → Λ which with each (λ, u) ∈ Λ × C(R+) associates the state λt ∈ Λ
at time t . In other words, pr[λ, u](t) can be considered in a dual way: either as a
function ξr of the time variable t for �xed r , or as a function λt of the memory
variable r at �xed time t .
Let us recall another property of the play as a special case of [7, Lemma 3.1.2].
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Lemma 1.4 Let u ∈ C(R+) and t ≥ 0 be given. Set

umax(t) = sup
τ∈[0,t]

u(τ) , umin (t) = inf
τ∈[0,t]

u(τ) . (1.18)

Then for all λ ∈ Λ and r > 0 we have

pr[λ, u](τ) ≤ max{λ(r), umax(t)− r} ∀ τ ∈ [0, t] , (1.19)

pr[λ, u](τ) ≥ min {λ(r), umin (t) + r} ∀ τ ∈ [0, t] , (1.20)

pr[λ, u](t) = λ(r) for r > ‖mλ ◦ u‖[0,t] , (1.21)

where for v ∈ R we put

mλ(v) = inf{r ≥ 0 ; |λ(r)− v| = r} . (1.22)

The meaning of mλ can be illustrated on Figures 3, 4. For a function u which is
monotone in an interval [t0, t1] and u(t0) = λ(0) , the interval [0, (mλ◦u)(t)] determines
the active moving part of the memory curve r 7→ λt(r) . More speci�cally, in the
identity (1.9), we have in this case

u̇(t) 6= 0 =⇒ ξ̇r(t) =

{
u̇(t) for r < mλ(u(t)) ,

0 for r > mλ(u(t)) .
(1.23)

Let us derive some consequences of Lemma 1.4. Assume that mλ(u(·)) attains at a
point t̄ ≥ 0 its maximum over [0, t̄] , that is,

r̄ := mλ(u(t̄)) = ‖mλ(u(·))‖[0,t̄] . (1.24)

The case r̄ = 0 is trivial, as it implies u(t) = λ(0) for all t ∈ [0, t̄] . For r̄ > 0 we
distinguish the cases

(i) u(t̄) = λ(r̄) + r̄ ,

(ii) u(t̄) = λ(r̄)− r̄ .

If (i) holds and u(t) > u(t̄) for some t ∈ [0, t̄] , then λ(r̄)+r̄ < u(t) , hence mλ(u(t)) > r̄
in contradiction with (1.24). We thus have u(t̄) = umax(t̄) . From (1.6) it follows that
pr[λ, u](t̄) ≥ u(t̄)−r . On the other hand, (1.22) yields u(t̄)−r < λ(r) ⇒ mλ(u(t̄)) < r ;
hence, by Lemma 1.4 we have

pr[λ, u](t̄) = max{λ(r), u(t̄)− r} . (1.25)

Similarly, in the case (ii) we have u(t̄) = umin (t̄) and

pr[λ, u](t̄) = min {λ(r), u(t̄) + r} . (1.26)

The above considerations imply the following well-known result on periodic inputs,
cf. [4, Chap. 1, Sect. 2.8].
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Corollary 1.5 Let u ∈ C(R+) be T -periodic, that is, u(t + T ) = u(t) for all t ≥ 0 ,
with a �xed period T > 0 . Then pr[λ, u] is T -periodic for t ≥ T for all λ ∈ Λ .

For a function u ∈ C(R+) which is monotone (non-decreasing or non-increasing) in
an interval [t0, t1] , we easily deduce from the semigroup property (1.17) and Lemma
1.4 the representation formula

pr[λ, u](t) = max{u(t)− r,min {u(t) + r, λt0(r)}} (1.27)

for t ∈ [t0, t1] , see Figures 2, 3. It is perhaps interesting to note that (1.27) has
originally been used in [4] as alternative de�nition of the play on continuous piecewise
monotone inputs, extended afterwards by density and continuity to the whole space
of continuous functions.
The evolution of the graph of λt in dependence on t is depicted on Fig. 4. We now
pass to the alternative de�nition of the Preisach operator as suggested in [5], see also
[1, 6].

��0
t∗
t∗ t

x

0

v

r

v = λ(r)

v = λt∗(r)

R

r = (mλt∗ ◦ u)(t∗)

Figure 4: The memory curve v = λt(r) at t = t∗ .

De�nition 1.6 Let R > 0 be given. Let µ : R+ × R → R+ be a locally bounded
measurable function. For (r, v) ∈ R+ × R put

g(r, v) =

∫ v

0

µ(r, z) dz . (1.28)

Then the mapping F : ΛR × C(R+) → C(R+) de�ned as

F [λ, u](t) =

∫ ∞

0

g(r, pr[λ, u](t)) dr for (λ, u) ∈ ΛR × C(R+) , t ≥ 0 (1.29)

is called a Preisach operator.

The integral in (1.29) is �nite due to the fact that g(r, 0) = 0 for all r > 0 and
pr[λ, u](t) = 0 for r su�ciently large by virtue of Lemma 1.3 (i). We now list some
basic properties of the Preisach operator. For the proofs see [1, Section 2.11] or [6,
Section II.3].
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Hypothesis 1.7 Let µ be as in De�nition 1.6. We assume in addition that

(i) For every B > 0 there exists a constant γB > 0 such that

0 ≤ µ(r, v) ≤ γB a. e. in {(r, v) ∈ R+ × R , r + |v| ≤ B} . (1.30)

(ii) The function µ(r, ·) is locally Lipschitz continuous in R for almost all r > 0 ,
and there exist constants α, β > 0 and a continuous function % : R → (0,∞)
such that

µ(r, v) ≥ α∣∣∣∣
∂µ

∂v
(r, v)

∣∣∣∣ ≤ β





a. e. in C := {(r, v) ∈ R+ × R , 0 < r < %(v)} . (1.31)

Taking a smaller %(v) > 0 , if necessary, we may assume that

α ≥ 4β %(v) ∀v ∈ R . (1.32)

We will see that C is the convexity domain of the Preisach operator in the sense that
closed hysteresis loops are convex and counterclockwise oriented as long as the active
memory stays in C . The generalized convexity inequality below in Proposition 2.3
makes use of this fact. Its energetic interpretation is discussed in detail in [6, Section
II.4]. We start with Lipschitz continuity properties of the Preisach and the inverse
Preisach operator.

Proposition 1.8 Let Hypothesis 1.7 (i) hold.

(i) Then for every T > 0 , B ≥ R , λ1, λ2 ∈ ΛR and u1, u2 ∈ C(R+) such that
‖ui‖[0,T ] ≤ B for i = 1, 2 and every t ∈ [0, T ] we have

|F [λ1, u1]−F [λ2, u2]|(t) ≤ γB

(∫ R

0

|λ1 − λ2|(r) dr +B ‖u1 − u2‖[0,t]

)
.

(1.33)

(ii) For every α > 0 , λ ∈ Λ , the operator α I + F [λ, ·] : C(R+) → C(R+) , where
I is the identity mapping, is invertible and its inverse G = (α I + F [λ, ·])−1 :
C(R+) → C(R+) satis�es for every u1, u2 ∈ C(R+) and every T > 0 the
inequality

‖G[u1]− G[u2]‖[0,T ] ≤
2

α
‖u1 − u2‖[0,T ] . (1.34)

As an easy consequence of (1.11), we obtain the Hilpert inequality for the Preisach
operator (1.29) in the following form.
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Proposition 1.9 Let µ and g be as in De�nition 1.6, and let λ1, λ2 ∈ ΛR and
u1, u2 ∈ AC(R+) be given. Then for a. e. t > 0 we have

H(u1(t)− u2(t))
d

dt
(F [λ1, u1]−F [λ2, u2]) (t)

≥ d

dt

∫ ∞

0

(g(r, pr[λ1, u1])− g(r, pr[λ2, u2]))
+(t) dr . (1.35)

Interchanging the roles of u1 and u2 we obtain as a consequence of Proposition 1.9
that

sign (u1(t)− u2(t))
d

dt
(F [λ1, u1]−F [λ2, u2]) (t)

≥ d

dt

∫ ∞

0

|g(r, pr[λ1, u1])− g(r, pr[λ2, u2])| (t) dr . (1.36)

In the special cases u1 = u , λ1 = λ , u2 ≡ 0 , λ2 ≡ 0 , or u1 ≡ 0 , λ1 ≡ 0 , u2 = u ,
λ2 = λ , we obtain for a. e. t , as a special case of inequality (1.35), that

H(u(t))
d

dt
F [λ, u](t) ≥ d

dt

∫ ∞

0

(g(r, pr[λ, u](t)))
+ dr , (1.37)

−H(−u(t)) d

dt
F [λ, u](t) ≥ d

dt

∫ ∞

0

(g(r, pr[λ, u](t)))
− dr , (1.38)

where we denote x− = max{−x, 0} for x ∈ R .

2 Generalized convexity inequality
This section is devoted to the convexity inequality as mentioned in the Introduction.
We �rst investigate in detail the behavior of F [λ, u] on monotone inputs u .

Lemma 2.1 Let R > 0 , λ ∈ ΛR , u ∈ C(R+) and t0 ≥ 0 be given. Let Hypothesis
1.7 hold, and let F be the Preisach operator (1.29). Set

λt0(r) = pr[λ, u](t0) for r > 0 , (2.1)

Φ+(v) =

∫ v

λt0 (0)

∫ mλt0
(z)

0

µ(r, z − r) dr dz for v ≥ λt0(0) , (2.2)

Φ−(v) = −
∫ λt0 (0)

v

∫ mλt0
(z)

0

µ(r, z + r) dr dz for v ≤ λt0(0) , (2.3)

where mλt0
is as in (1.22). Let u be monotone (nondecreasing or nonincreasing) in

an interval [t0, t1] . Then for all t ∈ [t0, t1] we have

F [λ, u](t)−F [λ, u](t0) =

{
Φ+(u(t)) if u(t1) ≥ u(t0) ,

Φ−(u(t)) if u(t1) ≤ u(t0) .
(2.4)
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Eq. (2.4) is an explicit formula for the Preisach loading curves Φ+,Φ− associated with
monotone loadings. In particular, the initial loading curves are given by the equations

Φ̂+(v) =

∫ v

λ(0)

∫ mλ(z)

0

µ(r, z − r) dr dz for v ≥ λ(0) , (2.5)

Φ̂−(v) = −
∫ λ(0)

v

∫ mλ(z)

0

µ(r, z + r) dr dz for v ≤ λ(0) . (2.6)

Condition (1.32) implies that the function % is bounded and we denote by %̂ its smallest
upper bound. We further introduce the notation

%+ =

∫ ∞

λ(0)+%̂

%(v) dv ∈ (0,+∞] , %− =

∫ λ(0)−%̂

−∞
%(v) dv ∈ (0,+∞] . (2.7)

We easily check that under Hypothesis 1.7, we have

lim
v→∞

Φ̂+(v) ≥ α%+ , lim
v→−∞

Φ̂−(v) ≤ −α%− . (2.8)

Indeed, an elementary application of Fubini's Theorem yields

Φ̂+(v) =

∫ v

λ(0)

∫ mλ(z)

0

µ(r, z − r) dr dz =

∫ mλ(v)

0

∫ v−r

λ(r)

µ(r, z) dz dr

≥
∫ (v−λ(0))/2

0

∫ v−r

λ(0)+r

µ(r, z) dz dr =

∫ v

λ(0)

∫ min {v−z,z−λ(0)}

0

µ(r, z) dr dz

≥ α

∫ v

λ(0)

min {v − z, z − λ(0), %(z)} dz .

The computation for Φ̂− is similar, and (2.8) follows.

Proof of Lemma 2.1. Assume �rst that u in nondecreasing in [t0, t1] . Then, by (1.25),

pr[λ, u](t) = max{λt0(r), u(t)− r} for r > 0, t ∈ [t0, t1] . (2.9)

In particular, pr[λ, u](t) = λt0(r) for r > mλt0
(u(t)) . Hence, by Fubini's Theorem,

F [λ, u](t)−F [λ, u](t0) =

∫ ∞

0

(g(r, pr[λ, u](t))− g(r, λt0(r))) dr

=

∫ mλt0
(u(t))

0

∫ u(t)

λt0 (r)+r

µ(r, z − r) dz dr

=

∫ u(t)

λt0 (0)

∫ mλt0
(z)

0

µ(r, z − r) dr dz

= Φ+(u(t)) . (2.10)
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Similarly, if u in nonincreasing, we have

pr[λ, u](t) = min {λt0(r), u(t) + r} for r > 0, t ∈ [t0, t1] , (2.11)

hence,

F [λ, u](t0)−F [λ, u](t) =

∫ ∞

0

(g(r, λt0(r))− g(r, pr[λ, u](t), )) dr

=

∫ mλt0
(u(t))

0

∫ λt0 (r)−r

u(t)

µ(r, z + r) dz dr

=

∫ λt0 (0)

u(t)

∫ mλt0
(z)

0

µ(r, z + r) dr dz

= −Φ−(u(t)) . (2.12)

¥

In the situation of Lemma 2.1, set for s ≥ 0

ϕ+(s) =

∫ s

0

µ(r, λt0(s) + s− r) dr , ϕ−(s) =

∫ s

0

µ(r, λt0(s)− s+ r) dr . (2.13)

Then
Φ′

+(v) = ϕ+(mλt0
(v)) for a. e. v > λt0(0) ,

Φ′
−(v) = ϕ−(mλt0

(v)) for a. e. v < λt0(0) .

}
(2.14)

Note that

mλt0
(v1)−mλt0

(v2) ≥ 1

2
(v1 − v2) for v1 > v2 > λt0(0) (2.15)

and similarly,

mλt0
(v1)−mλt0

(v2) ≥ 1

2
(v2 − v1) for v1 < v2 < λt0(0). (2.16)

Referring to the notation of Lemma 2.1, we �x some B ≥ max{R, ‖u‖[0,t1]} . By
Lemma 1.4, we have |λt0(s)| ≤ max{B − s, 0} for all s ≥ 0 . In particular, this yields
for 0 < r < s ≤ B

|λt0(s) + s− r|+ r ≤ B , |λt0(s)− s+ r|+ r ≤ B .

Let %B be any number such that

0 < %B ≤ min {%(v); |v| ≤ B} . (2.17)

Making use of Hypothesis 1.7 (ii), we obtain from (2.13) that

ϕ±(s) ≥ α%B for s ∈ [%B, B] ,

ϕ′±(s) ≥ α− 2β%B ≥ α
2

for a. e. s ∈ (0, %B) .

}
(2.18)
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Combined with (2.14)�(2.16), these relations imply
Φ′

+(v1)− Φ′
+(v2)

v1 − v2

≥ α

4
if v1 > v2 > λt0(0), 0 ≤ mλt0

(v2) < mλt0
(v1) ≤ %B, (2.19)

Φ′
−(v2)− Φ′

−(v1)

v2 − v1

≤ −α
4

if v1 < v2 < λt0(0), 0 ≤ mλt0
(v2) < mλt0

(v1) ≤ %B. (2.20)

This is precisely what we had in mind when we introduced the convexity domain
C in Hypothesis 1.7. By virtue of (2.4) and (2.19)�(2.20), Φ+ is a convex function
describing increasing branches and Φ− is a concave function describing decreasing
branches as long as the evolution takes place in C , hence small closed hysteresis loops
are counterclockwise convex.
We now state an auxiliary result, which is a basis for the generalized convexity in-
equality for the Preisach operator we give below.

Lemma 2.2 Let [a, b] ⊂ R , δ > 0 and let u, v ∈ W 1,1(a, b) be given functions such
that v(t) ≥ 0 , and u is monotone (nondecreasing or nonincreasing) in [a, b] . Let
ψ : Conv{u(a), u(b)} → (0,∞) , where ConvA denotes the convex hull of a set A , be
a function such that

ψ(z1)− ψ(z2)

z1 − z2

≥ δ if u(a) ≤ z2 < z1 ≤ u(b) , (2.21)

ψ(z1)− ψ(z2)

z1 − z2

≤ −δ if u(b) ≤ z2 < z1 ≤ u(a) . (2.22)

Then for an arbitrary p > 0
∫ b

a

v̇(t)

ψp(u(t))
dt ≥

[
v(t)

ψp(u(t))

]b

a

+ pδ

∫ b

a

|u̇(t)| v(t)
ψp+1(u(t))

dt . (2.23)

Proof. We only treat the case that u is nondecreasing. Then ψ is positive and
increasing; hence, ψ ◦ u is nondecreasing and the integrals are meaningful. We may
approximate ψ by continuously di�erentiable functions ψn satisfying (2.21) and such
that ψn(z) → ψ(z) for each z ∈ [u(a), u(b)] . Inequality (2.23) holds for each ψn as a
direct consequence of an integration by parts. Passing to the limit in n we obtain the
assertion. ¥

Consider now some ε0 > 0 and a family {Fε ; ε ∈ (0, ε0)} of Preisach operators of the
form (1.28)�(1.29), associated with generating functions µε and initial states λε ∈ ΛR

for some �xed R > 0 , assuming that Hypothesis 1.7 is satis�ed independently of ε .
For ε ∈ (0, ε0) we de�ne the operator Gε : C(R+) → C(R+) by the formula

Gε = (εI + Fε[λ
ε, ·])−1 . (2.24)

By Proposition 1.8, Gε is Lipschitz continuous with Lipschitz constant 2/ε . As the
main result of this section, we derive an estimate for Gε independent of ε and similar
to [8, Theorem 2.1] as a generalization of [6, Proposition II.4.22]. Consistently with
(1.16), we denote λε

t(r) = pr[λ
ε, uε](t) for t ≥ 0 and r ≥ 0 .
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Proposition 2.3 (Generalized convexity inequality) Let Gε be as in (2.24) and let
q > 1 be given. Let {wε}ε∈(0,ε0) be a system of functions in W 2,q

loc (R+) parameterized
by ε > 0 , and set

uε = Gε[wε] . (2.25)
Let B > R be given, and let %B, α be as in (2.17). Assume that for every ε ∈ (0, ε0)
we have

either ẇε(0) = 0 , or (mλε
0
◦ uε)(0+) ≥ %B . (2.26)

Then there exists a constant Cq,B > 0 depending only on q and B such that for every
T > 0 and every ε ∈ (0, ε0) with the property

‖uε‖[0,T ] < B (2.27)

we have ∫ T

0

|u̇ε(t)|2q dt ≤ Cq,B

∫ T

0

(|ẅε(t)|q + |ẇε(t)|2q
)
dt . (2.28)

Relation (2.26) is a condition of compatibility between the initial memory con�guration
λε and the initial velocity. Note that for every monotone function u on an interval
[t0, t1] , every λ ∈ Λ , and every t ∈ (t0, t1) , we have the implication

∃u̇(t) 6= 0 =⇒ (mλt0
◦ u)(t) > 0 . (2.29)

Indeed, (mλt0
◦u)(t) = 0 would imply u(t) = λt0(0) = u(t0) , which is a contradiction.

The following Example 2.4 shows that Proposition 2.3 does not hold if condition (2.26)
is violated.

Example 2.4 Consider the case λε(r) = λ(r) ≡ 0 , µε(r, v) = µ(r, v) ≡ 1 , wε(0) =
w(0) = 0 . In particular, mλ(v) = |v| for all v ∈ R . By (1.8) and (1.29), we have

F [λ, uε](0) =

∫ ∞

0

g(r, ξε
r(0)) dr

with
ξε
r(0) = min {uε(0) + r,max{uε(0)− r, 0}} ,

hence F [λ, uε](0) = 1
2
|uε(0)|uε(0) . From (2.25) it follows that εuε(0)+ 1

2
|uε(0)|uε(0) =

0 , hence uε(0) = 0 . Let now wε = w be increasing in [0, T ] . Then the functions uε

are increasing as well by virtue of (1.9), and from Lemma 2.1 we obtain F [λ, uε](t) =
1
2
u2

ε(t) , hence uε(t) is the solution of the equation

εuε(t) +
1

2
u2

ε(t) = w(t) .

If, for example, w(t) = t for t ∈ [0, T ] , then uε(t) =
√
ε2 + 2t − ε . We see that∫ T

0
|u̇ε(t)|2q dt is not bounded independently of ε for any q ≥ 1 , although the right

hand side of (2.28) is bounded.
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Proof of Proposition 2.3. We �x T > 0 and ε > 0 such that (2.27) holds, and assume
�rst that wε has only �nitely many monotonicity intervals in [0, T ] . Let [a, b] ⊂ [0, T ]
be a monotonicity interval of wε . Set

c = sup{t ∈ [a, b]; (mλε
a
◦ uε)(t+) ≤ %B} (2.30)

with the convention c = a if (mλε
a
◦ uε)(a+) ≥ %B . The function t 7→ mλε

a
(uε(t)) is

left-continuous and nondecreasing in [a, b] . By (2.12)�(2.18) we have

|ẇε(t)| ≥ (ε+ %Bα) |u̇ε(t)| for a. e. t ∈ (c, b) . (2.31)

In (a, c) , we distinguish the cases that wε increases or decreases. Assume �rst that
ẇε(t) ≥ 0 for all t ∈ (a, c) , and let Φ+ be the loading curve on [uε(a), uε(c)] associated
with Fε as in Lemma 2.1. Then

ẇε(t) =
(
ε+ Φ′

+(uε(t))
)
u̇ε(t) for a. e. t ∈ (a, c) . (2.32)

Set p = 2q − 2 . Then

ẅε(t) u̇
p
ε(t) =

d
dt

(ẇp+1
ε (t))

(p+ 1) (ε+ Φ′
+(uε(t)))

p for a. e. t ∈ (a, c) . (2.33)

By (2.19), we may use Lemma 2.2 with v(t) = ẇp+1
ε (t) , ψ(z) = ε+Φ′

+(z) , u(t) = uε(t) ,
and obtain from (2.32) that
∫ c

a

ẅε(t) u̇
p
ε(t) dt ≥ − ẇp+1

ε (a)

(p+ 1) (ε+ Φ′
+(uε(a)))

p +
αp

4(p+ 1)

∫ c

a

u̇ε(t) ẇ
p+1
ε (t)

(ε+ Φ′
+(uε(t)))

p+1 dt

= − 1

p+ 1
u̇p

ε(a) ẇε(a) +
αp

4(p+ 1)

∫ c

a

u̇p+2
ε (t) dt

= − 1

p+ 1
u̇p

ε(a) ẇε(a) +
αp

4(p+ 1)

∫ c

a

u̇2q
ε (t) dt . (2.34)

Hence, by Hölder's inequality,
αp

4(p+ 1)

∫ c

a

u̇2q
ε (t) dt ≤ 1

p+ 1
u̇p

ε(a) ẇε(a)

+

(∫ c

a

|ẅε(t)|q dt

)2/(2+p) (∫ c

a

u̇2q
ε (t) dt

)p/(2+p)

.(2.35)

We see that there exists a constant C > 0 depending only on p (or, equivalently,
on q ) and α such that

∫ c

a

u̇2q
ε (t) dt ≤ C

(
u̇p

ε(a) ẇε(a) +

∫ c

a

|ẅε(t)|q dt

)
. (2.36)

Taking into account inequality (2.31), we thus have, with a possibly di�erent constant
depending only on q , %B , and α ,

∫ b

a

u̇2q
ε (t) dt ≤ C

(
u̇p

ε(a) ẇε(a) +

∫ c

a

|ẅε(t)|q dt+

∫ b

c

|ẇε(t)|2q dt

)
. (2.37)
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Let now ẇε(t) ≤ 0 in (a, b) , hence also u̇ε(t) ≤ 0 a. e. in (a, b) . Then (2.31) still
holds, and, as a counterpart of (2.32)�(2.33), we have

ẇε(t) =
(
ε+ Φ′

−(uε(t))
)
u̇ε(t) for a. e. t ∈ (a, c) , (2.38)

and

−ẅε(t) |u̇ε(t)|p =
d
dt

((−ẇε)
p+1(t))

(p+ 1) (ε+ Φ′−(uε(t)))
p for a. e. t ∈ (a, c) . (2.39)

We now argue as above using Lemma 2.2, and obtain again
∫ b

a

|u̇ε|2q(t) dt ≤ C

(
|u̇ε(a)|p |ẇε(a)|+

∫ c

a

|ẅε(t)|q dt+

∫ b

c

|ẇε(t)|2q dt

)
. (2.40)

We conclude that there exists Cq,B with the desired properties such that in every
monotonicity interval [a, b] ⊂ [0, T ] we have

∫ b

a

|u̇ε|2q(t) dt ≤ Cq,B

(
|u̇ε(a)|p |ẇε(a)|+

∫ b

a

(|ẅε(t)|q + |ẇε(t)|2q
)
dt

)
. (2.41)

Let now 0 = t0 < t1 < · · · < tm = T be a minimal partition of [0, T ] such that
wε is monotone in each interval [tk−1, tk] , k = 1, . . . ,m . We now apply formula
(2.41) with a = tk−1 , b = tk . For all k = 2, . . . ,m we have ẇε(tk−1) = 0 (note
that wε is continuously di�erentiable). Moreover, in the case a = 0 , b = t1 , we
have by hypothesis (2.26) that either ẇε(0) = 0 , or |ẇε(t)| ≥ (ε + %Bα) |u̇ε(t)| for
a. e. t ∈ (0, t1) . In both cases we conclude that

∫ tk

tk−1

|u̇ε|2q(t) dt ≤ Cq,B

∫ tk

tk−1

(|ẅε(t)|q + |ẇε(t)|2q
)
dt (2.42)

for every k = 1, . . . ,m . Summing up over k we obtain the assertion for every piece-
wise monotone function wε . Let now wε ∈ W 2,q

loc (R+) and T > 0 be arbitrary. We
approximate wε on [0, T ] by piecewise monotone functions w(k)

ε converging strongly
to wε in W 2,q(0, T ) . In particular, w(k)

ε converge to wε uniformly in C[0, T ] , hence,
by continuity of Gε , u(k)

ε = Gε[w
(k)
ε ] converge uniformly to uε = Gε[wε] . For su�ciently

large k , condition (2.27) is preserved, and by the above considerations, we have
∫ T

0

|u̇(k)
ε |2q(t) dt ≤ Cq,B

∫ T

0

(|ẅ(k)
ε (t)|q + |ẇ(k)

ε (t)|2q
)
dt ,

hence, {u̇(k)
ε } is a bounded sequence in L2q(0, T ) . Consequently, u̇(k)

ε converge weakly
to u̇ε in L2q(0, T ) , and the assertion follows. ¥

3 Regularization
In this section, we show that solutions to Eq. (0.2) converge locally uniformly as
ε→ 0+ to solutions to (0.1) under the following hypotheses.
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Hypothesis 3.1 Let q > 1 , ε0 > 0 , R > 0 be �xed, let fε : R+ × R → R be
continuous functions in both variables, and let Fε be Preisach operators of the form
(1.28)�(1.29), associated with generating functions µε and initial states λε ∈ ΛR for
ε ∈ (0, ε0) . The following conditions are assumed to hold.

(i) Hypothesis 1.7 holds for each µε independently of ε ∈ (0, ε0) .

(ii) There exists f 0 ∈ L2q
loc (R+) such that f 0(t) ≥ 0 , and

v fε(t, v) ≤ f 0(t)|v| (3.1)

for all (ε, t, v) ∈ (0, ε0)× R+ × R .
(iii) For every B > 0 there exist functions `B ∈ L2q

loc (R+) , f 1
B ∈ Lq

loc (R+) , such that
for almost all (t, v) ∈ R+ × (−B,B) and all ε ∈ (0, ε0) we have

∣∣∣∣
∂fε

∂t
(t, v)

∣∣∣∣ ≤ f 1
B(t) , (3.2)

∣∣∣∣
∂fε

∂v
(t, v)

∣∣∣∣ ≤ `B(t) . (3.3)

(iv) There exists %0 > 0 such that the following initial compatibility conditions hold
for every ε ∈ (0, ε0) :

fε(0, u
0
ε) > 0 =⇒ mλε

0
(u0

ε+) ≥ %0 ,
fε(0, u

0
ε) < 0 =⇒ mλε

0
(u0

ε−) ≥ %0 ,

where mλε
0
is the mapping de�ned in (1.22).

(v) There exists U0 ≥ R such that |u0
ε| ≤ U0 for every ε ∈ (0, ε0) .

(vi) There exist u0 ∈ R , a locally bounded measurable function µ : R+ ×R→ R+ , a
continuous function f : R+ × R→ R , and a function λ ∈ ΛR such that

lim
ε→0+

u0
ε = u0 ,

lim
ε→0+

fε(t, v) = f(t, v) for all (t, v) ∈ R+ × R ,

lim
ε→0+

∫

Ω

(µε − µ)(r, v) dr dv = 0 for every open bounded set Ω ⊂ R+ × R ,
lim

ε→0+
λε(r) = λ(r) for all r ≥ 0 .

We denote by Φ̂ε
± the initial loading curves associated with the Preisach operator

Fε according to formulas (2.5)�(2.6). A similar computation as in (2.8) shows, as a
consequence of Hypotheses 1.7 and 3.1, that they have the property

Φ̂ε
+(v) ≥

∫ v−%̂

U0+%̂

%(z) dz for v > U0 + 2%̂ , (3.4)

Φ̂ε
−(v) ≤ −

∫ U0−%̂

v+%̂

%(z) dz for v < U0 − 2%̂ . (3.5)
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We prove the following result.

Theorem 3.2 Let Hypothesis 3.1 hold. Then for every ε ∈ (0, ε0) there exists a
unique solution uε ∈ W 1,2q

loc (R+) to (0.2). If moreover uε
1, u

ε
2 : R+ → R are two

solutions to (0.2) corresponding to two initial conditions u01
ε ≤ u02

ε and λε
1(r) ≤ λε

2(r)
for all r ≥ 0 , then uε

1(t) ≤ uε
2(t) for every t ≥ 0 . If, in addition, there exist B > R

and T > 0 such that

|uε(t)| ≤ B ∀ε ∈ (0, ε0) ∀t ∈ [0, T ] , (3.6)

then there exists a constant CB > 0 independent of ε such that
∫ T

0

|u̇ε(t)|2q dt ≤ CB

∫ T

0

(|f 1
B(t)|q + |f 0(t)|2q + |`B(t)|2q

)
dt , (3.7)

and a sequence εk → 0+ such that uεk
converge uniformly in C[0, T ] and weakly in

W 1,2q(0, T ) to a solution u of the limit system (0.1).

Proof. For the sake of completeness, we give an existence proof for solutions to (0.2)
for every ε ∈ (0, ε0) , which is fairly standard. Notice �rst that there is a one-to-one
correspondence between the initial conditions for uε and wε in (0.2), which has the
form

wε(0) = w0
ε := εu0

ε +

∫ ∞

0

g(r, ξ0
r ) dr , ξ0

r = min {u0
ε + r,max{u0

ε − r, λ(r)}} (3.8)

by virtue of (1.8). Keeping ε ∈ (0, ε0) and T > 0 �xed, we de�ne

ŵε = ε|u0
ε|+

∫ ∞

0

|g(r, ξ0
r )| dr , B∗ =

1

ε

(
ŵε +

∫ T

0

f 0(t) dt

)
. (3.9)

Condition (3.1) implies no lower bound for fε if v > 0 and no upper bound if v < 0 .
We therefore put

f ∗ε (t, v) =





fε(t, v) for (t, v) ∈ (0, T )× [−B∗, B∗] ,
fε(t, B

∗) for (t, v) ∈ (0, T )× (B∗,+∞) ,
fε(t,−B∗) for (t, v) ∈ (0, T )× (−∞,−B∗) .

(3.10)

By Hypotheses 3.1 (ii), (iii) we have |fε(t, 0)| ≤ f 0(t) for all t , hence

|f ∗ε (t, v)| ≤ f 0(t) +B∗`B∗(t) ∀(t, v) ∈ (0, T )× R . (3.11)

We introduce the set

K =

{
ũ ∈ C[0, T ] : ũ(0) = u0

ε, ‖ũ‖[0,T ] ≤ B∗ +
B∗

ε

∫ T

0

`B∗(t) dt

}
. (3.12)

We now check that the mapping S : K → C[0, T ] , which with each ũ ∈ K associates
the solution u of the problem

ẇ(t) = f ∗ε (t, ũ(t))
w(t) = εu(t) + Fε[λ

ε, u](t)
u(0) = u0

ε ,



 (3.13)
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is a contraction on K , endowed with the norm

‖ũ‖∗ = max
{∣∣e−L∗(t)ũ(t)

∣∣ : t ∈ [0, T ]
}
,

with
L∗(t) =

1

ε

∫ t

0

`B∗(τ) dτ .

The existence and uniqueness of the solution u to (3.13) follows immediately from
the Lipschitz continuity property in Proposition 1.8 (ii). To see that u ∈ K , we
test Eq. (3.13) consecutively by H(u(t)) and −H(−u(t)) , which yields, by virtue of
(1.37)�(1.38), that

ε|u(t)| ≤ ŵε +

∫ t

0

|f ∗ε (τ, ũ(τ))| dτ ,

and it su�ces to use inequality (3.11) to conclude that u ∈ K . The contracting
property of S can again be proved via Hilpert's inequality (1.36). For ũ1, ũ2 ∈ K , we
test the identity

d

dt

(
ε(u1(t)− u2(t)) + Fε[λ

ε, u1](t)−Fε[λ
ε, u2](t)

)
= f ∗ε (t, ũ1(t))− f ∗ε (t, ũ2(t))

by sign (u1 − u2) to obtain, using also Hypothesis (3.3), that

ε
d

dt
|u1(t)− u2(t)| ≤ `B∗(t)|ũ1(t)− ũ2(t)| .

For t ∈ [0, T ] we then have

e−L∗(t)|u1(t)−u2(t)| ≤ 1

ε
‖ũ1− ũ2‖∗

∫ t

0

eL∗(τ)−L∗(t)`B∗(τ) dτ ≤ (
1− e−L∗(T )

) ‖ũ1− ũ2‖∗,

which yields the desired contraction. To see that the �xed point u of the mapping S
satis�es Eq. (0.2), we test the equation

d

dt

(
εu(t) + Fε[λ

ε, u](t)
)

= f ∗ε (t, u(t))

by sign (u(t)) and obtain by (1.37), (1.38), and Hypothesis 3.1 (ii) that

ε|u(t)| ≤ ŵε +

∫ t

0

f 0(τ) dτ .

We see that ‖u‖[0,T ] ≤ B∗ , hence f ∗ε (t, u(t)) = fε(t, u(t)) , and the existence proof is
complete.
Let now uε

1, u
ε
2 : R+ → R be two solutions corresponding to two di�erent initial

conditions u01
ε ≤ u02

ε and λε
1(r) ≤ λε

2(r) for all r ≥ 0 . We �x some T > 0 and BT >
max{R, ‖uε

1‖[0,T ] , ‖uε
2‖[0,T ]} . Then for all t ∈ [0, T ] and r > 0 we have by Lemma

1.4 that |pr[λ
ε
i , u

ε
i ](t)| ≤ BT , and pr[λ

ε
i , u

ε
i ](t) = 0 for r > BT , i = 1, 2 . Testing the
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di�erence of the equations for uε
1, u

ε
2 by H(uε

1 − uε
2) and using Proposition 1.9, we

obtain

d

dt

(
ε(uε

1(t)− uε
2(t))

+ +

∫ BT

0

(g(r, pr[λ
ε
1, u

ε
1])− g(r, pr[λ

ε
2, u

ε
2]))

+(t) dr

)

≤ `BT
(t)(uε

1(t)− uε
2(t))

+ a. e.

We have pr[λ
ε
1, u

ε
1](0) ≤ pr[λ

ε
2, u

ε
2](0) , and using the classical Gronwall argument we

obtain uε
1(t) ≤ uε

2(t) for all t ∈ [0, T ] . Since T > 0 has been chosen arbitrarily, the
solution exists and is unique globally in time for all ε ∈ (0, ε0) .
To derive the upper bound (3.7) independent of ε , we use Proposition 2.3 in a sub-
stantial way. It follows from Hypothesis 3.1 (iv) that (2.26) holds for all ε ∈ (0, ε0) ,
provided we set %B = min {%0,min {%(v); |v| ≤ B}} . Proposition 2.3, Hypotheses
3.1 (ii)�(iii), and Hölder's inequality then yield

∫ T

0

|u̇ε(t)|2q dt ≤ C

∫ T

0

((
f 1

B(t) + `B(t) |u̇ε(t)|
)q

+ |f 0(t)|2q
)
dt

≤ Ĉ

∫ T

0

(|f 1
B(t)|q + |f 0(t)|2q

)
dt

+ Ĉ

(∫ T

0

|`B(t)|2q dt

)1/2 (∫ T

0

|u̇ε(t)|2q dt

)1/2

(3.14)

with a constant Ĉ independent of ε ; hence, (3.7) holds. In particular, the functions u̇ε

are uniformly bounded in L2q(0, T ) . By compact embedding, there exists a uniformly
convergent subsequence uεk

→ u as εk → 0+ . We have pr[λ
ε, uε](t) = 0 for all r ≥ B

and ε ∈ (0, ε0) by virtue of Lemma 1.3. Hence,

lim
ε→0+

(Fε[λ
ε, uε](t)−Fε[λ, u](t)) = 0

as a consequence of (1.33), and the formula

Fε[λ, u](t)−F [λ, u](t) =

∫ B

0

∫ pr[λ,u](t)

0

(µε − µ)(r, v) dv dr

together with Hypothesis 3.1 (vi) enable us to pass to the limit as ε → 0+ in (0.2)
and check that u is a solution to the limit problem (0.1). ¥

Example 3.3 Consider again the case λε(r) = λ(r) ≡ 0 , µε(r, v) = µ(r, v) ≡ 1 , and
u0

ε = u0 = 0 . The computation in Example 2.4 shows that F [λ, u](t) = 1
2
u2(t) if u

increases, and F [λ, u](t) = −1
2
u2(t) if u decreases in [0, T ] .

(i) To show that Hypothesis 3.1 (iv) is necessary, set fε(t, v) = f(t, v) ≡ 1 . We
are in the situation of Example 2.4, and uε converge uniformly to the function
u(t) =

√
2t , which does not belong to W 1,2q(0, T ) for any q ≥ 1 .
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(ii) Uniqueness of solutions to the limit problem (0.1) cannot be expected in general
even if Hypothesis 3.1 (iv) holds. For the same λ, µ, u0 as in (i), and for fε(t, v) =
f(t, v) ≡ v , all hypotheses of Theorem 3.2 are ful�lled, but u1(t) = 0 , u2(t) = t ,
u3(t) = −t are three distinct solutions of (0.1). However, the ε-approximations
uε in Theorem 3.2 all converge to u1 .

The following theorem ensures uniqueness of a solution to problem (0.1) with a non-
increasing f .

Theorem 3.4 Let Hypothesis 3.1 hold, and let there exist T > 0 and u∗ < u∗ such
that

∂f

∂v
(t, v) ≤ 0 a. e. in (0, T )× (u∗, u∗) .

Let there exist two solutions u1, u2 : [0, T ] → [u∗, u∗] to (0.1) corresponding to two
initial conditions u0

1 ≤ u0
2 and λ1, λ2 ∈ ΛR , λ1(r) ≤ λ2(r) for all r ≥ 0 . Then we

have u1(t) ≤ u2(t) for every t ∈ [0, T ] . In particular, the solution to (0.1) is unique
for every initial condition u0 ∈ [u∗, u∗] .

Proof. Set B = max{R, |u∗|, |u∗|} . For all t ∈ [0, T ] and r > 0 we have by Lemma
1.4 that |pr[λi, ui](t)| ≤ B , and pr[λi, ui](t) = 0 for r > B , i = 1, 2 . Proposition 1.9
yields

d

dt

∫ B

0

(g(r, pr[λ1, u1])− g(r, pr[λ2, u2]))
+(t) dr ≤ 0 a. e. in (0, T ) .

We have pr[λ1, u1](0) ≤ pr[λ2, u2](0) , hence g(r, pr[λ1, u1](t)) ≤ g(r, pr[λ2, u2](t)) for
all t ∈ [0, T ] and r ∈ (0, B) . By Hypothesis (1.31), there exists %B > 0 such that
for r < %B we have g(r, v1) − g(r, v2) ≥ α(v1 − v2) for all B > v1 > v2 > −B .
Consequently,

pr[λ1, u1](t) ≤ pr[λ2, u2](t) for t ∈ [0, T ] and r ∈ (0, %B) .

Since |pr[λi, ui](t)−ui(t)| ≤ r by de�nition of the play, we may let r tend to zero and
obtain u1(t) ≤ u2(t) for all t ≥ 0 . ¥

We now state a su�cient condition for the estimate (3.6).

Proposition 3.5 Let Hypothesis 3.1 hold. Let there exist U0 such that |u0
ε| ≤ U0 for

every ε ∈ (0, ε0) , and let T > 0 be such that

−
∫ U0−%̂

−∞
%(z) dz <

∫ T

0

f 0(t) dt <

∫ ∞

U0+%̂

%(z) dz , (3.15)

where %̂ is the least upper bound of the function % introduced in (1.31). Then there
exists a positive constant B > R such that (3.6) holds.
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Proof. Consider the equation

ẇ]
ε(t) = f 0(t)

w]
ε(t) = εu]

ε(t) + Fε[λ
ε, u]

ε](t)

u]
ε(0) = (u0

ε)
+ .



 (3.16)

We have u̇]
ε ≥ 0 a. e. and u]

ε(0) ≥ 0 , hence u]
ε is positive and nondecreasing, and we

have the representation formula

Fε[λ
ε, u]

ε](t) = Fε[λ
ε, u]

ε](0) + Φ̂ε
+(u]

ε(t))

for t ≥ 0 , where Φ̂ε
+ is the positive initial loading curve associated with Fε . We

integrate the �rst equation in (3.16) in time and use inequality (3.4) to obtain

∫ t

0

f 0(τ) dτ ≥ ε
(
u]

ε(t)− u]
ε(0)

)
+

∫ u
]
ε(t)−%̂

U0+%̂

%(z) dz .

Condition (3.15) entails that u]
ε(t) are uniformly bounded from above in [0, T ] by

some B > 0 . We test the di�erence of Eqs. (0.1) and (3.16) by H(uε(t)− u]
ε(t)) , and

obtain from Proposition 1.9 and Hypothesis 3.1 (ii) that

d

dt

(
ε(uε − u]

ε)
+ +

∫ ∞

0

(gε(r, pr[λ
ε, uε])− gε(r, pr[λ

ε, u]
ε]))

+ dr

)
(t) ≤ 0 a. e. ,

hence uε(t) ≤ u]
ε(t) ≤ B for all t ∈ [0, T ] . The lower bound is obtained similarly by

considering the equation

ẇ[
ε(t) = −f 0(t)

w[
ε(t) = εu[

ε(t) + Fε[λ
ε, u[

ε](t)

u[
ε(0) = −(u0

ε)
− ,





(3.17)

and the assertion follows. ¥

Theorem 3.2 and Proposition 3.5 imply local existence of solutions to problem (0.1) if
Hypothesis 3.1 and relation (3.15) hold.

4 Global and periodic solutions
In this section we give su�cient conditions for the existence, uniqueness, and asymp-
totic stability of global and time periodic solutions to (0.1).

Hypothesis 4.1 An interval [u∗, u∗] , an initial condition u0 ∈ [u∗, u∗] , and a con-
tinuous function f : R+ × [u∗, u∗] are given such that

(i) f(t, u∗) ≤ 0 , f(t, u∗) ≥ 0 for all t ≥ 0 ;
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(ii) There exist functions ` ∈ L2q
loc (R+) , f 1 ∈ Lq

loc (R+) , such that for almost all
(t, v) ∈ R+ × (u∗, u∗) we have

∣∣∣∣
∂f

∂t
(t, v)

∣∣∣∣ ≤ f 1(t) , (4.1)
∣∣∣∣
∂f

∂v
(t, v)

∣∣∣∣ ≤ `(t) . (4.2)

(iii) There exists %0 > 0 such that the following initial compatibility conditions hold:

f(0, u0) > 0 =⇒ mλ0(u
0+) ≥ %0 ,

f(0, u0) < 0 =⇒ mλ0(u
0−) ≥ %0 .

The main results of this section read as follows.

Theorem 4.2 Let Hypotheses 1.7 and 4.1 hold, and let R > max{|u∗|, |u∗|} and
λ ∈ ΛR be given. Then there exists a solution u ∈ W 1,2q

loc (R+) to Problem (0.1) such
that u(t) ∈ [u∗, u∗] for all t ≥ 0 . If moreover f(t, ·) is nonincreasing in [u∗, u∗] , and
u1, u2 : R+ → [u∗, u∗] are two solutions to (0.1) corresponding to two initial conditions
u0

1 ≤ u0
2 , then u1(t) ≤ u2(t) for every t ≥ 0 . In particular, the solution to (0.1) is

unique.

Theorem 4.3 Let the hypotheses of Theorem 4.2 hold, let f(t, ·) be decreasing in
[u∗, u∗] , and let there exist T > 0 such that

f(t, v) = f(t+ T, v) (4.3)

for all t ≥ 0 and v ∈ [u∗, u∗] . Let u be a solution to Problem (0.1). Then there exists
λT ∈ ΛR and a solution uT ∈W 1,2q

loc (R+) to the problem

ẇT (t) = f(t, uT (t))
wT (t) = F [λT , uT ](t)
uT (t) = uT (t+ T )



 ∀t > 0 (4.4)

such that limt→∞ |u(t)−uT (t)| = 0 . Moreover, if (λT
1 , u

T
1 ) , (λT

2 , u
T
2 ) are two solutions

of (4.4), then uT
1 = uT

2 .

In the last statement of Theorem 4.3, the case λT
1 6= λT

2 and wT
1 − wT

2 ≡ const 6= 0
cannot be excluded.

Proof of Theorem 4.2. We de�ne the extended function

f̃(t, v) =





f(t, v) for v ∈ [u∗, u∗] ,

f(t, u∗) for v < u∗ ,

f(t, u∗) for v > u∗ ,

(4.5)
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and consider for ε > 0 the problem

ẇε(t) = f̃(t, uε(t))
wε(t) = εuε(t) + F [λ, uε](t)
uε(0) = u0 .



 (4.6)

We �rst prove that the solution uε to (4.6) satis�es the bounds uε(t) ∈ [u∗, u∗] for all
ε > 0 and t ≥ 0 . We test the �rst equation of (4.6) by H(uε(t)− u∗) and obtain

ẇε(t)H(uε(t)− u∗) ≤ 0

for all t > 0 . Using the fact that F [λ, u∗] is a constant, we may apply Proposition
1.9, which yields

d

dt

(
ε(uε − u∗)+ +

∫ ∞

0

(g(r, pr[λ, uε])− g(r, pr[λ, u
∗]))+ dr

)
(t) ≤ 0 a. e.

Hence, uε(t) ≤ u∗ for all ε > 0 and t ≥ 0 . The lower bound uε(t) ≥ u∗ is derived
similarly by testing with H(u∗ − uε(t)) . The existence of a global solution to (0.1)
now follows from Theorem 3.2, and the comparison result for two solutions u1, u2 is a
direct consequence of Theorem 3.4. ¥

We now pass to the periodic case.

Proof of Theorem 4.3. Let u be the solution to (0.1) from Theorem 4.2. For n ∈ N
put λ(n)(r) = pr[λ, u](nT ) , u(n)(t) = u(t + nT ) , w(n)(t) = w(t + nT ) for t ≥ 0 . By
Lemma 1.3 (ii) and (4.3), we have w(n)(t) = F [λ(n), u(n)](t) for all t ∈ [0, T ] .
We de�ne an auxiliary function

D(u1, u2, λ1, λ2)(t) =

∫ ∞

0

|g(r, pr[λ1, u1])− g(r, pr[λ2, u2])|(t) dr (4.7)

for u1, u2 ∈ AC(R+) , λ1, λ2 ∈ ΛR , and t ≥ 0 . Whenever (ui, wi) , wi = F [λi, ui] for
i = 1, 2 are two solutions of (0.1), then, as a consequence of (1.36), we have

d

dt
D(u1, u2, λ1, λ2)(t) + |f(t, u1(t))− f(t, u2(t))| ≤ 0 a. e. , (4.8)

hence, by virtue of Lemma 1.3 (ii),

d

dt
D(u(n), u(m), λ(n), λ(m))(t) + |f(t, u(n)(t))− f(t, u(m)(t))| ≤ 0 a. e. ∀n,m ∈ N .

(4.9)
We have in particular d

dt
D(u(1), u, λ(1), λ)(t) ≤ 0 , hence there exists the limit

∆ = lim
t→∞

D(u(1), u, λ(1), λ)(t) ≥ 0 . (4.10)

The set ΛR is compact with respect to the sup-norm, hence we may �nd a sequence
{nk} in N such that

u(nk)(0) → ū0 ∈ [u∗, u∗] , λ(nk) → λ̄ ∈ ΛR uniformly . (4.11)
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By Theorem 3.2, the sequence {u(n)} is bounded in W 1,2q(0, T ) . Hence, by compact
embedding of W 1,2q(0, T ) in C[0, T ] , nk can be chosen in such a way that

u(nk) → ū ∈ C[0, T ] uniformly . (4.12)

Set w̄ = F [λ̄, ū] . By continuity of F we have that (ū, w̄) is a solution of (0.1). To
see that ū is T -periodic, put û(t) = ū(t+T ) for t ≥ 0 , λ̂(r) = F [λ̄, ū](T ) . Using the
identity F [λ(nk), u(nk)](t+ T ) = pr[λ

(1), u(1)](t+ nkT ) we obtain from (4.10) that

D(û, ū, λ̂, λ̄)(t) = lim
k→∞

D(u(1), u, λ(1), λ)(t+ nkT ) = ∆ ∀t ≥ 0 , (4.13)

hence d
dt
D(û, ū, λ̂, λ̄)(t) ≡ 0 and (4.8) yields that f(t, û(t)) = f(t, ū(t)) a. e. Since f

is decreasing, we have û(t) = ū(t) for all t ≥ 0 . This enables us to use (4.8) and
conclude for all n ∈ N that

D(u(n+1), ū, λ(n+1), λ̄)(0) = D(u(n), ū, λ(n), λ̄)(T ) ≤ D(u(n), ū, λ(n), λ̄)(0) . (4.14)

We see that {D(u(n), ū, λ(n), λ̄)(0)} is a nonincreasing sequence with a subsequence
converging to 0 . Hence, it converges to 0 , and by virtue of (4.8) we have

lim
n→∞

∫ T

0

|f(t, u(n)(t))− f(t, ū(t))| dt = 0 .

Using again the compactness of the sequence {u(n)} in C[0, T ] and the fact that f
is injective, we conclude that u(n) converge to ū uniformly, and the assertion follows.
The uniqueness of ū is also a direct consequence of (4.8). ¥
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